CN101332425A - Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof - Google Patents

Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof Download PDF

Info

Publication number
CN101332425A
CN101332425A CNA2008101388409A CN200810138840A CN101332425A CN 101332425 A CN101332425 A CN 101332425A CN A2008101388409 A CNA2008101388409 A CN A2008101388409A CN 200810138840 A CN200810138840 A CN 200810138840A CN 101332425 A CN101332425 A CN 101332425A
Authority
CN
China
Prior art keywords
platinum
gold
catalyst
electrode
platinum metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101388409A
Other languages
Chinese (zh)
Other versions
CN101332425B (en
Inventor
丁轶
刘朋朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN2008101388409A priority Critical patent/CN101332425B/en
Publication of CN101332425A publication Critical patent/CN101332425A/en
Application granted granted Critical
Publication of CN101332425B publication Critical patent/CN101332425B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a nanoporous gold supported ultrathin platinum metal film catalyst; the catalyst is an alloy sheet which is 0.1 - 100 micrometer thick, 0.1 - 10cm wide, and 0.1 - 20cm long, and is uniformly covered with a platinum metal atom layer on the surface thereof; the invention takes the method of under-potential depositing copper, silver or lead on the nanoporous gold and then performing exchange with the platinum metal cations to deposit the platinum metal film on the surface of the porous gold, thus obtaining the nanoporous gold supported ultrathin platinum metal film catalyst. The catalyst material prepared by the method of the invention can be easily controlled with regards to the aperture size, pore wall thickness and the platinum metal film thickness; and the catalyst is characterized by high specific surface area, high utilization ratio of the platinum metal, good catalytic activity and high anti-poisoning property.

Description

Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof
Technical field
The present invention relates to a kind of catalytic oxidation that can be used for organic molecule (methyl alcohol, formic acid, ethanol etc.), the electrical catalyze reduction of oxygen, the oxidation of hydrogen, low noble metal carrying capacity nanoporous composite metal catalyst of reaction such as catalytic hydrogenation and preparation method thereof relates in particular to a kind of nano porous gold-loaded ultrathin platinum metallic (alloy) film catalyst and preparation method thereof.
Background technology
Fuel cell is a kind of novel clean energy resource, and it can directly be converted to electric energy efficiently with the chemical energy of fuel such as hydrogen, methyl alcohol, formic acid, ethanol, and has advantages such as fuel availability height, energy density height, cleanliness without any pollution.But it widely-used mainly contains two bottlenecks, and one is that the activity of electrode catalyst is not high, and another one is that the catalyst cost is too high.As everyone knows, reaction has good catalytic activity to fuel cell electrode for platinum metal (platinum, palladium, ruthenium, iridium, rhodium etc.) and alloy (platinum-ruthenium alloys, platinumiridio etc.) thereof.Although commercial catalysts Pt/C nanometer particle is improving a lot more in the past than the platinum black that uses aspect decentralization and the catalyst utilization, it is easy to take place anthracemia, and the easy reunion of Pt nanoparticle also can cause the decline of catalyst activity.Therefore numerous researchers are devoted to explore new catalyst type and preparation, processing method always, and improving the activity of fuel-cell catalyst, and the carrying capacity that reduces noble metal is to reduce the cost of catalyst.The selection of supported catalyst agent carrier mainly concentrates on the material with carbon element of various forms.Amorphous carbon runs off in corrosive acid medium and under the electrochemical oxidation environment easily, thereby causes the loss and the reunion of catalyst; Carbon black can reach higher specific surface area, but the micropore on general surface is more, thereby inner catalyst granules is difficult to contact the utilization rate that solution can further reduce noble metal.Therefore, seek appropriate catalyst carrier and preparation method and become the focus that people pay close attention to utilization rate and the catalytic activity that improves platinum metal.People such as end of the eighties in last century Japan scientist Haruta find the gold grain of nanoscale, especially less than the gold grain of 5 nanometers, be supported on that the low-temperature catalytic oxidation to carbon monoxide has good catalytic activity on the iron oxide carrier, the applicant finds that nano-porous gold also has good catalytic activity to carbon monoxide recently, therefore consider to utilize the catalytic oxidation activity of nano-porous gold, improve the anti-poisoning performance of platinum group catalyst carbon monoxide.
The applicant had once reported achievement (Jonah Erlebacher, Yi Ding " Method of forming nanoporous membranes " US Patent, 6 that obtain high specific surface area porous gold thin film by corrosion commodity electrum paper tinsel in 2004,805,972, Oct.19,2004; Worldwide Patent, WO 2004/020064, March 11,2004), and utilize chemical plating method on the porous gold, to deposit platinum (Jonah Erlebacher, Yi Ding " Method of Plating Metals Leafs and Metal Membranes " WORLDWIDE PATENT, WO2004/021481, November 3,2004).Yet chemical plating method is difficult to accurately control deposit thickness, and uneven coating is even, poor repeatability.
As everyone knows, owe electromotive force deposition (under potential deposition, upd) phenomenon is that a kind of metal electrochemistry body deposition (bulk deposition) takes place before on another kind of metal, and the phenomenon of the deposition of monoatomic layer or submono takes place under the electromotive force of correcting than the thermodynamics electromotive force.In general more active metal such as copper, silver, lead etc. can as gold, platinum, ruthenium etc., be owed the electromotive force deposition on the metal than inertia.In addition because the difference of electrode potential, the active metal can with the cation generation redox displacement reaction than inert metal.The active metal is oxidized to metal cation in the reaction, and inert metal then is reduced to simple substance, combines and can deposit to the accurate controlled manner of inert metal with monoatomic layer or submono in the substrate with the redox displacement owing the electromotive force deposition.Utilization is owed the metal of electromotive force deposition as sacrificing template, makes it to carry out displacement reaction with precious metal ion at substrate material surface, can obtain the noble metal loading layer of monoatomic layer even inferior monatomic thickness.With copper is example, and its principle can be expressed from the next:
NCu Upd+ 2M N+=nCu 2++ 2M (M=Pt, Pd, Ru etc.)
This is optimal catalyst deployment conditions, and all catalyst atoms all are in the surface, can participate in catalytic reaction.Therefore, design is used and is owed electromotive force deposition-method of replacement, can accurately control thickness of coating in atom level, realizes the efficient utilization of platinum group metal catalysts.
By retrieval, utilize and to owe the electromotive force plated metal and on the porous gold, prepare ultrathin platinum metallic (alloy) film and yet there are no report as sacrificing template.
Summary of the invention
Deficiency at existing catalyst catalytic performance and technology of preparing the purpose of this invention is to provide a kind of catalytic activity height, and anti-poisoning performance is good, the nano porous gold-loaded ultrathin platinum metallic of support type (alloy) film catalyst and preparation method thereof.
Basic fundamental design of the present invention is a metal (copper, silver, lead) of at first owing electromotive force deposition monoatomic layer in the nanoporous gold surface, obtains nano porous gold-loaded ultrathin platinum metallic (alloy) film catalyst with the platinum metal cation replacement then.
The present invention's employing is owed electromotive force deposition-method of replacement in the nanoporous gold surface and is prepared support type ultrathin platinum metallic (alloy) film, its scientific basis is: the metal of owing the electromotive force deposition generally all is the surface that is present in substrate with the form of monatomic or submono, when it by the platinum metal cation replacement time, the platinum metal atom replaces the metallic atom of owing the electromotive force deposition originally, thereby forms atom level even submono thickness platinum metal (alloy) film.With copper is example, and reaction equation is as follows:
2Cu upd+PtCl 6 2-=2Cu 2++Pt+6Cl -
Cu upd+PtCl 4 2-=Cu 2++Pt+4Cl -
Cu upd+Pd 2+=Cu 2++Pd
3Cu upd+2Ru 3+=3Cu 2++2Ru
Owing to can proceed to owe the electromotive force deposition on platinum metal (alloy) surface, so replace and can increase the platinum metal (alloy) of an atomic layer again, and so forth, just can accurately regulate the thickness of platinum group metal catalysts film, obtain desirable catalyst.
Nano porous gold-loaded ultrathin platinum metallic film catalyst of the present invention, it is characterized in that described catalyst is that thickness is that 0.1~100 micron, width are that 0.1~10 centimetre, length are the alloy sheet that 0.1~20 centimetre, surface evenly cover the platinum metal atomic layer; The surface topography of wherein said alloy sheet is the co-continuous nano-porous structure, aperture size or pore wall thickness are 2~100nm, the composition of described alloy sheet is 80~99.8at.% simple substance gold, 0.1~10at.% simple substance silver, 0.1~10at.% platinum metal, described platinum metal refer to platinum, palladium, ruthenium, rhodium or iridium or their alloy.
Above-mentioned nano porous gold-loaded ultrathin platinum metallic film catalyst, preferred form be, described catalyst is that thickness is that 0.1~25 micron, width are that 0.5~2 centimetre, length are the alloy sheet that 2~5 centimetres, surface evenly cover the platinum metal atomic layer; The surface topography of wherein said alloy sheet is the co-continuous nano-porous structure, aperture size or pore wall thickness are 2~40nm, described platinum metal refers to platinum, palladium, ruthenium or platinum-ruthenium alloys, and described platinum metal atomic layer level thickness is the thickness of 1~20 platinum metal atomic diameter.
The preparation method of nano porous gold-loaded ultrathin platinum metallic film catalyst of the present invention, be made up of following step:
(1) be that 0.1~100 micron, width are that 0.1~10 centimetre, length are 0.1~20 centimetre with thickness, composition is that to place concentration be the nitric acid of 0.1~70wt.% to the alloy of gold atom percentage 10~50at.%, silver atoms percentage 50~90at.%, under-20~60 ℃ of temperature, corroded 1~1000 minute, with the nitric acid in clean alloy surface of deionized water and the hole, get nano-porous gold then;
(2) under 20~35 ℃, with above-mentioned porous gold is working electrode, platinum, gold or graphite flake are to electrode, saturated calomel electrode or mercury-mercurous sulfate electrode are that reference electrode is formed three-electrode system, earlier contain 0.01~100mM copper in the nitrogen deoxygenation, in the acid solution of silver or lead ion (pH value 0.1~5), still owed the electromotive force deposition 1~60 minute with respect to reference electrode-0.5~0.0V, then working electrode is immersed to contain in the cationic acid solution of 0.01~100mM platinum metal (pH value 0.1~5) and replaced 1~60 minute, get the nano porous gold-loaded platinum metallic film catalyst of surperficial even covering monoatomic layer thickness.
Among the preparation method of above-mentioned nano porous gold-loaded ultrathin platinum metallic film catalyst,
The described alloy of step (1) preferably thickness is that 0.1~25 micron, width are that 0.5~2 centimetre, length are 2~5 centimetres, and composition is the alloy of gold atom percentage 26at.%; The concentration of described nitric acid is preferably 65-68wt.%; Described corrosion temperature is preferably 20~35 ℃.
Step (2) is described to preferred platinum of electrode or gold; The preferred mercury-mercurous sulfate electrode of described reference electrode; The described current potential of owing the electromotive force plated metal is preferably-0.5~-0.3V; The described time of owing the electromotive force plated metal is preferably 1~10 minute; Describedly owe the electromotive force plated metal and the cationic time swap of platinum metal is preferably 5~30 minutes.
Further preferably, step (2) is described is platinum to electrode; Described reference electrode is a mercury-mercurous sulfate electrode; The described electromotive force plated metal of owing is a copper, and the described current potential of owing the electromotive force deposited copper is-0.45V; The described time of owing the electromotive force deposited copper is 2 minutes; Describedly owe the electromotive force deposited copper and the cationic time swap of platinum metal is 10 minutes.
Among the preparation method of above-mentioned nano porous gold-loaded ultrathin platinum metallic film catalyst, to the deposition that makes the electrode of platinum metal, if the described operation of its step (2) is repeated once, the platinum metal layer promptly increases a monoatomic layer thickness.
Among the preparation method of above-mentioned nano porous gold-loaded ultrathin platinum metallic film catalyst, described platinum metal refers to platinum, palladium, ruthenium, rhodium or iridium or their alloy.
Method of the present invention is compared with existing catalyst preparation technology, has the following advantages:
(1) the platinum metal carrying capacity significantly reduces, and the thickness that can accurately control platinum metal (alloy) film is (as described above shown in the displacement reaction formula, as undercurrent potential Ag monoatomic layer and PtCl 6 2-During ionic reaction, gained platinum metallic film thickness can accurately be controlled to 1/4th monoatomic layers and cover);
(2) during monatomic and subatomic layer (being that monoatomic layer covers not enough one deck) thickness, the service efficiency of catalyst is the highest in the platinum metallic film, and has better anti-poisoning capability and catalytic activity than commercial catalysts Pt/C nanometer particle;
(3) this method technology is simple, easy to operate, good reproducibility, the platinum metal carrying capacity is low in the product, catalyst service efficiency height, and tradition is based on the load type metal nanoparticle catalyst of material with carbon element complicated process of preparation then, poor repeatability, the catalyst service efficiency is not high.
Description of drawings
The present invention will be further described below in conjunction with accompanying drawing.
Fig. 1 is the alloy of gold atom percentage 26at.%, thickness 0.1mm, and 30 ℃ freely corroded 60 minutes, with respect to the current potential deposit of mereurous sulfate electrode-0.45V 2 minutes, immersed and contained platinum metal cation PtCl then 4 2+Acid solution in displacement 10 minutes, repeat once to owe transmission electron microscope (TEM) photo of the golden load platinum film of the porous catalyst that electromotive force deposition-displacement obtains again, 2 pt atom layers of film thickness, about 0.5nm, the loose structure size is about 30nm.
Fig. 2 is high resolution transmission electron microscopy (HRTEM) photo of the described catalyst of Fig. 1,2 pt atom layers of film thickness, about 0.5nm, by the striped in the image as can be seen, platinum exists with the monocrystalline form on the surface of porous gold, and evenly is covered in the porous gold surface.
Fig. 3 is described catalyst of Fig. 1 and the cyclic voltammogram of nano-porous gold in the 0.5M dilution heat of sulfuric acid.Wherein solid line is a nano-porous gold, and dotted line is the platinum film catalyst.Catalyst has only the reduction peak of platinum as can be seen, and does not have the reduction peak of the oxide of gold, shows that nano-porous gold is covered by platinum fully.In conjunction with the TEM photo of Fig. 1, can draw platinum film and evenly be covered in the nanoporous gold surface.
Fig. 4 is the electrochemistry cyclic voltammetry curve of the described catalyst of Fig. 1 to methanol oxidation, and wherein dotted line is the cyclic voltammetry curve of commercial catalysts under similarity condition.As can be seen, catalyst of the present invention has better catalytic activity than commercial catalysts to methanol oxidation, and also points out catalyst of the present invention to be better than commercial catalysts by the anti-poisoning effect that ratio drew of just sweeping with the flyback peak current.
The specific embodiment
Embodiment 1:
(1) be 25 microns with thickness, width is 1 centimetre, and length is 2 centimetres, composition is that to place concentration be the nitric acid of 65~68wt.% to the electrum paper tinsel of gold atom percentage 26at.%, etching time 60 minutes, the nitric acid that will remain in the hole with deionized water cleans up then, gets nano-porous gold;
(2) under 25 ℃, adopt the three-electrode electro Chemical system, as working electrode, as to electrode, mercury-mercurous sulfate electrode is as reference electrode with platinized platinum, 0.5M H with the nano-porous gold of above-mentioned preparation 2SO 4+ 0.5mM CuSO 4In ,-0.45V current potential deposit 2 minutes is transferred to 1mM PdCl then 2In replaced 10 minutes, promptly get the composite metal catalyst that the monoatomic layer palladium membranes is covered in the porous gold surface.
Embodiment 2:
(1) it is 0.1 micron with thickness, width is 2 centimetres, length is 2 centimetres, composition is that to place concentration be the nitric acid of 65~68wt.% to the electrum paper tinsel of gold atom percentage 26at.%, etching time 90 minutes, the nitric acid that will remain in the hole with deionized water cleans up then, gets nano-porous gold;
(2) under 25 ℃, adopt the three-electrode electro Chemical system, as working electrode, as to electrode, the mereurous sulfate electrode is as reference electrode with platinized platinum, 0.5M H with the nano-porous gold for preparing above 2SO 4+ 0.5mM CuSO 4In ,-0.45V current potential deposit 5 minutes is transferred to 1mM K then 2PtCl 6In replaced 10 minutes.Clean with deionized water subsequently and promptly get the composite metal catalyst that half pt atom layer is covered in the porous gold surface.
Embodiment 3:
(1) it is 0.1 micron with thickness, width is 1 centimetre, length is 1 centimetre, composition is that to place concentration be the nitric acid of 65~68wt.% to the electrum paper tinsel of gold atom percentage 26at.%, etching time 60 minutes, the nitric acid that will remain in the hole with deionized water cleans up then, gets nano-porous gold;
(2) under 25 ℃, adopt the three-electrode electro Chemical system, as working electrode, as to electrode, the mereurous sulfate electrode is as reference electrode, at the 0.5M of nitrogen deoxygenation H with platinized platinum with the nano-porous gold for preparing above 2SO 4+ 0.5mM CuSO 4In the solution ,-0.45V current potential deposit 2 minutes is transferred to 1mM K then 2PtCl 4In replaced 10 minutes; And then in the above-mentioned CuSO that contains 4Dilution heat of sulfuric acid in ,-0.4V current potential deposit copper 2 minutes, and at 1mM K 2PtCl 4In replaced 10 minutes, promptly get the composite Nano porous metals catalyst that supports two pt atom layers.
The TEM of this catalyst and HRTEM photo are respectively referring to Fig. 1 and Fig. 2.Catalyst is seen Fig. 3 and Fig. 4 respectively at the cyclic voltammetry curve that dilute sulfuric acid and dilute sulfuric acid add in the methyl alcohol.
Embodiment 4:
(1) it is 0.1 micron with thickness, width is 1 centimetre, length is 1 centimetre, composition is that to place concentration be the nitric acid of 65~68wt.% to the electrum paper tinsel of gold atom percentage 26at.%, etching time 60 minutes, the nitric acid that will remain in the hole with deionized water cleans up then, gets nano-porous gold;
(2) under 25 ℃, adopt the three-electrode electro Chemical system, as working electrode, as to electrode, the mereurous sulfate electrode is as reference electrode with platinized platinum, 0.5M H with the nano-porous gold for preparing above 2SO 4+ 0.5mM Ag 2SO 4In ,-0.45V current potential deposit 2 minutes is transferred to 1mM PdCl then 2Replaced in the solution 10 minutes, and promptly got porous gold supported palladium film catalyst.
Embodiment 5:
(1) it is 0.1 micron with thickness, width is 0.5 centimetre, length is 0.5 centimetre, composition is that to place concentration be the nitric acid of 65~68wt.% to the electrum paper tinsel of gold atom percentage 26at.%, etching time 60 minutes, the nitric acid that will remain in the hole with deionized water cleans up then, gets nano-porous gold;
(2) under 25 ℃, adopt three-electrode electro Chemical system nano-porous gold, as working electrode, as to electrode, the mereurous sulfate electrode is as reference electrode with platinized platinum, 0.5M H with the porous gold for preparing above 2SO 4+ 0.5mM CuSO 4In ,-0.45V current potential deposit 2 minutes is transferred to 1mM RuCl then 3+ 1mM K 2PtCl 4Replaced in the solution 10 minutes, and promptly got porous gold load platinum ruthenium alloy firm catalyst.

Claims (9)

1. a nano porous gold-loaded ultrathin platinum metallic film catalyst is characterized in that, described catalyst is that thickness is that 0.1~100 micron, width are that 0.1~10 centimetre, length are the alloy sheet that 0.1~20 centimetre, surface evenly cover the platinum metal atomic layer; The surface topography of wherein said alloy sheet is the co-continuous nano-porous structure, aperture size or pore wall thickness are 2~100nm, the composition of described alloy sheet is 80~99.8at.% simple substance gold, 0.1~10at.% simple substance silver, 0.1~10at.% platinum metal, described platinum metal refer to platinum, palladium, ruthenium, rhodium or iridium or their alloy.
2. nano porous gold-loaded ultrathin platinum metallic film catalyst as claimed in claim 1, it is characterized in that described catalyst is that thickness is that 0.1~25 micron, width are that 0.5~2 centimetre, length are the alloy sheet that 2~5 centimetres, surface evenly cover the platinum metal atomic layer; The surface topography of wherein said alloy sheet is the co-continuous nano-porous structure, aperture size or pore wall thickness are 2~40nm, described platinum metal refers to platinum, palladium, ruthenium or platinum-ruthenium alloys, and described platinum metal atomic layer level thickness is the thickness of 1~20 platinum metal atomic diameter.
3. the preparation method of claim 1 or 2 described nano porous gold-loaded ultrathin platinum metallic film catalysts, be made up of following step:
(1) be that 0.1~100 micron, width are that 0.1~10 centimetre, length are 0.1~20 centimetre with thickness, composition is that to place concentration be the nitric acid of 0.1~70wt.% to the alloy of gold atom percentage 10~50at.%, silver atoms percentage 50~90at.%, under-20~60 ℃ of temperature, corroded 1~1000 minute, with the nitric acid in clean alloy surface of deionized water and the hole, get nano-porous gold then;
(2) under 20~35 ℃, with above-mentioned porous gold is working electrode, platinum, gold or graphite flake are to electrode, saturated calomel electrode or mercury-mercurous sulfate electrode are that reference electrode is formed three-electrode system, earlier containing 0.01~100mM copper through the nitrogen deoxygenation, in the acid solution of silver or lead ion, still owed the electromotive force deposition 1~60 minute with respect to reference electrode-0.5~0.0V, then working electrode is immersed to contain in the cationic acid solution of 0.01~100mM platinum metal and replaced 1~60 minute, get the nano porous gold-loaded platinum metallic film catalyst of surperficial even covering monoatomic layer thickness.
4. as the preparation method of nano porous gold-loaded ultrathin platinum metallic film catalyst as described in the claim 3, it is characterized in that, the described alloy of step (1) is that thickness is that 0.1~25 micron, width are that 0.5~2 centimetre, length are 2~5 centimetres, and composition is the alloy of gold atom percentage 26at.%; The concentration of described nitric acid is 65-68wt.%; Described corrosion temperature is 20~35 ℃.
5. as the preparation method of nano porous gold-loaded ultrathin platinum metallic film catalyst as described in the claim 3, it is characterized in that step (2) is described to be platinum or gold to electrode; Described reference electrode is a mercury-mercurous sulfate electrode; The described current potential of owing the electromotive force plated metal is-0.5~-0.3V; The described time of owing the electromotive force plated metal is 1~10 minute; Describedly owe the electromotive force plated metal and the cationic time swap of platinum metal is 5~30 minutes.
6. as the preparation method of nano porous gold-loaded ultrathin platinum metallic film catalyst as described in the claim 3, it is characterized in that step (2) is described to be platinum to electrode; Described reference electrode is a mercury-mercurous sulfate electrode; The described electromotive force plated metal of owing is a copper, and the described current potential of owing the electromotive force deposited copper is-0.45V; The described time of owing the electromotive force deposited copper is 2 minutes; Describedly owe the electromotive force deposited copper and the cationic time swap of platinum metal is 10 minutes.
7. as the preparation method of nano porous gold-loaded ultrathin platinum metallic film catalyst as described in the claim 3, it is characterized in that the described acid solution pH of step (2) value is 0.1~5.
8. as the preparation method of nano porous gold-loaded ultrathin platinum metallic film catalyst as described in the claim 3, it is characterized in that, to the deposition that makes the electrode of platinum metal, if the described operation of its step (2) is repeated once, the platinum metal layer promptly increases a monoatomic layer thickness.
9. as the preparation method of nano porous gold-loaded ultrathin platinum metallic film catalyst as described in the claim 3, it is characterized in that described platinum metal refers to platinum, palladium, ruthenium, rhodium or iridium or their alloy.
CN2008101388409A 2008-08-04 2008-08-04 Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof Expired - Fee Related CN101332425B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101388409A CN101332425B (en) 2008-08-04 2008-08-04 Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101388409A CN101332425B (en) 2008-08-04 2008-08-04 Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101332425A true CN101332425A (en) 2008-12-31
CN101332425B CN101332425B (en) 2010-12-01

Family

ID=40195461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101388409A Expired - Fee Related CN101332425B (en) 2008-08-04 2008-08-04 Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101332425B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503766B (en) * 2009-03-18 2010-08-11 山东大学 Hollow porous tubular structured gold nano material and preparation thereof
CN101997123B (en) * 2009-08-14 2012-10-24 济南美高纳米材料有限公司 Nano porous alloy fuel battery catalyst and preparation method thereof
CN103628102A (en) * 2013-12-09 2014-03-12 深圳市嘉达高科产业发展有限公司 Electroplating solution, Pt-Ru catalyst membrane as well as preparation method thereof and membrane fuel cell
CN104779401A (en) * 2015-03-23 2015-07-15 山东德汇新能源科技发展有限公司 Method for plating metal elements on nano porous metal film
CN104907068A (en) * 2015-05-29 2015-09-16 哈尔滨工业大学 Method for preparing stepped Pt-Au core-shell structural catalyst
CN105186008A (en) * 2015-09-18 2015-12-23 山东德汇新能源科技发展有限公司 Nano-porous metallic membrane preserving composition
CN105529475A (en) * 2015-12-30 2016-04-27 中国科学院长春应用化学研究所 Catalyst with dispersed single platinum atoms and preparation method of catalyst
CN106816614A (en) * 2015-11-27 2017-06-09 中国科学院大连化学物理研究所 Preparation and electrode and application that fuel cell is catalyzed with fine and close platinum monoatomic layer
CN107649110A (en) * 2011-02-22 2018-02-02 奥迪股份公司 The method for forming the catalyst of the atomic layer with pt atom
CN108054399A (en) * 2017-12-19 2018-05-18 天津理工大学 A kind of methanol fuel cell catalyst and preparation method thereof
CN108075141A (en) * 2016-11-18 2018-05-25 中国科学院大连化学物理研究所 The method for directly preparing used in proton exchange membrane fuel cell platinum monoatomic layer Catalytic Layer
CN109326799A (en) * 2018-09-19 2019-02-12 伊犁师范学院 A kind of preparation method of nanoporous platinum ruthenium catalyst
CN109599580A (en) * 2018-12-24 2019-04-09 天津理工大学 A kind of ultra-thin membrane electrode and its preparation method and application for neat liquid fuel cell
CN112774697A (en) * 2020-09-07 2021-05-11 南京大学 Monoatomic metal-molybdenum sulfide nano-composite and preparation method and application thereof
CN113964332A (en) * 2021-10-25 2022-01-21 江南大学 Nanoparticle catalyst with ultrathin platinum metal layer and preparation method thereof
CN114525511A (en) * 2022-03-01 2022-05-24 天津理工大学 Preparation method of nano porous metal electrode material
CN114772682A (en) * 2022-03-31 2022-07-22 北京化工大学 Gold-based modified electrode, method for removing glycerol oxychloride and application of gold-based modified electrode
TWI820921B (en) * 2021-10-07 2023-11-01 日商Eeja股份有限公司 Ptru alloy plating solution and method for plating ptru alloy film

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503766B (en) * 2009-03-18 2010-08-11 山东大学 Hollow porous tubular structured gold nano material and preparation thereof
CN101997123B (en) * 2009-08-14 2012-10-24 济南美高纳米材料有限公司 Nano porous alloy fuel battery catalyst and preparation method thereof
CN107649110A (en) * 2011-02-22 2018-02-02 奥迪股份公司 The method for forming the catalyst of the atomic layer with pt atom
CN107649110B (en) * 2011-02-22 2021-02-02 奥迪股份公司 Method for forming catalyst having atomic layer of platinum atom
CN103628102A (en) * 2013-12-09 2014-03-12 深圳市嘉达高科产业发展有限公司 Electroplating solution, Pt-Ru catalyst membrane as well as preparation method thereof and membrane fuel cell
CN104779401A (en) * 2015-03-23 2015-07-15 山东德汇新能源科技发展有限公司 Method for plating metal elements on nano porous metal film
CN104779401B (en) * 2015-03-23 2017-01-11 山东德汇新能源科技发展有限公司 Method for plating metal elements on nano porous metal film
CN104907068A (en) * 2015-05-29 2015-09-16 哈尔滨工业大学 Method for preparing stepped Pt-Au core-shell structural catalyst
CN105186008A (en) * 2015-09-18 2015-12-23 山东德汇新能源科技发展有限公司 Nano-porous metallic membrane preserving composition
CN106816614B (en) * 2015-11-27 2019-07-05 中国科学院大连化学物理研究所 The fuel cell preparation of fine and close platinum monoatomic layer catalysis and electrode and application
CN106816614A (en) * 2015-11-27 2017-06-09 中国科学院大连化学物理研究所 Preparation and electrode and application that fuel cell is catalyzed with fine and close platinum monoatomic layer
CN105529475B (en) * 2015-12-30 2018-02-13 中国科学院长春应用化学研究所 A kind of catalyst of platinum single atomic dispersion and preparation method thereof
CN105529475A (en) * 2015-12-30 2016-04-27 中国科学院长春应用化学研究所 Catalyst with dispersed single platinum atoms and preparation method of catalyst
CN108075141A (en) * 2016-11-18 2018-05-25 中国科学院大连化学物理研究所 The method for directly preparing used in proton exchange membrane fuel cell platinum monoatomic layer Catalytic Layer
CN108054399A (en) * 2017-12-19 2018-05-18 天津理工大学 A kind of methanol fuel cell catalyst and preparation method thereof
CN109326799A (en) * 2018-09-19 2019-02-12 伊犁师范学院 A kind of preparation method of nanoporous platinum ruthenium catalyst
CN109326799B (en) * 2018-09-19 2022-08-26 伊犁师范学院 Preparation method of nano porous platinum ruthenium catalyst
CN109599580A (en) * 2018-12-24 2019-04-09 天津理工大学 A kind of ultra-thin membrane electrode and its preparation method and application for neat liquid fuel cell
CN112774697A (en) * 2020-09-07 2021-05-11 南京大学 Monoatomic metal-molybdenum sulfide nano-composite and preparation method and application thereof
TWI820921B (en) * 2021-10-07 2023-11-01 日商Eeja股份有限公司 Ptru alloy plating solution and method for plating ptru alloy film
CN113964332A (en) * 2021-10-25 2022-01-21 江南大学 Nanoparticle catalyst with ultrathin platinum metal layer and preparation method thereof
CN114525511A (en) * 2022-03-01 2022-05-24 天津理工大学 Preparation method of nano porous metal electrode material
CN114772682A (en) * 2022-03-31 2022-07-22 北京化工大学 Gold-based modified electrode, method for removing glycerol oxychloride and application of gold-based modified electrode

Also Published As

Publication number Publication date
CN101332425B (en) 2010-12-01

Similar Documents

Publication Publication Date Title
CN101332425B (en) Nano porous gold-loaded ultrathin platinum metallic film catalyst and preparation method thereof
JP5736306B2 (en) Sequential stack growth of thin films mediated by underpotential deposition
US9150968B2 (en) Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures
Begum et al. Highly efficient dual active palladium nanonetwork electrocatalyst for ethanol oxidation and hydrogen evolution
Yu et al. The study of Pt@ Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement
Habibi et al. Electrocatalytic oxidation of methanol on mono and bimetallic composite films: Pt and Pt–M (M= Ru, Ir and Sn) nano-particles in poly (o-aminophenol)
US8409659B2 (en) Nanowire supported catalysts for fuel cell electrodes
JP2013536065A (en) Hollow nanoparticles that are highly active and highly durable catalysts and methods for producing the same
US7632779B1 (en) Method of preparing a catalyst for direct formic acid fuel cells
Yang et al. The PtPdAg/C electrocatalyst with Pt-rich surfaces via electrochemical dealloying of Ag and Pd for ethanol oxidation
US9853255B2 (en) Core-shell fuel cell electrodes
Saravanan et al. Leaching tolerance of anodic Pt-based intermetallic catalysts for formic acid oxidation
Kazemi et al. Deposition of palladium submonolayer on nanoporous gold film and investigation of its performance for the methanol electrooxidation reaction
Sharma et al. Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction
Telli et al. Investigation of noble metal loading CoWZn electrode for HER
Panrod et al. Effect of noble metal species and compositions on manganese dioxide-modified carbon nanotubes for enhancement of alcohol oxidation
Mohanapriya et al. Mesoporous Pt–Ni catalyst and their electro catalytic activity towards methanol oxidation
Kavian et al. Fabrication of novel nanozeolite-supported bimetallic PtCu nanoparticles modified carbon paste electrode for electrocatalytic oxidation of formaldehyde
Yang et al. Bimetallic Face-Centered Cubic Pd–Ag Nano-dendritic Alloys Catalysts Boost Ethanol Electrooxidation
CN110198781B (en) Tin-based catalyst, preparation thereof, and fuel cell using the same
CN101997123A (en) Nano porous alloy fuel battery catalyst and preparation method thereof
Xu et al. Electrosynthesis of dendritic palladium supported on Ti/TiO2NTs/Ni/CeO2 as high-performing and stable anode electrocatalyst for methanol electrooxidation
Jin et al. High activity of Pd deposited on Ag/C for allyl alcohol oxidation
Du et al. Preparation Ru, Bi monolayer modified Pt nanoparticles as the anode catalyst for methanol oxidation
Alkhawaldeh Electrocatalytic activities of a platinum nanostructured electrode modified by gold adatom toward methanol and glycerol electrooxidation in acid and alkaline media

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101201

Termination date: 20170804