CN101362074B - Use of double-phenyl hybridization silica gel material monolithic column in chromatogram - Google Patents

Use of double-phenyl hybridization silica gel material monolithic column in chromatogram Download PDF

Info

Publication number
CN101362074B
CN101362074B CN2007100124112A CN200710012411A CN101362074B CN 101362074 B CN101362074 B CN 101362074B CN 2007100124112 A CN2007100124112 A CN 2007100124112A CN 200710012411 A CN200710012411 A CN 200710012411A CN 101362074 B CN101362074 B CN 101362074B
Authority
CN
China
Prior art keywords
silica gel
capillary
monolithic column
gel material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007100124112A
Other languages
Chinese (zh)
Other versions
CN101362074A (en
Inventor
张庆合
严丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Metrology
Original Assignee
National Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Metrology filed Critical National Institute of Metrology
Priority to CN2007100124112A priority Critical patent/CN101362074B/en
Publication of CN101362074A publication Critical patent/CN101362074A/en
Application granted granted Critical
Publication of CN101362074B publication Critical patent/CN101362074B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The invention relates to a chromatographic analysis technology, in particular to the application of bi-phenylene hybrid silica-gel monolithic column of bridge-bond organic-inorganic hybridization periodically meso-pore separation material in a chromatogram. The specified preparation method of bi-phenylene hybrid silica-gel material adopts a sol-gel method of acid-base catalysis. Under the condition of acid catalysis, hydrolysis reaction is carried out to a monomer, and an alkaline catalyst is added to carry out polycondensation reaction. The reaction rates of the hydrolysis reaction and the polycondensation reaction of the monomer are controlled by controlling and changing the pH value of a reaction system in the reaction process and the hydrolysis reaction and the polycondensation reaction of the monomer are effectively completely separated by the two-step catalysis method so as to obtain monolithic or particle material with uniform frame structure, suitable aperture and periodic meso-pores. Therefore, the chromatographic analysis technology meets the demands of separation, improves processing technology of the internal wall of quartz capillary, obtains stable monolithic separation material, is capable of separating acid, neutral and alkai compounds under the model of capillary electrochromatography, and shows that the material has excellent separation efficiency and separative selectivity.

Description

一种双苯基杂化硅胶材料整体柱在色谱中的应用 Application of a monolithic column of bisphenyl hybrid silica gel material in chromatography

技术领域technical field

本发明涉及色谱分析技术,具体为一种桥键型有机-无机杂化周期介孔分离材料的双苯基杂化硅胶材料整体柱在色谱中的应用。The invention relates to chromatographic analysis technology, in particular to the application of a biphenyl hybrid silica gel material monolithic column of a bridging organic-inorganic hybrid periodic mesoporous separation material in chromatography.

背景技术Background technique

分离材料是包括液相色谱、毛细管电色谱等在内的色谱技术的重要组成部件,也是固相萃取和固相微萃取等样品处理技术的主要材料,分离材料的特性直接影响分析效率、应用范围等。近年来随着色谱分析技术进展及实际应用要求提高,对分离材料也提出了越来越高的要求。Separation materials are important components of chromatographic techniques including liquid chromatography and capillary electrochromatography, as well as the main materials for sample processing techniques such as solid phase extraction and solid phase microextraction. The characteristics of separation materials directly affect the analysis efficiency and application range. wait. In recent years, with the development of chromatographic analysis technology and the improvement of practical application requirements, higher and higher requirements have been put forward for separation materials.

目前常用的液相色谱和毛细管电色谱分离材料主要有键合硅胶材料、聚合物微粒材料和基于硅胶或者聚合物的整体材料等,硅胶材料具有表面性质独特、能够通过化学键合调整表面性质等特点,但是也具有使用酸碱范围窄、表面非特异性吸附等问题;聚合物材料具有耐酸碱范围宽、生物兼容性好等优点,但是材料会随使用溶剂溶胀,导致微观结构变化影响分离等不足。针对上述不足主要的解决方案包括:致密键合硅胶、封尾技术和复合材料等降低硅胶表面非特异性吸附中心位点、提高材料耐受酸碱范围,增加聚合物材料的交联度等方式避免材料微观结构随溶剂的变化而变化。Currently commonly used liquid chromatography and capillary electrochromatographic separation materials mainly include bonded silica gel materials, polymer particle materials, and monolithic materials based on silica gel or polymers. Silica gel materials have unique surface properties and can be adjusted by chemical bonding. , but it also has problems such as narrow acid-base range and non-specific adsorption on the surface; polymer materials have the advantages of wide acid-base resistance range and good biocompatibility, but the material will swell with the use of solvents, resulting in microstructure changes that affect separation. . The main solutions to the above problems include: densely bonded silica gel, end-sealing technology and composite materials, etc. to reduce the non-specific adsorption center sites on the silica gel surface, improve the acid-base tolerance range of the material, and increase the cross-linking degree of the polymer material. The material microstructure changes with the solvent.

上述技术虽然在一定程度上改进了材料的物理化学特性、改善了分离性能、扩大了应用范围、避免了作为分离材料的不足,但是,由于材料本身物理化学特性使然,其缺点和不足依然在一定程度上不可避免。新型分离材料和制备技术研究是目前国内外相关领域主要研究热点问题,如何得到具有良好分离性能的新型材料,避免传统分离材料性能的局限性是共同的目标和追求。Inagaki(S.Inagaki,S.Guan,Y.Fukushima,T.Ohsuna,O.Terasaki,Novel Mesoporous Materials with a Uniform Distribution of OrganicGroups and Inorganic Oxide in Their Frameworks,J.Am.Chem.Soc.1999,121,9611-9614.)、Stein(B.J.Melde,B.T.Holland,C.F.Blanford,A.Stein,Mesoporous sieves with unified hybrid inorganic/organic frameworks,Chem.Mater.1999,11,3302-3308.)以及Ozin(T.Asefa,M.J.Maclachlan,N.Coombs,G.A.Ozin,Periodic mesoporous organosilicas with organic groupsinside the channel walls,Nature 1999,402,867-871.)小组在1999年相继报道了桥键型有机-无机杂化周期介孔材料简称PMOs(periodic mesoporousorganosilicas)的合成。桥键型有机-无机杂化介孔材料中,有机官能团均匀分布于骨架中,不会阻塞孔道、占据孔容,并且柔韧性的有机基团可以提高材料的机械强度,表面亲/憎水性可以通过使用不同的有机基团进行调节,有机基团还可以继续参与反应衍生出新的活性中心,有研究表明这种材料具有更好的水热稳定性及机械稳定性。Nie等(C.F.Nie,R.Zhao,J.S.Suo,Synthesis and characterization of bifunctional periodic silica with surface andframework benzene functionality,J.Porous Mater.2004,11,141-146.)以十六烷基溴化嘧啶作为模板,四乙氧基硅烷、苯基三乙氧基硅烷和1,4-双三乙氧基硅基苯在酸性条件下共缩合,制备了新型有机-无机杂化MCM-41型中孔分子筛,材料中同时含有孔内壁的桥联苯基和孔道内的末端苯基。也有一些文献介绍了该类材料结构控制的方式(A.Fidalgo,M.E.Rosa,L.M.Ilharco,Chemical control of highly porous silica xerogels:physical propertiesand morphology,Chem.Mater.2003,15,2186-2192.)(D.A.Loy,K.J.Shea,Bridged polysilsesquioxanes.Highly porous hybrid organic-inorganic materials,Chem.Rev.1995,95,1431-1442.(M.P.Kapoor,Q.H.Yang,S.Inagaki,Organizationof phenylene-bridgedhybrid mesoporous silisesquioxane with a crystal-like porewall from a precursor with nonlinear symmetry,Chem.Mater.2004,16,1209-1213.)。Although the above-mentioned technologies have improved the physical and chemical properties of the material to a certain extent, improved the separation performance, expanded the scope of application, and avoided the shortcomings of the separation material, but due to the physical and chemical properties of the material itself, its shortcomings and shortcomings still exist. unavoidable to some extent. Research on new separation materials and preparation technology is the main research hotspot in related fields at home and abroad. How to obtain new materials with good separation performance and avoid the limitations of traditional separation materials is a common goal and pursuit. Inagaki (S.Inagaki, S.Guan, Y.Fukushima, T.Ohsuna, O.Terasaki, Novel Mesoporous Materials with a Uniform Distribution of OrganicGroups and Inorganic Oxide in Their Frameworks, J.Am.Chem.Soc.1999, 121, 9611-9614.), Stein (B.J.Melde, B.T.Holland, C.F.Blanford, A.Stein, Mesoporous sieves with unified hybrid inorganic/organic frameworks, Chem.Mater.1999, 11, 3302-3308.) and Ozin (T.Asefa , M.J.Maclachlan, N.Coombs, G.A.Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls, Nature 1999, 402, 867-871.) The group successively reported bridge-type organic-inorganic hybrid periodic mesoporous materials in 1999 It is referred to as the synthesis of PMOs (periodic mesoporous organosilicas). In the bridging organic-inorganic hybrid mesoporous materials, the organic functional groups are evenly distributed in the skeleton, which will not block the pores and occupy the pore volume, and the flexible organic groups can improve the mechanical strength of the material, and the surface affinity/hydrophobicity can By using different organic groups for adjustment, the organic groups can continue to participate in the reaction to derive new active centers. Studies have shown that this material has better hydrothermal and mechanical stability. Nie et al. (C.F.Nie, R.Zhao, J.S.Suo, Synthesis and characterization of bifunctional periodic silica with surface and framework benzene functionality, J.Porous Mater.2004, 11, 141-146.) used hexadecyl pyrimidine bromide as a template , Tetraethoxysilane, phenyltriethoxysilane and 1,4-bistriethoxysilylbenzene were co-condensed under acidic conditions to prepare a new type of organic-inorganic hybrid MCM-41 mesoporous molecular sieve. The material contains both bridging phenyl groups on the inner wall of the pores and terminal phenyl groups in the channels. There are also some literatures that introduce the way of structure control of this type of materials (A.Fidalgo, M.E.Rosa, L.M.Ilharco, Chemical control of highly porous silica xerogels: physical properties and morphology, Chem.Mater.2003, 15, 2186-2192.) (D.A. Loy, K.J.Shea, Bridged polysilsesquioxanes.Highly porous hybrid organic-inorganic materials, Chem.Rev.1995,95,1431-1442. porewall from a precursor with nonlinear symmetry, Chem. Mater. 2004, 16, 1209-1213.).

上述有机-无机材料结合了聚合物材料和硅胶材料的特点,具有很好的物理特性和化学特性,作为分离材料具有很好的前景。桥联分离材料的特殊设计,使得材料同时具有聚合物的稳定性和硅胶材料特殊表面性质的特点,具有良好的稳定性和分离特性,由烷基、烯基、苯环等多种功能团骨架构成的特殊孔腔结构,对于改善和调整分离特性具有非常特殊的意义。The above-mentioned organic-inorganic materials combine the characteristics of polymer materials and silica gel materials, have good physical and chemical properties, and have good prospects as separation materials. The special design of the bridge separation material makes the material have the characteristics of the stability of the polymer and the special surface properties of the silica gel material, and has good stability and separation characteristics. It is composed of various functional groups such as alkyl, alkenyl, and benzene ring The special cavity structure formed has very special significance for improving and adjusting the separation characteristics.

发明内容Contents of the invention

本发明的目的在于提供一种双苯基杂化硅胶材料整体柱在色谱中的应用。The object of the present invention is to provide an application of a monolithic column of bisphenyl hybrid silica gel material in chromatography.

为实现上述目的,本发明采用的技术方案为:一种双苯基杂化硅胶材料整体柱在色谱中的应用。所述色谱可为毛细管电色谱、液相色谱或固相萃取预处理。In order to achieve the above object, the technical scheme adopted in the present invention is: the application of a biphenyl hybrid silica gel material monolithic column in chromatography. The chromatography may be capillary electrochromatography, liquid chromatography or solid phase extraction pretreatment.

所述应用于色谱中的双苯基杂化硅胶材料整体柱,按如下步骤制备:The monolithic column of bisphenyl hybrid silica gel material used in chromatography is prepared according to the following steps:

1)制备双苯基杂化硅胶材料:采用酸碱催化的溶胶-凝胶法,将80-150μL的硅烷前体加入到120-220μL甲醇、12-22μL盐酸和10-20μL水溶液中,混合均匀后,涡流搅拌1-5min,并在室温下水解3-6h后,加入4-7mg十二胺并混合均匀,待用,其中硅烷前体为60-100μL的苯基三乙氧基硅烷和20-50μL的1,4-双三乙氧基硅基苯;1) Preparation of bisphenyl hybrid silica gel material: using acid-base catalyzed sol-gel method, add 80-150 μL of silane precursor to 120-220 μL of methanol, 12-22 μL of hydrochloric acid and 10-20 μL of aqueous solution, mix well Afterwards, vortex stirring for 1-5min, and after hydrolysis at room temperature for 3-6h, add 4-7mg of dodecylamine and mix well, stand-by, wherein the silane precursor is 60-100μL of phenyltriethoxysilane and 20 - 50 μL of 1,4-bistriethoxysilylbenzene;

2)制备双苯基整体柱:将步骤1)中得到硅胶材料充入预处理的毛细管中,密闭,使硅胶材料在毛细管内常温下聚合反应10-20h;然后用无水乙醇冲洗3-5h,再在40-65℃下干燥48-72h,得到适用于色谱分离材料的整体柱。2) Preparation of bisphenyl monolithic column: fill the silica gel material obtained in step 1) into the pretreated capillary, seal it, and allow the silica gel material to polymerize in the capillary at room temperature for 10-20 hours; then rinse with absolute ethanol for 3-5 hours , and then dried at 40-65°C for 48-72h to obtain a monolithic column suitable for chromatographic separation of materials.

所述毛细管预处理的过程为:将毛细管柱依次用0.2-0.3mol/L盐酸、水冲洗30-45min,再用体积浓度10-15%的HF在35-50℃下浸泡3-5h,然后用1.0-2.0mol/L氢氧化钠、水和甲醇冲洗30-45min,最后在气相色谱炉中160-210℃下通氮气吹干,待用。The process of the capillary pretreatment is as follows: the capillary column is washed with 0.2-0.3mol/L hydrochloric acid and water for 30-45min in sequence, then soaked in HF with a volume concentration of 10-15% at 35-50°C for 3-5h, and then Rinse with 1.0-2.0mol/L sodium hydroxide, water and methanol for 30-45min, and finally dry it with nitrogen in a gas chromatography furnace at 160-210°C for use.

所得的整体柱用体积比为1∶1的0.1-0.3mol/L氨水的乙腈溶液浸泡2-4h后,再用流动相冲洗;在紧靠整体柱柱床后,用刀片刮去1-2mm的聚酰亚胺涂层作为检测窗口,将毛细管装入电泳仪卡盒后,把两端多余的毛细管切去。The resulting monolithic column is soaked in an acetonitrile solution of 0.1-0.3mol/L ammonia water with a volume ratio of 1:1 for 2-4h, and then washed with mobile phase; after being close to the monolithic column bed, scrape off 1-2mm The polyimide coating is used as the detection window. After the capillary is loaded into the cartridge of the electrophoresis instrument, the excess capillary at both ends is cut off.

所述制备双苯基杂化硅胶材料时采用的硅烷前体可为1,4-双三乙氧基硅基苯、1,4-双三甲氧基硅基苯、双三甲氧基硅基乙烷、双三乙氧基硅基乙烷、双三甲氧基硅基丙烷、双三乙氧基硅基丙烷、双三甲氧基硅基乙烯、双三乙氧基硅基乙烯、双三甲氧基硅基丙烯或双三乙氧基硅基丙烯。The silane precursors used in the preparation of bisphenyl hybrid silica gel materials can be 1,4-bistriethoxysilylbenzene, 1,4-bistrimethoxysilylbenzene, bistrimethoxysilylbenzene bistriethoxysilylethane, bistrimethoxysilylpropane, bistriethoxysilylpropane, bistrimethoxysilylethylene, bistriethoxysilylethylene, bistrimethoxy Silylpropene or Bistriethoxysilylpropene.

反应原理:两步催化的溶胶-凝胶法,首先在酸催化条件下,单体水解反应较快,而缩聚反应比较慢,这样使硅烷化试剂充分水解后以产生足够的硅羟基,然后加入碱性催化剂以加快缩聚反应的进行。通过这种两步催化法就有效地使单体的水解和缩聚反应分开完全。反应单体苯基三乙氧基硅烷(PTES)末端含有苯基基团,聚合发生后苯基通常分布在孔内。而另一个单体1,4-双三乙氧基硅基苯(BTEB)是一种具有刚性结构的双硅烷化偶联剂,分子中苯基基团同时与两个三乙氧基硅烷基团相连,聚合后这部分苯基分布在硅胶骨架中。因此,当PTES和BTEB水解聚合后,形成一种特殊的双功能化杂化材料。骨架中和孔内分布的有机基团可提供不同的保留行为,并具有不同的物理化学性质,且在所制备的材料中同时起作用。桥联的苯基官能团可提高杂化材料的机械强度,这些基团也具有一定的活性,但由于空间阻力和苯基的π电子及极性等因素,比末端分布的官能基团的活性要小。但是,由于杂化材料中桥联苯基官能团的存在,对整个材料的物理、化学和疏水-亲水性质都具有特殊的影响。Reaction principle: two-step catalyzed sol-gel method, firstly under the condition of acid catalysis, the hydrolysis reaction of the monomer is faster, but the polycondensation reaction is slower, so that the silylating agent is fully hydrolyzed to produce enough silicon hydroxyl groups, and then added Alkaline catalyst to speed up the polycondensation reaction. Through this two-step catalytic method, the hydrolysis and polycondensation reactions of the monomers are effectively separated and completely separated. The reactive monomer phenyltriethoxysilane (PTES) contains phenyl groups at the end, and the phenyl groups are usually distributed in the pores after polymerization occurs. Another monomer, 1,4-bistriethoxysilylbenzene (BTEB) is a double silylated coupling agent with a rigid structure. The phenyl group in the molecule is simultaneously bonded with two triethoxysilyl After polymerization, this part of phenyl group is distributed in the silica gel skeleton. Therefore, when PTES and BTEB are hydrolyzed and polymerized, a special bifunctional hybrid material is formed. The organic groups distributed in the framework and in the pores can provide different retention behaviors and have different physicochemical properties and function simultaneously in the as-prepared materials. The bridged phenyl functional groups can improve the mechanical strength of the hybrid material. These groups also have certain activity, but due to factors such as steric resistance, π electrons and polarity of the phenyl group, the activity of the functional groups distributed at the end is higher. Small. However, due to the presence of bridging phenyl functional groups in the hybrid materials, there are special effects on the physical, chemical, and hydrophobic-hydrophilic properties of the entire material.

当BTEB单体在含有甲醇的水溶液中的浓度低至0.2mol/L时,在酸或碱催化下,仍可聚合形成凝胶结构。在反应体系中,通过加入另一种单体PTEB来控制凝胶的聚合和交联程度,改善凝胶的结构性质,得到具有合适孔结构的毛细管整体柱。When the concentration of BTEB monomer in the aqueous solution containing methanol is as low as 0.2mol/L, under the catalysis of acid or base, it can still polymerize to form a gel structure. In the reaction system, another monomer PTEB was added to control the degree of polymerization and crosslinking of the gel, improve the structural properties of the gel, and obtain a capillary monolithic column with a suitable pore structure.

本发明的优点:Advantages of the present invention:

1.本发明采用不同功能团的桥联硅烷偶联剂作为原料,制备了结合聚合物和硅胶优势的特殊性质的分离材料,桥键型有机-无机杂化周期介孔分离材料。1. The present invention uses bridged silane coupling agents with different functional groups as raw materials to prepare a separation material with special properties combining the advantages of polymers and silica gel, a bridging organic-inorganic hybrid periodic mesoporous separation material.

2.本发明的桥联分离材料通过改变双硅烷试剂的种类,其反应单体两个功能单体中含有不同性质的有机官能基团,能够方便的得到具有不同物理化学微环境特性的特殊孔腔结构的材料,可以改善和调整分离特性,满足不同分离的需要。2. The bridging separation material of the present invention can easily obtain special pores with different physical and chemical microenvironmental characteristics by changing the type of disilane reagent, and the two functional monomers of the reaction monomer contain organic functional groups of different properties The material of the cavity structure can improve and adjust the separation characteristics to meet the needs of different separations.

3.将本发明的双苯基杂化硅胶材料作为毛细管电色谱、液相色谱和样品处理的材料,具有很好的物理化学性能和分离特征,具有高选择性与分离效率,作为分离材料具有特殊的意义。3. The biphenyl hybrid silica gel material of the present invention is used as a material for capillary electrochromatography, liquid chromatography and sample processing, has good physical and chemical properties and separation characteristics, has high selectivity and separation efficiency, and has special meaning.

4.制备双苯基杂化硅胶材料采用酸碱催化的溶胶-凝胶法,首先在酸催化条件下,单体水解反应较快,而缩聚反应比较慢,这样使硅烷化试剂充分水解后以产生足够的硅羟基,然后加入碱性催化剂以加快缩聚反应的进行,通过改变控制反应过程中反应体系的pH值,控制单体的水解和缩聚反应速率,并通过这种两步催化法就有效地使单体的水解和缩聚反应分开完全,得到骨架结构均匀,孔径适合的具有周期介孔的整体或者微粒材料,满足分离要求,改进了石英毛细管内壁处理技术,得到稳定的整体分离材料。4. The acid-base catalyzed sol-gel method is used to prepare bisphenyl hybrid silica gel materials. Firstly, under acid catalyzed conditions, the hydrolysis reaction of the monomer is relatively fast, while the polycondensation reaction is relatively slow, so that the silanization reagent can be fully hydrolyzed and Generate enough silanol groups, and then add a basic catalyst to speed up the polycondensation reaction. By changing the pH value of the reaction system during the control reaction, the hydrolysis and polycondensation reaction rate of the monomer is controlled, and this two-step catalytic method is effective. The hydrolysis and polycondensation reactions of the monomers are completely separated, and a uniform skeleton structure and a suitable pore size with periodic mesoporous monolithic or particulate materials are obtained to meet the separation requirements. The treatment technology for the inner wall of the quartz capillary is improved to obtain a stable monolithic separation material.

5.在毛细管电色谱模式下,新型分离材料用于酸性、中性和碱性化合物的分离,显示材料具有很好的分离效率、良好的分离选择性和应用范围。5. Under capillary electrochromatography mode, the new separation material is used for the separation of acidic, neutral and basic compounds, showing that the material has good separation efficiency, good separation selectivity and application range.

6.本发明采用苯基三乙氧基硅烷(PTES)和1,4-双三乙氧基硅基苯(BTEB)作为反应单体,桥键型有机-无机杂化周期介孔分离材料,从而得到新型双苯基杂化硅胶材料整体柱,使其应用于色谱分析中。6. The present invention uses phenyltriethoxysilane (PTES) and 1,4-bistriethoxysilylbenzene (BTEB) as reaction monomers, bridging organic-inorganic hybrid periodic mesoporous separation materials, Thus a novel biphenyl hybrid silica gel monolithic column is obtained, which can be applied in chromatographic analysis.

7.本发明采用氢氟酸蚀刻法对毛细管进行预处理,可以看出整体柱与管壁结合较为紧密,其为经过氢氟酸蚀刻处理后的管壁上的硅羟基密度大大增加,从而进行溶胶-凝胶过程可达到固定柱床的目的。7. The present invention adopts the hydrofluoric acid etching method to pretreat the capillary. It can be seen that the integral column is closely combined with the tube wall, which is that the silicon hydroxyl density on the tube wall after the hydrofluoric acid etching treatment increases greatly, thereby The sol-gel process can achieve the purpose of fixing the column bed.

附图说明Description of drawings

图1为本发明原料偶联剂的结构图。Fig. 1 is a structural diagram of the raw material coupling agent of the present invention.

图2为本发明双苯基杂化硅胶材料放大5000倍的电镜图。Fig. 2 is a 5000 times magnified electron micrograph of the bisphenyl hybrid silica gel material of the present invention.

图3为本发明双苯基杂化硅胶材料的孔径分布图。Fig. 3 is a pore size distribution diagram of the bisphenyl hybrid silica gel material of the present invention.

图4为采用本发明桥联分离材料在毛细管电色谱模式下分离16种稠环芳烃化合物的谱图(其中,实验条件:流动相,5mM Tris-HCl(pH 8.0)+70%ACN;电压,10kV。样品:(1)萘;(2)苊;(3)芴;(4)苊;(5)菲;(6)蒽;(7)荧蒽;(8)芘;(9)苯并[a]蒽;(10)屈;(11)苯并[b]荧蒽;(12)苯并[k]荧蒽;(13)苯并[a]芘;(14)二苯[a,h]蒽;(15)茚[1,2,3-cd]芘;(16)苯并[g,h,I]芘)Fig. 4 is the spectrogram (wherein, experimental conditions: mobile phase, 5mM Tris-HCl (pH 8.0)+70%ACN; voltage, 10kV. Sample: (1) naphthalene; (2) acenaphthene; (3) fluorene; (4) acenaphthene; (5) phenanthrene; [a] anthracene; (10) chrysene; (11) benzo [b] fluoranthene; (12) benzo [k] fluoranthene; (13) benzo [a] pyrene; (14) dibenzo [a, h] anthracene; (15) indeno[1,2,3-cd]pyrene; (16) benzo[g,h,l]pyrene)

图5为采用本发明桥联分离材料在毛细管电色谱模式下分离8种碱性化合物的谱图(其中,实验条件:5mM Tris-HCl(pH 8.0)+70%ACN;电压:10kV。样品:(1).乙酰苯胺(pKb13.39);(2).苯胺(pKb 9.42);(3).邻甲苯胺(pKb9.52);(4).3,4-二甲基苯胺(pKb8.83);(5).1-萘胺(pKb10.08);(6).N,N-二甲基苯胺(pKb8.92);(7).二苯胺(pKb 13.12);(8).N,N-二乙基苯胺(pKb 7.43).)Fig. 5 is the spectrogram (wherein, experimental condition: 5mM Tris-HCl (pH 8.0)+70%ACN; voltage: 10kV. Sample: (1). Acetanilide (pK b 13.39); (2). Aniline (pK b 9.42); (3). o-toluidine (pK b 9.52); (4). 3,4-dimethylaniline (pK b 8.83); (5).1-naphthylamine (pK b 10.08); (6).N,N-dimethylaniline (pK b 8.92); (7).Diphenylamine (pK b 13.12); (8 ).N,N-diethylaniline (pK b 7.43).)

图6为采用本发明桥联分离材料在毛细管电色谱模式下分离3种酸性化合物的谱图(其中,实验条件:5mM Tris-HCl(pH 8.0)+50%ACN;电压:18kV。溶质:1.间硝基苯酚(pKa8.36);2.对硝基苯酚(pKa 7.15);3.o-硝基苯酚(pKa 7.23).)Fig. 6 is the spectrogram (wherein, experimental condition: 5mM Tris-HCl (pH 8.0)+50%ACN; Voltage: 18kV. Solute: 1 .m-nitrophenol (pKa8.36); 2. p-nitrophenol (pKa 7.15); 3.o-nitrophenol (pKa 7.23).)

具体实施方式Detailed ways

结合说明书附图,对本发明作进一步的详细说明。The present invention will be described in further detail in conjunction with the accompanying drawings.

实施例1Example 1

1)毛细管预处理1) Capillary pretreatment

毛细管柱依次用0.2mol/L盐酸、水冲洗30min,再用体积浓度10%HF在35℃下浸泡3 h,然后用1.0mol/L氢氧化钠、水和甲醇冲洗30min,最后在气相色谱炉中160℃下通氮气吹干,待用。The capillary column was washed successively with 0.2mol/L hydrochloric acid and water for 30 minutes, then soaked in 10% HF at 35°C for 3 hours, then washed with 1.0mol/L sodium hydroxide, water and methanol for 30 minutes, and finally placed in a gas chromatography furnace. Blow dry with nitrogen at 160°C and set aside.

2)双苯基杂化硅胶材料整体柱,按如下步骤制备:2) The monolithic column of bisphenyl hybrid silica gel material is prepared according to the following steps:

①制备双苯基杂化硅胶材料:采用酸碱催化的溶胶-凝胶法,将110μL的硅烷前体,加入到220μL甲醇、22μL盐酸和20μL水溶液中,混合均匀后,涡流搅拌3min,并在室温下水解4h后,加入4mg十二胺并混合均匀,待用其中硅烷前体为60μL苯基三乙氧基硅烷(PTES)和50μL 1,4-双三乙氧基硅基苯(BTEB)(参见图1);①Preparation of biphenyl hybrid silica gel material: Using acid-base catalyzed sol-gel method, add 110 μL of silane precursor to 220 μL of methanol, 22 μL of hydrochloric acid and 20 μL of aqueous solution, mix well, vortex for 3 minutes, and After hydrolysis at room temperature for 4 hours, add 4 mg of dodecylamine and mix well, and the silane precursors are 60 μL of phenyltriethoxysilane (PTES) and 50 μL of 1,4-bistriethoxysilylbenzene (BTEB) (see Figure 1);

②制备双苯基整体柱:将步骤①中得到硅胶材料充入毛细管中,毛细管的两端用聚四氟乙烯管相连,使硅胶材料在毛细管内,以常温下反应10h;然后用无水乙醇冲洗3h,再在40℃下干燥48h,得到适用于色谱中分离材料的整体柱。②Preparation of bisphenyl monolithic column: fill the silica gel material obtained in step ① into the capillary, connect the two ends of the capillary with polytetrafluoroethylene tubes, make the silica gel material in the capillary, react at room temperature for 10h; then use absolute ethanol Rinse for 3 hours, and then dry at 40°C for 48 hours to obtain a monolithic column suitable for separating materials in chromatography.

所得的整体柱用体积比为1∶1的0.1M氨水的乙腈溶液浸泡4h后,再用准备分析的样品常用使用的流动相冲洗。在紧靠整体柱柱床后,用刀片刮去1-2mm的聚酰亚胺涂层作为检测窗口,将毛细管装入电泳仪卡盒后,把两端多余的毛细管切去。The obtained monolithic column was soaked in acetonitrile solution of 0.1M ammonia water with a volume ratio of 1:1 for 4 hours, and then washed with the mobile phase commonly used for samples to be analyzed. After being close to the integral column bed, use a blade to scrape off 1-2mm of polyimide coating as the detection window, put the capillary into the cartridge of the electrophoresis instrument, and cut off the excess capillary at both ends.

3整体材料表征条件3 Overall material characterization conditions

截取5mm长的毛细管整体柱,在其横截面处喷金,JSM-6360LV型扫描电子显微镜(日本JEOL公司)用于表征整体柱的微观结构。大体积的整体材料采用与具体实施方式2)中相同的方法制备,将反应用量放大10倍将反应液注入100×2.0mm i.d.不锈钢液相色谱柱管中,按上述双苯基杂化硅胶材料整体柱的操作步骤下进行反应,反应完成后,用无水乙醇冲洗4h,然后把整体柱冲出色谱柱管,切成小块状,最后在80℃下真空干燥过夜。Poresizer 9310型压汞孔径测试仪(美国Micromeritics公司)用于测定整体材料的孔径分布(参见图2)。红外光谱测定采用Spectrum GX型傅立叶变换红外光谱仪(美国Perkin Elmer公司)以KBr压片法进行测定(参见图3)。A capillary monolithic column with a length of 5 mm was intercepted, and gold was sprayed on its cross section, and a JSM-6360LV scanning electron microscope (JEOL, Japan) was used to characterize the microstructure of the monolithic column. The large-volume monolithic material is prepared by the same method as in the specific embodiment 2), the reaction volume is enlarged by 10 times, and the reaction solution is injected into a 100×2.0mm i.d. stainless steel liquid chromatography column tube, and the biphenyl hybrid silica gel material The reaction was carried out under the operation steps of the monolithic column. After the reaction was completed, rinse with absolute ethanol for 4 hours, then flush the monolithic column out of the chromatographic column tube, cut into small pieces, and finally dry in vacuum at 80°C overnight. A Poresizer 9310 mercury intrusion pore size tester (Micromeritics, USA) was used to determine the pore size distribution of the bulk material (see Figure 2). Infrared spectrum was determined by Spectrum GX Fourier Transform Infrared Spectrometer (Perkin Elmer, USA) by KBr tablet method (see Figure 3).

并将毛细管在电色谱模式下分离取代苯,重复性试验结果(参见表1),结果表明材料具有很好的分离重现性。And the capillary was separated in the electrochromatographic mode, and the repeatability test results (see Table 1) showed that the material had good separation reproducibility.

表1Table 1

实施例2Example 2

与实施例1不同之处在于:The difference from Example 1 is:

1)毛细管预处理的过程为:将毛细管柱依次用0.3mol/L盐酸、水冲洗45min,再用体积浓度15%的HF在50℃下处理5h,然后用1.0mol/L氢氧化钠、水和甲醇冲洗45min,最后在气相色谱炉中210℃下通氮气吹干,待用。1) The process of capillary pretreatment is as follows: wash the capillary column with 0.3mol/L hydrochloric acid and water for 45min, then treat it with HF with a volume concentration of 15% at 50°C for 5h, and then wash it with 1.0mol/L sodium hydroxide and water Rinse with methanol for 45 minutes, and finally blow dry in a gas chromatograph oven at 210°C with nitrogen for use.

2)双苯基杂化硅胶材料整体柱,按如下步骤制备:2) The monolithic column of bisphenyl hybrid silica gel material is prepared according to the following steps:

①制备双苯基杂化硅胶材料:采用酸碱催化的溶胶-凝胶法,将120μL的硅烷前体加入到120μL甲醇、12μL盐酸和10μL水溶液中,混合均匀后,涡流搅拌5min,并在室温下水解6h后,加入7mg十二胺并混合均匀,待用,其中硅烷前体为100μL的苯基三乙氧基硅烷和20μL的1,4-双三乙氧基硅基苯;①Preparation of biphenyl hybrid silica gel material: Using acid-base catalyzed sol-gel method, add 120 μL of silane precursor to 120 μL of methanol, 12 μL of hydrochloric acid and 10 μL of aqueous solution. After hydrolysis for 6 hours, add 7 mg of dodecylamine and mix well, and set aside, the silane precursors are 100 μL of phenyltriethoxysilane and 20 μL of 1,4-bistriethoxysilylbenzene;

②制备双苯基整体柱:将步骤①中得到硅胶材料充入预处理的毛细管中,密闭,使硅胶材料在毛细管内常温下聚合反应20h;然后用无水乙醇冲洗5h,再在65℃下干燥72h,得到适用于色谱分离材料的整体柱。②Preparation of bisphenyl monolithic column: fill the silica gel material obtained in step ① into the pretreated capillary, seal it tightly, and allow the silica gel material to polymerize in the capillary at room temperature for 20 hours; then rinse with absolute ethanol for 5 hours, and then incubate at 65°C After drying for 72 hours, a monolithic column suitable for chromatographic separation materials was obtained.

实施例3Example 3

与实施例1不同之处在于:The difference from Example 1 is:

1)毛细管预处理的过程为:将毛细管柱依次用0.2mol/L盐酸、水冲洗40min,再用体积浓度13%的HF在46℃下处理4h,然后用1.5mo1/L氢氧化钠、水和甲醇冲洗40min,最后在气相色谱炉中190℃下通氮气吹干,待用。1) The process of capillary pretreatment is as follows: wash the capillary column with 0.2mol/L hydrochloric acid and water for 40 minutes, then treat it with HF with a volume concentration of 13% at 46°C for 4 hours, and then wash it with 1.5mol/L sodium hydroxide and water Rinse with methanol for 40 minutes, and finally blow dry in a gas chromatograph oven at 190°C with nitrogen for use.

2)双苯基杂化硅胶材料整体柱,按如下步骤制备:2) The monolithic column of bisphenyl hybrid silica gel material is prepared according to the following steps:

①制备双苯基杂化硅胶材料:采用酸碱催化的溶胶-凝胶法,将140μL的硅烷前体加入到160μL甲醇、18μL盐酸和15μL水溶液中,混合均匀后,涡流搅拌2min,并在室温下水解3h后,加入5mg十二胺并混合均匀,待用,其中硅烷前体为90μL的苯基三乙氧基硅烷和50μL的1,4-双三乙氧基硅基苯;①Preparation of bisphenyl hybrid silica gel material: Using acid-base catalyzed sol-gel method, add 140 μL of silane precursor to 160 μL of methanol, 18 μL of hydrochloric acid and 15 μL of aqueous solution. After hydrolyzing for 3 hours, add 5 mg of dodecylamine and mix well, and set aside, the silane precursors are 90 μL of phenyltriethoxysilane and 50 μL of 1,4-bistriethoxysilylbenzene;

②制备双苯基整体柱:将步骤①中得到硅胶材料充入预处理的毛细管中,密闭,使硅胶材料在毛细管内常温下聚合反应15h;然后用无水乙醇冲洗4h,再在50℃下干燥65h,得到适用于色谱分离材料的整体柱。②Preparation of bisphenyl monolithic column: fill the silica gel material obtained in step ① into the pretreated capillary, seal it tightly, and polymerize the silica gel material in the capillary at room temperature for 15 hours; then rinse with absolute ethanol for 4 hours, and then incubate at 50°C After drying for 65 hours, a monolithic column suitable for chromatographic separation materials was obtained.

实施例4Example 4

所述硅烷前体可由90μL 1,4-双三乙氧基硅基苯或100μL 1,4-双三甲氧基硅基苯替换。The silane precursor can be replaced by 90 μL 1,4-bistriethoxysilylbenzene or 100 μL 1,4-bistrimethoxysilylbenzene.

实施例5Example 5

所述硅烷前体可由80μL双三甲氧基硅基乙烷或130μL双三乙氧基硅基丙烷替换。The silane precursor can be replaced by 80 μL of bistrimethoxysilylethane or 130 μL of bistriethoxysilylpropane.

实施例6Example 6

所述硅烷前体可由140μL双三甲氧基硅基乙烯或150μL双三乙氧基硅基丙烯。The silane precursor can be composed of 140 μL of bistrimethoxysilylethylene or 150 μL of bistriethoxysilylpropylene.

应用例1:Application example 1:

毛细管柱总长27cm,有效长度20cm。按实施例1步骤制备双苯基杂化硅胶材料整体柱,而后在温度20℃,检测波长214nm,数据采集频率16Hz,采用硫脲作为电渗流标记物,实验前,整体柱先用流动相(5mMTris-HCl(pH 8.0)+70%ACN)冲洗30min,然后在电泳仪上用低电压平衡30min。实际分析过程中,更换流动相时,先用流动相冲洗30min,再用分离电压平衡30min后进行测定。The total length of the capillary column is 27cm, and the effective length is 20cm. Prepare the monolithic column of bisphenyl hybrid silica gel material according to the steps of Example 1, then at a temperature of 20° C., with a detection wavelength of 214 nm and a data acquisition frequency of 16 Hz, using thiourea as an electroosmotic flow marker. Before the experiment, the monolithic column was first used with a mobile phase ( 5mM Tris-HCl (pH 8.0)+70% ACN) was washed for 30min, and then balanced for 30min with low voltage on the electrophoresis instrument. In the actual analysis process, when changing the mobile phase, first wash with the mobile phase for 30 minutes, and then use the separation voltage to balance for 30 minutes before measuring.

采用本发明桥联分离材料在毛细管电色谱模式下分离16种稠环芳烃化合物,测定条件:实验条件:流动相,5mM Tris-HCl(pH 8.0)+70%ACN;电压,10kV(A)。样品:(1)萘;(2)苊;(3)芴;(4)苊;(5)菲;(6)蒽;(7)荧蒽;(8)芘;(9)苯并[a]蒽;(10)屈;(11)苯并[b]荧蒽;(12)苯并[k]荧蒽;(13)苯并[a]芘;(14)二苯[a,h]蒽;(15)茚[1,2,3-cd]芘;(16)苯并[g,h,I]芘)(参见图4)。The bridging separation material of the present invention was used to separate 16 kinds of fused-ring aromatic hydrocarbon compounds under capillary electrochromatography mode. Measurement conditions: experimental conditions: mobile phase, 5mM Tris-HCl (pH 8.0)+70% ACN; voltage, 10kV (A). Sample: (1) naphthalene; (2) acenaphthene; (3) fluorene; (4) acenaphthene; (5) phenanthrene; (6) anthracene; (7) fluoranthene; (8) pyrene; (9) benzo[a ] anthracene; (10) chrysene; (11) benzo [b] fluoranthene; (12) benzo [k] fluoranthene; (13) benzo [a] pyrene; (14) dibenzo [a, h] anthracene; (15) indeno[1,2,3-cd]pyrene; (16) benzo[g,h,l]pyrene) (see Figure 4).

在70%ACN的流动相条件下,除了菲和蒽、苯并[a]蒽和屈两对样品未能分开外,其他样品都得到了较好的分离。当操作电压为10kV时,硫脲在4.8min左右出峰,16个样品所需的迁移时间为28min。Under the mobile phase condition of 70% ACN, except for two pairs of samples, phenanthrene and anthracene, benz[a]anthracene and chrysene, the other samples were separated well. When the operating voltage was 10kV, thiourea peaked at about 4.8 minutes, and the required migration time for 16 samples was 28 minutes.

应用例2Application example 2

分离8种碱性化合物,其中实验条件:5mM Tris-HCl(pH 8.0)+70%ACN;电压:10kV(A)和25kV(B)。样品:(1).乙酰苯胺(pKb13.39);(2).苯胺(pKb9.42);(3).邻甲苯胺(pKb 9.52);(4).3,4-二甲基苯胺(pKb8.83);(5).1-萘胺(pKb10.08);(6).N,N-二甲基苯胺(pKb8.92);(7).二苯胺(pKb 13.12);(8).N,N-二乙基苯胺(pKb 7.43).)Separation of 8 kinds of basic compounds, wherein the experimental conditions: 5mM Tris-HCl (pH 8.0) + 70% ACN; voltage: 10kV (A) and 25kV (B). Sample: (1). Acetanilide (pK b 13.39); (2). Aniline (pK b 9.42); (3). o-Toluidine (pK b 9.52); (4). 3,4-Dimethylaniline (pK b 8.83); (5).1-naphthylamine (pK b 10.08); (6).N,N-dimethylaniline (pK b 8.92); (7).Diphenylamine (pK b 13.12); (8). N, N-diethylaniline (pK b 7.43).)

图5苯胺类化合物在双苯基整体柱上的分离谱图,流动相为含有70%ACN的5mM Tris-HCl(pH 8.0)缓冲液,操作电压分别是10kV,分离时间为10.5min,八种苯胺类化合物均能取得较好的分离。Figure 5 Separation spectrum of aniline compounds on bisphenyl monolithic column, the mobile phase is 5mM Tris-HCl (pH 8.0) buffer solution containing 70% ACN, the operating voltage is 10kV, the separation time is 10.5min, eight kinds Aniline compounds can be separated well.

应用例3Application example 3

分离3种酸性化合物的谱图,其中,实验条件:5mM Tris-HCl(pH8.0)+50%ACN;电压:18kV。溶质:1.间硝基苯酚(pKa8.36);2.对硝基苯酚(pKa 7.15);3.o-硝基苯酚(pKa 7.23).)参见图6。Separate the spectra of three acidic compounds, wherein, the experimental conditions: 5mM Tris-HCl (pH8.0) + 50% ACN; voltage: 18kV. Solute: 1. m-nitrophenol (pKa8.36); 2. p-nitrophenol (pKa 7.15); 3.o-nitrophenol (pKa 7.23).) See Figure 6.

图6可以看出,苯酚衍生物在整体柱上得到了完全分离,出峰顺序依次是间硝基苯酚、对硝基苯酚和邻硝基苯酚。由于硝基酚样品在整体柱上的迁移行为同时受电泳机理和反相色谱保留机理控制,因此在电色谱中表现出不同的分离选择性。It can be seen from Figure 6 that the phenol derivatives were completely separated on the monolithic column, and the peak order was m-nitrophenol, p-nitrophenol and o-nitrophenol. Since the migration behavior of nitrophenol samples on the monolithic column is controlled by both the electrophoresis mechanism and the retention mechanism of reversed-phase chromatography, it exhibits different separation selectivities in electrochromatography.

Claims (1)

1.一种双苯基杂化硅胶材料整体柱在色谱中的应用,其特征在于:应用于色谱中的双苯基杂化硅胶材料整体柱,按如下步骤制备:1. The application of a monolithic column of bisphenyl hybrid silica gel material in chromatography, characterized in that: the monolithic column of bisphenyl hybrid silica gel material applied in chromatography is prepared according to the following steps: 1)制备双苯基杂化硅胶材料:采用酸碱催化的溶胶-凝胶法,将80-150μL的硅烷前体加入到120-220μL甲醇、12-22μL盐酸和10-20μL水溶液中,混合均匀后,涡流搅拌1-5min,并在室温下水解3-6h后,加入4-7mg十二胺并混合均匀,待用,其中硅烷前体为60-100μL的苯基三乙氧基硅烷和20-50μL的1,4-双三乙氧基硅基苯;1) Preparation of bisphenyl hybrid silica gel material: using acid-base catalyzed sol-gel method, add 80-150 μL of silane precursor to 120-220 μL of methanol, 12-22 μL of hydrochloric acid and 10-20 μL of aqueous solution, mix well Afterwards, vortex stirring for 1-5min, and after hydrolysis at room temperature for 3-6h, add 4-7mg of dodecylamine and mix well, stand-by, wherein the silane precursor is 60-100μL of phenyltriethoxysilane and 20 - 50 μL of 1,4-bistriethoxysilylbenzene; 2)制备双苯基整体柱:将步骤1)中得到硅胶材料充入预处理的毛细管中,密闭,使硅胶材料在毛细管内常温下聚合反应10-20h;然后用无水乙醇冲洗3-5h,再在40-65℃下干燥48-72h,得到适用于色谱分离材料的整体柱;2) Preparation of bisphenyl monolithic column: fill the silica gel material obtained in step 1) into the pretreated capillary, seal it, and allow the silica gel material to polymerize in the capillary at room temperature for 10-20 hours; then rinse with absolute ethanol for 3-5 hours , and then dried at 40-65°C for 48-72h to obtain a monolithic column suitable for chromatographic separation materials; 毛细管预处理的过程为:将毛细管柱依次用0.2-0.3mol/L盐酸、水冲洗30-45min,再用体积浓度10-15%的HF在35-50℃下浸泡3-5h,然后用1.0-2.0mol/L氢氧化钠、水和甲醇冲洗30-45min,最后在气相色谱炉中160-210℃下通氮气吹干,待用;The process of capillary pretreatment is as follows: wash the capillary column with 0.2-0.3mol/L hydrochloric acid and water for 30-45min, then soak it with HF with a volume concentration of 10-15% at 35-50℃ for 3-5h, and then wash it with 1.0 -2.0mol/L sodium hydroxide, water and methanol rinse for 30-45min, and finally dry in a gas chromatography furnace with nitrogen at 160-210°C, and set aside; 所得的整体柱用体积比为1∶1的0.1-0.3mol/L氨水的乙腈溶液浸泡2-4h后,再用流动相冲洗;在紧靠整体柱柱床后,用刀片刮去1-2mm的聚酰亚胺涂层作为检测窗口,将毛细管装入电泳仪卡盒后,把两端多余的毛细管切去。The resulting monolithic column is soaked in an acetonitrile solution of 0.1-0.3mol/L ammonia water with a volume ratio of 1:1 for 2-4h, and then washed with mobile phase; after being close to the monolithic column bed, scrape off 1-2mm The polyimide coating is used as the detection window. After the capillary is loaded into the cartridge of the electrophoresis instrument, the excess capillary at both ends is cut off.
CN2007100124112A 2007-08-08 2007-08-08 Use of double-phenyl hybridization silica gel material monolithic column in chromatogram Expired - Fee Related CN101362074B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100124112A CN101362074B (en) 2007-08-08 2007-08-08 Use of double-phenyl hybridization silica gel material monolithic column in chromatogram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100124112A CN101362074B (en) 2007-08-08 2007-08-08 Use of double-phenyl hybridization silica gel material monolithic column in chromatogram

Publications (2)

Publication Number Publication Date
CN101362074A CN101362074A (en) 2009-02-11
CN101362074B true CN101362074B (en) 2010-09-01

Family

ID=40388786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100124112A Expired - Fee Related CN101362074B (en) 2007-08-08 2007-08-08 Use of double-phenyl hybridization silica gel material monolithic column in chromatogram

Country Status (1)

Country Link
CN (1) CN101362074B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766993B (en) * 2009-12-31 2012-04-18 广西师范大学 Overall chiral stationary phase of silica gel capillary and preparation method thereof
CN102175781B (en) * 2010-12-24 2012-12-26 山东齐鲁石化开泰实业股份有限公司 Method for rapidly detecting content of industrial propylene
CN102276840B (en) * 2011-05-06 2012-08-01 中国药科大学 Camphor sulfonamide doped ethane bridge bond spherical mesoporous silica gel
CN103387238B (en) * 2013-06-25 2015-04-08 上海师范大学 Preparation technology of Ethyl-bridged functionalized ordered mesoporous PMO
CN103433074B (en) * 2013-08-07 2015-04-01 上海师范大学 N-(4-toluenesulfonyl)-1,2-diphenyl ethylenediamine functionalized hollow PMO (Periodic Mesoporous Organosilica) catalyst preparation method
CN107837796B (en) * 2015-10-16 2020-07-21 苏州大学 A bonded chromatographic column stationary phase
CN106093167A (en) * 2016-05-30 2016-11-09 铜陵东晟生态农业科技有限公司 The pre-treating method of capillary tube in capillary electrophoresis apparatus
CN111172624B (en) * 2020-01-18 2022-08-23 福建拓烯新材料科技有限公司 Preparation method of carbon/silicon hybrid fiber and carbon-silicon hybrid fiber
CN115178245A (en) * 2022-06-21 2022-10-14 南通裕弘分析仪器有限公司 Preparation method and application of organic-inorganic hybrid silica gel particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527053A (en) * 2003-03-07 2004-09-08 江苏康缘药业股份有限公司 Quality control method for rehmannia prepn of six ingredients
CN1554945A (en) * 2003-12-24 2004-12-15 厦门大学 Preparation method of octyl-type micro-column liquid chromatography monolithic column
EP1596193A1 (en) * 2004-04-30 2005-11-16 Agilent Technologies, Inc. Novel stationary phases for use in high-performance liquid chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527053A (en) * 2003-03-07 2004-09-08 江苏康缘药业股份有限公司 Quality control method for rehmannia prepn of six ingredients
CN1554945A (en) * 2003-12-24 2004-12-15 厦门大学 Preparation method of octyl-type micro-column liquid chromatography monolithic column
EP1596193A1 (en) * 2004-04-30 2005-11-16 Agilent Technologies, Inc. Novel stationary phases for use in high-performance liquid chromatography

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
严丽娟等.有机-无机杂化硅胶基质整体柱的制备及其电色谱性能.色谱23 5.2005,23(5),499-503.
严丽娟等.有机-无机杂化硅胶基质整体柱的制备及其电色谱性能.色谱23 5.2005,23(5),499-503. *

Also Published As

Publication number Publication date
CN101362074A (en) 2009-02-11

Similar Documents

Publication Publication Date Title
CN101362074B (en) Use of double-phenyl hybridization silica gel material monolithic column in chromatogram
CN109320734B (en) Spherical covalent organic framework material and preparation method and application thereof
CN102940979B (en) Method and application for preparing cyclodextrin organic polymer capillary monolithic column via one-step method
Li et al. β‐Cyclodextrin‐modified covalent organic framework as chiral stationary phase for the separation of amino acids and β‐blockers by capillary electrochromatography
CN105440058A (en) Synthesis method for benzothiazole unit-based covalent organic framework material
CN110064382B (en) Porous silicon oxide microsphere and preparation method and application thereof
CN109999756A (en) The preparation method and application of β -one eneamines chirality covalent organic frame material and its bonding type capillary gas chromatographic column
CN104028007A (en) Imidazole ionic liquid capillary monolithic column, and making method and application thereof
CN110330029A (en) A kind of multi-stage porous ZSM-5 zeolite and the preparation method and application thereof
CN110302560A (en) A sulfonate-functionalized covalent organic polymer solid-phase extraction column
CN101298042A (en) Spherical ordered mesoporous silicon oxide substrate chromatograph stationary phase and preparation
CN106478980A (en) Click on the preparation method of the hybridization porous monolithic material of polyreaction based on sulfydryl-epoxy
CN105233811B (en) A kind of bonding type chromatographic column fixed phase and preparation method thereof
CN105536747A (en) Intelligent response liquid chromatogram filling material and preparation method thereof
CN105749891B (en) The preparation method of full multi-hole blangel microballoon chiral chromatogram filler
CN111333074B (en) Method for preparing mesoporous silicon oxide by using biomass as raw material and application thereof
CN107519850B (en) Preparation, material and application of hybrid silica monolith for chromatographic separation
CN102101043B (en) Method for preparing polyvinyl imidazole type silica gel filler
Zhong et al. Periodic mesoporous hybrid monolith with hierarchical macro–mesopores
CN107158748A (en) A kind of open tubular capillary column and its application based on braiding aromatic ring polymer
CN111484602B (en) 1,3,6,8-tetra (p-formylphenyl) pyrene-based conjugated microporous polymer and preparation method thereof
CN105311858B (en) A kind of PFBBR imidazolium ionic liquid hydridization integral post and its preparation and application
Zhang et al. Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol–ene click reaction for capillary liquid chromatography
CN110813266A (en) A kind of graphitized carbon chromatography stationary phase and preparation method thereof
CN117624520A (en) Trifluoromethyl modified pyrenyl covalent organic framework material, and preparation method and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100901

Termination date: 20130808