CN101325336A - Method for matching multi-region electric network swim based on belt restriction state estimation - Google Patents

Method for matching multi-region electric network swim based on belt restriction state estimation Download PDF

Info

Publication number
CN101325336A
CN101325336A CNA200810117176XA CN200810117176A CN101325336A CN 101325336 A CN101325336 A CN 101325336A CN A200810117176X A CNA200810117176X A CN A200810117176XA CN 200810117176 A CN200810117176 A CN 200810117176A CN 101325336 A CN101325336 A CN 101325336A
Authority
CN
China
Prior art keywords
msub
mrow
power grid
power
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810117176XA
Other languages
Chinese (zh)
Other versions
CN101325336B (en
Inventor
吴文传
张伯明
蔡斌
孙宏斌
吴素农
曾兵
万源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGXI POWER DISPATCHING CENTER
Tsinghua University
Original Assignee
JIANGXI POWER DISPATCHING CENTER
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGXI POWER DISPATCHING CENTER, Tsinghua University filed Critical JIANGXI POWER DISPATCHING CENTER
Priority to CN200810117176XA priority Critical patent/CN101325336B/en
Publication of CN101325336A publication Critical patent/CN101325336A/en
Application granted granted Critical
Publication of CN101325336B publication Critical patent/CN101325336B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention relates to a multiregion power network current matching method based on the estimation with the constrained state, and belongs to the automation field of electric power system management. The method includes the following steps: according to the power network real time data, superior and subordinate power network dispatching centers generate internal power network models and current distribution of the region, and build corresponding external power network equivalent models; the models and the current data of the subordinate power network are sent to the superior power network dispatching center which connects and combines the superior and the subordinate power network models into a total power network model through connecting lines or transformers; and the total power network current distribution can be obtained by applying the estimation method with the constrained state to the total power network model. The method can ensure that the current distribution of the superior power network part in the total power network model which is obtained after the combination of the multiregion power network models remains the same, and the boundary current mismatches of the superior and the subordinate power networks are distributed to the subordinate power network. The method ensures that the interconnected network on-line safety analysis and the results of simulation computation are accurate, thereby having important significance for ensuring the safe operation of the power networks.

Description

Multi-region power grid power flow matching method based on constrained state estimation
Technical Field
The invention relates to a multi-region power grid power flow matching method based on constrained state estimation, and belongs to the technical field of power system dispatching automation and power grid simulation.
Background
The power grid is formed by interconnecting a plurality of regional power grids and is an integral body, and the influence on the power grid after an accident occurs is global. In an interconnected power grid, a power grid governed by each scheduling center is generally only one part of a large power grid, an EMS system of the scheduling center only models the governed power grid part, and an external power grid is replaced by an equivalent power grid made offline, so that the accuracy is poor, the development and the change of the power grid cannot be adapted, and the problem in the practicability of the traditional EMS is solved.
In order to solve the problem, a global power grid model is established on line through model exchange between the upper and lower power grid longitudinal directions and through model combination. The existing method takes the tidal current estimated value of each subarea power grid as measurement, and establishes a state estimation model of the global power grid, so that the tidal current distribution matched with the global power grid is obtained. However, this method distributes the power flow mismatch between the power grids of the respective partitions into the respective partitions, and it cannot be guaranteed that the power flow distribution of the higher-level power grid or the power grid requiring detailed analysis remains unchanged before and after model merging, and thus cannot meet the actual demand.
Disclosure of Invention
The invention aims to provide a multi-region power grid flow matching method based on belt constraint state estimation, wherein each region power grid establishes power grid models in respective administration regions in each scheduling center, the power grid models are transmitted to a superior scheduling center by using a high-speed data communication network established between the current power grid scheduling centers, the superior scheduling center forms a global power grid model through the combination of the models, so that the multi-region power grid flow models in a power system are combined on line, the real-time state of the superior power grid flow in the combined global power grid model is consistent with the real-time state of the superior power grid, and the superior power grid flow is kept unchanged before and after the combination.
The invention provides a multi-region power grid power flow matching method based on constrained state estimation, which comprises the following steps of:
(1-1) automatically generating an internal power grid model and power flow distribution of a region by a superior power grid dispatching center according to real-time data of a power grid under jurisdiction, and simultaneously establishing an external power grid equivalent model connected with the internal power grid model, wherein the internal power grid model and the external power grid equivalent model are connected with each other through a connecting line or a transformer to form a superior power grid model;
(1-2) automatically generating an internal power grid model and a power flow distribution of a local area by each subordinate power grid dispatching center according to real-time data of a power grid under jurisdiction, simultaneously establishing an external power grid equivalent model connected with the internal power grid model, mutually connecting the internal power grid model and the external power grid equivalent model through a connecting line or a transformer to form a subordinate power grid model, and sending the power flow data of the subordinate power grid model and the subordinate power grid to a superior power grid dispatching center through a wide area network;
(1-3) the superior power grid dispatching center connects the superior power grid model and the received subordinate power grid models with each other through a connecting line or a transformer, and external power grid equivalent models in the superior power grid model and the subordinate power grid models are deleted and combined into a whole local power grid model when the superior power grid model and the subordinate power grid models are connected;
and (1-4) estimating the power flow of the global power grid model by using a constrained state estimation method.
In the method, a process of estimating the load flow of the global power grid model by using a constrained state estimation method specifically comprises the following steps:
(2-1) constructing a weighted two-multiplication state estimation model containing a power flow equality constraint and a node injection inequality constraint for the global power grid:
<math> <mrow> <mi>min</mi> <mi>J</mi> <mrow> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>w</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math>
the following constraints are satisfied:
P ij = P ij 0 , i∈A,j∈A
Q ij = Q ij 0 , i∈A,j∈A
P j <Pj<Pj,j∈A
Q j <Qj<Qj,j∈A
wherein Z isiThe state estimation value before the merging of the upper and lower power grid models comprises the active power P of a power grid line or a transformerijAnd reactive power QijVoltage amplitude V of the busiAnd the active injection power P of the busiAnd reactive injection power Qi,hi(V, theta) is the measurement equation, wiFor weighting the weighting coefficients in the two-multiplication state estimation, A is the node set of the upper level grid, A is the node set of all the lower level grids, Pij、Pij 0The active power after combination and the active power before combination of the upper-level power grid side of the junctor between the upper-level power grid and the lower-level power grid are Qij、Qij 0The connecting line between the upper and lower electric networks is the combined reactive power and the combined reactive power on the upper electric network side, PjP j 、PjRespectively the injected active power, the lower limit of the active power and the upper limit of the active power, Q, of the lower-level power grid node jjQ j 、QjRespectively the injected reactive power, the lower reactive power limit and the upper reactive power limit of a lower-level power grid node j, and respectively V and theta are the voltage amplitude and the phase angle of all nodes of the power grid;
the above measurement equation hi(V, θ) is defined as:
the measurement equation of the line or the transformer is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>ij</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mi>ij</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
in the above formula, PijIs the active power of the line or transformer, QijIs the reactive power of the line or transformer;
the voltage measurement equation of any bus i of the global power grid is as follows:
Vi=Vi
the injection measurement equation of any bus i of the global power grid is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>G</mi> <mi>ii</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <mi>i</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> </munderover> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>B</mi> <mi>ii</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <mi>i</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> </munderover> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
in the above formula, Pi、QiActive injection power and reactive injection power of any generator or load i in the global power grid;
(2-2) solving the weighted two-multiplication state estimation model by adopting an interior point method;
and (2-3) obtaining the load flow distribution of the global power grid according to the solved voltage amplitude V and phase angle theta of all nodes of the global power grid.
The invention provides a multi-region power grid power flow matching method based on constrained state estimation, which is characterized by comprising the following steps: and the upper-level power grid dispatching center and each lower-level subarea power grid dispatching center respectively establish and maintain the current models of the local-level power grid and the local-area power grid so as to accord with the existing management mode of grading and subarea dispatching. The lower-level power grid dispatching center needs to send the real-time power flow model of the power grid of the local jurisdiction to the upper-level dispatching center, and after the upper-level dispatching center collects the power flow models of the power grids of the lower-level sub-areas, the power grid models of the lower-level sub-areas and the upper-level power grid model are combined to form a global power grid model. And releasing the constraint of partial measurement, and performing state estimation on the global power grid model combined for calculation to obtain the matched load flow distribution of the upper and lower power grids. The whole process is automatically completed, and the method is suitable for online safety analysis, scheduling decision and analog simulation of a large-scale interconnected power grid. Therefore, the method of the invention has the following advantages:
1. each level of power grid dispatching center only needs to maintain the power grid flow model of each level, and the maintenance workload is not increased;
2. automatically realizing online combination of the multi-region power grid load flow models through the collection and state estimation of each region power grid model to form globally matched load flow distribution;
3. after the combination, the upper-level power grid part in the overall power grid flow model is consistent with the actual condition, and the safety analysis, control decision and simulation precision of the interconnected power grid are ensured, so that the safe operation of the power grid is ensured.
4. After the combination, important generators and loads of lower-level power grids in the global power grid flow model do not change greatly after the combination, and meanwhile, the output of all the generators is kept in a limited range.
Drawings
FIG. 1 is a schematic diagram of an online merging method of power flow models of a power grid according to the present invention;
fig. 1(a) is a lower-level power grid power flow model, fig. 1(b) is a higher-level power grid power flow model, and fig. 1(c) is a combined global power grid power flow model.
Fig. 2 is a schematic diagram of a global power grid power flow model merged by the method of the present invention.
In fig. 1 and 2, 1 is a local area internal power grid model automatically generated by a lower power grid dispatching center, 2 is a connection line or transformer connected with the internal power grid model and the external power grid equivalent model, 3 is an external power grid equivalent model connected with the internal power grid model, 4 is an external power grid equivalent model connected with the internal power grid model, 5 is a connection line or transformer connected with the internal power grid model and the external power grid equivalent model, 6 is a local area internal power grid model automatically generated by a higher power grid dispatching center, 7 is a higher power grid model, 8 is a tidal current measurement of a higher power grid side of the connection line or the connection transformer, 9 is a connection transformer, 10 is a connection line, 11 is a lower power grid, 12 is a tidal current measurement of a lower power grid side of the connection line or the connection transformer, and 13 is an injection tidal current measurement of a bus in the lower power grid.
Detailed Description
The following describes a multi-region grid power flow matching method based on constrained state estimation in detail with reference to the accompanying drawings and an embodiment of the invention.
The specific implementation method of the invention is shown in fig. 1, and comprises the following steps:
step one, as shown in fig. 1(b), a superior power grid dispatching center automatically generates a local internal power grid model 6 and a current distribution by using a known power grid state estimation method according to real-time data of a power grid under jurisdiction, wherein the power grid model 6 and the current distribution comprise a power grid topological structure, active power, reactive power or generator-side bus voltage of a power grid generator, active power and reactive power of a power grid load, active power and reactive power of a power grid bus voltage and a line, active power and reactive power of a transformer, tap positions of the transformer and the like; meanwhile, an external power grid equivalent model 4 connected with the internal power grid is established, and the internal model and the external model are connected through a connecting line 5 actually existing between the internal model and the external model to form a superior power grid model;
step two, as shown in fig. 1(a), each sub-regional power grid dispatching center automatically generates a local internal power grid model 1 and a power flow distribution by using a known state estimation method according to the real-time data of the power grid under jurisdiction, wherein the power grid model 1 and the power flow distribution comprise a power grid topological structure, the active power and the reactive power of a power grid generator or the voltage of a generator-side bus, the active power and the reactive power of a power grid load, the active power and the reactive power of a power grid bus voltage and a line, the active power and the reactive power of a transformer, the tap position of the transformer and the like, meanwhile, an external power grid equivalent model 3 connected with the internal power grid is established, the internal model and the external model are connected through a connecting line 2 actually existing between the internal model and the external model to form a lower-level power grid model, sending the lower-level power grid model and the tidal current data to a higher-level power grid dispatching center through a wide area network;
and step three, the superior power grid dispatching center receives the inferior power grid models and the tidal current data sent by the sub-area power grid dispatching centers, firstly, the external network equivalent model (dotted line) parts in the respective power grid models are removed, then, the superior power grid models and the inferior power grid models are in butt joint through the tie lines 5 between the superior power grid models and the inferior power grid models (the tie lines 2 and 5 represent the same group of tie lines, and the superior power grid side 5 is adopted here), so that the superior power grid models and the inferior power grid models can be combined into a global power grid model for calculation, as shown in fig. 1(c), the global power grid model is obtained by respectively removing the dotted line part areas of the models in fig. 1(a) and fig. 1(b) and then connecting the models together through the tie lines.
And step four, measuring the respective estimation results of the upper and lower power grids as equipment, and carrying out whole-grid estimation by a constrained state estimation method. The state estimation method with the constraint can estimate and obtain new full-network load flow distribution matched with the upper and lower-level power networks, and can ensure that the state of the upper-level power network is kept unchanged before and after estimation. The method comprises the following specific steps:
(1) firstly, a weighted two-multiplication state estimation model containing a connecting line between an upper power grid and a lower power grid, a connecting transformer power flow equality constraint and a node injection inequality constraint is constructed, namely an optimization model of a group of power grid state variables (including voltage amplitude values V and phase angles theta of all nodes of a power grid) under the condition of meeting the constraints is solved:
<math> <mrow> <mi>min</mi> <mi>J</mi> <mrow> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>w</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math>
the following constraints are satisfied:
P ij = P ij 0 , i∈A,j∈A
Q ij = Q ij 0 , i∈A,j∈A(1)
P j <Pj<Pj,j∈A
Q j <Qj<Qj,j∈A
wherein Z isiThe state estimation value before the merging of the upper and lower power grid models comprises the active power P of a power grid line or a transformerijAnd reactive power QijVoltage amplitude V of the busiAnd the active injection power P of the busiAnd reactive injection power Qi,hi(V, theta) is the measurement equation, wiTo weight the weighting coefficients in the two-multiplication state estimation, A is the node set of the upper level grid, A is all the lower levelsNode set of the grid, Pij、Pij 0The active power after combination and the active power before combination of the upper-level power grid side of the junctor between the upper-level power grid and the lower-level power grid are Qij、Qij 0The connecting line between the upper and lower electric networks is the combined reactive power and the combined reactive power on the upper electric network side, PjP j 、PjRespectively the injected active power, the lower limit of the active power and the upper limit of the active power, Q, of the lower-level power grid node jjQ j 、QjRespectively the injected reactive power, the lower reactive power limit and the upper reactive power limit of a lower-level power grid node j, and respectively V and theta are the voltage amplitude and the phase angle of all nodes of the power grid;
measurement equation hi(V, θ) is defined as follows:
line or transformer measurement equation:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>ij</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mi>ij</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
in the above formula, PijIs the active power of the line or transformer, QijIs the reactive power of the line or transformer;
the voltage measurement equation of any bus i of the global power grid is as follows:
Vi=Vi (3)
the injection measurement equation of any bus i of the global power grid is as follows:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>G</mi> <mi>ii</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <mi>i</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> </munderover> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>B</mi> <mi>ii</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <mi>i</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> </munderover> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
in the above formula, Pi、QiActive injection power and reactive injection power of any generator or load i in the global power grid;
(2) solving the constrained state estimation problem represented by equation (1) using an interior point method
The following non-linear programming standard can be written for equation (1):
minimize f(x)
subject to h(x)=0 (5)
g≤g(x)≤g
wherein: x is formed by R(n),h(x)≡[h1(x),…,hm(x)]T,g(x)≡[g1(x),…,gr(x)]T
Introducing relaxation variable (l, u) epsilon R(r)The non-linear programming form for transforming equation (5) into a constraint of equality and a simple variable is as follows:
minimize f(x)
subjectto h(x)=0
g(x)-l-g=0 (6)
g(x)+u-g=0
(l,u)≥0
the lagrange function defining equation (6) is:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mo>;</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo>;</mo> <mover> <mi>z</mi> <mo>~</mo> </mover> <mo>,</mo> <mover> <mi>w</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <mo>&equiv;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>-</mo> <mi>y</mi> </mrow> <mi>T</mi> </msup> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>z</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mo>-</mo> <munder> <mi>g</mi> <mo>&OverBar;</mo> </munder> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>-</mo> <msup> <mi>w</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>u</mi> <mo>-</mo> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mover> <mi>z</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <mi>l</mi> <mo>-</mo> <msup> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <mi>u</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
here, y ∈ R(m)And <math> <mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>w</mi> <mo>,</mo> <mover> <mi>z</mi> <mo>~</mo> </mover> <mo>,</mo> <mover> <mi>w</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <mo>&Element;</mo> <msup> <mi>R</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </msup> </mrow> </math> is a lagrange multiplier.
According to the Karush-Kuhn-Tucker theorem, the optimal solution must satisfy the following KKT system:
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>L</mi> <mo>&equiv;</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>y</mi> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>+</mo> <mi>w</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> <mi>L</mi> <mo>&equiv;</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>z</mi> </msub> <mi>L</mi> <mo>&equiv;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mo>-</mo> <munder> <mi>g</mi> <mo>&OverBar;</mo> </munder> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>w</mi> </msub> <mi>L</mi> <mo>&equiv;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>u</mi> <mo>-</mo> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>l</mi> </msub> <mi>L</mi> <mo>&equiv;</mo> <mi>z</mi> <mo>-</mo> <mover> <mi>z</mi> <mo>~</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>u</mi> </msub> <mi>L</mi> <mo>&equiv;</mo> <mi>w</mi> <mo>+</mo> <mover> <mi>w</mi> <mo>~</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
L Z ~ e = 0 - - - ( 14 )
U W ~ e = 0 - - - ( 15 )
<math> <mrow> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <mrow> <mo>(</mo> <mover> <mi>z</mi> <mo>~</mo> </mover> <mo>,</mo> <mover> <mi>w</mi> <mo>~</mo> </mover> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <mi>y</mi> <mo>&NotEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein (L, U, Z, W) belongs to R(r×r)According to convention in mathematical programming, a diagonal matrix, e ≡ 1, …, 1, representing elements l, u, z, w]T∈R(r)
Combining the formulas (12) and (13) and the complementary conditions (14) and (15), introducing a perturbation parameter mu > 0 according to perturbation KKT theory, relaxing the combined complementary conditions, and replacing the formulas (12) to (15) with the following steps:
<math> <mrow> <msubsup> <mo>&dtri;</mo> <mi>l</mi> <mi>&mu;</mi> </msubsup> <mi>L</mi> <mo>&equiv;</mo> <mi>LZe</mi> <mo>-</mo> <mi>&mu;e</mi> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mo>&dtri;</mo> <mi>u</mi> <mi>&mu;</mi> </msubsup> <mi>L</mi> <mo>&equiv;</mo> <mi>UWe</mi> <mo>+</mo> <mi>&mu;e</mi> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
solving the above perturbation KKT systems (8) - (11), (17) - (18) by directly applying Newton method to obtain the following correction systems:
<math> <mrow> <mrow> <mo>(</mo> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mn>2</mn> </msubsup> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mn>2</mn> </msubsup> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>y</mi> <mo>-</mo> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mn>2</mn> </msubsup> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>+</mo> <mi>w</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>&Delta;x</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>&Delta;y</mi> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>&Delta;z</mi> <mo>+</mo> <mi>&Delta;w</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>h</mi> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>&Delta;x</mi> <mo>=</mo> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>g</mi> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>&Delta;x</mi> <mo>-</mo> <mi>&Delta;l</mi> <mo>=</mo> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>z</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>g</mi> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>&Delta;x</mi> <mo>+</mo> <mi>&Delta;u</mi> <mo>=</mo> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>w</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>Z&Delta;l</mi> <mo>+</mo> <mi>L&Delta;z</mi> <mo>=</mo> <mo>-</mo> <msubsup> <mo>&dtri;</mo> <mi>l</mi> <mi>&mu;</mi> </msubsup> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>W&Delta;u</mi> <mo>+</mo> <mi>U&Delta;w</mi> <mo>=</mo> <mo>-</mo> <msubsup> <mo>&dtri;</mo> <mi>u</mi> <mi>&mu;</mi> </msubsup> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <mo>(</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>z</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>w</mi> </msub> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>,</mo> <msubsup> <mo>&dtri;</mo> <mi>l</mi> <mi>&mu;</mi> </msubsup> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>,</mo> <msubsup> <mo>&dtri;</mo> <mi>u</mi> <mi>&mu;</mi> </msubsup> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </math> is the residual of the perturbed KKT system.
Figure A20081011717600109
And
Figure A200810117176001010
hessian matrices of f (x), h (x), and g (x).
Simplification (19-24), elimination of Δ l, Δ u, Δ z, Δ w, yields the final simplified KKT system as follows:
Figure A200810117176001011
wherein:
<math> <mrow> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mn>2</mn> </msubsup> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mn>2</mn> </msubsup> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>y</mi> <mo>+</mo> <msubsup> <mo>&dtri;</mo> <mi>x</mi> <mn>2</mn> </msubsup> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>+</mo> <mi>w</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mi>g</mi> </msub> <mo>+</mo> <msub> <mi>H</mi> <mi>h</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&equiv;</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>h</mi> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
Figure A200810117176001015
<math> <mrow> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msup> <mi>U</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>L</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>&mu;e</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>+</mo> <msup> <mi>L</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>Z</mi> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mo>-</mo> <munder> <mi>g</mi> <mo>&OverBar;</mo> </munder> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>U</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>W</mi> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>u</mi> <mo>-</mo> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </math>
and after elimination, the expressions of Δ l, Δ u, Δ z, Δ w:
<math> <mrow> <mi>&Delta;l</mi> <mo>=</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <msup> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>&Delta;x</mi> <mo>+</mo> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mo>-</mo> <munder> <mi>g</mi> <mo>&OverBar;</mo> </munder> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&Delta;u</mi> <mo>=</mo> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>g</mi> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>&Delta;x</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>u</mi> <mo>-</mo> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&Delta;z</mi> <mo>=</mo> <mo>-</mo> <msup> <mi>L</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>Z</mi> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mi>g</mi> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>&Delta;x</mi> <mo>-</mo> <msup> <mi>L</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>LZe</mi> <mo>-</mo> <mi>&mu;e</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>Z</mi> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mo>-</mo> <munder> <mi>g</mi> <mo>&OverBar;</mo> </munder> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&Delta;w</mi> <mo>=</mo> <msup> <mi>U</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>W</mi> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <msup> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>&Delta;x</mi> <mo>-</mo> <msup> <mi>U</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>UWe</mi> <mo>+</mo> <mi>&mu;e</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>u</mi> <mo>-</mo> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow> </math>
(26) in the formula, H (□) is composed of two parts: hhIs a linear combination of f (x), h (x), and g (x) a hessian matrix; hgReferred to as Barrier Matrix (Barrier Matrix). HgTerms prevent inequality constraints g (x) from violating their bilateral limits.
The resulting path-tracing-method interior point iteration format is as follows:
(0) and (5) initializing. K is 0, KmaxCenter parameter (centering parameter) σ ∈ (0, 1)]Convergence accuracy ε is 10-6. Selecting [ l, u ]]T>0,[z>0,w<0,y=0]THere, K, KmaxAre respectively an iteration meterNumber and maximum allowed number of iterations;
(1) if K < KmaxContinuing; otherwise, the printing does not converge;
(2) calculating complementary gap (complementary gap) CGap
<math> <mrow> <msub> <mi>C</mi> <mi>Gap</mi> </msub> <mo>&equiv;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>r</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow> </math>
If C is presentGapStopping when the value is less than epsilon, and outputting an optimal solution;
(3) solving the correction systems (25) - (32) to obtain correction quantities [ delta x, delta y ], [ delta l, delta u ] and [ delta z, delta w ];
(4) ratio tests, determining the maximum step size in the original and dual spaces:
<math> <mrow> <mrow> <msub> <mi>step</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>0.9995</mn> <mi>min</mi> <mo>{</mo> <munder> <mi>min</mi> <mi>i</mi> </munder> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>:</mo> <mi>&Delta;</mi> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mn>0</mn> <mo>;</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>:</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mrow> <msub> <mi>step</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>0.9995</mn> <mi>min</mi> <mo>{</mo> <munder> <mi>min</mi> <mi>i</mi> </munder> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msub> <mi>z</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>:</mo> <mi>&Delta;</mi> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mn>0</mn> <mo>;</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msub> <mi>w</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>:</mo> <mi>&Delta;</mi> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>></mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow> </math>
i=1,2,…,r
(5) update original and dual variables:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>l</mi> </mtd> </mtr> <mtr> <mtd> <mi>u</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>l</mi> </mtd> </mtr> <mtr> <mtd> <mi>u</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msub> <mi>step</mi> <mi>P</mi> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;x</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;l</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;u</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msub> <mi>step</mi> <mi>D</mi> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;y</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;z</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;w</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow> </math>
(6) k +1, go back to (1);
(3) by solving the state variables of the system (including the voltage amplitude V and the phase angle theta of all nodes of the power grid) in the last step, the power flow distribution of the whole power grid can be solved. The equation (1) contains the equality constraint that the active power and the reactive power of all the connecting lines and the connecting transformers between the upper-level power grid and the lower-level power grid are kept unchanged, and meanwhile, the power flow distribution of the upper-level power grid is converged before combination, so that the power flow distribution of the upper-level power grid can be kept unchanged after combination. In addition, the deviation amount of the lower-level power grid from the upper-level power grid is distributed in the current-level power grid according to the principle of weighted least squares, and meanwhile, the inequality constraint injected by the nodes in the formula (1) is utilized to be suitable for ensuring that important generators and loads of the lower-level power grid do not have large changes after being combined, and meanwhile, the output of all the generators is kept in a limited range.

Claims (2)

1. The multi-region power grid flow matching method based on the constrained state estimation is characterized by comprising the following steps of:
(1-1) automatically generating an internal power grid model and power flow distribution of a region by a superior power grid dispatching center according to real-time data of a power grid under jurisdiction, and simultaneously establishing an external power grid equivalent model connected with the internal power grid model, wherein the internal power grid model and the external power grid equivalent model are connected with each other through a connecting line or a transformer to form a superior power grid model;
(1-2) automatically generating an internal power grid model and a power flow distribution of a local area by each subordinate power grid dispatching center according to real-time data of a power grid under jurisdiction, simultaneously establishing an external power grid equivalent model connected with the internal power grid model, mutually connecting the internal power grid model and the external power grid equivalent model through a connecting line or a transformer to form a subordinate power grid model, and sending the power flow data of the subordinate power grid model and the subordinate power grid to a superior power grid dispatching center through a wide area network;
(1-3) the superior power grid dispatching center connects the superior power grid model and the received subordinate power grid models with each other through a connecting line or a transformer, and external power grid equivalent models in the superior power grid model and the subordinate power grid models are deleted and combined into a whole local power grid model when the superior power grid model and the subordinate power grid models are connected;
and (1-4) estimating the power flow of the global power grid model by using a constrained state estimation method.
2. The method according to claim 1, wherein the step (1-4) of estimating the power flow of the global grid model by using a constrained state estimation method specifically comprises the following steps:
(2-1) constructing a weighted two-multiplication state estimation model containing a power flow equality constraint and a node injection inequality constraint for the global power grid:
<math> <mrow> <mi>min</mi> <mi>J</mi> <mrow> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>w</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math>
the following constraints are satisfied:
P ij = P ij 0 , i∈A,j∈A
Q ij = Q ij 0 , i∈A,j∈A
P j <Pj<Pj,j∈A
Q j <Qj<Qj,j∈A
wherein Z isiThe state estimation value before the merging of the upper and lower power grid models comprises the active power P of a power grid line or a transformerijAnd reactive power QijVoltage amplitude V of the busiAnd the active injection power P of the busiAnd reactive injection power Qi,hi(V, theta) is the measurement equation, wiFor weighting the weighting coefficients in the two-multiplication state estimation, A is the node set of the upper level grid, A is the node set of all the lower level grids, Pij、Pij 0The active power after combination and the active power before combination of the upper-level power grid side of the junctor between the upper-level power grid and the lower-level power grid are Qij、Qij 0The connecting line between the upper and lower power grids has no reactive power after combination and no reactive power before combination on the upper power grid sideWork power, PjP j 、PjRespectively the injected active power, the lower limit of the active power and the upper limit of the active power, Q, of the lower-level power grid node jjQ j 、QjRespectively the injected reactive power, the lower reactive power limit and the upper reactive power limit of a lower-level power grid node j, and respectively V and theta are the voltage amplitude and the phase angle of all nodes of the power grid;
the above measurement equation hi(V, θ) is defined as follows:
line or transformer measurement equation:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>ij</mi> </msub> <msubsup> <mrow> <mo>=</mo> <mi>V</mi> </mrow> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mi>ij</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
in the above formula, PijIs the active power of the line or transformer, QijIs the reactive power of the line or transformer; the voltage measurement equation of any bus i of the global power grid is as follows:
Vi=Vi
the injection measurement equation of any bus i of the global power grid is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>G</mi> <mi>ii</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <mi>i</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> </munderover> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>B</mi> <mi>ii</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>&Element;</mo> <mi>i</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> </munderover> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>ij</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>ij</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
in the above formula, Pi、QiActive injection power and reactive injection power of any generator or load i in the global power grid;
(2-2) solving the weighted two-multiplication state estimation model by adopting an interior point method;
and (2-3) obtaining the load flow distribution of the global power grid according to the solved voltage amplitude V and phase angle theta of all nodes of the global power grid.
CN200810117176XA 2008-07-25 2008-07-25 Method for matching multi-region electric network swim based on belt restriction state estimation Expired - Fee Related CN101325336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810117176XA CN101325336B (en) 2008-07-25 2008-07-25 Method for matching multi-region electric network swim based on belt restriction state estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810117176XA CN101325336B (en) 2008-07-25 2008-07-25 Method for matching multi-region electric network swim based on belt restriction state estimation

Publications (2)

Publication Number Publication Date
CN101325336A true CN101325336A (en) 2008-12-17
CN101325336B CN101325336B (en) 2010-11-10

Family

ID=40188732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810117176XA Expired - Fee Related CN101325336B (en) 2008-07-25 2008-07-25 Method for matching multi-region electric network swim based on belt restriction state estimation

Country Status (1)

Country Link
CN (1) CN101325336B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958580A (en) * 2010-10-15 2011-01-26 上海申瑞电力科技股份有限公司 Division calculation method for real time online trend flow of large power grid
CN102427227A (en) * 2011-10-18 2012-04-25 清华大学 Quick correction decoupling power system state estimating method considering zero injection constraint
CN102467592A (en) * 2010-11-09 2012-05-23 华东电力试验研究院有限公司 Device and method for calculating specific power supply networking benefit
CN101540505B (en) * 2009-01-09 2012-05-23 南京南瑞继保电气有限公司 Building method of multistage multi-region interconnected network data model
CN102522746A (en) * 2011-12-13 2012-06-27 河海大学 VSC-HVDC AC/DC optimal power flow method based on primal-dual interior point algorithm
CN101527536B (en) * 2009-04-14 2012-08-29 王照雷 Method for monitoring the operation state of generator and system thereof
CN102945296A (en) * 2012-10-15 2013-02-27 河海大学 Method for reconstructing and modeling uncertainty of distribution network in demand response viewing angle
CN105184418A (en) * 2015-09-23 2015-12-23 重庆大学 Optimal power flow calculating method for equivalent interconnected power network on the basis of consistency of power flow, sensitivity and constraint
CN111262249A (en) * 2019-12-20 2020-06-09 国网新疆电力有限公司 Power grid flow simulation method and system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540505B (en) * 2009-01-09 2012-05-23 南京南瑞继保电气有限公司 Building method of multistage multi-region interconnected network data model
CN101527536B (en) * 2009-04-14 2012-08-29 王照雷 Method for monitoring the operation state of generator and system thereof
CN101958580B (en) * 2010-10-15 2015-01-28 上海申瑞继保电气有限公司 Division calculation method for real time online trend flow of large power grid
CN101958580A (en) * 2010-10-15 2011-01-26 上海申瑞电力科技股份有限公司 Division calculation method for real time online trend flow of large power grid
CN102467592A (en) * 2010-11-09 2012-05-23 华东电力试验研究院有限公司 Device and method for calculating specific power supply networking benefit
CN102427227A (en) * 2011-10-18 2012-04-25 清华大学 Quick correction decoupling power system state estimating method considering zero injection constraint
CN102427227B (en) * 2011-10-18 2013-08-21 清华大学 Quick correction decoupling power system state estimating method considering zero injection constraint
CN102522746A (en) * 2011-12-13 2012-06-27 河海大学 VSC-HVDC AC/DC optimal power flow method based on primal-dual interior point algorithm
CN102522746B (en) * 2011-12-13 2013-12-25 河海大学 VSC-HVDC AC/DC optimal power flow method based on primal-dual interior point algorithm
CN102945296A (en) * 2012-10-15 2013-02-27 河海大学 Method for reconstructing and modeling uncertainty of distribution network in demand response viewing angle
CN102945296B (en) * 2012-10-15 2016-04-27 河海大学 The uncertain rebuild modeling method of power distribution network under a kind of demand response visual angle
CN105184418A (en) * 2015-09-23 2015-12-23 重庆大学 Optimal power flow calculating method for equivalent interconnected power network on the basis of consistency of power flow, sensitivity and constraint
CN105184418B (en) * 2015-09-23 2019-04-02 重庆大学 Based on the equivalent interconnected network optimal load flow calculation method of sensitivity and constraint
CN111262249A (en) * 2019-12-20 2020-06-09 国网新疆电力有限公司 Power grid flow simulation method and system
CN111262249B (en) * 2019-12-20 2024-01-30 国网新疆电力有限公司 Power grid tide simulation method and system

Also Published As

Publication number Publication date
CN101325336B (en) 2010-11-10

Similar Documents

Publication Publication Date Title
CN101325336B (en) Method for matching multi-region electric network swim based on belt restriction state estimation
Lin et al. Decentralized reactive power optimization method for transmission and distribution networks accommodating large-scale DG integration
CN110232475B (en) Distributed transmission network power distribution network coordinated economic dispatching method
CN102623988B (en) Automatic generating method for day-ahead plan power flow in power grid
CN109474017A (en) A kind of real-time distributed economic load dispatching method of power distribution network
CN100570983C (en) The online merging method of multi-region electric network tide model
CN102354981B (en) Distributed computation based voltage stability assessment method of sub-networks in interconnected power network
CN103872681A (en) Online real-time loop closing method based on integration of major network and distribution network
WO2016022603A1 (en) Distributed gradient descent for solving optimal power flow in radial networks
CN110543696B (en) Method for small unmodeled unit to participate in electric power market clearing and safety check
Li et al. Robust estimation of reactive power for an active distribution system
CN106208099A (en) A kind of Method for Reactive Power Optimization in Power based on bi-level programming and application thereof
CN102044871A (en) Method for matching power flow of superior and inferior power grids in dispatcher training simulators (DTSs)
CN105958496A (en) Continuous power flow based maximum transmission capacity calculation method for system containing power source converter (VSC)
Zhang et al. A distributed multi-control-center dynamic power flow algorithm based on asynchronous iteration scheme
CN105529703B (en) A kind of urban network reconstruction planing method based on power supply capacity bottleneck analysis
CN102709955B (en) Multi-section-based power flow control method
CN114117705A (en) Power distribution information physical system optimization method and system, storage medium and computing equipment
CN102426623A (en) Automatic failure fitting modeling method for power load modeling
CN108899896B (en) Power supply capacity evaluation method based on improved benders decomposition method
Nie et al. High-Performance Optimal Power Flow Estimation for EV-Interfaced Microgrids With Standardized Grid Services
CN104680431A (en) Reliability assessment method for intelligent substation secondary system
CN110378578A (en) A kind of alternating current-direct current mixed connection power distribution network methods of risk assessment based on point estimation
CN108764738A (en) A kind of city power transmission network safe probability appraisal procedure considering elastic nargin
CN110675276B (en) Method and system for inversion droop control of direct current power transmission system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101110

Termination date: 20180725

CF01 Termination of patent right due to non-payment of annual fee