CN101303930B - 蒸发冷却非均相式电力变压器 - Google Patents

蒸发冷却非均相式电力变压器 Download PDF

Info

Publication number
CN101303930B
CN101303930B CN2007100744079A CN200710074407A CN101303930B CN 101303930 B CN101303930 B CN 101303930B CN 2007100744079 A CN2007100744079 A CN 2007100744079A CN 200710074407 A CN200710074407 A CN 200710074407A CN 101303930 B CN101303930 B CN 101303930B
Authority
CN
China
Prior art keywords
transformer
cooler
evaporative cooling
medium
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007100744079A
Other languages
English (en)
Other versions
CN101303930A (zh
Inventor
谢世英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN AODIAN HIGH-HANDED ELECTRIC Co Ltd
Original Assignee
Shenzhen Auto Electrical High Voltage Electric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Auto Electrical High Voltage Electric Co ltd filed Critical Shenzhen Auto Electrical High Voltage Electric Co ltd
Priority to CN2007100744079A priority Critical patent/CN101303930B/zh
Publication of CN101303930A publication Critical patent/CN101303930A/zh
Application granted granted Critical
Publication of CN101303930B publication Critical patent/CN101303930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transformer Cooling (AREA)

Abstract

本发明涉及一种蒸发冷却非均相式电力变压器,为解决现有变压器在冷却技术中存在的各种问题,本发明的变压器包括箱体、装于箱体内的变压器器身、以及装于箱体内的蒸发冷却介质,其中,冷却介质的蒸发温度在30-123℃之间,变压器器身浸于所述蒸发冷却介质中,并设置有用于对从所述箱体内蒸发流出的气态介质进行冷却、使之凝结为液态并回流到所述箱体内的冷却器。变压器工作时,所述冷却介质的蒸发、冷凝全过程无需外加动力,可形成良好、高效的自动循环冷却,并可降低变压器的运行温度,提高变压器的运行效率。而其中使用的冷却介质(A·HFC-8160)的环保特性好,大大优于传统技术中使用的六氟化硫介质。

Description

蒸发冷却非均相式电力变压器
技术领域
本发明涉及电力变压器,更具体地说,涉及一种蒸发冷却非均相式电力变压器。
背景技术
当前具有代表性的电力变压器主要有油浸冷却变压器、环氧树脂干式变压器、以及SF6(六氟化硫)气体变压器,三者分别代表了液体、固体、气体三种不同冷却方式的变压器。
其中,油浸变压器采用变压器油为冷却介质,其电气性能良好,但导热性能差,油质使用时间略久后就会沉淀,维护工作量大。变压器油易吸潮,耐温也低,只能在105℃以下才能安全运行。此外,变压器油易燃烧,这是最大的缺点,所以这种变压器难于进入都市的供电系统和对防火要求高的场地,例如石油、化工、电站厂房内部等。
环氧树脂干式变压器以环氧树脂为主绝缘,它是一种难燃的变压器,近年来多用于都市环境;由于其主绝缘很厚,所以散热很困难。这种变压器是采用自然通风冷却或者增设强迫空气冷却,冷却效率差,因此体积较大,材料用量也大,相对的效率也较低,价格较贵。另一问题是环氧树脂是不能降解的,因此这种干式变压器退役后就难以处理,会造成环保问题。
SF6气体变压器中使用了SF6气体,其绝缘性能和灭电弧性能良好,且不燃烧;但是它的导热性能很差,运行时有压力,使变压器箱体成了一个压力容器,密封要求也高,所以制造难度大,产品价格昂贵。最大的问题是其温室效应太大,GWP=23900。按照《京都议定书》,温室效应大于1000时,就要限制其排放量。
可见,上述三种变压器都存在各自的缺点,不能完全满足当今建设发展的需要。
在朱英浩院士主编的《新编变压器实用技术问答》一书(辽宁科学技术出版社,1999年7月1日出版)中,介绍了一种蒸发冷式变压器,如图1所示,其中,101是变压器器身,102是喷淋器,103是压缩机,104是冷却器,105是回液管,106是出气管,107是泵,108是冷液槽,109是液滴,110是SF6气体,111是FC-75液体。
该变压器中采用了典型的喷淋式蒸发冷却方式。在投入电网前,先充满SF6气体,投入电网之后,泵107将液体FC-75抽入喷淋器102中,由喷淋器将FC-75喷向变压器器身101;FC-75吸收变压器器身的热耗,使自己的温度升高,在相应的压力下蒸发成气体;然后沿出气管106升入冷却器104中,在此被冷凝后变成液体,再经回液管105流回冷液槽108中。如此循环,即可使变压器获得冷却。图中压缩机103提供驱使SF6气体循环流动的动力。
从图1及上面的描述可以看出,这种变压器仍有不少缺点:
(1)这种冷却方式要应用液体FC-75和气体SF6,冷却循环中所需的液体和气体需要依靠泵和压缩机才能循环,所以是一种强迫循环方式。
(2)由于其中的冷却液是从变压器器身的上顶往下喷淋,使温度分布很不均匀,上顶和下底温差会高达40℃。
(3)因其中使用了压力SF6气体,使得变压器箱体变成压力容器,而且SF6气体一旦泄露出来,其分解物会与水化合而成为有毒的物质,对设备和人身都是非常有害的。
(4)虽然SF6气体对臭氧层的破坏力ODP=0.00,但是其温室效应GWP=23900,在大气层中的寿命ALT=3200,根据《京都议定书》(KyotoProtocol)规定,当GWP超过1000值时,就要限制其排放量,并且要求发达国家首先将温室气体的排放量冻结在20世纪90年代的水平。
此外,除申请号为98200236.X是采用全浸式结构而外、申请号为200610011371.5的专利申请中,公开了不同结构的蒸发冷却式变压器,但其中都要采用SF6气体加FC-75液体作为混合绝缘,并且都需要外置泵促使冷却液体循环作为绝缘体,前面已经叙述过SF6气体有主要缺点:即对大气温室效应的严重影响。
发明内容
本发明要解决现有变压器在冷却技术中存在的各种问题,特别是需使用SF6气体而造成的对环保不利的问题。
本发明解决其技术问题所采用的技术方案是:构造一种蒸发冷却非均相式电力变压器,包括箱体、装于所述箱体内的变压器器身、以及装于所述箱体内的蒸发冷却介质,其特征在于,所述冷却介质的蒸发温度在30-123℃之间;所述变压器器身浸于所述蒸发冷却介质中;还包括用于对从所述箱体内蒸发流出的气态介质进行冷却、使之凝结为液态,并回流到所述箱体内的冷却器。
本发明中,所述冷却器也可以是波纹箱式冷却器,并装于所述箱体的上方;从所述箱体内蒸发流出的气态介质可进入所述冷却器,在此被冷却为液态并在重力作用下自动滴回所述箱体内。
本发明中,所述冷却器也可以是水冷式冷却器,并装于所述箱体的上方;从所述箱体内蒸发流出的气态介质可进入所述冷却器,在此被冷却为液态并在重力作用下自动滴回所述箱体内。其中,所述水冷式冷却器可以是用铜管、铝合金管、或不锈钢管制成的管道式水冷却器。
本发明中,可在所述箱体内上部设置占箱体内部空间的15-30%的蒸发空间,所述蒸发空间所处位置的箱体侧壁构成所述冷却器;所述冷却介质蒸发后在所述蒸发空间所处位置的箱体侧壁被冷却为液态并在重力作用下自动滴回。此时,还可进一步在蒸发空间所处位置的箱体侧壁的外部增设冷却器。
本发明中,所述冷却器可以是外置式冷却器,其下部通过回液连管与所述箱体下部相通,其上部通过出气管与所述箱体上部相通;从所述箱体内的上部蒸发流出的气态介质可经所述出气管进入所述冷却器,在此被冷却为液态并经回液连管流回所述箱体内的下部。
针对前述设置蒸发空间的方案,所述蒸发空间所处位置的箱体侧壁可用波纹冷却片制成;并可将所述变压器器身倒置于所述箱体中。
另外,本发明还提供一种用于变压器的蒸发冷却介质,其化学分子为CmFnHxOy,其中,m=4~10、n=10~20、x=0~4、y=0~4;改变m、n、x、y可使其蒸发温度在30-123℃之间调节。本发明中将其定名为A·HFC-8160,凝固点在-88℃以下。
由上述技术方案可以看出,本发明具有以下优点:
(1)在可靠性方面,本发明中使用的冷却介质无闪点,不燃烧并且具有灭火性能的,这就直接解决了油变压器易燃和环氧树脂变压器只是阻燃(而不是不燃)的缺点。
(2)采用蒸发冷却方式,降低了变压器的运行温度,也就降低了变压器导线的电阻温度系数,从而降低了变压器的负载损耗,提高了变压器的运行效率,这是现有变压器都无法做到的特性,所以它是一个节能高的变压器。
(3)本发明中使用的冷却介质(A·HFC-8160)是一种符合环保要求的介质,它的特征是对臭氧层破坏力ODP=0.00。它的温室效应GWP=500,而现在的SF6的GWP=23900,按京都协定是要被禁止排放的。它在大气中存留的时间ALT<4年,而SF6在大气中存留的时间ALT=3200年,环氧树脂是不化学分解的物质。因此它是一个环保的产品。
(4)在结构设计方面,按照蒸发冷却非均相理论,全面的开发了蒸发冷却的性能,即自然沸腾区、核态沸腾区,使之蒸发冷却效率能够全面的充分的发挥,因此提出了五种结构设计。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是现有技术中的一种美国制造的蒸发冷却电力变压器的结构示意图;
图2A是本发明实施例一中变压器采用波纹箱式冷却器空气自冷方案的结构示意图;
图2B是图2A的左视图;
图3A是本发明实施例二中变压器采用管道式水冷却方案的结构示意图;
图3B是图3A的左视图;
图4A是本发明实施例三中变压器采用全浸没、自循环冷却方案的结构示意图;
图4B是图4A的左视图;
图5A是本发明实施例四中变压器采用分离式冷却方案的结构示意图;
图5B是图5A的左视图;
图6A是本发明实施例五中变压器采用钟罩式冷却方案的结构示意图;
图6B是图6A的左视图。
具体实施方式
传统电力变压器的冷却都是基于显热的方式,本发明引入了介质在换热过程中发生相变,使其冷却效率大大提高。在换热过程中,介质从液相吸收热能变为气相,当温度降低到介质在相应压力下的蒸发温度点时,气相介质放出潜热冷凝为液滴,这个过程称之为蒸发冷却。
在应用蒸发冷却技术时,根据变压器特性和结构的不同,本发明研究了蒸发冷却非均相沸腾的方式。蒸发冷却非均相,是指介质的蒸发、冷凝全过程无需外加动力,并且介质的流动方向为非定向。从后面的实施例中可以看出,用于装设变压器器身的箱体正如一个大池子,将变压器器身完全浸入液态冷却介质中,构成非常理想的非均相蒸发结构。
因此,本发明将利用了上述技术方案的变压器其定名为“蒸发冷却非均相式电力变压器”。其中,在全密封的箱体内灌以在常温下呈液态的介质,介质浸没变压器器身,当变压器带上负荷后,会在器身的铁芯和线圈中产生电磁损耗,这些损耗转换为热耗,将周围的液态介质加热,部分液态介质受热后逐渐产生气泡。该气泡的流向是:从高压区流向低压区,从高温区流向低温区。所以,将冷却器设置在低压、低温区,可使流至冷却器的介质(气液两相)在此放热,并冷凝为液滴,再回流至箱体内。如此循环,即可使变压器获得有效的冷却。
在下面的表1中,将本发明变压器与传统变压器的主要性能作了一个对比。
表1:蒸发冷却变压器非均相式与干变、油变、SF6气体变压器的性能比较
蒸发冷却非均相式变压器                   干式变压器 油变压器 SF6气体变压器
绝缘等级 B/F B/F/H A E/B
冷却介质 氟碳化合物 空气 变压器油 SF6气体
防燃性 不燃、灭火 阻燃 可燃 不燃
防潮性 一般
密封性 全密封 敞开 半密封全密封 全密封
运行时内部压力 0.02MPa—0.015MPa 半密封:无0.02MPa-0.015MPa           0.1-0.6MPa
强迫冷却方式 自循环 风扇 空气自冷风扇、泵
生态环保特性 对臭氧层的破坏力:ODP(CFCl1=1)0.000对大气层的温室效应GWP(CO2=1)500在大气层的寿命ALT(1TH)=4 变压器退役后环氧树脂不能降解,造成环境污染 SF6气体分解物与水结生合生成腐蚀性极强的氢氟酸,剧毒,对人身和设备均有损害。环保特性:对臭氧层的破坏力:ODP(以CFC11=1)=0.000对大气层的温室效应GWP(以CO2=1)=23900在大气中的寿命ALT(1TH)=3200     
损耗 较小 较大
绕组温升限值(K) 65* 125/155 65 65
过载能力 一般
噪声 较低 较低
耐老化 绝缘不易老化 易老化 易老化 易老化
防尘性
维护工作 一般
使用地点 户内、户外 户内 户外 户内、户外
使用寿命 30年 20年 20年 20年
出厂价格* 较高
服役期间运营成本 较高 较高
*:蒸发冷却变压器应用的介质最高使用温度是400℃,此处表中所说的温升限值65K,是指为了降低变压器的负载损耗,从降低铜线的电阻温度出发,限其温升限值65K.
*:参照目前国际通用计算变压器价格法,即总拥有费用法TOC(Total Owning Cost)。
本发明的以下实施例中,使用了一种名为A·HFC-8160的蒸发冷却介质,A·HFC-8160是一种氟矿石作为原料提炼的液体,原料产地主要在中国,本产品已由深圳奥特迅高压电器有限公司化工部制造成功。作为商品,命名为A·HFC-8160,A代表奥特迅,其化学分子式为CmFnHxOy,其中m=4~10、n=10~20、x=0~4、y=0~4,其子结构可以是直链、支链、或环状的一种或多种的结合。当改变m、n、x、y时,即可调节液体的蒸发温度,介电常数及分子量,而耐电压强度均在≥40kV,下面列出一些品种的特性。
Figure S07174407920070611D000071
下面将结合附表对其性能作详细的说明,其中表2显示了该介质的物理化学特性,表3显示了其环保特性,表4显示了其热导系数,表5显示了该介质在化学溶剂的溶解性,表6显示气体在该介质中的溶解度,表7显示了该介质与金属、塑料、弹性材料的相容性。
这种介质是已知最稳定的化合物之一,它对许多物质是一种不良溶剂,与水和油都不能混合,不侵蚀绝缘材料和金属材料,它的液体是不能燃烧的,并且还有灭火的性能。热稳定性非常高,即使加热到400℃,也不会分解。作为冷却剂,A·HFC-8160是一种无色、无臭、无毒、无腐蚀性的液体,即使用手多次去接触它,皮肤上也毫无刺激。它可以无限期地储存在清洁的金属容器中而不会发生变化。
A·HFC-8160的粘滞性和表面张力极低,所以能在变压器绕组的匝间和铁芯冲片的缝隙中流动,并且在线圈表面很容易地沾湿。它的分子量很高,所以它的气体密度也很高,蒸发冷却效果好。
A·HFC-8160在液态时具有相当高的介电强度,用标准油杯试验,电击穿强度>40KV。在应用上更为重要的特点是它的气体也具有很高的介电强度,气体和蒸发气体的介电强度和压力的变化成比例关系,一般是随压力上升而增加,因此A·HFC-8160在1Kg/cm2的表压力下,其蒸发气体的介电强度可与变压器油相比。在<35KV时未发现有电晕现象。
A·HFC-8160的蒸发点可在30-123℃的范围调节。因此它可以选择空气和水作为二次冷却介质。A·HFC-8160的凝固点可低到-88℃,因此它可以在-55℃的地区运行。
此外,这种介质还有以下特点:(1)由于它的低粘滞度、高密度、高体积膨胀,可提供很好的热力对流。(2)由于它的表面张力低,所以在热表面很容易使受热蒸发成的气泡上升到液面并浮出液面。(3)由于它的高热导和高的热力特性,使之能很好的吸收热能。(4)由于它的粘度很低,所以流动起来很通畅,需要推动介质流动的功率是很小的,因此很容易建立自循环系统。(5)由于它在发生电弧时,在液体和气体中产生的自身热耗很小,因此产生的腐蚀性也是很小的。(6)在设备运行温度范围内,它的冷却效率特别好,例如100℃的碳阻在空气中自冷,带走的热耗为1W;若用A·HFC-8160浸没方式冷却,温度同样是100℃,所带走的电阻热负荷就达到5W。
试验表明,冷却1个2200W热耗的设备,如果用SF6(六氟化硫)气体来冷却,需要5.5公斤、体积为1672cm3;而采用A·HFC-8160介质冷却时,只需要2.3公斤,体积只有885.6cm3。A·HFC-8160提供了实现蒸发冷却式变压器的关键技术,使产品制造成为可能,并能充分发挥其优越性。
表2、A·HFC-8160的物理化学特性
Figure S07174407920070611D000081
Figure S07174407920070611D000091
表3、A·HFC-8160的环保性质
Figure S07174407920070611D000092
表4、A·HFC-8160的热导系数
Figure S07174407920070611D000093
表5、A·HFC-8160在化学溶剂的溶解性(mg/100ml,20℃)
液体 A·HFC-8160在液体中 液体在A·HFC-8160中
丙酮 4.8 1.2
2.6 3.8
三氟化笨 微溶 微溶
甲笨醇 0.2 0.4
四氯化碳 20.2 36.5
液体 A·HFC-8160在液体中 液体在A·HFC-8160中
氯笨 1.8 3.2
三氯甲烷 7.7 4.5
环乙烷 0.9 2.4
三氯乙烷
乙醚
已酸盐 7.5 6.5
庚烷 25.5 11.6
异丙烯基醇 4.1 1.3
甲醇 1.0 0.1
发烟硫酸 5.4 2.3
石油
甲苯 2.9 4.1
松节油 5.3 1.0
二甲苯 3.0 3.0
不溶 不溶
表6、气体在A·HFC-8160中的溶解度
气体 温度(℃) 溶解(Mol%)
25 0.44
25 Ca10
10.6 0.354
14.0 0.352
20.4 0.35
25.0 0.349
30.4 0.347
空气 0/25/80 0.48/0.46/0.42
25 0.14
4.5 0.532
11.6 0.521
19.4 0.508
气体 温度(℃) 溶解(Mol%)
25 0.5
31 0.491
5.6 0.554
14.3 0.54
25.0 0.52
31.5 0.5
二氧化碳 4.0 2.606
9.5 2.363
18.0 2.179
24.9 2
25 1.996
31.2 1.85
SF6 +35 15.5
-25 7.3
表7、A·HFC-8160与金属、塑料、弹性材料的相容性
金属 时间(天) 温度(℉) 结果
不锈钢18-8 10 230 不变
冷轧钢 10 230 不变
铝52S 10 230 不变
硅钢片 10 230 不变
在冷轧板上银焊 10 230 不变
锡焊(95%锡,5%锌) 10 230 不变
10 230 不变
黄铜 10 230 不变
铜/盐合金C172 10 230 不变
镁合金A232B 10 230 不变
10 230 不变
塑料
丙烯酸 10 230 不变
聚乙烯 10 230 不变
金属 时间(天) 温度(℉) 结果
聚丙烯 10 230 不变
聚碳酸脂 10 230 不变
聚脂 10 230 不变
聚甲基丙烯碳酸甲脂 10 230 不变
聚四氟乙烯包线 10 230 不变
聚四氟乙烯薄膜 10 230 不变
三聚氰胺压板 10 230 不变
尼龙薄膜 10 230 不变
弹性材料
硅DC997包铜线 30 356 在端头处有微小膨胀
硅橡胶 30 356
氟橡胶 30 356 不变
丁晴橡胶 30 356 不变
体积膨胀
聚氯丁橡胶 3 194 无变化
聚硫橡胶 3 194 无变化
丁基150 3 194 无变化
丁二烯 3 194 无变化
LS-53(氟硅橡胶) 3 194 无变化
本发明的实施例一如图2A和图2B所示,本实施例中采用的是波纹箱式冷却器空气自冷方案,其中,201是波纹箱式冷却器,202是箱体,203是接地螺栓,204是放气阀,205是分接开关,206是进液、放液阀,207是监控器,208是低压套管,209是视察窗,210是高压套管。
本实施例中的蒸发冷却变压器的外形与油浸冷却变压器基本相似,它的器身是浸没在冷却介质之中。在常温时,介质呈液体状态,箱体的结构为全密封式,冷却器布置在箱体上部,与箱体的上部开口相通。
当变压器带上负载后,由于变压器器身中硅钢片和绕组中产生的损耗转化为热耗,热量被器身周围的介质所吸收,介质的温度逐渐上升,在相应的压力下发生蒸发现象。最开始是处于自然蒸发状态,并产生细微的气泡;当达到介质的蒸发点温度时,开始进入核态沸腾状况,气泡逐渐增大,其质量与液态分子的质量差也逐渐增大;于是,按重力学的原理,质量轻的气泡就向低压区流动,当储存了足够的热能后,就会脱离液面而以气泡的形态浮升,进入到箱体上部的波纹箱式冷却器201中,气态介质在这里将热量传递给冷却器的金属面,自身则冷凝成液滴,并滴回箱体中,即转化为液态。工作过程中,液态介质不断吸收器身产生的热耗,产生相变而成为气态介质,从而对变压器中的发热部件进行冷却,所以这个冷却系统就称为蒸发冷却自循环系统。当介质进入核态沸腾后,换热方式就利用了介质相变的潜热特性,在相应的压力下,使设备的温度基本上恒定。
由于蒸发冷却系统采用了自循环方式,无需外置动力,所以可提高运行的可靠性。由于箱体上部安装了波纹箱式冷却器201,因此,分接开关205、低压套管208、高压套管210均装于变压器的侧面,放气阀204及监控器207则箱体的上方。而进液、放液阀206则装于箱体的下方。视察窗209装于箱体的侧面,高度与器身平齐,以便观察介质液面及介质蒸发的情况。
本发明的实施例二如图3A和图3B所示,其中,301是用铜管、铝合金或不锈钢管做成的水冷冷却器,302是变压器箱体,303是接地螺栓,304是放气阀,305是分接开关,306是进、出液阀,307是监控器,308是低压套管,309是视察窗,310是高压套管。
本实施例的结构与实施例一基本上是相同的,只是将其中变压器顶部的波纹箱式冷却器201用管道式水冷却器301代替,这是专门为水电站(或者水源很容易取得的地方)设计的,它可以利用水作为二次冷却介质,即由流动的水来带走热量,从而促进气态介质在此凝结为液滴。因为水冷却的效率高于空气冷却,所以从图3A与图2A比较可以看出,图3A变压器的高度显然比图2A低了许多,也就是说本实施例更能节省空间,而且本实施例中的变压器运行的温度更低。
本发明的实施例三如图4A和图4B所示,其中采用了全浸没、自循环冷却系统方案,其中,401是高压套管,402是低压套管,403是温度信号计,404是温度显示器,405是箱体,406是放气阀,407是进、出液阀,408是变压器器身,409是线圈,410是监控器,411是分接开关。
这种结构中,变压器器身408仍然是浸没在介质中,高压套管401和低压套管402安装在箱体的顶盖上。分接开关411吊挂在箱体的上方,从分接开关11以上,是空出来的空腔,作为预留的蒸发空间。箱体405是用波纹板组焊成的,使得结构更具整体性,箱体的刚度也大为增强。
本实施例的蒸发冷却系统的原理是一样的,箱体就如一个池子,变压器器身全浸没入于箱体内,液体高度约占3/4,多余的高度部分是不灌介质的,留出的体积作为蒸发空间,占1/4空间。变压器在带负荷运行时,变压器的铁芯和绕组产生的损耗转化为热耗,此热量加热其周围的介质,使得周围的介质温度上升,在相应的压力下发生蒸发现象。箱体内的大部分介质处于自然态蒸发状况,在热负荷的中心的部分介质(处于变压器器身高度2/3以上)会进入核态沸腾状态;气泡受热直径逐渐增大,浮升到液面,并脱离液面而形成气泡浮升到蒸发空间,将热量传给箱壁,在此凝结为液滴,再滴回箱体中。如此循环,可使变压器的温度基本上恒定。
具体实施时,根据不同变压器的冷却需要,蒸发空间的容积可占整个箱体内部空间的15%-30%。另外还可在蒸发空间那一段箱体的外部增设冷却器,例如设置波纹箱式冷却器,以增强冷却效果。
本发明的实施例四如图5A和图5B所示,这是一种分离式结构,即箱体与冷却器是分开的,并通过管子将两分离体联通,其中501是高压套管,502是低压套管,503是温度信号计,504是温度显示器,505是箱体,506是放气阀,507是进、出液阀,508是冷却器上段,509是冷却器下段,510是监控器,511是分接开关,512是回液连管,513是出气管。
图中的箱体505与通常全密封变压器的箱体结构基本上是一样的,只是箱体上不带冷却器(片)。冷却器是分离出来的,具体可用铝合金件组合而成,可以做成装配式结构,易于与箱体组合配套。使用铝合金可以制成多种样式,甚至可以组成大型雕塑结构,特别在大都市中心的大容量变电站中,可以树立起标志性的、有亮点的雕塑。本实施例中将分接开关511装在两线圈的弧形外空间,充分利用了两相绕组之间的空档,又可以降低变压器的高度。
本实施例中的变压器带上负荷后,蒸发的介质经出气管513流向冷却器,在冷却器上段508冷却后变为液滴,滴回冷却器下段509;对于经出气管513流出的热液体,则直接流至冷却器下段509;所有冷却后的介质均从回液连管512流回箱体505中,如此自动循环冷却。
本发明的实施例五如图6A和图6B所示,本实施例改变较大,基本的设计思路是将变压器器身倒置过来,其中601是上箱体,602是高压套管,603是低压套管,604是波纹箱式冷却器片,605是下箱体,606是监控器,607是分接开关,608是标志牌。
本实施例中,箱体分成上箱体601和下箱体605。变压器的下箱体605承担变压器器身底座、高压套管、低压套管和分接开关的安装。上箱体601的外部装有波纹冷却片,所以它同时是一个冷却器,其四壁和上顶是用波纹箱式冷却器片4焊接而成,正中间有空位,正好装设公司的标志牌6080。
本实施例中,下箱体605不承担冷却器的作用,全部的热交换在上箱体601中进行,上箱体的下段处于自然蒸发区,上段处于核态蒸发区,所以介质只灌到浸没变压器的器身即可,上段一部分及上顶的波纹片是空着的,留作核态蒸发的空间。这种结构非常紧凑,体积小,灌液量也少。
从上述实施例可以看出,本发明具有以下优点:
1)节能:本发明的蒸发冷却变压器,由于冷却效率高,可使变压器的运行温度大大降低。例如,在设计时可选定介质的蒸发温度为64℃,则满载运行的温度会在70℃左右,它与干式变压器和SF6(六氟化硫)气体变压器相比,运行温度降低了40~50℃。研究表明,铜导体的运行温度每降低1℃时,其电阻温度系数就降低0.004,所以使用本发明的方案时电阻温度系数可以降低16~20%,即变压器的负载损耗可以降低16~20%,此数值是很可观的。
2)过载能力强:本发明中,如果将蒸发冷却变压器运行在核态沸腾工作区,由于利用了介质的潜热方式,所以运行的温度基本上是保持不变的。在此工作状态下即使过负载30~40%,变压器的运行温度和相应的压力都保持不变,因此其过载能力非常强。
3)良好的生态环保特性:其中使用的介质A·HFC-8160对大气臭氧层的破坏力ODP=0.00;对地球的温室效应GWP=500;在大气中存留的时间ALT<4。所以该介质是很佳的环保产品。配以A·HFC-8160介质的变压器就具有良好的环保特性。
4)新介质的其他优势:介质A·HFC-8160是无闪点的,即不燃烧,且具有灭火性能。将其应用于变压器时,无需考虑防火功能。由于蒸发冷却变压器是利用变压器自身产生的损耗来促使其冷却循环的,因此不需要外力(即不需要外置泵)。另外,介质A·HFC-8160无毒、无重金属,化学稳定性非常高,长久的运行都不会起什么变化,可靠性非常高,安全性也非常好。

Claims (7)

1.一种蒸发冷却非均相式电力变压器,包括箱体、装于所述箱体内的变压器器身、以及装于所述箱体内的蒸发冷却介质,还包括用于对从所述箱体内蒸发流出的气态介质进行冷却、使之凝结为液态并回流到所述箱体内的冷却器;所述变压器器身浸于所述蒸发冷却介质中;其特征在于,
所述冷却器上设有放气阀;
所述蒸发冷却介质的化学分子为CmFnHxOy,其中,m=4~7或9~10,n=10~20,x=0~4,y=0~4,该蒸发冷却介质的蒸发温度在58~123℃之间,其凝固点在-88℃以下。
2.根据权利要求1所述的蒸发冷却非均相式电力变压器,其特征在于,所述冷却器为波纹箱式冷却器,并装于所述箱体的上方;从所述箱体内蒸发流出的气态介质可进入所述冷却器,在此被冷却为液态并在重力作用下自动滴回所述箱体内。
3.根据权利要求1所述的蒸发冷却非均相式电力变压器,其特征在于,所述冷却器为水冷式冷却器,并装于所述箱体的上方;从所述箱体内蒸发流出的气态介质可进入所述冷却器,在此被冷却为液态并在重力作用下自动滴回所述箱体内。
4.根据权利要求3所述的蒸发冷却非均相式电力变压器,其特征在于,所述水冷式冷却器是用铜管、铝合金管、或不锈钢管制成的管道式水冷却器。
5.根据权利要求1所述的蒸发冷却非均相式电力变压器,其特征在于,所述箱体内上部设有占箱体内部空间的15-30%的蒸发空间,所述蒸发空间所处位置的箱体侧壁构成所述冷却器;所述冷却介质蒸发后在所述蒸发空间所处位置的箱体侧壁被冷却为液态并在重力作用下自动滴回。
6.根据权利要求5所述的蒸发冷却非均相式电力变压器,其特征在于,所述蒸发空间所处位置的箱体侧壁为波纹冷却片制成;所述变压器器身倒置于所述箱体中。
7.根据权利要求1所述的蒸发冷却非均相式电力变压器,其特征在于,所述冷却器是外置式冷却器,其下部通过回液连管与所述箱体下部相通,其上部通过出气管与所述箱体上部相通;从所述箱体内的上部蒸发流出的气态介质可经所述出气管进入所述冷却器,在此被冷却为液态并经回液连管流回所述箱体内的下部。
CN2007100744079A 2007-05-10 2007-05-10 蒸发冷却非均相式电力变压器 Active CN101303930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100744079A CN101303930B (zh) 2007-05-10 2007-05-10 蒸发冷却非均相式电力变压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100744079A CN101303930B (zh) 2007-05-10 2007-05-10 蒸发冷却非均相式电力变压器

Publications (2)

Publication Number Publication Date
CN101303930A CN101303930A (zh) 2008-11-12
CN101303930B true CN101303930B (zh) 2011-08-31

Family

ID=40113787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100744079A Active CN101303930B (zh) 2007-05-10 2007-05-10 蒸发冷却非均相式电力变压器

Country Status (1)

Country Link
CN (1) CN101303930B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282383B (zh) * 2013-07-05 2017-06-20 上海市高桥电缆厂有限公司 蒸发内冷式多芯电缆循环系统
CN107895637A (zh) * 2017-06-30 2018-04-10 广东合新材料研究院有限公司 一种电磁线圈液冷系统
CN110782191B (zh) * 2019-12-31 2020-05-05 汇网电气有限公司 基于云平台的电网开关柜远程管理方法及系统
CN112420342B (zh) * 2020-10-27 2021-08-31 株洲中车时代电气股份有限公司 基于电力电子变压器的泵驱相变冷却负载系统
CN113539628B (zh) * 2021-07-13 2022-07-12 内蒙古东立光伏电子有限公司 一种多晶硅还原炉变压器加速冷却辅助装置
CN113539631B (zh) * 2021-09-07 2021-11-23 江苏亨特集团华特电气有限公司 一种变压器用的智能冷却控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350838A (en) * 1980-06-27 1982-09-21 Electric Power Research Institute, Inc. Ultrasonic fluid-atomizing cooled power transformer
CN2399809Y (zh) * 1999-06-09 2000-10-04 阮仕荣 蒸发冷却电力变压器
CN1822258A (zh) * 2006-03-17 2006-08-23 中国科学院电工研究所 一种喷淋式蒸发冷却变压器
CN201041765Y (zh) * 2007-05-21 2008-03-26 深圳奥特迅电气设备有限公司 蒸发冷却非均相式电力变压器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350838A (en) * 1980-06-27 1982-09-21 Electric Power Research Institute, Inc. Ultrasonic fluid-atomizing cooled power transformer
CN2399809Y (zh) * 1999-06-09 2000-10-04 阮仕荣 蒸发冷却电力变压器
CN1822258A (zh) * 2006-03-17 2006-08-23 中国科学院电工研究所 一种喷淋式蒸发冷却变压器
CN201041765Y (zh) * 2007-05-21 2008-03-26 深圳奥特迅电气设备有限公司 蒸发冷却非均相式电力变压器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP昭58-216409A 1983.12.16

Also Published As

Publication number Publication date
CN101303930A (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
CN201041765Y (zh) 蒸发冷却非均相式电力变压器
CN101303930B (zh) 蒸发冷却非均相式电力变压器
CN1822258A (zh) 一种喷淋式蒸发冷却变压器
CN103390485B (zh) 一种液氮强冷变压器及其制冷方法
CN110055037A (zh) 一种动力锂电池用浸没式散热冷却液及其制备方法
CN101409140A (zh) 一种采用蒸发冷却技术的变压器冷却系统
CN1812014A (zh) 一种带油箱的套筒式蒸发冷却变压器
WO2009105966A1 (zh) 油浸式变压器的冷却系统及其冷却方法
CN101369483A (zh) 一种热管式变压器套管
US1955345A (en) Absorption refrigerating machine
CN103268808A (zh) 一种浸渍式蒸发冷却变压器
CN101197207B (zh) 一种不燃型有载分接开关
CN2399809Y (zh) 蒸发冷却电力变压器
CN100545963C (zh) 蒸发冷却牵引变压器
CN2333071Y (zh) 新型蒸发式冷却的变压器
CN206379245U (zh) 一种新型油浸式电力变压器的冷却结构
CN206650968U (zh) 一种用于特高压直流输电换流阀的冷却系统
CN209691532U (zh) 一种220kV蒸发冷却式变压器
CN109586182B (zh) 海上箱式安全变电站
CN115706279A (zh) 一种电池包的降温并阻燃方法及装置
CN202523506U (zh) 一种用热管冷却的220kv级电力变压器
CN206196229U (zh) 一种浸入式电子产品及电子设备散热系统
CN206774952U (zh) 一种散热型环网柜
CN202564022U (zh) 一种用热管冷却的整流变压器
CN102842406A (zh) 一种蒸发冷却液浸式变压器的恒压冷凝器

Legal Events

Date Code Title Description
C06 Publication
C41 Transfer of patent application or patent right or utility model
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20080919

Address after: Shenzhen, Guangdong province Nanshan District North Ring Road high frequency industrial zone, No. 7 factory building, a layer of Northeast

Applicant after: Shenzhen Aodian High-handed Electric Co., Ltd.

Address before: Shenzhen City, Nanshan District high tech Industrial Park in Guangdong Province, South Road No. 29 South Building a layer of C

Applicant before: Shenzhen Aotexun Electrical Equipment Co., Ltd.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant