CN101350101A - Automatic Registration Method of Multiple Depth Images - Google Patents

Automatic Registration Method of Multiple Depth Images Download PDF

Info

Publication number
CN101350101A
CN101350101A CNA2008102220956A CN200810222095A CN101350101A CN 101350101 A CN101350101 A CN 101350101A CN A2008102220956 A CNA2008102220956 A CN A2008102220956A CN 200810222095 A CN200810222095 A CN 200810222095A CN 101350101 A CN101350101 A CN 101350101A
Authority
CN
China
Prior art keywords
registration
circle
depth images
consistent
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102220956A
Other languages
Chinese (zh)
Other versions
CN101350101B (en
Inventor
齐越
赵沁平
侯飞
沈旭昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2008102220956A priority Critical patent/CN101350101B/en
Publication of CN101350101A publication Critical patent/CN101350101A/en
Application granted granted Critical
Publication of CN101350101B publication Critical patent/CN101350101B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

多幅深度图像自动配准方法。(1)使用SIFT特征对任意两幅深度图像配准并判断结果正确性。首先计算两幅深度图像的SIFT特征,双向交叉匹配对应点,然后用RANSAC算法求极线约束,过滤错误匹配,之后用ICP算法精确配准并判断结果正确性(2)搜索模型图的圈空间,计算全局一致的配准结果。首先求得模型图的导出圈基并构建导出圈基的邻接关系图,然后,求得一致圈空间的一组基,进而得到一致的配准结果。该方法可以有效地提高圈空间的搜索速度,理想情况下,可以将指数时间复杂度提高到线性时间复杂度。(3)圈的一致性判断,使用一种相对误差判断方法判断圈中配准结果的一致性。本发明可以可靠的自动配准多幅深度图像,通过搜索一致圈,去掉错误配准,得到一致的配准结果。

Figure 200810222095

A method for automatic registration of multiple depth images. (1) Use SIFT features to register any two depth images and judge the correctness of the results. First calculate the SIFT features of the two depth images, bidirectionally cross match the corresponding points, then use the RANSAC algorithm to find the epipolar constraints, filter the wrong match, and then use the ICP algorithm to accurately register and judge the correctness of the results (2) Search the circle space of the model map , to calculate a globally consistent registration result. Firstly, the derived circle base of the model graph is obtained and the adjacency graph of the derived circle base is constructed. Then, a set of bases of the consistent circle space is obtained, and the consistent registration result is obtained. This method can effectively increase the search speed of the circle space, and ideally, the exponential time complexity can be improved to the linear time complexity. (3) Consistency judgment of circles, using a relative error judgment method to judge the consistency of registration results in circles. The invention can reliably and automatically register multiple depth images, and removes wrong registration by searching the coincidence circle to obtain consistent registration results.

Figure 200810222095

Description

多幅深度图像自动配准方法 Automatic Registration Method of Multiple Depth Images

技术领域 technical field

本发明属于计算机虚拟现实技术领域,具体地说是涉及多幅深度图像自动配准,得到完整模型,该方法可用于三维模型的几何建模。The invention belongs to the technical field of computer virtual reality, and in particular relates to automatic registration of multiple depth images to obtain a complete model, and the method can be used for geometric modeling of a three-dimensional model.

背景技术 Background technique

近些年来,三维扫描技术快速发展,使得自动配准技术变得越来越重要。深度图像是三维扫描设备扫描后得到的带有深度信息的图像。配准是指将从不同位置、不同角度扫描到的深度图像通过刚性变换变到同一坐标系的过程。通过配准,将多幅深度图像拼接到一起,从而获得完整的三维模型。配准计算过程主要可分为两幅深度图像配准和多幅深度图像配准。两幅深度图像配准是计算两幅图像之间的相对位置关系进行配准;多幅深度图像配准也称全局配准是在两幅深度图像配准的基础上,去除错误的两两配准结果,计算全局一致的配准结果,然后优化全局配准的总体误差。In recent years, the rapid development of 3D scanning technology makes automatic registration technology more and more important. A depth image is an image with depth information obtained after scanning by a 3D scanning device. Registration refers to the process of transforming depth images scanned from different positions and angles into the same coordinate system through rigid transformation. Through registration, multiple depth images are stitched together to obtain a complete 3D model. The registration calculation process can be mainly divided into registration of two depth images and registration of multiple depth images. The registration of two depth images is to calculate the relative positional relationship between the two images for registration; the registration of multiple depth images is also called global registration, and it is based on the registration of two depth images to remove the wrong pairwise registration. Alignment results, calculate the globally consistent registration results, and then optimize the overall error of the global registration.

两幅深度图像配准主要包括粗略两两配准和精确两两配准两步。精确两两配准主要采用ICP(Iterative Closest Point)算法(参见P.J.Besl,N.D.McKay.A Method for Registration of 3DShapes.IEEE Trans.Pattern Anal[J].and Machine Intell.Vol.14,pp.239-256,1992和Y.Chen,G.Medioni.Object Modeling by Registration of Multiple Range Images[J].IEEE Conference onRobotics and Automation,pp.2724-2729,1991.和[Rusinkiewicz 2001]Rusinkiewicz,S.,Levoy,M.Efficient Variants of the ICP Algorithm[J].In International Conference on 3D Digital Imagingand Modeling,2001.),已经取得了很好的效果,但是,由于ICP算法是局部收敛的,所以在采用ICP算法之前,先要进行两两粗略配准,以获得较好的初始位置,避免陷入局部最优。两两粗略配准主要利用特征描述符,如旋转图像、积分球体等,匹配至少三对或者更多对应点,进而求得刚性变换。The registration of two depth images mainly includes two steps of rough pairwise registration and precise pairwise registration. Accurate pairwise registration mainly uses the ICP (Iterative Closest Point) algorithm (see P.J.Besl, N.D.McKay.A Method for Registration of 3DShapes.IEEE Trans.Pattern Anal[J].and Machine Intell.Vol.14,pp.239- 256, 1992 and Y. Chen, G. Medioni. Object Modeling by Registration of Multiple Range Images [J]. IEEE Conference on Robotics and Automation, pp.2724-2729, 1991. and [Rusinkiewicz 2001] Rusinkiewicz, S., Levoy, M.Efficient Variants of the ICP Algorithm[J].In International Conference on 3D Digital Imaging and Modeling, 2001.), has achieved very good results, but because the ICP algorithm is locally convergent, before using the ICP algorithm, First, two-by-two rough registration is required to obtain a better initial position and avoid falling into local optimum. Pairwise rough registration mainly uses feature descriptors, such as rotating images, integrating spheres, etc., to match at least three pairs or more corresponding points, and then obtain rigid transformations.

全局匹配是在两两配准基础上,判断两两配准的正确性,去掉错误结果,得到整体一致的配准结果。Huber(参见Huber D.Automatic Three-dimensional Modeling from Reality.CarnegieMellon University,2002)提出了第一个全局匹配算法。他利用可见性标准,判断深度图像之间是否存在遮挡,进而判断配准是否正确,并利用贝叶斯概率得到每个配准的可靠性系数,然后,使用贪心法,生成一颗配准整个模型的最小生成树。但每次遮挡判断之前都要优化总体误差,而且遮挡计算复杂度也比较高,因此计算效率比较低。而且在计算生成树开始阶段,由于只有较少的深度图像聚合到一起,所以遮挡性判断的可靠性也较低。Hunag(参见HuangQ X,Flory S,Gelfand N,Hofer M,Pottmann H.Reassembling fractured objects by geometricmatching.ACM Transactions on Graphics(SIGGRAPH),2006:569-578)改进了Huber的方法,他注意到两个多幅深度图像合并的子模型之间可能存在多个两两配准关系,这比单一关系要可靠,因此他优先合并有更多相容配准关系的子图,而不是仅仅依赖单一配准结果求最小生成树,但该方法还是要多次优化总误差,计算复杂度高,在模型合并初期同样可靠性不高。注意到子模型间的多个相容配准关系,实质上是构成了回路,而且两两配准结果在回路中要满足一致性约束。Global matching is to judge the correctness of pairwise registration on the basis of pairwise registration, remove erroneous results, and obtain an overall consistent registration result. Huber (see Huber D. Automatic Three-dimensional Modeling from Reality. Carnegie Mellon University, 2002) proposed the first global matching algorithm. He uses the visibility standard to judge whether there is occlusion between the depth images, and then judges whether the registration is correct, and uses the Bayesian probability to obtain the reliability coefficient of each registration, and then uses the greedy method to generate a registration. The minimum spanning tree for the model. However, the overall error must be optimized before each occlusion judgment, and the occlusion calculation complexity is relatively high, so the calculation efficiency is relatively low. Moreover, at the beginning of spanning tree calculation, since only a few depth images are aggregated together, the reliability of occlusion judgment is also low. Hunag (see HuangQ X, Flory S, Gelfand N, Hofer M, Pottmann H. Reassembling fractured objects by geometric matching. ACM Transactions on Graphics (SIGGRAPH), 2006: 569-578) improved Huber's method, and he noticed two more There may be multiple pairwise registration relationships between the sub-models merged by depth images, which is more reliable than a single relationship, so he preferentially merges sub-images with more compatible registration relationships, rather than relying only on a single registration result Finding the minimum spanning tree, but this method still needs to optimize the total error multiple times, the calculation complexity is high, and the reliability is not high in the early stage of model merging. Note that multiple compatible registration relationships between sub-models constitute a loop in essence, and the pairwise registration results must satisfy the consistency constraint in the loop.

全局匹配后需要优化总体误差。与ICP算法类似,通过迭代逐渐减小误差,但由于涉及到多幅深度图像,所以计算更为复杂。全局配准算法主要分为两类,两两优化Bergevin和Pulli(参见Bergevin R.,Soucy M.,Gagnon H.,et al.Towards a General Multi-View RegistrationTechnique.IEEE Trans.Pattern Anal.and Machine Intell,1996,18(5):540-547和Pulli K.Multiview Registration for Large Data Sets.nternational Conference on 3D Digital Imaging andModeling)和同时优化Krishnan和Neugebauer算法(参见Krishnan S.,Lee P.Y.,Moore J.,etal.Global Registration of Multiple 3D Point Sets via Optimization-on-a-Manifold.Proc.ofSymposium on Geometry Processing,2005:187-196和Neugebauer P.J.Geometrical Cloning of3D Objects via Simultaneous Registration of Multiple Range Images[C].Proceed-ings of the 1997International Conference on Shape Modeling and Applications(SMA’97),1997,130)。两两优化反复采用ICP算法优化两幅图像,因此收敛速度慢而且可能无法收敛,同时优化的方法直接优化总误差,收敛速度较快,但复杂的优化计算稳定性较差。After global matching, the overall error needs to be optimized. Similar to the ICP algorithm, the error is gradually reduced through iteration, but the calculation is more complicated because multiple depth images are involved. Global registration algorithms are mainly divided into two categories, two-by-two optimization Bergevin and Pulli (see Bergevin R., Soucy M., Gagnon H., et al. Towards a General Multi-View Registration Technique. IEEE Trans. Pattern Anal. and Machine Intell , 1996, 18(5): 540-547 and Pulli K. Multiview Registration for Large Data Sets. International Conference on 3D Digital Imaging and Modeling) and Simultaneous Optimization of Krishnan and Neugebauer Algorithms (see Krishnan S., Lee P.Y., Moore J., etal.Global Registration of Multiple 3D Point Sets via Optimization-on-a-Manifold.Proc.ofSymposium on Geometry Processing, 2005: 187-196 and Neugebauer P.J.Geometrical Cloning of3D Objects via Simultaneous Registration of Proceeding-Crange[] ings of the 1997International Conference on Shape Modeling and Applications (SMA'97), 1997, 130). Pairwise optimization repeatedly uses the ICP algorithm to optimize two images, so the convergence speed is slow and may not be able to converge. At the same time, the optimization method directly optimizes the total error, and the convergence speed is fast, but the stability of complex optimization calculations is poor.

发明内容 Contents of the invention

本发明的技术解决问题:克服现有技术的不足,提供一种多幅深度图像自动配准方法,该方法进行多幅深度图像配准速度快,且匹配准确。The technical problem of the present invention is to overcome the deficiencies of the prior art, and provide a method for automatic registration of multiple depth images, which has a fast registration speed and accurate matching for multiple depth images.

本发明的技术解决方案:多幅深度图像自动配准方法,包括两幅深度图像配准和多幅深度图像全局匹配过程,其中:The technical solution of the present invention: a method for automatic registration of multiple depth images, including registration of two depth images and a global matching process of multiple depth images, wherein:

所述的两幅深度图像配准如下:The registration of the two depth images is as follows:

(1)在两幅图像上分别计算SIFT特征,得到每个特征点对应一个128维特征向量;(1) Calculate the SIFT feature on the two images separately, and obtain a 128-dimensional feature vector corresponding to each feature point;

(2)根据步骤(1)所述的特征向量,匹配对应点;(2) according to the feature vector described in step (1), match corresponding point;

(3)确定匹配对应点之后,采用RANSAC算法求解基础矩阵,然后采用基础矩阵剔除匹配错误的对应点;(3) After determining the matching corresponding points, use the RANSAC algorithm to solve the basic matrix, and then use the basic matrix to eliminate the corresponding points of matching errors;

(4)将剔除匹配错误后的对应点按SIFT特征距离排序,去掉两幅图像的特征向量之间距离最大的20%的对应点;(4) sort the corresponding points after removing the matching errors by SIFT feature distance, and remove the 20% corresponding points with the largest distance between the feature vectors of the two images;

(5)根据两幅图像的对应点采用四元数法求得变换矩阵,从而得到两两粗略配准;(5) According to the corresponding points of the two images, the transformation matrix is obtained by using the quaternion method, so as to obtain a rough registration in pairs;

(6)两两粗略配准后,使用ICP算法精确配准两幅深度图像;(6) After the two-by-two rough registration, use the ICP algorithm to accurately register the two depth images;

所述的多幅深度图像全局匹配过程如下:The global matching process of multiple depth images is as follows:

(7)根据步骤(6)得到的两两精确配准的两幅深度图像,建立多幅图像的模型图;(7) According to the two depth images obtained in step (6) that are accurately registered in pairs, a model diagram of multiple images is established;

(8)求得模型图的导出圈基,建立导出圈基的邻接关系图Г,所述的导出圈基是指没有弦的导出圈构成的基;(8) Obtain the derivation circle base of the model graph, set up the adjacency graph Γ of derivation circle base, described derivation circle base refers to the base that does not have the derivation circle formation of chord;

(9)搜索圈空间,所述的圈空间为模型图中所有回路的集合,在搜索时只搜索导出圈基的邻接关系图Г中的连通顶点生成的圈,并且得到一个一致圈时,就删掉一个圈基,直到Г所剩余的顶点个数小于要搜索的顶点个数为止,得到多幅图像的全局匹配。(9) Search the circle space, the circle space is the set of all loops in the model graph, when searching only the circles generated by the connected vertices in the adjacency relationship graph Г derived from the circle base, and when a consistent circle is obtained, then Delete a circle base until the number of vertices remaining in Г is less than the number of vertices to be searched, and the global matching of multiple images is obtained.

所述步骤(2)中采用双向交叉方法匹配对应点,其步骤为:匹配对应点时,对于第一幅图像上的特征点p,其有一个特征向量,在第二幅深度图像的所有特征向量中找到距离特征点p的特征向量最近的特征点p′,反过来对于p′,在第一幅深度图像的所有特征向量中找到距离特征点p′的特征向量最近的特征点p″,如果p=p″,则p与p′为匹配对应点。In the step (2), the two-way crossover method is used to match the corresponding points, and the steps are: when matching the corresponding points, for the feature point p on the first image, it has a feature vector, and all the features in the second depth image Find the feature point p′ closest to the feature vector of feature point p in the vector, and conversely for p′, find the feature point p″ closest to the feature vector of feature point p′ in all feature vectors of the first depth image, If p=p", then p and p' are matching corresponding points.

所述的步骤(6)后还要判断两两配准结果是否正确,判断步骤为:首先,在根据SIFT特征匹配对应点时,如果匹配成功的对应点数小于设定阈值,则判定配准不正确;其次,使用ICP算法精确配准时,如果误差过大,大于设定阈值,则判定配准不正确;如果以上两个条件均无法判定配准结果错误,则认为结果正确。After the step (6), it is necessary to judge whether the pairwise registration results are correct. The judgment steps are as follows: first, when matching the corresponding points according to the SIFT feature, if the number of corresponding points matched successfully is less than the set threshold, then it is determined that the registration is not correct. Correct; secondly, when using the ICP algorithm for accurate registration, if the error is too large and greater than the set threshold, it is judged that the registration is incorrect; if the above two conditions cannot determine that the registration result is wrong, the result is considered correct.

所述步骤(7)中所述的模型图G=<V,E>是一个无向图,V是顶点的集合,E是边的集合,每个顶点vi∈V表示一幅深度图像,每一条边eij=(vi,vj)∈E,当且仅当深度图像vi和vj的两两配准结果Tij存在,并且Tij作为边eij的属性,其中vi和vj是模型图的两个顶点。The model graph G=<V, E> described in the step (7) is an undirected graph, V is a set of vertices, E is a set of edges, and each vertex v i ∈ V represents a depth image, For each edge e ij =(v i , v j )∈E, if and only if the pairwise registration result T ij of depth images v i and v j exists, and T ij is an attribute of edge e ij , where v i and v j are the two vertices of the model graph.

所述步骤(8)中的对于得到一个一致圈的判断方法:从圈中任取一幅深度图像,求得它的直径d,将该深度图像沿着圈中的两两变换变换一周,得到一幅新的深度图像,计算新的深度图像和初始深度图像对应点之间的误差e,将e/d作为圈的误差,如果圈的误差小于设定阈值圈就是一致的,否则,是不一致的。The judging method for obtaining a consistent circle in the step (8): randomly pick a depth image from the circle, obtain its diameter d, transform the depth image along the pairwise transformation in the circle for a week, and obtain For a new depth image, calculate the error e between the new depth image and the corresponding point of the initial depth image, and use e/d as the error of the circle. If the error of the circle is less than the set threshold, the circle is consistent, otherwise, it is inconsistent of.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

(1)本发明基于SIFT的特征配准计算速度快,交叉匹配对应点可靠性高,用RANSAC算法过滤对应点,最大程度提高了对应点的可靠性。(1) The SIFT-based feature registration calculation speed of the present invention is fast, and the reliability of the cross-matching corresponding points is high, and the corresponding points are filtered by the RANSAC algorithm, which improves the reliability of the corresponding points to the greatest extent.

(2)本发明建立多幅图像的模型图,求得模型图的导出圈基,建立导出圈基的邻接关系图Г,在搜索圈空间时只搜索导出圈基的邻接关系图Г中的连通顶点生成的圈,并且得到一个一致圈时,就删掉一个圈基,直到Г所剩余的顶点个数小于要搜索的顶点个数为止,得到多幅图像的全局匹配,大大提高了搜索速度,从而快速可靠地得到多幅图像全局一致的配准结果。(2) The present invention sets up the model figure of multiple images, obtains the derivation cycle base of the model figure, establishes the adjacency relation graph Г of the derivation cycle base, and only searches for the connectivity in the adjacency relation graph Г of the derivation cycle base when searching the circle space When the circle generated by the vertices, and a consistent circle is obtained, a circle base is deleted until the number of vertices remaining in Г is less than the number of vertices to be searched, and the global matching of multiple images is obtained, which greatly improves the search speed. In this way, globally consistent registration results of multiple images can be obtained quickly and reliably.

(3)而且本发明通过圈的一致性判断,进一步提高了多幅图像的可靠性。(3) Moreover, the present invention further improves the reliability of multiple images by judging the consistency of the circles.

附图说明 Description of drawings

图1为本发明方法的流程图;Fig. 1 is the flowchart of the inventive method;

图2为本发明中建立模型图的示意图;Fig. 2 is the schematic diagram of setting up model figure among the present invention;

图3为本发明中采用64个圈的误差分布图;Fig. 3 adopts the error distribution figure of 64 circles among the present invention;

图4为图3的局部放大图;Figure 4 is a partially enlarged view of Figure 3;

图5为采用本发明方法进行自动配准的弥勒下生经变相窟图。Fig. 5 is a disguised cave map of Maitreya's Lower Life Sutra for automatic registration using the method of the present invention.

具体实施方式 Detailed ways

如图1所示,本发明分为两幅深度图像配准和多幅深度图像全局匹配过程。As shown in FIG. 1 , the present invention is divided into two depth image registration and multiple depth image global matching processes.

1、两幅深度图像配准1. Registration of two depth images

两幅深度图像粗略配准是对处在任意位置的部分重叠的两幅深度图像粗略配准的过程。目的是为精确配准提供较好的初始位置,以确保其收敛。由于深度图像中包含颜色信息,因此本发明采用图像对应点匹配方法进行配准,其步骤为:Rough registration of two depth images is a process of coarse registration of partially overlapping two depth images at any position. The goal is to provide a good initial position for precise registration to ensure its convergence. Since the depth image contains color information, the present invention adopts an image corresponding point matching method for registration, and the steps are as follows:

(1)首先,分别在两幅图像上计算SIFT特征,每个特征点对应一个128维特征向量,采用欧氏距离度量两个SIFT特征之间的距离;在此步骤中计算SIFT特征采用Lowe,D.Distinctive image features from scale-invariant keypoints.Int.J.of Computer Vision 60,2,91-110.2004.文中介绍了方法即可。(1) First, calculate SIFT features on two images respectively, each feature point corresponds to a 128-dimensional feature vector, and use Euclidean distance to measure the distance between two SIFT features; in this step, Lowe is used to calculate SIFT features, D. Distinctive image features from scale-invariant keypoints. Int. J. of Computer Vision 60, 2, 91-110.2004. The method is just introduced in the article.

(2)采用双向交叉匹配对应点,即匹配对应点时,对于第一幅图像上的特征点p,其有一个特征向量,在第二幅深度图像的所有特征向量中找到距离特征点p的特征向量最近的特征点p′,反过来对于p′,在第一幅深度图像的所有特征向量中找到距离特征点p′的特征向量最近的特征点p″,如果p=p″,则p与p′为匹配对应点。(2) Use two-way cross-matching corresponding points, that is, when matching corresponding points, for the feature point p on the first image, it has a feature vector, and find the distance from the feature point p in all feature vectors of the second depth image The feature point p′ closest to the feature vector, conversely for p’, find the feature point p″ closest to the feature vector of the feature point p′ among all the feature vectors of the first depth image, if p=p″, then p And p' is the matching corresponding point.

(3)匹配之后,采用RANSAC算法求解基础矩阵,以剔除误差点,采用RANSAC算法求解基础矩阵可以参见Hartley,R.I.,AND ZISSERMAN,A.2004.Multiple View Geometry inComputer Vision.Cambridge University Press,Cambridge,UK。(3) After matching, use the RANSAC algorithm to solve the basic matrix to eliminate error points. Use the RANSAC algorithm to solve the basic matrix. See Hartley, R.I., AND ZISSERMAN, A.2004.Multiple View Geometry in Computer Vision.Cambridge University Press, Cambridge, UK .

(4)然后,将对应点按SIFT特征距离排序,去掉距离最大的20%的对应点。(4) Then, the corresponding points are sorted according to the SIFT feature distance, and the 20% corresponding points with the largest distance are removed.

(5)最后,根据对应点使用四元数法求得变换矩阵,使用四元数法的求解变换矩阵的过程可以参见Horn,B.Closed Form Solutions of Absolute Orientation Using Unit Quaternions.Journal of the Optical Society,Vol.4,629-642,1987。(5) Finally, use the quaternion method to obtain the transformation matrix according to the corresponding points. The process of using the quaternion method to solve the transformation matrix can be found in Horn, B.Closed Form Solutions of Absolute Orientation Using Unit Quaternions.Journal of the Optical Society , Vol.4, 629-642, 1987.

(6)两两粗略配准后,使用ICP(Iterative Closest Point)算法精确配准两幅深度图像。ICP算法参见P.J.Besl,N.D.McKay.A Method for Registration of 3D Shapes.IEEE Trans.Pattern Anal[J].and Machine Intell.Vol.14,pp.239-256,1992.,每次迭代根据误差动态修改距离阈值,这样得到了两幅深度图像精确的配准的结果。(6) After the two-by-two rough registration, use the ICP (Iterative Closest Point) algorithm to accurately register the two depth images. ICP algorithm see P.J.Besl, N.D.McKay.A Method for Registration of 3D Shapes.IEEE Trans.Pattern Anal[J].and Machine Intell.Vol.14, pp.239-256, 1992. Each iteration is dynamically modified according to the error The distance threshold, thus obtaining the result of accurate registration of the two depth images.

(7)对两幅深度图像精确的配准的结果进行两两配准的一致性判断。特征点匹配错误或两幅深度图像没有部分重叠,都可能造成两两配准结果错误。因此要两两配准是要判断其结果是否正确,判断步骤为:首先,在根据SIFT特征匹配对应点时,如果匹配成功的对应点数小于设定阈值,则判定配准不正确;其次,使用ICP算法精确配准时,如果误差过大,大于设定阈值,则判定配准不正确。如果以上两个条件均无法判定配准结果错误,则认为结果正确,并且将两两配准结果加入到后面多幅图像全局匹配的模型图中。(7) Perform pairwise registration consistency judgment on the precise registration results of the two depth images. Mismatching of feature points or partial overlap of two depth images may cause errors in pairwise registration results. Therefore, pairwise registration is to judge whether the result is correct or not. The judgment steps are as follows: first, when matching corresponding points according to SIFT features, if the number of corresponding points that match successfully is less than the set threshold, it is judged that the registration is incorrect; secondly, use When the ICP algorithm is accurately registered, if the error is too large and greater than the set threshold, it is judged that the registration is incorrect. If neither of the above two conditions can determine that the registration result is wrong, the result is considered correct, and the pairwise registration result is added to the model map of the subsequent global matching of multiple images.

2、多幅深度图像全局匹配2. Global matching of multiple depth images

(1)根据得到的两两精确配准的两幅深度图像,建立多幅图像的模型图;(1) According to the obtained two depth images that are accurately registered in pairs, a model map of multiple images is established;

两两配准之后,得到模型图G,但仅仅依靠两两配准的一致性判断得到的结果是不可靠的,例如由于模型的自对称性,造成配准错误,但通过两两配准难以判断出来。因此,两两配准之后,要进行全局一致性判断。由于模型图G的任意回路都应满足一致性约束,否则就是不正确的,这样在一条回路中的配准结果可以自我校验,本发明提出基于回路的全局匹配方法。After two-two registration, the model graph G is obtained, but the result obtained only by the consistency judgment of two-two registration is unreliable. For example, due to the self-symmetry of the model, registration errors are caused, but it is difficult to Judge it. Therefore, after pairwise registration, a global consistency judgment is required. Since any loop of the model graph G should satisfy the consistency constraint, otherwise it is incorrect, so the registration result in a loop can be self-checked, and the present invention proposes a loop-based global matching method.

模型图G=<V,E>是一个无向图,每个顶点vi∈V表示一幅深度图像,边eij=(vi,vj)∈E当且仅当深度图像vi和vj的两两配准结果Tij存在,并且Tij作为边eij的属性。值得注意的是,任何一条回路都要满足一致性约束,即总的变换应为单位变换。如图2,在回路16521中,应满足T12·T25·T56·T61=I。一条回路如果满足一致性约束,则称为一致回路,否则称为不一致。The model graph G=<V, E> is an undirected graph, each vertex v i ∈ V represents a depth image, and the edge e ij = (v i , v j )∈E if and only if the depth image v i and The pairwise registration result T ij of v j exists, and T ij is an attribute of edge e ij . It is worth noting that any loop must satisfy the consistency constraint, that is, the total transformation should be a unit transformation. As shown in Figure 2, in the loop 16521, T 12 ·T 25 ·T 56 ·T 61 =I should be satisfied. A cycle is called consistent if it satisfies the consistency constraints, otherwise it is called inconsistent.

(2)求得模型图的导出圈基,建立导出圈基的邻接关系图Г;(2) Obtain the derived circle base of the model graph, and establish the adjacency graph Г of the derived circle base;

先简单介绍有关图、圈和圈空间的概念。一个图G=<V,E>,其中V=v(G)表示顶点集合,E=ε(G)表示边的集合。每个顶点出现不超过一次的通路称为基本通路(Path)。起点和终点为同一顶点的基本通路称为圈(Cycle)。一条边连接一个圈中的两个顶点,但它并不是圈中的边,称为弦(Chord)。一个没有弦的圈称为导出圈(Induced Cycle)。如果图G1和G2没有公共边,则 G 1 &cup; G 2 称为图G1和G2的边不重并。环路是指圈与圈的边不重并。显然圈是环路,圈是连通的,但环路不一定连通。图G1和G2的对称差(Symmetric Difference)运算定义为 G 1 &CirclePlus; G 2 = ( G 1 &cup; G 2 ) - ( G 1 &cap; G 2 ) . 对称差运算满足交换律和结合律。First a brief introduction to the concepts of graphs, circles and circle spaces. A graph G=<V,E>, where V=v(G) represents the set of vertices and E=ε(G) represents the set of edges. A path in which each vertex appears no more than once is called a basic path (Path). A basic path whose starting point and end point are the same vertex is called a cycle. An edge connecting two vertices in a circle, but it is not an edge in the circle, is called a chord. A cycle without strings is called an Induced Cycle. If graphs G1 and G2 have no common edges, then G 1 &cup; G 2 The edges called graphs G1 and G2 are not merged. A cycle means that the edges of the circle and the circle do not overlap. Obviously a circle is a cycle, and a circle is connected, but a cycle is not necessarily connected. The symmetric difference (Symmetric Difference) operation of graphs G 1 and G 2 is defined as G 1 &CirclePlus; G 2 = ( G 1 &cup; G 2 ) - ( G 1 &cap; G 2 ) . The symmetric difference operation satisfies commutative and associative laws.

连通图G=<V,E>的所有环路及空集组成的集合为C={C1,C2…,Cn),在其上定义对称差运算与数乘运算0Ci=Φ,1·Ci=Ci,则其构成数域上的一个|E|-|V|+1维线性空间,记作C(G),称为圈空间(Cycle Space)。任何圈空间都可以由导出圈基以生成整个圈空间。The set of all loops and empty sets of the connected graph G=<V, E> is C={C 1 , C 2 ..., C n ), on which the symmetric difference operation and multiplication operation 0C i =Φ are defined, 1·C i =C i , then it constitutes a number field A |E|-|V|+1-dimensional linear space on , denoted as C(G), is called a cycle space (Cycle Space). Any circle space can be derived from the circle base to generate the entire circle space.

(3)搜索圈空间;(3) search circle space;

设模型图G的导出圈基为

Figure A20081022209500092
整个圈空间C(G)由
Figure A20081022209500093
张成,因此C(G)的大小为2|E|-|V|+1,是指数复杂度,搜索效率太低。模型图中所有一致圈构成了一个线性子空间,称为一致子空间。本发明提出一种快速求得一致子空间的一组基的方法,大大提高了圈空间的搜索效率,理想情况下是线性复时间杂度。Let the derived cycle base of the model graph G be
Figure A20081022209500092
The entire circle space C(G) consists of
Figure A20081022209500093
Zhang Cheng, so the size of C(G) is 2 |E|-|V|+1 , which is exponential complexity, and the search efficiency is too low. All the consistent cycles in the model diagram form a linear subspace, called the consistent subspace. The invention proposes a method for quickly obtaining a set of bases of the consistent subspace, which greatly improves the search efficiency of the circle space, and ideally has a linear complex time complexity.

注意到如果两个圈的对称差仍为圈,那么这两个圈必有公共边。为了加速搜索,首先定义圈基的邻接关系图

Figure A20081022209500094
边(Bi,Bj)∈L当且仅当ε(Bi)⌒ε(Bj)≠Φ。因此有以下结论:设 C = B k 1 &CirclePlus; B k 2 &CirclePlus; &CenterDot; &CenterDot; &CenterDot; &CirclePlus; B k n , 如果C是圈,那么在
Figure A20081022209500097
是连通的。注意由Г中连通的顶点所对应的圈基生成的环路也可能不是圈,因此还要检验其是不是圈。这样在搜索圈空间时,只要搜索由任意多个连通的基生成的所有圈,判断它们的一致性,这样可以大大减少搜索次数。Note that if the symmetric difference of two cycles is still a cycle, then the two cycles must have a common edge. In order to speed up the search, first define the adjacency graph of the circle base
Figure A20081022209500094
Edge (B i , B j )∈L if and only if ε(B i )⌒ε(B j )≠Φ. Therefore, the following conclusions are drawn: C = B k 1 &CirclePlus; B k 2 &CirclePlus; &Center Dot; &Center Dot; &Center Dot; &CirclePlus; B k no , If C is a circle, then in middle
Figure A20081022209500097
is connected. Note that the cycle generated by the cycle base corresponding to the connected vertices in Γ may not be a cycle, so it is necessary to check whether it is a cycle. In this way, when searching the circle space, we only need to search all the circles generated by any number of connected bases and judge their consistency, which can greatly reduce the number of searches.

在搜索一致圈时,首先根据两两配准的模型图G求出导出圈基

Figure A20081022209500098
并且生成的邻接关系图采用导出圈基是因为它的长度较小,因而一致的可能性较大,有助于提高搜索效率。然后求S(G)的一组基,首先,判断每个圈C=Bi是否一致,如果一致,则将C加入到S(G)的基中,并从Г中删除Bi;然后判断由任何两个连通的圈基生成的圈 C = B i &CirclePlus; B j 是否一致,如果一致,将C加入到S(G)的基中,并从Г中删除Bi;然后判断由任何三个连通的圈基生成的圈,这样下去,直到Г中剩余的顶点小于要搜索的连通顶点个数为止。然后,将所有一致圈的边合并得到一致模型图G′,详细算法在算法1中给出。该算法在最好情况下是线性复杂度,与指数复杂度相比,大大提高了计算效率。如果G′只有一个连通子图,则全局配准计算完成。如果G′有多个连通子图,则连通子图之间不再存在一致回路,本发明采用基于可见性的判断方法——自由空问冲突(Free Space Violation)继续全局配准[Huber 2002],生成连通子图之间的最小生成树,以合并更多的子图。因为一般情况下,每个连通子图都含有多幅深度图像,所以,相对于单幅图像而言,可见性判断具有更高的可靠性。When searching for the coincidence circle, firstly, the derived circle base is obtained according to the model graph G of pairwise registration
Figure A20081022209500098
and generate The adjacency graph of The reason for adopting the derived circle base is that its length is small, so the probability of consistency is high, which helps to improve the search efficiency. Then seek a set of bases of S(G), first, judge whether each circle C=B i is consistent, if consistent, then add C to the base of S(G), and delete B i from Г; then judge A cycle generated by any two connected cycle bases C = B i &CirclePlus; B j Whether it is consistent, if consistent, add C to the base of S(G), and delete B i from Г; then judge the circle generated by any three connected circle bases, and so on, until the remaining vertices in Γ are less than The number of connected vertices to be searched. Then, merge the edges of all consistent circles to obtain the consistent model graph G′, and the detailed algorithm is given in Algorithm 1. The algorithm is linear complexity in the best case, which greatly improves computational efficiency compared with exponential complexity. If G′ has only one connected subgraph, the global registration calculation is complete. If G′ has multiple connected subgraphs, there is no consistent loop between the connected subgraphs, and the present invention adopts a judgment method based on visibility - Free Space Violation to continue global registration [Huber 2002] , to generate a minimum spanning tree between connected subgraphs to merge more subgraphs. Because in general, each connected subgraph contains multiple depth images, so compared with a single image, the visibility judgment has higher reliability.

算法1: Algorithm 1:

  输入:两两配准的模型图G输出:全局一致的模型图G’Procedure求出G的导出圈基B建立B的邻接关系图Г<B,L>consistent_cycle←ΦN←1while Г中顶点数>=Nfor each Г中N个连通顶点生成的圈Cif C一致then将C插入到consistent_cycle中删除这N个顶点中的一个IfГ中顶点数<Nthenbreakend ifend ifend forN←N+1end whileG’←Φ将G中的顶点加到G’中将consistent_cycle中所有圈的所有边加到G’中 Input: pairwise registered model graph G Output: globally consistent model graph G'Procedure to find the derived cycle base B of G to establish the adjacency relationship graph of B Г<B, L>consistent_cycle←ΦN←1while the number of vertices in Г> =The circle generated by N connected vertices in Nfor each Г Cif C consistent then inserts C into consistent_cycle and deletes one of the N vertices. Add all the vertices of the consistent_cycle to G' and add all the edges of all cycles in consistent_cycle to G'

(4)圈的一致性判断;(4) Consistency judgment of the circle;

求得一个圈之后,要判断其是否一致。一个圈是一致的,是指圈中的总的两两变换近似单位变换。设圈C=V1V2…VnV1,任取一幅深度图像Vi,求得Vi到Vi回路中总变换T=Ti,i+1…Tn,1…Ti-1,i,Ti,j表示Vj到Vi的变换矩阵。计算圈中总的变换误差为 &epsiv; = 1 n &Sigma; k = 1 n | | p k - Tp k | | , 其中pk∈Vi为深度图像Vi中的点,n表示Vi中点的个数。After obtaining a circle, it is necessary to judge whether it is consistent. A circle is consistent, which means that the total pairwise transformation in the circle approximates the unit transformation. Set the circle C=V 1 V 2 ... V n V 1 , take any depth image V i , and obtain the total transformation in the loop from V i to V i T = T i, i+1 ... T n, 1 ... T i -1, i , T i, j represent the transformation matrix from V j to V i . The total transformation error in the calculation circle is &epsiv; = 1 no &Sigma; k = 1 no | | p k - Tp k | | , Where p kV i is the point in the depth image V i , and n represents the number of points in V i .

设深度图像Vi的包围球直径为d。如果ε<<d,那么圈C是一致的,否则圈C是不一致的。定义r=ε/d为圈中的误差,r是缩放不变的,这样它与深度图像的缩放变换无关。如果r小于设定阈值圈就是一致的,否则,是不一致的。Let the diameter of the enclosing sphere of the depth image V i be d. If ε<<d, then cycle C is consistent, otherwise cycle C is inconsistent. Defining r = ε/d as the error in the circle, r is scale invariant such that it is independent of the scaling transformation of the depth image. If r is less than the set threshold circle is consistent, otherwise, it is inconsistent.

(5)试验结果;(5) Test results;

圈的一致性判断时,每个回路的误差分布如图3、4所示,可以看出误差分布在0.03和0.3之间存在明显断裂,因此,本发明设定判断一致圈的误差阈值为0.03。When judging the consistency of circles, the error distribution of each loop is shown in Figures 3 and 4. It can be seen that there is an obvious break in the error distribution between 0.03 and 0.3. Therefore, the present invention sets the error threshold for judging the consistency circle to be 0.03 .

如图5所示,大足石刻弥勒下生经变相窟模型共有81幅深度图像,包含22477248个点,平均每幅深度图像约27.7万个点。采用同上的参数设定,共进行了3240次两两配准后,得到模型图包含217条边,因此圈空间的维数为137。搜索圈空间时,共搜索了140个圈后完成搜索,得到124个一致圈,即一致子空间为124维,得到的一致模型图包含184条边且已经连通,搜索圈空间用时42.5秒。整个配准计算用时约35分钟,可见绝大部分时间都用于两两配准,最后得到的完整模型。As shown in Figure 5, there are 81 depth images in the Dazu Rock Carvings Maitreya Sutra Disguised Phase Cave Model, including 22,477,248 points, with an average of about 277,000 points in each depth image. Using the same parameter settings as above, after a total of 3240 pairwise registrations, the obtained model graph contains 217 edges, so the dimension of the circle space is 137. When searching the circle space, a total of 140 circles were searched and the search was completed, and 124 consistent circles were obtained, that is, the consistent subspace was 124 dimensions. The obtained consistent model graph contained 184 edges and was connected, and the search circle space took 42.5 seconds. The entire registration calculation takes about 35 minutes. It can be seen that most of the time is used for pairwise registration to obtain a complete model.

总之,本发明可以可靠的自动配准多幅深度图像,通过搜索一致圈,去掉错误配准,得到一致的配准结果。In a word, the present invention can reliably and automatically register multiple depth images, remove wrong registration by searching the coincidence circle, and obtain consistent registration results.

本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The contents not described in detail in the description of the present invention belong to the prior art known to those skilled in the art.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (6)

1、多幅深度图像自动配准方法,两幅深度图像配准和多幅深度图像全局匹配过程,其特征在于步骤如下:1. The method for automatic registration of multiple depth images, the process of registration of two depth images and the global matching process of multiple depth images, is characterized in that the steps are as follows: 所述的两幅深度图像配准如下:The registration of the two depth images is as follows: (1)在两幅图像上分别计算SIFT特征,得到每个特征点对应一个128维特征向量;(1) Calculate the SIFT feature on the two images separately, and obtain a 128-dimensional feature vector corresponding to each feature point; (2)根据步骤(1)所述的特征向量,匹配对应点;(2) according to the feature vector described in step (1), match corresponding point; (3)确定匹配对应点之后,采用RANSAC算法求解基础矩阵,然后采用基础矩阵剔除匹配错误的对应点;(3) After determining the matching corresponding points, use the RANSAC algorithm to solve the basic matrix, and then use the basic matrix to eliminate the corresponding points of matching errors; (4)将剔除匹配错误后的对应点按SIFT特征距离排序,去掉两幅图像的特征向量之间距离最大的20%的对应点;(4) sort the corresponding points after removing the matching errors by SIFT feature distance, and remove the 20% corresponding points with the largest distance between the feature vectors of the two images; (5)根据两幅图像的对应点采用四元数法求得变换矩阵,从而得到两两粗略配准;(5) According to the corresponding points of the two images, the transformation matrix is obtained by using the quaternion method, so as to obtain a rough registration in pairs; (6)两两粗略配准后,使用ICP算法精确配准两幅深度图像;(6) After the two-by-two rough registration, use the ICP algorithm to accurately register the two depth images; 所述的多幅深度图像全局匹配过程如下:The global matching process of multiple depth images is as follows: (7)根据步骤(6)得到的两两精确配准的两幅深度图像,建立多幅图像的模型图;(7) According to the two depth images obtained in step (6) that are accurately registered in pairs, a model diagram of multiple images is established; (8)求得模型图的导出圈基,建立导出圈基的邻接关系图Γ,所述的导出圈基是指没有弦的导出圈构成的基;(8) Obtain the derivation circle base of the model diagram, establish the adjacency graph Γ of the derivation circle base, and the derivation circle base refers to the base formed by the derivation circle without chord; (9)搜索圈空间,所述的圈空间为模型图中所有回路的集合,在搜索时只搜索导出圈基的邻接关系图Γ中的连通顶点生成的圈,并且得到一个一致圈时,就删掉一个圈基,直到Γ所剩余的顶点个数小于要搜索的顶点个数为止,得到多幅图像的全局匹配。(9) Search circle space, said circle space is the set of all loops in the model graph, when searching, only search the circle generated by the connected vertices in the adjacency relationship graph Γ of the derived circle base, and when a consistent circle is obtained, then Delete a circle base until the number of remaining vertices in Γ is less than the number of vertices to be searched, and the global matching of multiple images is obtained. 2、根据权利要求1所述多幅深度图像自动配准方法,其特征在于:所述步骤(2)中采用双向交叉方法匹配对应点,其步骤为:匹配对应点时,对于第一幅图像上的特征点p,其有一个特征向量,在第二幅深度图像的所有特征向量中找到距离特征点p的特征向量最近的特征点p′,反过来对于p′,在第一幅深度图像的所有特征向量中找到距离特征点p′的特征向量最近的特征点p″,如果p=p″,则p与p′为匹配对应点。2. The method for automatic registration of multiple depth images according to claim 1, characterized in that: in the step (2), a two-way crossover method is used to match corresponding points, and the steps are: when matching corresponding points, for the first image The feature point p on the , which has a feature vector, finds the feature point p′ closest to the feature vector of the feature point p in all the feature vectors of the second depth image, and conversely for p′, the first depth image Find the feature point p″ closest to the feature vector of the feature point p′ among all the feature vectors of , if p=p″, then p and p′ are matching corresponding points. 3、根据权利要求1所述多幅深度图像自动配准方法,其特征在于:所述的步骤(6)后还要判断两两配准结果是否正确,判断步骤为:首先,在根据SIFT特征匹配对应点时,如果匹配成功的对应点数小于设定阈值,则判定配准不正确;其次,使用ICP算法精确配准时,如果误差过大,大于设定阈值,则判定配准不正确;如果以上两个条件均无法判定配准结果错误,则认为结果正确。3. The method for automatic registration of multiple depth images according to claim 1, characterized in that: after the step (6), it is necessary to judge whether the pairwise registration results are correct, and the judgment step is: first, according to the SIFT feature When matching the corresponding points, if the number of corresponding points that match successfully is less than the set threshold, it is judged that the registration is incorrect; secondly, when using the ICP algorithm for precise registration, if the error is too large and greater than the set threshold, it is judged that the registration is incorrect; if If neither of the above two conditions can determine that the registration result is wrong, the result is considered correct. 4、根据权利要求1所述多幅深度图像自动配准方法,其特征在于:所述步骤(7)中所述的模型图G=<V,E>是一个无向图,V是顶点的集合,E是边的集合,每个顶点vi∈V表示一幅深度图像,每一条边eij=(vi,vj)∈E,当且仅当深度图像vi和vj的两两配准结果Tij存在,并且Tij作为边eij的属性,其中vi和vj是模型图的两个顶点。4. The method for automatic registration of multiple depth images according to claim 1, characterized in that: the model graph G=<V, E> described in the step (7) is an undirected graph, and V is a vertex set, E is a set of edges, each vertex v i ∈ V represents a depth image, each edge e ij = (v i , v j ) ∈ E, if and only if two depth images v i and v j Two registration results T ij exist, and T ij is an attribute of edge e ij , where v i and v j are two vertices of the model graph. 5、根据权利要求1所述多幅深度图像自动配准方法,其特征在于:所述步骤(8)中的对于得到一个一致圈的判断方法:从圈中任取一幅深度图像,求得它的直径d,将该深度图像沿着圈中的两两变换变换一周,得到一幅新的深度图像,计算新的深度图像和初始深度图像对应点之间的误差e,将e/d作为圈的误差,如果圈的误差小于设定阈值圈就是一致的,否则,是不一致的。5. The method for automatic registration of multiple depth images according to claim 1, characterized in that: in the step (8), the judging method for obtaining a consistent circle: randomly select a depth image from the circle, and obtain Its diameter d transforms the depth image along the pairwise transformation in the circle to obtain a new depth image, calculates the error e between the new depth image and the corresponding point of the initial depth image, and takes e/d as The error of the circle, if the error of the circle is less than the set threshold, the circle is consistent, otherwise, it is inconsistent. 6、根据权利要求1所述多幅深度图像自动配准方法,其特征在于:所述步骤(9)中搜索圈空间的方法如下:6. The method for automatic registration of multiple depth images according to claim 1, wherein the method for searching the circle space in the step (9) is as follows: 输入:两两配准的模型图GInput: model graph G for pairwise registration 输出:全局一致的模型图G’Output: globally consistent model graph G' ProcedureProcedure 求出G的导出圈基BFind the derived cycle base B of G 建立B的邻接关系图Г<B,L>Build B's adjacency graph Г<B, L> consistent_cycle←Φconsistent_cycle←Φ N←1N←1 while Γ中顶点数>=Nwhile the number of vertices in Γ>=N for each Γ中N个连通顶点生成的圈CThe circle C generated by N connected vertices in for each Γ ifC一致thenifC agrees then 将C插入到consistent_cycle中Insert C into consistent_cycle 删除这N个顶点中的一个delete one of these N vertices IfΓ中顶点数<N thenIf the number of vertices in Γ < N then breakbreak end ifend if end ifend if end forend for N←N+1N←N+1 end whileend while G’←ΦG’←Φ 将G中的顶点加到G’中Add the vertices in G to G' 将consistent_cycle中所有圈的所有边加到G’中。Add all edges of all cycles in consistent_cycle to G'.
CN2008102220956A 2008-09-09 2008-09-09 Method for auto-registration of multi-amplitude deepness image Expired - Fee Related CN101350101B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102220956A CN101350101B (en) 2008-09-09 2008-09-09 Method for auto-registration of multi-amplitude deepness image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102220956A CN101350101B (en) 2008-09-09 2008-09-09 Method for auto-registration of multi-amplitude deepness image

Publications (2)

Publication Number Publication Date
CN101350101A true CN101350101A (en) 2009-01-21
CN101350101B CN101350101B (en) 2011-12-07

Family

ID=40268880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102220956A Expired - Fee Related CN101350101B (en) 2008-09-09 2008-09-09 Method for auto-registration of multi-amplitude deepness image

Country Status (1)

Country Link
CN (1) CN101350101B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894272A (en) * 2010-08-10 2010-11-24 福州展旭电子有限公司 Automatic matching method of protein spots between two gel images
CN102034274A (en) * 2010-12-10 2011-04-27 中国人民解放军国防科学技术大学 Method for calculating corresponding relationship between frame and frame in 3D point cloud sequence
CN102034267A (en) * 2010-11-30 2011-04-27 中国科学院自动化研究所 Three-dimensional reconstruction method of target based on attention
CN102065313A (en) * 2010-11-16 2011-05-18 上海大学 Uncalibrated multi-viewpoint image correction method for parallel camera array
CN102208033A (en) * 2011-07-05 2011-10-05 北京航空航天大学 Data clustering-based robust scale invariant feature transform (SIFT) feature matching method
CN101697232B (en) * 2009-09-18 2012-03-07 浙江大学 SIFT characteristic reducing method facing close repeated image matching
CN102496183A (en) * 2011-11-03 2012-06-13 北京航空航天大学 Multi-view stereo reconstruction method based on Internet photo gallery
CN101807297B (en) * 2009-02-16 2012-07-25 海信集团有限公司 Medical ultrasonic image line detection method
CN101567051B (en) * 2009-06-03 2012-08-22 复旦大学 Image matching method based on characteristic points
CN103065311A (en) * 2012-12-26 2013-04-24 中国土地勘测规划院 Satellite image automatic registration method based on standard image database
CN103065329A (en) * 2013-01-15 2013-04-24 西北工业大学 Space rope tying robot camera automatic motion detection and compensation method
CN101989352B (en) * 2009-08-06 2013-05-01 宋智礼 Image registration method based on improved scale invariant feature transform (SIFT) algorithm and Lissajous figure track
CN103247040A (en) * 2013-05-13 2013-08-14 北京工业大学 Layered topological structure based map splicing method for multi-robot system
CN103390273A (en) * 2013-07-19 2013-11-13 哈尔滨工程大学 Multi-beam side-scan sonar image registration method based on GPS (global positioning system) positioning assistance
CN103927742A (en) * 2014-03-21 2014-07-16 北京师范大学 Global automatic registering and modeling method based on depth images
CN104217209A (en) * 2013-06-03 2014-12-17 核工业北京地质研究院 Method for automatically eliminating wrongly-matched registration points in remote sensing image
CN104680516A (en) * 2015-01-08 2015-06-03 南京邮电大学 Acquisition method for high-quality feature matching set of images
CN104778463A (en) * 2015-05-04 2015-07-15 福建师范大学 Remote sensing image urban area extracting method based on SIFT and multi-sub-graph matching
CN105139428A (en) * 2015-08-11 2015-12-09 鲁东大学 Quaternion based speeded up robust features (SURF) description method and system for color image
CN105787424A (en) * 2014-12-26 2016-07-20 阿里巴巴集团控股有限公司 Image processing method and image processing device
CN103927785B (en) * 2014-04-22 2016-08-24 同济大学 A kind of characteristic point matching method towards up short stereoscopic image data
CN106204530A (en) * 2016-06-27 2016-12-07 西安交通大学 Ancient times of based on image registration West Xia Dynasty's literary composition typography discrimination method
CN106355576A (en) * 2016-09-08 2017-01-25 西安电子科技大学 SAR image registration method based on MRF image segmentation algorithm
US9712808B2 (en) 2015-01-05 2017-07-18 Boe Technology Group Co., Ltd. Image acquisition device and image processing method and system
CN107851303A (en) * 2015-07-17 2018-03-27 皇家飞利浦有限公司 The registration of histopathology image
CN110021025A (en) * 2019-03-29 2019-07-16 上海联影智能医疗科技有限公司 The matching of area-of-interest and display methods, device, equipment and storage medium
CN110697373A (en) * 2019-07-31 2020-01-17 湖北凯瑞知行智能装备有限公司 Conveying belt deviation fault detection method based on image recognition technology
CN113450391A (en) * 2020-03-26 2021-09-28 华为技术有限公司 Method and equipment for generating depth map
CN117911287A (en) * 2024-03-20 2024-04-19 中国科学院西安光学精密机械研究所 Interactive splicing and repairing method for large-amplitude wall painting images

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798761B1 (en) * 1999-09-17 2002-03-29 Thomson Multimedia Sa METHOD OF CONSTRUCTING A 3D SCENE MODEL BY ANALYSIS OF IMAGE SEQUENCE
CN100388319C (en) * 2006-07-25 2008-05-14 深圳大学 Multi-view pose estimation and self-calibration method for 3D active vision sensor
CN100553347C (en) * 2006-10-26 2009-10-21 上海交通大学 Scene Depth Restoration and 3D Reconstruction Method for Stereo Vision System

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807297B (en) * 2009-02-16 2012-07-25 海信集团有限公司 Medical ultrasonic image line detection method
CN101567051B (en) * 2009-06-03 2012-08-22 复旦大学 Image matching method based on characteristic points
CN101989352B (en) * 2009-08-06 2013-05-01 宋智礼 Image registration method based on improved scale invariant feature transform (SIFT) algorithm and Lissajous figure track
CN101697232B (en) * 2009-09-18 2012-03-07 浙江大学 SIFT characteristic reducing method facing close repeated image matching
CN101894272B (en) * 2010-08-10 2012-06-20 福州展旭电子有限公司 Automatic matching method of protein spots between two gel images
CN101894272A (en) * 2010-08-10 2010-11-24 福州展旭电子有限公司 Automatic matching method of protein spots between two gel images
CN102065313A (en) * 2010-11-16 2011-05-18 上海大学 Uncalibrated multi-viewpoint image correction method for parallel camera array
CN102065313B (en) * 2010-11-16 2012-10-31 上海大学 Uncalibrated multi-view image correction method for parallel camera array
CN102034267A (en) * 2010-11-30 2011-04-27 中国科学院自动化研究所 Three-dimensional reconstruction method of target based on attention
CN102034274A (en) * 2010-12-10 2011-04-27 中国人民解放军国防科学技术大学 Method for calculating corresponding relationship between frame and frame in 3D point cloud sequence
CN102208033A (en) * 2011-07-05 2011-10-05 北京航空航天大学 Data clustering-based robust scale invariant feature transform (SIFT) feature matching method
CN102496183A (en) * 2011-11-03 2012-06-13 北京航空航天大学 Multi-view stereo reconstruction method based on Internet photo gallery
CN102496183B (en) * 2011-11-03 2013-12-25 北京航空航天大学 Multi-view stereo reconstruction method based on Internet photo gallery
CN103065311A (en) * 2012-12-26 2013-04-24 中国土地勘测规划院 Satellite image automatic registration method based on standard image database
CN103065329A (en) * 2013-01-15 2013-04-24 西北工业大学 Space rope tying robot camera automatic motion detection and compensation method
CN103065329B (en) * 2013-01-15 2015-05-06 西北工业大学 Space rope tying robot camera automatic motion detection and compensation method
CN103247040A (en) * 2013-05-13 2013-08-14 北京工业大学 Layered topological structure based map splicing method for multi-robot system
CN103247040B (en) * 2013-05-13 2015-11-25 北京工业大学 Based on the multi-robot system map joining method of hierarchical topology structure
CN104217209A (en) * 2013-06-03 2014-12-17 核工业北京地质研究院 Method for automatically eliminating wrongly-matched registration points in remote sensing image
CN104217209B (en) * 2013-06-03 2017-06-20 核工业北京地质研究院 A kind of Remote sensing image registration point erroneous matching removing method
CN103390273A (en) * 2013-07-19 2013-11-13 哈尔滨工程大学 Multi-beam side-scan sonar image registration method based on GPS (global positioning system) positioning assistance
CN103390273B (en) * 2013-07-19 2015-12-02 哈尔滨工程大学 A kind of multi-beam side-scan sonar image registration method auxiliary based on GPS location
CN103927742A (en) * 2014-03-21 2014-07-16 北京师范大学 Global automatic registering and modeling method based on depth images
CN103927785B (en) * 2014-04-22 2016-08-24 同济大学 A kind of characteristic point matching method towards up short stereoscopic image data
CN105787424B (en) * 2014-12-26 2019-06-07 阿里巴巴集团控股有限公司 A kind of image processing method and device
CN105787424A (en) * 2014-12-26 2016-07-20 阿里巴巴集团控股有限公司 Image processing method and image processing device
US9712808B2 (en) 2015-01-05 2017-07-18 Boe Technology Group Co., Ltd. Image acquisition device and image processing method and system
CN104680516A (en) * 2015-01-08 2015-06-03 南京邮电大学 Acquisition method for high-quality feature matching set of images
CN104680516B (en) * 2015-01-08 2017-09-29 南京邮电大学 A kind of acquisition methods of image quality features set of matches
CN104778463A (en) * 2015-05-04 2015-07-15 福建师范大学 Remote sensing image urban area extracting method based on SIFT and multi-sub-graph matching
CN107851303A (en) * 2015-07-17 2018-03-27 皇家飞利浦有限公司 The registration of histopathology image
CN105139428A (en) * 2015-08-11 2015-12-09 鲁东大学 Quaternion based speeded up robust features (SURF) description method and system for color image
CN105139428B (en) * 2015-08-11 2018-02-27 鲁东大学 A kind of coloured image SURF character description methods and system based on quaternary number
CN106204530A (en) * 2016-06-27 2016-12-07 西安交通大学 Ancient times of based on image registration West Xia Dynasty's literary composition typography discrimination method
CN106355576B (en) * 2016-09-08 2019-05-21 西安电子科技大学 SAR image registration method based on MRF image segmentation algorithm
CN106355576A (en) * 2016-09-08 2017-01-25 西安电子科技大学 SAR image registration method based on MRF image segmentation algorithm
CN110021025A (en) * 2019-03-29 2019-07-16 上海联影智能医疗科技有限公司 The matching of area-of-interest and display methods, device, equipment and storage medium
CN110697373A (en) * 2019-07-31 2020-01-17 湖北凯瑞知行智能装备有限公司 Conveying belt deviation fault detection method based on image recognition technology
CN113450391A (en) * 2020-03-26 2021-09-28 华为技术有限公司 Method and equipment for generating depth map
CN113450391B (en) * 2020-03-26 2025-02-11 华为技术有限公司 A method and device for generating a depth map
CN117911287A (en) * 2024-03-20 2024-04-19 中国科学院西安光学精密机械研究所 Interactive splicing and repairing method for large-amplitude wall painting images

Also Published As

Publication number Publication date
CN101350101B (en) 2011-12-07

Similar Documents

Publication Publication Date Title
CN101350101B (en) Method for auto-registration of multi-amplitude deepness image
Mokhtarian et al. Curvature scale space representation: theory, applications, and MPEG-7 standardization
Shamir Segmentation and Shape Extraction of 3D Boundary Meshes.
CN102750537B (en) Automatic registering method of high accuracy images
CN114648445B (en) A multi-view high-resolution point cloud stitching method based on feature point extraction and fine registration optimization
CN101567051A (en) Image matching method based on characteristic points
CN101944239A (en) Method and device for segmenting 3D model and image processing system with device
Liu et al. A novel rock-mass point cloud registration method based on feature line extraction and feature point matching
CN104167000B (en) Affine-invariant wide-baseline image dense matching method
CN110111375A (en) A kind of Image Matching elimination of rough difference method and device under Delaunay triangulation network constraint
CN110544255A (en) Segmentation method and system for triangular mesh hole for 3D printing
CN101937453A (en) A 3D Model Retrieval Method Based on Weighted Topological Constraint Comparison
Wang et al. Two-view geometry estimation using RANSAC with locality preserving constraint
CN104392434A (en) Triangle constraint-based image matching diffusion method
Wang et al. Roof plane segmentation from lidar point cloud data using region expansion based l 0 gradient minimization and graph cut
Ahmad et al. Describing colors, textures and shapes for content based image retrieval-a survey
CN102063719B (en) Local matching method of three-dimensional model
Li et al. Fast and globally optimal rigid registration of 3d point sets by transformation decomposition
WO2024103846A1 (en) Three-dimensional registration reconstruction method based on multi-domain multi-dimensional feature map
Li et al. GGM-net: Graph geometric moments convolution neural network for point cloud shape classification
CN117541807A (en) Terrain characteristic line extraction method based on active learning
CN103839081A (en) Across-viewing-angle gait recognition method based on topology expression
Zhang et al. OSK: A novel LiDAR occupancy set key-based place recognition method in urban environment
Kleiman et al. Robust structure-based shape correspondence
CN115082716A (en) Multi-source point cloud rough matching algorithm for road fine reconstruction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20140909

EXPY Termination of patent right or utility model