CN101352685B - Supported type nickel catalyst for producing hydrogen from decomposition of ammonia and preparation method - Google Patents
Supported type nickel catalyst for producing hydrogen from decomposition of ammonia and preparation method Download PDFInfo
- Publication number
- CN101352685B CN101352685B CN2007101194714A CN200710119471A CN101352685B CN 101352685 B CN101352685 B CN 101352685B CN 2007101194714 A CN2007101194714 A CN 2007101194714A CN 200710119471 A CN200710119471 A CN 200710119471A CN 101352685 B CN101352685 B CN 101352685B
- Authority
- CN
- China
- Prior art keywords
- nickel
- hydrogen
- preparation
- temperature
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 74
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 42
- 239000001257 hydrogen Substances 0.000 title claims abstract description 41
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 37
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000725 suspension Substances 0.000 claims abstract description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 6
- 150000002815 nickel Chemical class 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract description 5
- 239000001307 helium Substances 0.000 claims abstract description 4
- 229910052734 helium Inorganic materials 0.000 claims abstract description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 238000005406 washing Methods 0.000 claims abstract description 4
- 230000004913 activation Effects 0.000 claims abstract description 3
- 239000003054 catalyst Substances 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 230000003750 conditioning effect Effects 0.000 claims description 6
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 230000001376 precipitating effect Effects 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 239000008246 gaseous mixture Substances 0.000 claims description 3
- 229940078494 nickel acetate Drugs 0.000 claims description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 3
- 239000007789 gas Substances 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract 1
- 238000000746 purification Methods 0.000 abstract 1
- 239000004408 titanium dioxide Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000002245 particle Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- -1 magnesium aluminate Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004032 superbase Substances 0.000 description 1
- 150000007525 superbases Chemical class 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Abstract
The invention relates to a loaded nickel catalyst which is used for hydrogen generation by ammonia decomposition. Ni is used as an active component; monox, aluminium oxide or titanium dioxide is used as a carrier. Mass percentage content of the active component is 1 percent to 50 percent. A preparation step thereof includes: soluble nickel salt, PH value regulator, precipitant, carrier and de-ionized water are prepared into suspension liquid which is heated to the temperature of 70 DEG C to 110 DEG C and deposited for 60 minutes to 300 minutes; the suspension liquid is cooled to the temperature of 20 DEG C to 30 DEG C, then filtration, water washing and filtration are carried out; drying is carried out for 18 hours to 24 hours at the temperature of 80 DEG C to 120 DEG C, and then calcinations is carried out for 2 hours to 6 hours at the temperature of 400 DEG C to 900 DEG C; in a hydrogen atmosphere or a mixture atmosphere of hydrogen and helium, activation is carried out at the temperature of 400 DEGC to 900 DEG C to reduce and prepare the loaded nickel catalyst. The loaded nickel catalyst prepared by the method is characterized by high activity in ammonia decomposition and can be used in the technology of generating hydrogen without COx by ammonia decomposition and in the process of purification treatment of various gases containing ammonia.
Description
Technical field
The present invention relates to a kind of ammonia decomposition system that is used for and do not contain the COx hydrogen catalyst.
The invention still further relates to above-mentioned Preparation of catalysts method.
The invention still further relates to the application of above-mentioned catalyst in the preparing hydrogen by ammonia decomposition reaction.
Background technology
Current, with hydrogen the concern that the research and development of the Proton Exchange Membrane Fuel Cells (PEMFC) of fuel are subjected to business and government department just day by day.Yet the purity of hydrogen, storage and transportation have become one of bottleneck of fuel cell hydrogen source development.Contain COx (x=1-2) gas that reduces the proton membrane fuel battery life-span inevitably by containing the hydrogen that carbon matrix prepares; Simultaneously, the storage of hydrogen need be used the material or the liquid hydrogen-containing fuel of high weight of hydrogen.Ammonia not only has higher hydrogen content (being about 17.6%) as a kind of chemical hydrogen storage media, and its catabolite is hydrogen and nitrogen, and nitrogen does not have negative effect to the electrode of PEMFC.Compare with the hydrogen from methyl alcohol technology, the price of preparing hydrogen by ammonia decomposition technology is lower.In addition, ammonia is easy to liquefaction (liquefaction pressure of ammonia in the time of 20 ℃ has only 0.8MPa), and is convenient to store and transportation.Therefore, on-the-spot or vehicle-mounted preparing hydrogen by ammonia decomposition technology promptly can provide the high-purity hydrogen that does not contain COx under relatively low temperature, has solved hydrogen again and has been difficult to the technical barrier that transports and store.So can obtain before commercial high hydrogen storage material of using and the anti-CO poisoning of permanence fuel cell electrode occur, with the ammonia (NH of carbon atoms not
3) to produce hydrogen for raw material will be one of technological approaches that has much attraction.
At present, the catalyst of preparing hydrogen by ammonia decomposition, its activated centre is mainly Fe, Ni, Ru, Co and metal nitride, and carrier mostly is MgO, TiO
2, Al
2O
3, active carbon, porous carbon nanotube, magnesium aluminate spinel, super base etc.In the research of these catalyst, with Ru be the noble metal catalyst in activated centre shown advantages of high catalytic activity (WO0187770A1, WO0208117A1, CN1456491A, CN1528657A, CN1712132A).Yet as noble metal catalyst, the Ru fancy price is the big critical defect of its future in the industrial applications of reality.It is abundant, cheap and the research that ammonia decomposes the nickel-base catalyst with higher activity then had important practical significance to carry out reserves.
CN1772614A discloses a kind of nanoscale Ni/Al
2O
3And Ni/La-Al
2O
3Method for preparing catalyst.This Preparation of catalysts process is that the nitrate with Ni and Al is made into the aqueous solution or ethanolic solution, be that precipitating reagent makes Ni and Al co-precipitation with the aqueous solution of ammonium carbonate or carbonic hydroammonium or ethanolic solution then, ammonia decomposition catalyzer is prepared in drying, roasting and reduction then.Decomposition has higher activity to the catalyst that this method is prepared to ammonia, and still, the shortcoming of coprecipitation is that guide's thing covers in the support oxide easily, also is difficult to the pore structure of control catalyst simultaneously.
Summary of the invention
The object of the present invention is to provide a kind of the nickel catalyst carried of preparing hydrogen by ammonia decomposition that be used for.
Another purpose of the present invention is to provide the method for the above-mentioned catalyst of preparation.
Can prepare high-specific surface area, high dispersive, high stable, highly active supported nanometer nickel catalyst by the present invention.
For achieving the above object, provided by the inventionly be used for the nickel catalyst carried of preparing hydrogen by ammonia decomposition, described catalyst activity component is Ni, and carrier is silica, aluminium oxide or titania meterial; Wherein, the quality percentage composition of active constituent Ni is 1-50%.
Described nickel catalyst carried, wherein, the particle diameter of active constituent nickel is the 2-10 nanometer.
Described nickel catalyst carried, wherein, described carrier is SBA-15, MCM-41, SiO
2, Al
2O
3Or TiO
2
The nickel catalyst carried method that preparation provided by the invention is above-mentioned the steps include:
A) soluble nickel salt, pH value conditioning agent, precipitating reagent, carrier and deionized water are made into suspension according to mass ratio 5-25:0.5-3:5-25:1:50-500 in regular turn;
B) suspension was heated to 70-110 ℃ of deposition 60-300 minute, and the preferred deposition temperature is 90 ℃.
C) also filter water washing, filtration after above-mentioned suspension is reduced to 20-30 ℃;
D) after 80-120 ℃ of dry 18-24 hour, in 400-900 ℃ of roasting 2-6 hour, preferred sintering temperature was 500-800 ℃;
E) at hydrogen atmosphere, perhaps in the gaseous mixture atmosphere of hydrogen and helium, in 400-900 ℃ of activation 3-5 hour, supported nanometer nickel catalyst was made in reduction;
Described soluble nickel salt is that nickel nitrate, nickel acetate are or/and nickel chloride, preferably nickel nitrate;
Described pH value conditioning agent is that nitric acid, acetic acid are or/and hydrochloric acid, preferably nitric acid;
Described precipitating reagent is a urea;
Described carrier is silica, aluminium oxide or titania meterial;
The quality percentage composition of described nickel accounts for the 1-50% of catalyst gross mass.
Described preparation method, wherein, sample drying is in the air atmosphere among the step D, baking temperature is 110 ℃.
Described preparation method, wherein, the sample roasting is an air atmosphere among the step D.
Nickel catalyst carried can be applicable in the preparing hydrogen by ammonia decomposition reaction provided by the invention, its concrete reaction condition is: temperature 500-800 ℃, air speed 20000-60000ml/h.g-cat.
Provided by the invention nickel catalyst carriedly not only have advantages such as high-specific surface area, high degree of dispersion, high stability, and the particle diameter of active constituent nickel is controlled at the nanometer at 2-10, the distribution homogeneous.Simultaneously, the catalyst of this method preparation decomposes system to ammonia and does not contain the COx H-H reaction and have the active and high stability of higher catalytic decomposition.In addition, this preparation method's program is simple, and is repeatable strong.
The specific embodiment
Below by some embodiment technology of the present invention is described further
Embodiment 1
Nickel nitrate (28.2g), nitric acid (1.98g), urea (19.3g), SBA-15 (1.95g) and deionized water are hybridly prepared into the 300ml suspension, are heated to 90 ℃ then, temperature is reduced to 25 ℃ and filtration after stirring 120 minutes under this temperature conditions.With 100ml deionized water washing sample repeatedly.The sample that obtains was handled 24 hours down at 110 ℃.Drying sample was 550 ℃ of roastings 3 hours.Get the 0.1g catalyst and be placed in the quartz reactor, at 25%H
2Rise to 500 ℃ with 5 ℃/min from room temperature in the/He gaseous mixture atmosphere, and, after helium purge, feed high-purity ammon then and react this temperature-activated 5 hours.Be that the ammonia decomposition reaction result is under the reaction condition of 30000ml/h.g-cat at 600 ℃, air speed: the ammonia conversion ratio is 92.1%, the formation speed 30.8mmol/min.g of hydrogen
CatActivated centre nickel particle is about 7.8 nanometers.
Embodiment 2
The mixing time of Preparation of Catalyst is 180 minutes, and other are identical with embodiment 1.Be that the ammonia decomposition reaction result is under the reaction condition of 30000ml/h.g-cat at 600 ℃, air speed: the ammonia conversion ratio is 96.2%, the formation speed 32.2mmol/min.g of hydrogen
CatActivated centre nickel particle is about 7.4 nanometers.
Embodiment 3
Reduction temperature is 600 ℃, and other are identical with embodiment 2.Be that the ammonia decomposition reaction result is under the reaction condition of 30000ml/h.g-cat at 600 ℃, air speed: the ammonia conversion ratio is 100%, the formation speed 33.5mmol/min.g of hydrogen
CatActivated centre nickel particle is about 5.7 nanometers.
Embodiment 4
Urea is that 25.2g, liquor capacity are 250ml, and other are identical with embodiment 1.Be that the ammonia decomposition reaction result is under the reaction condition of 30000ml/h.g-cat at 600 ℃, air speed: the ammonia conversion ratio is 97.2%, the formation speed 32.5mmol/min.g of hydrogen
CatActivated centre nickel particle is about 6 nanometers.
Embodiment 5-8
Carrier is SiO successively
2, MCM-41, Al
2O
3And TiO
2, other are identical with embodiment 2.Be that ammonia decomposition reaction result and activated centre nickel particle size the results are shown in Table 1 under the reaction condition of 30000ml/h.g-cat at 600 ℃, air speed:
Table 1
Embodiment | Ammonia conversion ratio (%) | Formation speed (the mmol/ming of hydrogen cat) | Nickel particle size (nm) |
5 | 99 | 33.2 | 7.2 |
6 | 99.5 | 33.3 | 6.8 |
7 | 97 | 32.5 | 7.3 |
8 | 93 | 31.1 | 8 |
Embodiment 9
PH value conditioning agent hydrochloric acid (2.5g), carrier are SiO
2, other are identical with embodiment 2.Be that the ammonia decomposition reaction result is under the reaction condition of 30000ml/h.g-cat at 600 ℃, air speed: the ammonia conversion ratio is 96%, the formation speed 32.1mmol/min.g of hydrogen
CatActivated centre nickel particle is about 8 nanometers.
Embodiment 10-11
The solubility nickel nitrate adopts nickel acetate (24.2g), nickel chloride (23g) successively, and other are identical with embodiment 2.Be that ammonia decomposition reaction result and activated centre nickel particle size the results are shown in Table 2 under the reaction condition of 30000ml/h.g-cat at 600 ℃, air speed:
Table 2
Embodiment | Ammonia conversion ratio (%) | Formation speed (the mmol/min.g of hydrogen cat) | Nickel particle size (nm) |
10 | 96.8 | 32.4 | 8.2 |
11 | 96.5 | 32.3 | 8.5 |
Claims (6)
1. one kind is used for the nickel catalyst carried preparation method of preparing hydrogen by ammonia decomposition, the steps include:
A) with soluble nickel salt, pH value conditioning agent, precipitating reagent, carrier and deionized water in regular turn according to mass ratio 5-25: 0.5-3: 5-25: 1: 50-500 is made into suspension;
B) suspension was heated to 70-110 ℃ of deposition 60-300 minute;
C) also filter water washing, filtration after above-mentioned suspension is reduced to 20-30 ℃;
D) after 80-120 ℃ of dry 18-24 hour, in 400-900 ℃ of roasting 2-6 hour;
E) at hydrogen atmosphere, perhaps in the gaseous mixture atmosphere of hydrogen and helium, in 400-900 ℃ of activation 3-5 hour, supported nanometer nickel catalyst was made in reduction;
Described soluble nickel salt is that nickel nitrate, nickel acetate are or/and nickel chloride;
Described pH value conditioning agent is that nitric acid, acetic acid are or/and hydrochloric acid;
Described precipitating reagent is a urea;
Described carrier is silica, aluminium oxide or titania meterial;
The quality percentage composition of nickel accounts for the 1-50% of catalyst gross mass.
2. preparation method as claimed in claim 1, wherein, soluble nickel salt is a nickel nitrate in the steps A.
3. preparation method as claimed in claim 1, wherein, pH value conditioning agent is a nitric acid among the step B.
4. preparation method as claimed in claim 1, wherein, depositing temperature is 90 ℃ among the step B.
5. preparation method as claimed in claim 1, wherein, sample drying is in the air atmosphere among the step D, the sample drying temperature is 110 ℃.
6. preparation method as claimed in claim 1, wherein, roasting is an air atmosphere among the step D, the sample sintering temperature is 500-800 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101194714A CN101352685B (en) | 2007-07-25 | 2007-07-25 | Supported type nickel catalyst for producing hydrogen from decomposition of ammonia and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101194714A CN101352685B (en) | 2007-07-25 | 2007-07-25 | Supported type nickel catalyst for producing hydrogen from decomposition of ammonia and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101352685A CN101352685A (en) | 2009-01-28 |
CN101352685B true CN101352685B (en) | 2010-08-18 |
Family
ID=40305851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101194714A Expired - Fee Related CN101352685B (en) | 2007-07-25 | 2007-07-25 | Supported type nickel catalyst for producing hydrogen from decomposition of ammonia and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101352685B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101816938B (en) * | 2009-02-27 | 2012-02-29 | 中国石油化工股份有限公司 | Catalyst for preparing isopropamide by aminating acetone as well as preparation method and application thereof |
JP5352323B2 (en) * | 2009-04-07 | 2013-11-27 | トヨタ自動車株式会社 | Hydrogen generating apparatus and hydrogen generating method |
KR20130062902A (en) * | 2010-03-31 | 2013-06-13 | 가부시기가이샤 닛뽕쇼꾸바이 | Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst |
US9770700B2 (en) * | 2013-08-23 | 2017-09-26 | Saudi Basic Industries Corporation | Reactor comprising a plasma source and a catalyst comprising a mesoporous support material for the preparation of ethene from methane |
CN103521273B (en) * | 2013-10-24 | 2015-01-21 | 河南科技大学 | Preparation method of micro-nano metal nickel-coated silicon dioxide catalyst |
CN108854928B (en) * | 2018-07-05 | 2020-08-25 | 山东理工大学 | Preparation method of double-effect compact ceramic membrane reactor for ammonia decomposition hydrogen production reaction and separation |
CN111215086A (en) * | 2018-11-25 | 2020-06-02 | 中国科学院大连化学物理研究所 | Application of rare earth oxide loaded transition metal catalyst in ammonia decomposition reaction |
CN111167462A (en) * | 2019-12-31 | 2020-05-19 | 四川天采科技有限责任公司 | Direct methanol cracking preparation of H2Catalyst, process for its preparation and its use |
CN115739160B (en) * | 2022-12-12 | 2023-07-07 | 中国石油大学(华东) | Nickel-based efficient ammonia decomposition catalyst and preparation method thereof |
CN116273031B (en) * | 2023-02-23 | 2024-08-06 | 福州大学 | Preparation method of catalyst for producing hydrogen by ammonia decomposition |
-
2007
- 2007-07-25 CN CN2007101194714A patent/CN101352685B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101352685A (en) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101352685B (en) | Supported type nickel catalyst for producing hydrogen from decomposition of ammonia and preparation method | |
Wang et al. | Palladium supported on reduced graphene oxide as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole | |
US10232355B2 (en) | Carbon nanotube-coated catalyst particle | |
CN113181957A (en) | Low-temperature activation high-efficiency ammonia decomposition catalyst | |
CN113209976B (en) | Catalyst for methanol steam reforming hydrogen production, preparation method and application thereof, and methanol steam reforming hydrogen production reaction | |
CN109701545A (en) | A kind of electrocatalysis material and preparation method thereof loading vanadium cobalt alloy nanoparticles | |
CN110404535B (en) | Supported palladium catalyst, preparation method and application | |
Feng et al. | Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane | |
CN105195159A (en) | Catalyst for decomposing hydrazine hydrate to prepare hydrogen and preparation method of catalyst | |
CN105148930A (en) | Modified Co-Ce core-shell structure catalyst for carbon monoxide (CO) low-temperature oxidation | |
CN114768859A (en) | Nickel-silicon catalyst suitable for dry reforming of methane and preparation method thereof | |
CN114377691B (en) | Doughnut-shaped hollow porous Pt-Ni nanoparticle-loaded titanium oxide material and preparation method thereof | |
CN113398935B (en) | Ruthenium-nickel/graphene-composite oxide metal aerogel catalyst and preparation method and application thereof | |
Liu et al. | Recent progress in porous catalysts for dehydrogenation of ammonia borane | |
CN113996293A (en) | Cerium-lanthanum solid solution supported iridium catalyst, and preparation method and application thereof | |
Wang et al. | H2SO4 poisoning of Ru-based and Ni-based catalysts for HI decomposition in SulfurIodine cycle for hydrogen production | |
WO2020010646A1 (en) | Nano titanium dioxide composite particle and preparation method thereof | |
CN115069267B (en) | Perovskite-based formic acid hydrogen production catalyst and preparation method and application thereof | |
Song et al. | Boron-doping-induced modulation of structural parameters of pristine commercial carbon black for promoting Ru-catalyzed OH bond activation toward hydrogen evolution | |
CN115069242A (en) | Catalyst for hydrogen production by oxidation and reforming of ethanol and preparation and activation methods thereof | |
CN114797857A (en) | Nanometer flower-shaped copper-based material and preparation method and application thereof | |
CN109926046B (en) | Catalyst for hydrogen production by hydroiodic acid decomposition and preparation method thereof | |
Sankir et al. | Hydrogen generation from chemical hydrides | |
CN106341989B (en) | A kind of charcoal decomposing for hydrazine carries the preparation method of molybdenum carbide catalyst | |
CN114471587A (en) | Catalyst containing perovskite-like sub-monolayer oxide catalytic active structure and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100818 |
|
CF01 | Termination of patent right due to non-payment of annual fee |