CN101303728A - Method for identifying fingerprint facing image quality - Google Patents
Method for identifying fingerprint facing image quality Download PDFInfo
- Publication number
- CN101303728A CN101303728A CNA2008101381170A CN200810138117A CN101303728A CN 101303728 A CN101303728 A CN 101303728A CN A2008101381170 A CNA2008101381170 A CN A2008101381170A CN 200810138117 A CN200810138117 A CN 200810138117A CN 101303728 A CN101303728 A CN 101303728A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- munderover
- math
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000001228 spectrum Methods 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000012706 support-vector machine Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 2
- 238000003672 processing method Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Collating Specific Patterns (AREA)
Abstract
The invention discloses a fingerprint identifying method facing to the quality of an image, which solves the defect that the compatibility of the existing fingerprint identifying method to an ideal fingerprint image and a non ideal fingerprint image is not good. The method of the invention includes: (1) reading the collected fingerprint image g(x, y), wherein, g (x, y) is the gray value of the pixel points (x, y); (2) carrying out quality characteristic extracting on the fingerprint images and respectively extracting three characteristics of grads consistency QT, the frequency spectrum characteristic QF and the gray standard difference Qs; (3) adopting an SVM sorter to carry out learning and sorting on the qualities of the fingerprint images and confirming the qualities of the fingerprint images as two defined quality types; (4) respectively adopting a matching arithmetic based on detail points and a matching arithmetic based on textures to the two fingerprints with better and poorer qualities to accomplish the identification.
Description
Technical Field
The invention relates to a fingerprint identification method, in particular to a fingerprint identification method facing to image quality.
Background
In the automatic fingerprint identification technology, the quality of an image is an important factor influencing the identification performance. In the existing fingerprint identification processing method, the minutiae of the fingerprint image are usually acquired for matching, but the performance of the method is obviously reduced for the image with poor quality. While other recognition methods, such as the recognition method based on the lines and the recognition method based on the textures, have a certain effect on the image with poor quality, but for the image with good quality, not only the performance is not greatly improved, but also the occupied resources and the time complexity are relatively large. Therefore, a fingerprint identification method for distinguishing image quality is urgently needed, which not only ensures that a certain identification accuracy is achieved, but also can save resources to a greater extent.
Disclosure of Invention
The invention aims to provide a fingerprint identification method facing image quality, aiming at solving the defect that the prior fingerprint identification method has poor compatibility with ideal and non-ideal fingerprint images. The method is a processing method based on image quality judgment, and divides fingerprint images into two types of better quality and poorer quality, and further adopts different identification algorithms to carry out fingerprint identification.
In order to achieve the purpose, the invention adopts the following technical scheme:
(1) reading a collected fingerprint image g (x, y), wherein g (x, y) is the gray value of a pixel point (x, y);
(2) extracting the quality characteristics of the fingerprint image, and respectively extracting the gradient consistency QTSpectral characteristic QFStandard deviation of gray scale QsThree features in total;
(3) learning and classifying the quality of the fingerprint image by adopting an SVM (support vector machine) classifier, and determining the quality as two defined quality types;
(4) and for the two fingerprints with better quality and poorer quality, respectively adopting a minutiae-based matching algorithm and a texture-based matching algorithm to finish the identification.
In the step (2), the three characteristics respectively reflect the quality from different aspects, and the specific calculation is as follows,
QFThe calculation formula of (2) is as follows:
<math>
<mrow>
<msub>
<mi>Q</mi>
<mi>F</mi>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>r</mi>
<mo>=</mo>
<msub>
<mi>r</mi>
<mn>0</mn>
</msub>
<mo>-</mo>
<mn>4</mn>
</mrow>
<mrow>
<msub>
<mi>r</mi>
<mn>0</mn>
</msub>
<mo>+</mo>
<mn>4</mn>
</mrow>
</munderover>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mi>r</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math>
wherein,
<math>
<mrow>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mi>r</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mo>#</mo>
<msub>
<mi>C</mi>
<mi>r</mi>
</msub>
</mrow>
</mfrac>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msub>
<mi>C</mi>
<mi>r</mi>
</msub>
</mrow>
</munder>
<mo>|</mo>
<msub>
<mi>G</mi>
<mrow>
<mo>(</mo>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
</msub>
<mo>|</mo>
</mrow>
</math>
as a function of the intensity of the energy,is a ring (r)0-4<=r<=r0+4) number of pixels within, and
|G(u,v)i reflects the energy intensity at the point (u, v) in the frequency domain image after Fourier transform, | G(u,v)L constitutes the intensity spectrum of the frequency domain. Let g (x, y) denote the gray value of a pixel point with coordinates (x, y) in a digital image with size NxN, the distance of g (x, y)The scattered Fourier transform (DFT) G (u, v) is defined as,
QFthe quality is represented by calculating the energy of the bright ring zone in the spectrum image and using the size of the energy.
QsThe calculation formula of (2) is as follows:
<math>
<mrow>
<msub>
<mi>Q</mi>
<mi>S</mi>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<msub>
<mi>S</mi>
<mi>k</mi>
</msub>
<mo>,</mo>
</mrow>
</math>
wherein,
<math>
<mrow>
<msub>
<mi>S</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<msup>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
<mn>2</mn>
</msup>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
</munderover>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</math>
the standard deviation of the k block in the block image is shown, g (x, y) is the gray value of the pixel point (x, y), g (k) is the gray average value of the k block, and w is the block side length of the block image. QsThe quality of the whole image is represented by averaging the standard deviations of all the block images.
In the step (4), both the minutiae-based matching algorithm and the texture-based matching algorithm are classic algorithms.
The block size of the block image in the processing method of the invention is 8 multiplied by 8.
The invention has the beneficial effects that: the processing method integrates the characteristics of a plurality of aspects such as a fingerprint image space domain, a frequency domain and the like, so that the quality of the fingerprint image can be well distinguished, and the matching algorithm based on the minutiae and the matching algorithm based on the texture have better adaptability.
Drawings
FIG. 1 is a flow chart of the identification method of the present invention.
Detailed Description
The invention is further described with reference to the following figures and examples.
In fig. 1, a fingerprint identification method for image quality includes the steps of:
(1) reading a collected fingerprint image g (x, y), wherein g (x, y) is the gray value of a pixel point (x, y);
(2) extracting the quality characteristics of the fingerprint image, and respectively extracting the gradient consistency QTSpectral characteristic QFStandard deviation of gray scale QsThree features in total;
(3) forming a three-dimensional characteristic vector by the three characteristic indexes extracted in the step (2) and using the three characteristic indexes as input vectors of a support vector machine; learning and classifying the quality of the fingerprint image by adopting an SVM (support vector machine) classifier, and determining the quality as two defined quality types;
(4) and for the two fingerprints with better quality and poorer quality, respectively adopting a minutiae-based matching algorithm and a texture-based matching algorithm to finish the identification.
In the step (2), the three characteristics respectively reflect the quality from different aspects, and the specific calculation is as follows,
QFThe calculation formula of (2) is as follows:
<math>
<mrow>
<msub>
<mi>Q</mi>
<mi>F</mi>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>r</mi>
<mo>=</mo>
<msub>
<mi>r</mi>
<mn>0</mn>
</msub>
<mo>-</mo>
<mn>4</mn>
</mrow>
<mrow>
<msub>
<mi>r</mi>
<mn>0</mn>
</msub>
<mo>+</mo>
<mn>4</mn>
</mrow>
</munderover>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mi>r</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math>
wherein,
<math>
<mrow>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mi>r</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mo>#</mo>
<msub>
<mi>C</mi>
<mi>r</mi>
</msub>
</mrow>
</mfrac>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msub>
<mi>C</mi>
<mi>r</mi>
</msub>
</mrow>
</munder>
<mo>|</mo>
<msub>
<mi>G</mi>
<mrow>
<mo>(</mo>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
</msub>
<mo>|</mo>
</mrow>
</math>
as a function of the intensity of the energy,is the number of pixel points within the ring (r0-4 r0+4), and
|G(u,v)i reflects the energy intensity at the point (u, v) in the frequency domain image after Fourier transform, | G(u,v)L constitutes the intensity spectrum of the frequency domain. Let G (x, y) denote the gray value of a pixel point with coordinates (x, y) in a digital image with size NxN, then the Discrete Fourier Transform (DFT) G (u, v) of G (x, y) is defined as,
QFthe quality is represented by calculating the energy of the bright ring zone in the spectrum image and using the size of the energy.
QsThe calculation formula of (2) is as follows:
<math>
<mrow>
<msub>
<mi>Q</mi>
<mi>S</mi>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<msub>
<mi>S</mi>
<mi>k</mi>
</msub>
<mo>,</mo>
</mrow>
</math>
wherein,
<math>
<mrow>
<msub>
<mi>S</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<msup>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
<mn>2</mn>
</msup>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
</munderover>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</math>
the standard deviation of the k-th block in the block image is shown, g (x, y) is the gray value of the pixel point (x, y), g (k) is the gray average value of the k-th block, and w is the block edge length of the block image (where w is 8). QsRepresenting the quality of the entire image by averaging the standard deviations of all the block imagesAmount of the compound (A).
In the step (4), both the minutiae-based matching algorithm and the texture-based matching algorithm are classic algorithms.
Claims (3)
1. A fingerprint identification method facing image quality is characterized in that the method comprises the following steps:
(1) reading an acquired fingerprint image g (x, y), wherein g (x, y) is the gray value of a pixel point (x, y);
(2) extracting the quality characteristics of the fingerprint image, and respectively extracting the gradient consistency QTSpectral characteristic QFStandard deviation of gray scale QsThree features in total;
(3) learning and classifying the quality of the fingerprint image by adopting an SVM (support vector machine) classifier, and determining the quality of the fingerprint image into two quality types of better quality or poorer quality;
(4) and for the two fingerprints with better quality and poorer quality, respectively adopting a minutiae-based matching algorithm and a texture-based matching algorithm to finish the identification.
2. The image quality-oriented fingerprint recognition method according to claim 1, wherein in said step (2), three features respectively reflect the quality from different aspects, and are calculated as follows,
if the image block size is b x b, all b in the block2Gradient vector covariance matrix of points
QFthe calculation formula of (2) is as follows:
<math>
<mrow>
<msub>
<mi>Q</mi>
<mi>F</mi>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>r</mi>
<mo>=</mo>
<msub>
<mi>r</mi>
<mn>0</mn>
</msub>
<mo>-</mo>
<mn>4</mn>
</mrow>
<mrow>
<msub>
<mi>r</mi>
<mn>0</mn>
</msub>
<mo>+</mo>
<mn>4</mn>
</mrow>
</munderover>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mi>r</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math>
wherein,
<math>
<mrow>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mi>r</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mo>#</mo>
<msub>
<mi>C</mi>
<mi>r</mi>
</msub>
</mrow>
</mfrac>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msub>
<mi>C</mi>
<mi>r</mi>
</msub>
</mrow>
</munder>
<mo>|</mo>
<msub>
<mi>G</mi>
<mrow>
<mo>(</mo>
<mi>u</mi>
<mo>,</mo>
<mi>v</mi>
<mo>)</mo>
</mrow>
</msub>
<mo>|</mo>
</mrow>
</math>
as a function of the intensity of the energy,is a ring (r)0-4<=r<=r0+4) number of pixels within, and
|G(u,v)i reflects the energy intensity at the point (u, v) in the frequency domain image after Fourier transform, | G(u,v)L constitutes the intensity spectrum of the frequency domain; let G (x, y) denote the gray value of a pixel point with coordinates (x, y) in a digital image with size NxN, the discrete Fourier transform G (u, v) of G (x, y) is defined as,
QFcalculating the energy of a bright ring band in the frequency spectrum image, and using the size of the energy to represent the quality;
Qsthe calculation formula of (2) is as follows:
<math>
<mrow>
<msub>
<mi>Q</mi>
<mi>S</mi>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<msub>
<mi>S</mi>
<mi>k</mi>
</msub>
<mo>,</mo>
</mrow>
</math>
wherein,
<math>
<mrow>
<msub>
<mi>S</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<msup>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
<mn>2</mn>
</msup>
</mfrac>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
</munderover>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mover>
<mi>w</mi>
<mo>‾</mo>
</mover>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
</mrow>
</math>
the standard deviation of the k block in the block image is shown, g (x, y) is the gray value of a pixel point (x, y), g (k) is the gray average value of the k block, and w is the block edge length of the block image; qsThe quality of the whole image is represented by averaging the standard deviations of all the block images.
3. The image quality-oriented fingerprint recognition method according to claim 1, wherein in the step (4), the minutiae-based matching algorithm and the texture-based matching algorithm are both classical algorithms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810138117A CN100592323C (en) | 2008-07-01 | 2008-07-01 | Method for identifying fingerprint facing image quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810138117A CN100592323C (en) | 2008-07-01 | 2008-07-01 | Method for identifying fingerprint facing image quality |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101303728A true CN101303728A (en) | 2008-11-12 |
CN100592323C CN100592323C (en) | 2010-02-24 |
Family
ID=40113627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810138117A Expired - Fee Related CN100592323C (en) | 2008-07-01 | 2008-07-01 | Method for identifying fingerprint facing image quality |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100592323C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567993A (en) * | 2011-12-15 | 2012-07-11 | 中国科学院自动化研究所 | Fingerprint image quality evaluation method based on main component analysis |
CN104268587A (en) * | 2014-10-22 | 2015-01-07 | 武汉大学 | False fingerprint detection method based on finger wave conversion and SVM |
CN104268529A (en) * | 2014-09-28 | 2015-01-07 | 深圳市汇顶科技股份有限公司 | Judgment method and device for quality of fingerprint images |
CN105631863A (en) * | 2015-12-23 | 2016-06-01 | 苏州汇莱斯信息科技有限公司 | Quality assessment method for fingerprint image |
CN105809117A (en) * | 2016-03-01 | 2016-07-27 | 广东欧珀移动通信有限公司 | Information prompt method and user terminal |
CN106258009A (en) * | 2015-04-16 | 2016-12-28 | 华为技术有限公司 | A kind of gather the method for fingerprint, fingerprint capturer and terminal |
CN106682567A (en) * | 2015-11-11 | 2017-05-17 | 方正国际软件(北京)有限公司 | Acquisition processing method of fingerprint images and device |
CN106709396A (en) * | 2015-07-27 | 2017-05-24 | 联想(北京)有限公司 | Fingerprint image registration method and registration position |
CN107016324A (en) * | 2016-01-28 | 2017-08-04 | 厦门中控生物识别信息技术有限公司 | A kind of fingerprint image processing method and fingerprint detection equipment |
CN107992800A (en) * | 2017-11-10 | 2018-05-04 | 杭州晟元数据安全技术股份有限公司 | A kind of fingerprint image quality determination methods based on SVM and random forest |
CN108681714A (en) * | 2018-05-18 | 2018-10-19 | 济南浪潮高新科技投资发展有限公司 | A kind of finger vein recognition system and method based on individualized learning |
CN110059649A (en) * | 2019-04-24 | 2019-07-26 | 济南浪潮高新科技投资发展有限公司 | Level complementation convolutional neural networks model, robust fingerprint recognition methods and system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7136515B2 (en) * | 2001-09-13 | 2006-11-14 | Intel Corporation | Method and apparatus for providing a binary fingerprint image |
CN1327387C (en) * | 2004-07-13 | 2007-07-18 | 清华大学 | Method for identifying multi-characteristic of fingerprint |
CN100347719C (en) * | 2004-07-15 | 2007-11-07 | 清华大学 | Fingerprint identification method based on density chart model |
CN100370472C (en) * | 2006-09-18 | 2008-02-20 | 山东大学 | Irrelevant technique method of image pickup device in fingerprint recognition algorithm |
CN101178773B (en) * | 2007-12-13 | 2010-08-11 | 北京中星微电子有限公司 | Image recognition system and method based on characteristic extracting and categorizer |
-
2008
- 2008-07-01 CN CN200810138117A patent/CN100592323C/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567993B (en) * | 2011-12-15 | 2014-06-11 | 中国科学院自动化研究所 | Fingerprint image quality evaluation method based on main component analysis |
CN102567993A (en) * | 2011-12-15 | 2012-07-11 | 中国科学院自动化研究所 | Fingerprint image quality evaluation method based on main component analysis |
CN104268529A (en) * | 2014-09-28 | 2015-01-07 | 深圳市汇顶科技股份有限公司 | Judgment method and device for quality of fingerprint images |
CN104268587A (en) * | 2014-10-22 | 2015-01-07 | 武汉大学 | False fingerprint detection method based on finger wave conversion and SVM |
CN104268587B (en) * | 2014-10-22 | 2017-05-24 | 武汉大学 | False fingerprint detection method based on finger wave conversion and SVM |
US10268862B2 (en) | 2015-04-16 | 2019-04-23 | Huawei Technologies Co., Ltd. | Fingerprint collection method, fingerprint collector, and terminal |
CN106258009A (en) * | 2015-04-16 | 2016-12-28 | 华为技术有限公司 | A kind of gather the method for fingerprint, fingerprint capturer and terminal |
CN106258009B (en) * | 2015-04-16 | 2019-06-21 | 华为技术有限公司 | A kind of method, fingerprint capturer and terminal acquiring fingerprint |
CN106709396B (en) * | 2015-07-27 | 2020-04-24 | 联想(北京)有限公司 | Fingerprint image registration method and fingerprint image registration device |
CN106709396A (en) * | 2015-07-27 | 2017-05-24 | 联想(北京)有限公司 | Fingerprint image registration method and registration position |
CN106682567A (en) * | 2015-11-11 | 2017-05-17 | 方正国际软件(北京)有限公司 | Acquisition processing method of fingerprint images and device |
CN105631863A (en) * | 2015-12-23 | 2016-06-01 | 苏州汇莱斯信息科技有限公司 | Quality assessment method for fingerprint image |
CN107016324A (en) * | 2016-01-28 | 2017-08-04 | 厦门中控生物识别信息技术有限公司 | A kind of fingerprint image processing method and fingerprint detection equipment |
CN107016324B (en) * | 2016-01-28 | 2020-03-20 | 厦门中控智慧信息技术有限公司 | Fingerprint image processing method and fingerprint detection equipment |
CN105809117B (en) * | 2016-03-01 | 2019-05-21 | Oppo广东移动通信有限公司 | A kind of information cuing method and user terminal |
CN105809117A (en) * | 2016-03-01 | 2016-07-27 | 广东欧珀移动通信有限公司 | Information prompt method and user terminal |
CN107992800A (en) * | 2017-11-10 | 2018-05-04 | 杭州晟元数据安全技术股份有限公司 | A kind of fingerprint image quality determination methods based on SVM and random forest |
CN108681714A (en) * | 2018-05-18 | 2018-10-19 | 济南浪潮高新科技投资发展有限公司 | A kind of finger vein recognition system and method based on individualized learning |
CN110059649A (en) * | 2019-04-24 | 2019-07-26 | 济南浪潮高新科技投资发展有限公司 | Level complementation convolutional neural networks model, robust fingerprint recognition methods and system |
Also Published As
Publication number | Publication date |
---|---|
CN100592323C (en) | 2010-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100592323C (en) | Method for identifying fingerprint facing image quality | |
CN103034838B (en) | A kind of special vehicle instrument type identification based on characteristics of image and scaling method | |
CN107610114B (en) | optical satellite remote sensing image cloud and snow fog detection method based on support vector machine | |
CN103116763B (en) | A kind of living body faces detection method based on hsv color Spatial Statistical Character | |
CN101329726B (en) | Method for reinforcing fingerprint image based on one-dimensional filtering | |
CN102176208B (en) | Robust video fingerprint method based on three-dimensional space-time characteristics | |
CN103456013B (en) | A kind of method representing similarity between super-pixel and tolerance super-pixel | |
CN104103082A (en) | Image saliency detection method based on region description and priori knowledge | |
CN103839042B (en) | Face identification method and face identification system | |
CN105005565B (en) | Live soles spoor decorative pattern image search method | |
CN102103690A (en) | Method for automatically portioning hair area | |
CN101526994B (en) | Fingerprint image segmentation method irrelevant to collecting device | |
CN103955496B (en) | A kind of quick live tire trace decorative pattern searching algorithm | |
CN104680541A (en) | Remote sensing image quality evaluation method based on phase congruency | |
CN104834938A (en) | Hyper-spectral information extraction method based on main component and cluster analysis | |
CN104680158A (en) | Face recognition method based on multi-scale block partial multi-valued mode | |
Wang et al. | Feature-based analysis of cell nuclei structure for classification of histopathological images | |
CN104331877A (en) | Color image edge detection method based on fusion color gradient | |
CN118197610B (en) | Auxiliary identification method and system for herpetic neuralgia based on structural magnetic resonance | |
CN101840513A (en) | Method for extracting image shape characteristics | |
CN105513060A (en) | Visual perception enlightening high-resolution remote-sensing image segmentation method | |
CN113361407B (en) | PCANet-based spatial spectrum feature combined hyperspectral sea ice image classification method | |
CN103473546A (en) | Fingerprint direction field obtaining method based on structure tensor | |
CN111127407B (en) | Fourier transform-based style migration forged image detection device and method | |
CN103268494A (en) | Parasite egg identifying method based on sparse representation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100224 Termination date: 20130701 |