CN101334534A - 基于水平狭缝平板和光子晶体线缺陷波导的电光调制器 - Google Patents

基于水平狭缝平板和光子晶体线缺陷波导的电光调制器 Download PDF

Info

Publication number
CN101334534A
CN101334534A CNA2008100632735A CN200810063273A CN101334534A CN 101334534 A CN101334534 A CN 101334534A CN A2008100632735 A CNA2008100632735 A CN A2008100632735A CN 200810063273 A CN200810063273 A CN 200810063273A CN 101334534 A CN101334534 A CN 101334534A
Authority
CN
China
Prior art keywords
material layer
electro
photon crystal
layer
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100632735A
Other languages
English (en)
Other versions
CN100547456C (zh
Inventor
祁彪
王帆
郑伟伟
肖司淼
王明华
郝寅雷
江晓清
杨建义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNB2008100632735A priority Critical patent/CN100547456C/zh
Publication of CN101334534A publication Critical patent/CN101334534A/zh
Application granted granted Critical
Publication of CN100547456C publication Critical patent/CN100547456C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于水平狭缝平板和光子晶体线缺陷波导的电光调制器。包括:1×2耦合器,两条干涉臂波导,2×1耦合器和电极构成的马赫-曾德尔电光调制器。两条结构相同的干涉臂波导在垂直方向上采用水平狭缝平板波导结构,干涉臂波导在水平方向采用二维光子晶体线缺陷波导结构。半导体材料层和有电光材料层的复合结构为光波导的芯层。在水平方向利用光子晶体周期结构的禁带,在垂直方向利用狭缝波导的强限制效应来限制光场分布。电光材料和硅基的复合芯层结构结合两者的优点,使调制器工作在低驱动电压。狭缝波导的强限制效应和光子晶体波导的慢光效应减小结构体积。器件制作工艺具有MOS兼容性,使器件易于集成和扩展,方便制造。

Description

基于水平狭缝平板和光子晶体线缺陷波导的电光调制器
技术领域
本发明涉及光学元器件,特别是涉及一种基于水平狭缝平板和光子晶体线缺陷波导的电光调制器。
背景技术
目前在高速光通信中应用的调制器的种类繁多,性能各异。调制器的基本原理一般都是通过某种物理效应,如采用电光效应、磁光效应、声光效应和电吸收效应等来改变光波的相位、强度和偏振态等来实现对光的调制。根据电光效应制成的光调制器是目前高速光通信中应用十分广泛的一类调制器。电光调制器是利用某些电光晶体,如铌酸锂晶体、砷化镓晶体和钽酸锂晶体的电光效应制成的调制器。定向耦合式调制器使用的数学模型相对于马赫-曾德尔调制器较为复杂,因此分析和制作较困难,并且定向耦合式调制器的消光性的好坏,完全受耦合长度制作公差的制约,同时还受两波导间的串扰限制,应用远不如马赫-曾德尔调制器那样广泛。法布里-伯罗型调制器具有调制灵敏度高的特点,因此在光传感,光通信等方面有重要用途。截止式波导调制器工作在截止点附近,调制电压和折射率的微小变化,均会导致传输特性的退化,而且平面波导结构的截止式调制器极间电容较大,调制带宽受到限制,调制效应相对较低。硅基光调制器是借助晶体的电光效应而实现调制的。对于这样的材料来说,由于晶体的对称性,非线性电光普克尔效应发生在未应变的纯硅中。电光有机聚合物材料发展十分迅速,有望制成超高速调制器。纯的有机聚合物调制器,也有不尽人意的地方,特别是在同一衬底上集成有源和无源器件时,无源器件常常受到光信号传播损耗的限制。因此要想制作低传输损耗的有机聚合物高速调制器,调制器的结构设计和聚合物材料的选择将十分重要。常规马赫-曾德尔干涉仪电光调制器中,调制带宽受到光波速度和电微波或毫米波速度之差、电极特征阻抗和电极传播损耗的限制,尤其是光波和电毫米波之间的速度匹配和微波衰减是影响行波调制器性能的两个关键问题,其调制电压和结构体积较大,不利于大规模集成。
发明内容
本发明的目的在于提供一种基于水平狭缝平板和光子晶体线缺陷波导的电光调制器,采用马赫-曾德尔的结构实现了相位的调制,利用水平狭缝平板波导结构的电光材料层高的电光效应,狭缝波导的强限制效应和光子晶体波导的慢光效应,慢光效应可增强光和物质的相互作用,而且其群速度和色散是可控的。
本发明解决其技术问题所采用的技术方案是:
包括1×2耦合器,两条干涉臂波导和2×1耦合器,电极构成的马赫-曾德尔电光调制器,其特征在于:两条结构相同的干涉臂波导在垂直方向上采用水平狭缝平板波导结构,干涉臂波导在水平方向采用二维光子晶体线缺陷波导结构。
所述的水平狭缝平板波导结构,包括绝缘体材料层,半导体材料层,电光材料层和衬底,在衬底依次设置第一半导体材料层,电光材料层,第二半导体材料层和绝缘体材料层。在垂直干涉臂波导传输方向两侧分别设置正电极和负电极,正电极制作到第二半导体材料层底部,负电极制作到第一半导体材料层底部;在两电极之间的干涉臂上设置晶格孔,从绝缘体材料层制作到第一半导体材料层底部。
所述的二维光子晶体线缺陷波导结构采用的晶格排列为三角形或正方形。
所述的电光材料层采用电光聚合物材料、电光陶瓷材料、液晶材料或者掺纳米硅的二氧化硅非线性材料。
本发明具有的有益效果是:
1.电光材料和硅基的复合芯层结构结合两者的优点,使调制器工作在低驱动电压;
2.狭缝波导的强限制效应和光子晶体波导的慢光效应减小了结构体积;
3.器件制作工艺具有的MOS兼容性,使得器件易于集成和扩展,方便制造。
附图说明
图1是基于水平狭缝平板和光子晶体线缺陷波导的电光调制器结构图。
图2是图1的A-A’旋转90度剖视图。
图3是三角形晶格排列的二维光子晶体线缺陷波导结构。
图4是正方形晶格排列的二维光子晶体线缺陷波导结构。
图中:1、1×2耦合器,2、干涉臂波导,3、2×1耦合器,4、电极,5、绝缘体材料层,6、半导体材料层,7、电光材料层,8、衬底,9、绝缘层
具体实施方式
如图1所示包括:1×2耦合器1,两条干涉臂波导2,2×1耦合器3和电极4构成的马赫-曾德尔电光调制器。两条结构相同的干涉臂波导在垂直方向上采用水平狭缝平板波导结构,干涉臂波导在水平方向采用二维光子晶体线缺陷波导结构。
如图2所示的水平狭缝平板波导结构,包括绝缘体材料层5,半导体材料层6,电光材料层7和衬底8,在衬底依次设置第一半导体材料层,电光材料层,第二半导体材料层和绝缘体材料层。在垂直干涉臂波导传输方向两侧分别设置正电极和负电极,正电极制作到第二半导体材料层底部,负电极制作到第一半导体材料层底部。两条干涉臂之间可以共用一个正电极如图1所示,也可以给两条干涉臂设置独立的正电极。在两电极之间的干涉臂上设置晶格孔,从绝缘体材料层制作到第一半导体材料层底部。
所述的二维光子晶体线缺陷波导结构采用的晶格排列为三角形如图3所示或正方形如图4所示。
所述的电光材料层7采用电光聚合物材料、电光陶瓷材料、液晶材料或者掺纳米硅的二氧化硅非线性材料。
输入光波经过一段光路后在一个1×2耦合器1处被分成相等的两束,分别通过两条干涉臂2传输。干涉臂波导在水平方面上采用二维光子晶体线缺陷波导结构进行限制,在垂直方向上采用水平狭缝平板波导结构,狭缝中的电光材料层7折射率随外加电压的大小而变化,从而使两束光信号到达2×1耦合器3处产生相位差。若两束光的光程差是波长的整数倍,两束光相干加强。若两束光的光程差是波长的1/2,两束光相干抵消,调制器输出很小,因此通过控制电压就能对光信号进行调制。
所述的电光调制器可以采用SOI材料,其中的顶层硅用作半导体材料层和光波导的芯层,氧化层和底层硅共同构成衬底,而氧化层则起到下限制层的作用。绝缘体材料层可以采用二氧化硅,或者氮化硅。
实施例1:
选用顶层硅厚0.5μm,二氧化硅下限制层厚3μm的SOI片子,其中顶层硅为半导体材料层6,氧化层和底层硅共同构成衬底8,而氧化层则起到下限制层的作用。1×2耦合器1和2×1耦合器3采用Y分支结构,干涉臂波导2采用图3中的三角形晶格排列的二维光子晶体线缺陷波导结构。
洗净两个SOI片子,在其中一个SOI片子硅面上旋涂一层电光聚合物作为电光材料层7,为之后形成狭缝做准备。将另一片SOI片子倒扣在电光聚合物上,将硅层与电光聚合物进行键合。控制聚合物层的厚度在100纳米左右。用硅自停止腐蚀法去掉上层硅,留下的二氧化硅层作为绝缘体材料层5,形成由绝缘体材料层5,半导体材料层6,电光材料层7和衬底8组成水平狭缝平板结构。
用电子束刻蚀法刻出三角形晶格排列的马赫-曾德尔干涉臂光子晶体波导结构,用干法刻蚀到第一半导体材料层6底部,刻出硅孔和二氧化硅孔,形成光子晶体线缺陷波导结构。
在垂直干涉臂波导2传输方向两侧,通过一次刻蚀到第二半导体材料层6底部,蒸铝,腐蚀出正电极4。接着通过二次刻蚀到第一半导体材料层6底部,再在刻蚀坑的上硅层氧化出一层二氧化硅作为绝缘层9,蒸铝,腐蚀出负电极4,正负电极绝缘。
由此就可以完成一种基于电光聚合物填充的水平狭缝平板和光子晶体线缺陷波导的电光调制器。
实施例2:
选用顶层硅厚0.5μm,二氧化硅下限制层厚3μm的SOI片子,其中顶层硅为半导体材料层6,氧化层和底层硅共同构成衬底8,而氧化层则起到下限制层的作用。1×2耦合器1和2×1耦合器3采用MMI结构,干涉臂波导2采用图3的三角形排列的二维光子晶体线缺陷波导结构。
洗净两个SOI片子,在其中一个SOI片子硅面上溅射一层电光陶瓷材料作为电光材料层7,为之后形成狭缝做准备。将另一片SOI片子倒扣在电光陶瓷材料上,硅层与电光陶瓷材料进行键合。控制电光陶瓷材料层的厚度在100纳米左右。用硅自停止腐蚀法去掉上层硅,再用HF酸腐蚀掉二氧化硅层,然后用LPCVD法生长一层氮化硅作为绝缘体材料层5。形成由绝缘体材料层5,半导体材料层6,电光材料层7和衬底8组成水平狭缝平板结构。
用电子束刻蚀法刻出正方形晶格排列的马赫-曾德尔干涉臂光子晶体波导结构,用干法刻蚀到第一半导体材料层6底部,刻出硅孔和二氧化硅孔,形成二维光子晶体线缺陷波导结构。
垂直干涉臂波导2传输方向两侧,通过一次刻蚀到第二半导体材料层6底部,蒸铝,腐蚀出正电极4。接着通过二次刻蚀到第一半导体材料层6底部,再在刻蚀坑的上硅层氧化出一层二氧化硅作为绝缘层9,蒸铝,腐蚀出负电极4,正负电极绝缘。
由此就可以完成一种基于电光陶瓷材料填充的水平狭缝平板和光子晶体线缺陷波导的电光调制器。
实施例3:
选用顶层硅厚0.5μm,二氧化硅下限制层厚3μm的SOI片子,其中顶层硅为半导体材料层6,氧化层和底层硅共同构成衬底8,而氧化层则起到下限制层的作用。1×2耦合器1和2×1耦合器3采用Y分支结构,干涉臂波导2采用图4中的正方形晶格排列的二维光子晶体线缺陷波导结构。
洗净两个SOI片子,在其中一个SOI片子硅层上氧化一层100纳米厚的二氧化硅,在此二氧化硅层再用干法刻蚀出一个深100纳米的坑,将另一片SOI片子倒扣在二氧化硅坑上,将硅层与腔壁二氧化硅进行键合,形成一个厚100纳米的腔。用真空法使液晶材料流入腔中,形成由液晶材料组成的电光材料层7。用硅自停止腐蚀法去掉上层硅,留下的二氧化硅层作为绝缘体材料层5,形成由绝缘体材料层5,半导体材料层6,电光材料层7和衬底8组成水平狭缝平板结构。
用电子束刻蚀法刻出三角形晶格排列的马赫-曾德尔干涉臂光子晶体波导结构,用干法刻蚀到下第一半导体材料层6底部,刻出硅孔和二氧化硅孔,形成二维光子晶体线缺陷波导结构。
在垂直干涉臂波导2传输方向两侧,通过一次刻蚀到第二半导体材料层6底部,蒸铝,腐蚀出正电极4。接着通过二次刻蚀到第一半导体材料层6底部,再在刻蚀坑的上硅层氧化出一层二氧化硅作为绝缘层9,蒸铝,腐蚀出负电极4,正负电极绝缘。
由此就可以完成一种基于液晶材料填充的水平狭缝平板和光子晶体线缺陷波导的电光调制器。
实施例4:
选用顶层硅厚0.5μm,二氧化硅下限制层厚3μm的SOI片子,其中顶层硅为半导体材料层6,氧化层和底层硅共同构成衬底8,而氧化层则起到下限制层的作用。1×2耦合器1和2×1耦合器3采用MMI结构,干涉臂波导2采用图4中的正方形晶格排列的二维光子晶体线缺陷波导结构。
洗净两个SOI片子,在其中一个SOI片子硅面上溅射一层掺纳米硅的二氧化硅非线性材料作为电光材料层7,为之后形成狭缝做准备。将另一片SOI片子倒扣在掺纳米硅的二氧化硅非线性材料上,硅层与掺纳米硅的二氧化硅非线性材料进行键合。控制掺纳米硅的二氧化硅非线性材料层的厚度在100纳米左右。用硅自停止腐蚀法去掉上层硅,再用HF酸腐蚀掉二氧化硅层,然后用LPCVD法生长一层氮化硅作为绝缘体材料层5。形成由绝缘体材料层5,半导体材料层6,电光材料层7和衬底8组成水平狭缝平板结构。
用电子束刻蚀法刻出正方形晶格排列的马赫-曾德尔干涉臂光子晶体波导结构,用干法刻蚀到第一半导体材料层6底部,刻出硅孔和二氧化硅孔,形成二维光子晶体线缺陷波导结构。
在垂直干涉臂波导2传输方向两侧,通过一次刻蚀到第二半导体材料层6底部,蒸铝,腐蚀出正电极4。接着通过二次刻蚀到第一半导体材料层6底部,再在刻蚀坑的上硅层氧化出一层二氧化硅作为绝缘层9,蒸铝,腐蚀出负电极4,正负电极绝缘。
由此就可以完成一种基于掺纳米硅的二氧化硅非线性材料填充的水平狭缝平板和光子晶体线缺陷波导的电光调制器。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (4)

1.一种基于水平狭缝平板和光子晶体线缺陷波导的电光调制器,包括1×2耦合器,两条干涉臂波导和2×1耦合器,电极构成的马赫-曾德尔电光调制器,其特征在于:两条结构相同的干涉臂波导在垂直方向上采用水平狭缝平板波导结构,干涉臂波导在水平方向采用二维光子晶体线缺陷波导结构。
2.根据权利要求1所述的一种基于水平狭缝平板和光子晶体线缺陷波导的电光调制器,其特征在于:所述的水平狭缝平板波导结构,包括绝缘体材料层,半导体材料层,电光材料层和衬底,在衬底依次设置第一半导体材料层,电光材料层,第二半导体材料层和绝缘体材料层,在垂直干涉臂波导传输方向两侧分别设置正电极和负电极,正电极制作到第二半导体材料层底部,负电极制作到第一半导体材料层底部;在两电极之间的干涉臂上设置晶格孔,从绝缘体材料层制作到第一半导体材料层底部。
3.根据权利要求1所述的一种基于水平狭缝平板和光子晶体线缺陷波导的电光调制器,其特征在于:所述的二维光子晶体线缺陷波导结构采用的晶格排列为三角形或正方形。
4.根据权利要求2所述的一种基于水平狭缝平板和光子晶体线缺陷波导的电光调制器,其特征在于:所述的电光材料层采用电光聚合物材料、电光陶瓷材料、液晶材料或者掺纳米硅的二氧化硅非线性材料。
CNB2008100632735A 2008-07-29 2008-07-29 基于水平狭缝平板和光子晶体线缺陷波导的电光调制器 Expired - Fee Related CN100547456C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2008100632735A CN100547456C (zh) 2008-07-29 2008-07-29 基于水平狭缝平板和光子晶体线缺陷波导的电光调制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2008100632735A CN100547456C (zh) 2008-07-29 2008-07-29 基于水平狭缝平板和光子晶体线缺陷波导的电光调制器

Publications (2)

Publication Number Publication Date
CN101334534A true CN101334534A (zh) 2008-12-31
CN100547456C CN100547456C (zh) 2009-10-07

Family

ID=40197233

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2008100632735A Expired - Fee Related CN100547456C (zh) 2008-07-29 2008-07-29 基于水平狭缝平板和光子晶体线缺陷波导的电光调制器

Country Status (1)

Country Link
CN (1) CN100547456C (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062987A (zh) * 2010-11-30 2011-05-18 南京邮电大学 复式结构光子晶体可调谐振腔的太赫兹波调制器及调制方法
CN102667415A (zh) * 2009-10-26 2012-09-12 波音公司 光学传感器问询系统
CN104570404A (zh) * 2014-12-22 2015-04-29 中国电子科技集团公司第三十八研究所 一种基于热光调制的光波束形成网络芯片及其制备方法
CN107238951A (zh) * 2017-07-05 2017-10-10 浙江大学 低偏压大带宽电光调制器
JP2018112593A (ja) * 2017-01-09 2018-07-19 国立研究開発法人情報通信研究機構 光制御デバイス及びその製造方法、光集積回路並びに電磁波検出装置
CN108563042A (zh) * 2018-02-07 2018-09-21 南京邮电大学 一种基于光子晶体和纳米线波导的马赫曾德尔型调制器
CN113031316A (zh) * 2021-03-16 2021-06-25 电子科技大学 一种基于谷光子晶体波导的电光调制器
CN113126372A (zh) * 2019-12-30 2021-07-16 江苏集萃智能液晶科技有限公司 光波导干涉结构
CN113325613A (zh) * 2020-02-29 2021-08-31 华为技术有限公司 一种光学调制器以及相关装置
CN113805364A (zh) * 2021-04-22 2021-12-17 西北工业大学 一种光子晶体微腔-石墨烯电光调制器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667415A (zh) * 2009-10-26 2012-09-12 波音公司 光学传感器问询系统
CN102062987A (zh) * 2010-11-30 2011-05-18 南京邮电大学 复式结构光子晶体可调谐振腔的太赫兹波调制器及调制方法
CN104570404A (zh) * 2014-12-22 2015-04-29 中国电子科技集团公司第三十八研究所 一种基于热光调制的光波束形成网络芯片及其制备方法
JP2018112593A (ja) * 2017-01-09 2018-07-19 国立研究開発法人情報通信研究機構 光制御デバイス及びその製造方法、光集積回路並びに電磁波検出装置
CN107238951A (zh) * 2017-07-05 2017-10-10 浙江大学 低偏压大带宽电光调制器
CN107238951B (zh) * 2017-07-05 2023-10-27 浙江大学 低偏压大带宽电光调制器
CN108563042A (zh) * 2018-02-07 2018-09-21 南京邮电大学 一种基于光子晶体和纳米线波导的马赫曾德尔型调制器
CN113126372A (zh) * 2019-12-30 2021-07-16 江苏集萃智能液晶科技有限公司 光波导干涉结构
CN113325613B (zh) * 2020-02-29 2022-09-09 华为技术有限公司 一种光学调制器以及相关装置
CN113325613A (zh) * 2020-02-29 2021-08-31 华为技术有限公司 一种光学调制器以及相关装置
CN113031316A (zh) * 2021-03-16 2021-06-25 电子科技大学 一种基于谷光子晶体波导的电光调制器
CN113805364A (zh) * 2021-04-22 2021-12-17 西北工业大学 一种光子晶体微腔-石墨烯电光调制器
CN113805364B (zh) * 2021-04-22 2024-03-26 西北工业大学 一种光子晶体微腔-石墨烯电光调制器

Also Published As

Publication number Publication date
CN100547456C (zh) 2009-10-07

Similar Documents

Publication Publication Date Title
CN100547456C (zh) 基于水平狭缝平板和光子晶体线缺陷波导的电光调制器
CN104301041B (zh) 一种硅基集成相干光发射机芯片及发射机
JP4313798B2 (ja) 光スイッチ
US10571724B2 (en) Electrooptic modulator
CN110989076B (zh) 一种薄膜铌酸锂单偏振波导及其制备方法
Sun et al. Hybrid silicon and lithium niobate modulator
CN111897146A (zh) 基于铌酸锂薄膜的光子晶体微环调制器芯片
CN108388061B (zh) 基于石墨烯光波导的全光调制器及其调制方法
CN110221385B (zh) 一种基于石墨烯的波导集成的多模电光调制器及制作方法
Ban et al. Low driving voltage and low optical loss electro-optic modulators based on lead zirconate titanate thin film on silicon substrate
Huang et al. High-bandwidth Si/In2O3 hybrid plasmonic waveguide modulator
CN103534635A (zh) 基于巨电光系数材料且结构精细的块体电光元件及其制造方法
CN112859477B (zh) 一种基于纳米天线的马赫-曾德尔干涉仪
CN110780381A (zh) 非对称三波导结构的偏振分束器及其制备方法
Li et al. High-performance Mach–Zehnder modulator based on thin-film lithium niobate with low voltage-length product
CN202916550U (zh) 一种基于自准直效应的二维光子晶体光强调制器
Ge et al. Polarization diversity two-dimensional grating coupler on x-cut lithium niobate on insulator
CN105022177A (zh) 一种基于耦合调制的矩形环谐振腔高速电光调制器
Yuan et al. Electrooptic polymeric digital optical switches (DOSs) with adiabatic couplers
CN115236881A (zh) 一种基于薄膜铌酸锂的电光偏振调制器
Toyoda et al. KTN-crystal-waveguide-based electro-optic phase modulator with high performance index
CN108508635A (zh) 基于SiGe材料的电调谐有源波导结构以及应用其的MZI结构
Mashanovich et al. Mid-infrared silicon photonics for communications
Izutsu Lithium Niobate Modulator
Cai High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091007

Termination date: 20100729