CN101347746B - Catalyst for producing olefin hydrocarbon by catalytic pyrolysis of naphtha - Google Patents

Catalyst for producing olefin hydrocarbon by catalytic pyrolysis of naphtha Download PDF

Info

Publication number
CN101347746B
CN101347746B CN2007100439540A CN200710043954A CN101347746B CN 101347746 B CN101347746 B CN 101347746B CN 2007100439540 A CN2007100439540 A CN 2007100439540A CN 200710043954 A CN200710043954 A CN 200710043954A CN 101347746 B CN101347746 B CN 101347746B
Authority
CN
China
Prior art keywords
molecular sieve
zsm
catalyst
family
naphtha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007100439540A
Other languages
Chinese (zh)
Other versions
CN101347746A (en
Inventor
陈亮
马广伟
谢在库
姚晖
胡永君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN2007100439540A priority Critical patent/CN101347746B/en
Publication of CN101347746A publication Critical patent/CN101347746A/en
Application granted granted Critical
Publication of CN101347746B publication Critical patent/CN101347746B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a catalyst for catalytic cracking of naphtha to olefins, and the catalyst is mainly used for solving the problems of high using temperature and low yield of ethylene and propylene of the existing catalyst for preparing the ethylene and the propylene by the catalytic cracking. The catalyst adopts at least one element of IA family or IIA family in a periodic table of supported elements on a ZSM-5/mordenite symbiotic molecular sieve or a ZSM-5/Beta zeolite symbiotic molecular sieve or oxides thereof to compose the catalyst; therefore, the technical proposal can better solve the problems and can be used in the industrial production for preparing the ethylene and the propylene by catalytic cracking.

Description

The catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha
Technical field
The present invention relates to a kind of catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha.
Background technology
Along with the development of society, the market demand of China's ethylene, propylene sharply increases, and the import volume of ethylene, propylene and downstream product thereof increases year by year, and the home products occupation rate of market is less than half.Whole world ethene is raw material with naphtha (or ethane) mainly at present, adopts steam heat cracking technique (under the temperature about 800 ℃) production, and its output surpasses 90% of total output.Catalytic pyrolysis is compared with the steam heat cracking, and this process reaction temperature is than low 50~200 ℃ approximately of standard cracking reactions, and therefore than common steam cracking less energy consumption, cracking furnace pipe inwall coking rate will reduce, thereby but prolong operation cycle increases the boiler tube life-span; CO2 emission also can reduce, and can adjust the product mix flexibly, can increase the total recovery of ethene and propylene, and production cost of ethylene reduces significantly.
U.S. Pat P6211104 and domestic patent CN1504540A adopt a kind of 10~70 weight % clays that contain, 5~85 weight % inorganic oxides, 1~50 weight % molecular sieve is formed catalyst, various raw materials to traditional steam heat cracking, the activity, the especially ethene that well are converted into light olefin have been demonstrated.With molecular sieve be by 0~25 weight %Y zeolite of high silica alumina ratio or have the ZSM molecular sieve of MFI structure, form by phosphorus/Al, Mg or Ca dipping, but the ethylene, propylene selectivity of catalyst and yield are not high.
Japan Asahi Chemical Industry (patent CN1274342A) has announced that a kind of high silica alumina ratio, the molecular sieve of aperture between 0.5~0.65 nanometer are catalyst, be the feedstock production ethylene, propylene with the light hydrocarbons that contains alkene, but the ethylene, propylene yield is lower.
Exxon Mobil (00816642.0) announces that a kind of aperture of a kind of usefulness contains the hydrocarbon raw material of naphtha less than the zeolite treatment of 0.7 nanometer, produces ethylene, propylene between 550~600 ℃, and conversion of raw material is lower.
Mobil Oil Corporation (CN1413244A) has announced that a kind of mesopore phosphate material with modification is that catalyst and elementary catalytic pyrolysis material combine, the hydrocarbon raw material of catalytic pyrolysis sulfur-bearing prepares micromolecular hydrocarbon mixture, but the serviceability temperature of catalyst, conversion of raw material and product yield are all lower.
Summary of the invention
Technical problem to be solved by this invention is that the catalyst activity that uses in the existing naphtha catalytic pyrolysis preparing ethylene propylene reaction is lower, and the problem that the yield of ethylene, propylene is low, reaction temperature is high provides a kind of catalyst of new preparing ethylene propylene from catalytic pyrolysis.This catalyst has the catalytic activity height, ethylene propylene yield height, the advantage that reaction temperature is low.
For solving the problems of the technologies described above, the technical solution used in the present invention is as follows: a kind of catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha by weight percentage, comprises following active component:
A) at least a in the coexisting molecular sieve of 80~99.5% coexisting molecular sieve that is selected from ZSM-5 and modenite or ZSM-5 and β zeolite; With carry thereon
B) surplus is selected from the periodic table of elements at least a element or its oxide in IA family or the IIA family.
In the technique scheme, coexisting molecular sieve is at least a in ZSM-5/ mercerization zeolite symbiosis molecular screen or the ZSM-5/ beta zeolite coexisting molecular sieve; The weight percentage preferable range of ZSM-5 is 60~99.5% in the used coexisting molecular sieve, and more preferably scope 80~99%; The silica alumina ratio preferable range of used coexisting molecular sieve is 10~300, and more preferably scope is 12~50; The consumption preferable range of coexisting molecular sieve is 85~99% by weight percentage.IA family element preferred version is selected from least a among Li, K, Rb or the Cs, and more preferably scheme is to be selected from least a among Li or the K; IIA family element preferred version is to be selected from least a among Be, Mg, Ca, Sr or the Ba, and more preferably scheme is to be selected from least a among Mg or the Ca; The consumption preferable range of IA family element or IIA family element is 0.5~10% by weight percentage.The catalyst preferred version is also to comprise at least a or its oxide that is selected from periodic table of elements IVB family's element or the VB family element in the catalyst; IVB family element preferred version is selected from least a among Ti, Zr or the Hf; VB family element preferred version is selected from least a among V, Nb or the Ta; Be selected from the consumption preferable range 0.01~2% of at least a or its oxide in periodic table of elements IVB family's element or the VB family element by weight percentage, more preferably scope is 0.1~1%.
The raw material that the preparation coexisting molecular sieve uses: the silicon source is metasilicate, silicate sodium or Ludox, the aluminium source is aluminium salt or aluminate, the template agent is at least a in 4-propyl bromide, TPAOH, triethylamine, n-butylamine, tetraethyl ammonium hydroxide, ethylenediamine or the ethamine, and the pH value of regulating colloidal sol with diluted acid is 10~13.The coexisting molecular sieve modification is with the acid solution and the salting liquid of corresponding active component element.
The synthetic method of coexisting molecular sieve is, get the silicon source and the aluminium source of aequum by material proportion, make solution with dissolved in distilled water respectively, then two kinds of solution are mixed, the powerful stirring adds one or more template agent of aequum then, stirs after 30 minutes with rare acid for adjusting pH value in 10~13 scopes, supply distilled water again, add the corresponding crystal seed of aequum.Colloidal sol is put into autoclave, control temperature crystallization a period of time of 120~180 ℃ after, take out 4 hours, 550 ℃ roastings of 2 times, 120 ℃ oven dry of washing 3 hours, can obtain corresponding coexisting molecular sieve.With concentration is 5% ammonium nitrate solution, and 70 ℃ of exchanges twice, 550 ℃ of roastings are 3 hours then, repeat twice after, make the Hydrogen coexisting molecular sieve.
The present invention since adopted acid strong, have multi-stage artery structure, ethylene, propylene selectivity good coexisting molecular sieve be carrier, select for use the alkali metal modified molecular screen to regulate the acidity of coexisting molecular sieve, strengthen the stability of molecular sieve and the selectivity of ethylene, propylene, and the ratio that can regulate ethylene, propylene.Select for use transition metal that coexisting molecular sieve is carried out modification with the easy transition of the big electronics of charge density, strengthen the stable and acid of coexisting molecular sieve, make the catalyst acid density that makes big, the acid strength height, acid stable is difficult for running off, the ethylene, propylene selectivity is good, is suitable for alkane cracking and becomes ethylene, propylene.
In order to check and rate activity of such catalysts, the related catalyst compressing tablet of invention, break into pieces, sieve after, get 20~40 purpose particles with standby.The C that adopts Shanghai Gaoqiao petro-chemical corporation to produce 4~C 10The naphtha of hydrocarbon is a raw material, naphtha physical index such as table 1.With internal diameter is 12 millimeters down examination of fixed bed reactors normal pressure, is 600~650 ℃ in reaction temperature, and reaction pressure is 0.001MPa~0.5MPa, weight space velocity 0.25~4 hour -1, under the condition of water/feedstock oil weight ratio 1~4: 1, naphtha being carried out catalytic pyrolysis, the ethylene, propylene yield can reach 54%, has obtained better technical effect.
Table 1 feed naphtha index
Project Data
Density (20 ℃) kilogram/rice 3 704.6
Boiling range is boiling range ℃ just 40
Whole boiling range ℃ 160
Saturated vapor pressure (20 ℃) kPa 50.2
Alkane % (weight %) 65.18
N-alkane % (weight %) in the alkane >32.5
Cycloalkane % (weight %) 28.44
Alkene % (weight %) 0.17
Aromatic hydrocarbons % (weight %) 6.21
The present invention is further elaborated below by embodiment.
The specific embodiment
[embodiment 1]
Get 284 gram sodium metasilicates, become solution A with 300 gram dissolved in distilled water, get 33.3 gram aluminum sulfate, make solution B with 100 gram distilled water, B solution is slowly poured in the A solution, the powerful stirring, add 24.4 gram ethylenediamines then, after stirring a period of time, regulate the pH value 11.5 with dilute sulfuric acid, the mole proportioning of control colloidal sol is: Si: Al: ethylenediamine: H 2O=1: 0.1: 0.4: 40, add the crystal seed that contains ZSM-5 and modenite presoma, stir and after 30 minutes mixed solution is put into autoclave, 180 ℃ of insulations 40 hours, take out 4 hours, 550 ℃ roastings of 2 times, 120 ℃ oven dry of washing 3 hours then, make the coexisting molecular sieve of ZSM-5 and modenite, with the XRD diffraction quantitatively as can be known in the coexisting molecular sieve ZSM-5 and modenite weight content be respectively 95% and 5%.With concentration is 5% ammonium nitrate solution, and 70 ℃ of exchanges twice, 550 ℃ of roastings are 3 hours then, repeat twice after, make Hydrogen ZSM-5 and mercerization zeolite symbiosis molecular screen, be designated as FH-1.
[embodiment 2]
Get 284 gram sodium metasilicates, become solution A with 300 gram dissolved in distilled water, get 16.7 gram aluminum sulfate, make solution B with 100 gram distilled water, B solution is slowly poured in the A solution, the powerful stirring, add 12.2 gram ethylenediamines and 29.4 gram tetraethyl ammonium hydroxides (mixed templates is designated as M) then, after stirring a period of time, regulate the pH value 11 with dilute sulfuric acid, the mole proportioning of control colloidal sol is: Si: Al: M: H 2O=1: 0.05: 0.4: 40, add 2.8 gram β zeolite seed crystals, mixed solution is put into autoclave, 160 ℃ of insulations 40 hours, take out 4 hours, 550 ℃ roastings of 2 times, 120 ℃ oven dry of washing 3 hours then, make ZSM-5/ beta zeolite coexisting molecular sieve, with the XRD diffraction quantitatively as can be known in the coexisting molecular sieve ZSM-5 weight percentage be 94.6%, the β zeolite is 5.4%.With concentration is 5% ammonium nitrate solution, and 70 ℃ of exchanges twice, 550 ℃ of roastings are 3 hours then, repeat twice after, make Hydrogen ZSM-5/ beta zeolite coexisting molecular sieve, be designated as FH-2.
[embodiment 3]
Get 284 gram sodium metasilicates, become solution A with 300 gram dissolved in distilled water, get 33.3 gram aluminum sulfate, make solution B with 100 gram distilled water, B solution is slowly poured in the A solution, the powerful stirring, add 24.4 gram ethylenediamines then, stir after 20 minutes, regulate the pH value 11.5 with dilute sulfuric acid, the mole proportioning of control colloidal sol is: Si: Al: ethylenediamine: H 2O=1: 0.1: 0.4: 40, add 2.8 gram Y zeolite seed crystals, mixed solution is put into autoclave, 130 ℃ of insulations 40 hours, take out 4 hours, 550 ℃ roastings of 2 times, 120 ℃ oven dry of washing 3 hours then, make ZSM-5/Y zeolite coexisting molecular sieve.Quantitatively contain the ZSM-5 of 94.5% weight and the Y zeolite of 5.5% weight in the coexisting molecular sieve as can be known with the XRD diffraction.With concentration is 5% ammonium nitrate solution, and 70 ℃ of exchanges twice, 550 ℃ of roastings are 3 hours then, repeat twice after, make Hydrogen ZSM-5/Y zeolite coexisting molecular sieve, be designated as FH-3.
[embodiment 4~7]
The Hydrogen ZSM-5/Y zeolite coexisting molecular sieve that the Hydrogen ZSM-5/ mercerization zeolite symbiosis molecular screen that embodiment 1 is made, the Hydrogen ZSM-5/ beta zeolite coexisting molecular sieve that embodiment 2 makes and embodiment 3 make mixes according to a certain percentage, make mechanical impurity, as shown in table 2.
Table 2
Embodiment The coexisting molecular sieve kind Ratio (weight ratio) Sample number into spectrum
Embodiment 4 ZSM-5/ modenite+ZSM-5/ β zeolite 1∶1 FH-4
Embodiment 5 ZSM-5/ modenite+ZSM-5/Y zeolite 1∶1 FH-5
Embodiment 6 ZSM-5/ β zeolite+ZSM-5/Y zeolite 1∶1 FH-6
Embodiment 7 ZSM-5/ modenite+ZSM-5/ β zeolite+ZSM-5/Y zeolite 1∶1∶1? FH-7?
[embodiment 8~25]
According to the method for embodiment 1, embodiment 2 and embodiment 3,, make a collection of Hydrogen coexisting molecular sieve respectively by changing the amount of raw material proportioning, pH value and adding crystal seed, as shown in table 3.
Table 3
Embodiment The coexisting molecular sieve type SiO 2/Al 2O 3Mol ratio ZSM-5 content (weight %) Sample number into spectrum
Embodiment 8 The ZSM-5/ modenite 12 61.5 FH-8
Embodiment 9 The ZSM-5/ modenite 16 73.6 FH-9
Embodiment 10 The ZSM-5/ modenite 40 85.4 FH-10
Embodiment 11 The ZSM-5/ modenite 100 96.8 FH-11
Embodiment 12 The ZSM-5/ modenite 300 99.2 FH-12
Embodiment 13 The ZSM-5/ modenite 20 90.1 FH-13
Embodiment 14 ZSM-5/ β zeolite 12 98.0 FH-14
Embodiment 15 ZSM-5/ β zeolite 20 90.4 FH-15
Embodiment 16 ZSM-5/ β zeolite 60 60.5 FH-16
Embodiment 17 ZSM-5/ β zeolite 100 74.6 FH-17
Embodiment 18 ZSM-5/ β zeolite 300 85.3 FH-18
Embodiment 19 ZSM-5/ β zeolite 40 99.0 FH-19
Embodiment 20 The ZSM-5/Y zeolite 12 60.2 FH-20
Embodiment 21 The ZSM-5/Y zeolite 16 71.8 FH-21
Embodiment 22 The ZSM-5/Y zeolite 50 85.3 FH-22
Embodiment 23 The ZSM-5/Y zeolite 100 97.3 FH-23
Embodiment 24 The ZSM-5/Y zeolite 300 99.5 FH-24
Embodiment 25 The ZSM-5/Y zeolite 20 91.0 FH-25
[embodiment 26]
Get ZSM-5/ mercerization zeolite symbiosis molecular screen 20 grams that embodiment 1 makes, add 167 milliliters of the magnesium nitrates of 0.1 mol, stir evaporates to dryness at 70 ℃ then, behind the drying and roasting, make magnesium-modified ZSM-5/ mercerization zeolite symbiosis molecular screen catalyst.The catalyst compressing tablet, break into pieces, sieve after, get 20~40 purpose particles and put into fixed bed reactors, be 0.02MPa, weight space velocity 1 hour in 650 ℃ of reaction temperatures, reaction pressure -1, check and rate under water/condition of 3: 1 of naphtha weight ratio, the results are shown in Table 4.
[embodiment 27~33]
Get the coexisting molecular sieve of different the foregoing description preparation,, make catalyst and appraisal result is as shown in table 4 according to method modification and the examination of embodiment 26.
[embodiment 34]
Get ZSM-5/Y zeolite coexisting molecular sieve 20 grams that embodiment 22 makes, 84 milliliters of magnesium nitrates that add 0.1 mol add 50 milliliters in the calcium nitrate of 0.1 mol again, stir evaporates to dryness at 70 ℃ then, behind the drying and roasting, make the ZSM-5/Y zeolite coexisting molecular sieve catalyst of magnesium and calcium modification.Method examination according to embodiment 26 the results are shown in Table 4.
[embodiment 35~38]
Get the coexisting molecular sieve of different the foregoing description preparation,, make catalyst and appraisal result is as shown in table 4 according to method modification and the examination of embodiment 34.
Table 4
Embodiment The numbering of specimen in use The type of modifying element and content (weight %) Yield of ethene (weight %) Propene yield (weight %) Diene yield (weight %)
Embodiment 26 FH-1 2%Mg 27.23 26.36 53.59
Embodiment 27 FH-2 6%Ca 25.29 26.87 52.16
Embodiment 28 FH-5 0.1%Be 28.74 24.58 53.32
Embodiment 29 FH-8 10%Mg 22.55 22.72 45.27
Embodiment 30 FH-11 0.5%Sr 26.33 25.75 52.08
Embodiment 31 FH-15 1%Ba 25.36 24.93 50.29
Embodiment 32 FH-17 0.5%Li 24.82 25.44 50.26
Embodiment 33 FH-20 1%K 24.89 22.47 47.36
Embodiment 34 FH-22 1%Mg+1%Ca 25.19 23.34 48.53
Embodiment 35 FH-23 2%Li+2%K 27.22 24.41 51.63
Embodiment 36 FH-3 4%Mg+4%K 26.32 25.45 51.77
Embodiment 37 FH-4 2%Mg+2%Ca+2%K 23.90 28.16 52.06
Embodiment 38 FH-7 2%Mg+2%Ca+2%Li+2%K 26.35 28.11 54.46
[embodiment 39~52]
Get the coexisting molecular sieve of different the foregoing description preparation,, make catalyst and appraisal result is as shown in table 5 according to method modification and the examination of embodiment 34.
Table 5
Embodiment The numbering of specimen in use The type of modifying element and content (weight %) Yield of ethene (weight %) Propene yield (weight %) Diene yield (weight %)
Embodiment 39 FH-9 2%Mg+1%Ti 21.54 28.63 50.17
Embodiment 40 FH-10 4%Ca+0.5%Zr 21.76 30.31 52.07
Embodiment 41 FH-12 10%Mg+0.2%Hf 21.24 25.75 46.99
Embodiment 42 FH-13 0.5%Ba+0.2%Zr+0.6%Ti 28.87 24.23 53.10
Embodiment 43 FH-14 1%Mg+0.2%Ti+0.2%Zr+0.2%Hf 28.65 24.12 52.77
Embodiment 44 FH-16 2%Mg+2%Ca+0.5%Ti+0.5%Zr 20.76 28.25 49.01
Embodiment 45 FH-18 0.5%Ca+0.5%V 17.94 29.69 47.63
Embodiment 46 FH-21 1%Ba+0.2%Nb 22.45 26.86 49.31
Embodiment 47 FH-24 0.5%Mg+0.5%V+0.5%Nb+0.5%Ta 28.10 22.97 51.07
Embodiment 48 FH-25 2%Mg+2%Ca+0.2%V+0.2%Nb 28.88 24.65 53.53
Embodiment 49 FH-6 0.5%Mg+0.5%Ti+0.5%V 24.02 28.87 52.89
Embodiment 50 FH-19 1%Mg+1%Ca+0.2%Zr+0.2%Nb 28.36 25.20 53.56
Embodiment 51 FH-1? 2%Mg+2%Ca+0.2%Ti+0.2%Zr?+0.2%V+0.2%Nb 27.47? 26.93? 54.40?
Embodiment 52 FH-3? 2%Mg+2%Ca+0.2%Ti+0.2%Hf?0.2%Zr+0.2%V+0.2%Nb+0.2%Ta 27.55? 27.34? 54.89?
[comparative example 1]
Get the SiO that Shanghai petrochemical industry research institute produces 2/ Al 2O 3Mol ratio is 40 ZSM-5 molecular sieve, according to the method modification of embodiment 40, makes the catalyst of calcium and modified zirconia, checks and rates result such as table 6 according to the mode of embodiment 40.
[comparative example 2]
Get the SiO that Shanghai petrochemical industry research institute produces 2/ Al 2O 3Mol ratio is 20 modenite, according to the method modification of embodiment 42, makes the catalyst of barium, zirconium and titanium modification, checks and rates result such as table 6 according to the mode of embodiment 42.
[comparative example 3]
Get the SiO that Shanghai petrochemical industry research institute produces 2/ Al 2O 3Mol ratio is 40 β zeolite, according to the method modification of embodiment 50, makes the catalyst of magnesium, calcium, zirconium and niobium modification, checks and rates result such as table 6 according to the mode of embodiment 50.
[comparative example 4]
Get the SiO that Shanghai petrochemical industry research institute produces 2/ Al 2O 3Mol ratio is 20 Y zeolite, according to the method modification of embodiment 48, makes the catalyst of magnesium, calcium, vanadium and niobium modification, checks and rates result such as table 6 according to the mode of embodiment 48.
Table 6
Comparative example Used molecular sieve type The type of modifying element and content (weight %) Yield of ethene (weight %) Propene yield (weight %) Diene yield (weight %)
Comparative example 1 ZSM-5 4%Ca+0.5%Zr 22.45 23.22 45.67
Comparative example 2 Modenite 0.5%Ba+0.2%Zr+0.6%Ti 21.78 22.74 44.52
Comparative example 3 The β zeolite 1%Mg+1%Ca+0.2%Zr+0.2%Nb 21.26 22.48 43.74
Comparative example 4 The Y zeolite 2%Mg+2%Ca+0.2%V+0.2%Nb 20.69 21.53 42.22

Claims (8)

1. catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha, form by following active component by weight percentage:
A) at least a in the coexisting molecular sieve of 80~99.5% coexisting molecular sieve that is selected from ZSM-5 and modenite or ZSM-5 and β zeolite; With carry thereon
B) surplus is selected from the periodic table of elements at least a element or its oxide in I A family or the II A family;
Wherein, in the described coexisting molecular sieve, the weight percentage of ZSM-5 molecular sieve is 60~99.5%; The SiO of coexisting molecular sieve 2/ Al 2O 3Mol ratio is 10~300.
2. according to the described catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha of claim 1, it is characterized in that the coexisting molecular sieve consumption is 85~99% by weight percentage.
3. according to the described catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha of claim 2, it is characterized in that the SiO of coexisting molecular sieve 2/ Al 2O 3Mol ratio is 12~50; The weight percentage of ZSM-5 molecular sieve is 80~99%.
4. according to the described catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha of claim 1, it is characterized in that I A family element is selected from least a among Li, K, Rb or the Cs; II A family element is selected from least a among Be, Mg, Ca, Sr or the Ba; The consumption that is selected from least a element in periodic table of elements I A family or the II A family or its oxide by weight percentage is 0.5~10%, and a and b two component sums satisfy 100%.
5. catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha, form by following active component by weight percentage:
A) at least a in the coexisting molecular sieve of 80~99.5% coexisting molecular sieve that is selected from ZSM-5 and modenite or ZSM-5 and β zeolite; With carry thereon
B) be selected from least a or its oxide in periodic table of elements IV B family's element or the V B family element, and surplus be selected from the periodic table of elements at least a element or its oxide in I A family or the II A family;
Wherein, in the described coexisting molecular sieve, the weight percentage of ZSM-5 molecular sieve is 60~99.5%; The SiO of coexisting molecular sieve 2/ Al 2O 3Mol ratio is 10~300.
6. according to the described catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha of claim 5, it is characterized in that IV B family element is selected from least a among Ti, Zr or the Hf; V B family element is selected from least a among V, Nb or the Ta.
7. according to the described catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha of claim 5, the consumption at least a or its oxide that it is characterized in that being selected from by weight percentage in periodic table of elements IV B family's element or the V B family element is 0.01~2%.
8. according to the described catalyst that is used for producing olefin hydrocarbon by catalytic pyrolysis of naphtha of claim 7, the consumption at least a or its oxide that it is characterized in that being selected from by weight percentage in periodic table of elements IV B family's element or the V B family element is 0.1~1%.
CN2007100439540A 2007-07-18 2007-07-18 Catalyst for producing olefin hydrocarbon by catalytic pyrolysis of naphtha Active CN101347746B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100439540A CN101347746B (en) 2007-07-18 2007-07-18 Catalyst for producing olefin hydrocarbon by catalytic pyrolysis of naphtha

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100439540A CN101347746B (en) 2007-07-18 2007-07-18 Catalyst for producing olefin hydrocarbon by catalytic pyrolysis of naphtha

Publications (2)

Publication Number Publication Date
CN101347746A CN101347746A (en) 2009-01-21
CN101347746B true CN101347746B (en) 2011-04-27

Family

ID=40266809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100439540A Active CN101347746B (en) 2007-07-18 2007-07-18 Catalyst for producing olefin hydrocarbon by catalytic pyrolysis of naphtha

Country Status (1)

Country Link
CN (1) CN101347746B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039165B (en) * 2009-10-13 2012-09-05 中国石油化工股份有限公司 Binder-free zeolite socony mobil (ZSM)-5/mordenite symbiotic molecular sieve catalyst and preparation method thereof
CN102049290B (en) * 2009-10-30 2012-11-14 中国石油天然气股份有限公司 RFCC high octane gasoline additive and preparation method thereof
EP3539651A1 (en) 2018-03-14 2019-09-18 Saudi Arabian Oil Company Method of heavy reformate conversion into btx over metal-impregnated zsm-5+layered mordenite zeolite composite catalyst; said composite catalyst
EP3539649B1 (en) * 2018-03-14 2020-11-18 Saudi Arabian Oil Company Methods of producing composite zeolite catalysts for heavy reformate conversion into xylenes
EP3539652A1 (en) 2018-03-14 2019-09-18 Saudi Arabian Oil Company Method of heavy reformate conversion into btx over metal-impregnated zsm-5+mesoporous mordenite zeolite composite catalyst
EP3834931A1 (en) * 2018-03-14 2021-06-16 Saudi Arabian Oil Company Composite zeolite catalysts for heavy reformate conversion into xylenes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170396A (en) * 1994-11-23 1998-01-14 埃克森化学专利公司 Hydrocarbon conversion process using zeolite bound zeolite catalyst
CN1435374A (en) * 2002-02-01 2003-08-13 中国石油天然气股份有限公司 Composite molecular sieve and preparing process thereof
CN1565970A (en) * 2003-06-30 2005-01-19 中国石油化工股份有限公司 Synthetic method for ZSM-5/mordenite mixed crystal material
CN1647856A (en) * 2004-01-19 2005-08-03 中国石油化工股份有限公司 Method for preparing ZSM-5 and beta zeolite mixed crystal material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170396A (en) * 1994-11-23 1998-01-14 埃克森化学专利公司 Hydrocarbon conversion process using zeolite bound zeolite catalyst
CN1435374A (en) * 2002-02-01 2003-08-13 中国石油天然气股份有限公司 Composite molecular sieve and preparing process thereof
CN1565970A (en) * 2003-06-30 2005-01-19 中国石油化工股份有限公司 Synthetic method for ZSM-5/mordenite mixed crystal material
CN1647856A (en) * 2004-01-19 2005-08-03 中国石油化工股份有限公司 Method for preparing ZSM-5 and beta zeolite mixed crystal material

Also Published As

Publication number Publication date
CN101347746A (en) 2009-01-21

Similar Documents

Publication Publication Date Title
CN101279287B (en) Catalyst for producing olefin hydrocarbon by catalytic pyrolysis
CN101491772B (en) Catalyst for naphtha catalytic cracking
CN101191069B (en) Method for preparing ethene and propene by naphtha catalysis cracking
CN101348407B (en) Method for preparing ethylene and propylene by catalytic pyrolysis
WO2007019797A1 (en) Fludized bed catalyst for catalytic pyrolyzing
CN101347746B (en) Catalyst for producing olefin hydrocarbon by catalytic pyrolysis of naphtha
KR20070020355A (en) Fluid-bed catalyst for the preparation of ethylene and propylene by catalytic cracking
CN102811814A (en) Catalyst for use in production of monocyclic aromatic hydrocarbon, and process for production of monocyclic aromatic hydrocarbon
CN101279284B (en) Catalyst for preparing ethylene propylene from catalytic pyrolysis
CN100554229C (en) The method of naphtha catalytic pyrolysis preparing ethylene propylene
CN101190864B (en) Catalyst for preparing ethene and propene by catalysis cracking
CN101428233B (en) Catalyst for catalytic pyrolysis
CN101190417B (en) Catalyst for preparing ethylene and propylene by catalytic cracking method
CN101348408B (en) Method for preparing ethylene and propylene by catalytic pyrolysis of benzin naphtha
CN101279285B (en) Naphtha catalytic pyrolysis catalyst for preparing ethylene propylene
CN101683621B (en) Catalyst for producing low-carbon olefins through catalytic cracking by fixed bed
CN101347745B (en) Catalyst for producing ethylene and propylene by catalytic pyrolysis of naphtha
CN100475337C (en) Catalyst of naphtha catalytic pyrolysis preparing ethylene and propylene
CN100532335C (en) Method for preparing ethene and propene by fluidized bed catalysis cracking
CN101279880B (en) Method for preparing ethylene propylene by catalytic pyrolysis of light oil
CN101676027A (en) Petroleum hydrocarbon cracking catalyst
CN100531910C (en) Naphtha catalytic pyrolysis catalyst for preparing ethylene propylene
CN101306972B (en) Process for preparing ethylene and propylene by catalytic scission reaction
CN101190414B (en) Fluid bed catalyst for producing olefin by catalytic cracking method
CN100567228C (en) The method of preparing olefin by catalytic cracking

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant