CN101303728A - Image Quality Oriented Fingerprint Recognition Method - Google Patents
Image Quality Oriented Fingerprint Recognition Method Download PDFInfo
- Publication number
- CN101303728A CN101303728A CNA2008101381170A CN200810138117A CN101303728A CN 101303728 A CN101303728 A CN 101303728A CN A2008101381170 A CNA2008101381170 A CN A2008101381170A CN 200810138117 A CN200810138117 A CN 200810138117A CN 101303728 A CN101303728 A CN 101303728A
- Authority
- CN
- China
- Prior art keywords
- image
- quality
- sigma
- block
- fingerprint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Image Processing (AREA)
- Collating Specific Patterns (AREA)
Abstract
本发明公开了一种面向图像质量的指纹识别方法。它解决现了有指纹识别方法对理想和非理想指纹图像兼顾性不好的缺点,其方法为:(1)读取的采集的指纹图像g(x,y),其中g(x,y)为像素点(x,y)的灰度值;(2)对指纹图像进行质量特征提取,分别提取梯度一致性QT、频谱特征QF、灰度标准差Qs共三个特征;(3)采用SVM支持向量机分类器对指纹图像的质量进行学习和分类,将其确定为已定义的两种质量类型;(4)对质量较好、质量较差两种指纹,分别采用基于细节点的匹配算法和基于纹理的匹配算法完成识别。
The invention discloses an image quality-oriented fingerprint identification method. It solves the shortcomings of the existing fingerprint identification methods that are not good at both ideal and non-ideal fingerprint images. The method is: (1) read the collected fingerprint image g(x, y), where g(x, y) is the gray value of the pixel point (x, y); (2) Extract the quality features of the fingerprint image, and extract three features: gradient consistency Q T , spectral feature Q F , and gray standard deviation Q s ; (3 ) use SVM support vector machine classifier to learn and classify the quality of fingerprint images, and determine them as two defined quality types; The matching algorithm and texture-based matching algorithm complete the recognition.
Description
技术领域 technical field
发明涉及一种指纹识别方法,尤其涉及一种面向图像质量的指纹识别方法。The invention relates to a fingerprint identification method, in particular to an image quality-oriented fingerprint identification method.
背景技术 Background technique
目前在自动指纹识别技术中,图像质量的好坏是影响识别性能的一个重要因素。在现有的指纹识别处理方法中,通常是通过获取指纹图像的细节点来进行匹配,但这种方法对于质量较差的图像,性能下降明显。而其它一些识别方法,如基于纹线的和基于纹理的识别方法虽然对质量较差的图像有一定的效果,但对于质量较好的图像,不仅性能提高不大,而且占用的资源和时间复杂度相对较大。因此,迫切需要一种区分图像质量的指纹识别方法,既保证达到一定的识别准确率,又能够较大限度的节省资源。At present, in the automatic fingerprint identification technology, the image quality is an important factor affecting the identification performance. In the existing fingerprint identification processing methods, the minutiae points of the fingerprint image are usually obtained for matching, but the performance of this method drops significantly for images with poor quality. Other recognition methods, such as line-based and texture-based recognition methods, have certain effects on poor-quality images, but for better-quality images, not only the performance is not improved much, but the resources and time taken up are complicated. degree is relatively large. Therefore, there is an urgent need for a fingerprint recognition method that distinguishes image quality, which not only ensures a certain recognition accuracy rate, but also saves resources to the greatest extent.
发明内容 Contents of the invention
本发明的目的是为了解决现有指纹识别方法对理想和非理想指纹图像兼顾性不好的缺点而提出的一种面向图像质量的指纹识别方法。它是一种基于图像质量判断的处理方法,将指纹图像分为质量较好、质量较差两种类型,进而采用不同的识别算法进行指纹识别。The object of the present invention is to propose an image quality-oriented fingerprint identification method in order to solve the disadvantage that the existing fingerprint identification method has poor compatibility with ideal and non-ideal fingerprint images. It is a processing method based on image quality judgment, which divides fingerprint images into two types with good quality and poor quality, and then uses different recognition algorithms for fingerprint recognition.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
(1)读取的采集的指纹图像g(x,y),其中g(x,y)为像素点(x,y)的灰度值;(1) The fingerprint image g(x, y) of the collection of reading, wherein g(x, y) is the gray value of pixel point (x, y);
(2)对指纹图像进行质量特征提取,分别提取梯度一致性QT、频谱特征QF、灰度标准差Qs共三个特征;(2) Perform quality feature extraction on the fingerprint image, and extract three features: gradient consistency Q T , spectral feature Q F , and gray standard deviation Q s ;
(3)采用SVM支持向量机分类器对指纹图像的质量进行学习和分类,将其确定为已定义的两种质量类型;(3) adopt SVM support vector machine classifier to learn and classify the quality of the fingerprint image, and determine it as two defined quality types;
(4)对质量较好、质量较差两种指纹,分别采用基于细节点的匹配算法和基于纹理的匹配算法完成识别。(4) For two kinds of fingerprints with good quality and poor quality, the matching algorithm based on minutiae and the matching algorithm based on texture are used to complete the identification respectively.
所述步骤(2)中,三个特征分别从不同的方面反映了质量的好坏,具体计算如下,In the step (2), the three characteristics reflect the quality of the quality from different aspects, and the specific calculation is as follows,
QF的计算公式为:
|G(u,v)|反映了傅里叶变换后的频域图像中点(u,v)处的能量强度,|G(u,v)|构成了频域的强度谱。设g(x,y)表示大小为N×N的数字图像中坐标为(x,y)像素点的灰度值,则g(x,y)的离散傅立叶变换(DFT)G(u,v)定义为,|G (u, v) | reflects the energy intensity at the point (u, v) in the frequency domain image after Fourier transform, and |G (u, v) | constitutes the intensity spectrum in the frequency domain. Let g(x, y) represent the gray value of a pixel whose coordinates are (x, y) in a digital image of size N×N, then the discrete Fourier transform (DFT) G(u, v) of g(x, y) )defined as,
QF通过对频谱图像中亮环带的能量进行计算,并用其大小来表示质量的好坏。 QF calculates the energy of the bright ring in the spectrum image, and uses its size to represent the quality.
Qs的计算公式为:
其中,
所述步骤(4)中,所采用的基于细节点的匹配算法和基于纹理的匹配算法都为经典的算法。In the step (4), the minutiae-based matching algorithm and the texture-based matching algorithm adopted are both classical algorithms.
本发明处理方法中分块图像的块大小为8×8。The block size of the block image in the processing method of the present invention is 8×8.
本发明的有益效果:由于上述的处理方法综合指纹图像空间域、频率域等多方面的特征,可以很好地区分指纹图像质量,从而使得基于细节点的匹配算法和基于纹理的匹配算法具有更好的适应性。Beneficial effects of the present invention: because the above-mentioned processing method integrates the characteristics of fingerprint image space domain, frequency domain and other aspects, it can distinguish the quality of fingerprint image well, so that the matching algorithm based on minutiae and the matching algorithm based on texture have more advantages. good adaptability.
附图说明 Description of drawings
图1为本发明的识别方法流程图。Fig. 1 is a flowchart of the identification method of the present invention.
具体实施方式 Detailed ways
下面结合附图与实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1中,一种面向图像质量的指纹识别方法,它的步骤为:In Figure 1, an image quality-oriented fingerprint recognition method, its steps are:
(1)读取的采集的指纹图像g(x,y),其中g(x,y)为像素点(x,y)的灰度值;(1) The fingerprint image g(x, y) of the collection of reading, wherein g(x, y) is the gray value of pixel point (x, y);
(2)对指纹图像进行质量特征提取,分别提取梯度一致性QT、频谱特征QF、灰度标准差Qs共三个特征;(2) Perform quality feature extraction on the fingerprint image, and extract three features: gradient consistency Q T , spectral feature Q F , and gray standard deviation Q s ;
(3)步骤(2)中提取出的三个特征指标形成三维特征向量,作为支持向量机的输入向量;采用SVM支持向量机分类器对指纹图像的质量进行学习和分类,将其确定为已定义的两种质量类型;(3) The three feature indicators extracted in step (2) form a three-dimensional feature vector, which is used as the input vector of the support vector machine; the SVM support vector machine classifier is used to learn and classify the quality of the fingerprint image, and it is determined as the Two quality types are defined;
(4)对质量较好、质量较差两种指纹,分别采用基于细节点的匹配算法和基于纹理的匹配算法完成识别。(4) For two kinds of fingerprints with good quality and poor quality, the matching algorithm based on minutiae and the matching algorithm based on texture are used to complete the identification respectively.
所述步骤(2)中,三个特征分别从不同的方面反映了质量的好坏,具体计算如下,In the step (2), the three characteristics reflect the quality of the quality from different aspects, and the specific calculation is as follows,
QF的计算公式为:
|G(u,v)|反映了傅里叶变换后的频域图像中点(u,v)处的能量强度,|G(u,v)|构成了频域的强度谱。设g(x,y)表示大小为N×N的数字图像中坐标为(x,y)像素点的灰度值,则g(x,y)的离散傅立叶变换(DFT)G(u,v)定义为,|G (u, v) | reflects the energy intensity at the point (u, v) in the frequency domain image after Fourier transform, and |G (u, v) | constitutes the intensity spectrum in the frequency domain. Let g(x, y) represent the gray value of a pixel whose coordinates are (x, y) in a digital image of size N×N, then the discrete Fourier transform (DFT) G(u, v) of g(x, y) )defined as,
QF通过对频谱图像中亮环带的能量进行计算,并用其大小来表示质量的好坏。 QF calculates the energy of the bright ring in the spectrum image, and uses its size to represent the quality.
Qs的计算公式为:
其中,
所述步骤(4)中,所采用的基于细节点的匹配算法和基于纹理的匹配算法都为经典的算法。In the step (4), the minutiae-based matching algorithm and the texture-based matching algorithm adopted are both classical algorithms.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810138117A CN100592323C (en) | 2008-07-01 | 2008-07-01 | Image Quality Oriented Fingerprint Recognition Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810138117A CN100592323C (en) | 2008-07-01 | 2008-07-01 | Image Quality Oriented Fingerprint Recognition Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101303728A true CN101303728A (en) | 2008-11-12 |
CN100592323C CN100592323C (en) | 2010-02-24 |
Family
ID=40113627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810138117A Expired - Fee Related CN100592323C (en) | 2008-07-01 | 2008-07-01 | Image Quality Oriented Fingerprint Recognition Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100592323C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567993A (en) * | 2011-12-15 | 2012-07-11 | 中国科学院自动化研究所 | Fingerprint image quality evaluation method based on main component analysis |
CN104268529A (en) * | 2014-09-28 | 2015-01-07 | 深圳市汇顶科技股份有限公司 | Judgment method and device for quality of fingerprint images |
CN104268587A (en) * | 2014-10-22 | 2015-01-07 | 武汉大学 | False fingerprint detection method based on finger wave conversion and SVM |
CN105631863A (en) * | 2015-12-23 | 2016-06-01 | 苏州汇莱斯信息科技有限公司 | Quality assessment method for fingerprint image |
CN105809117A (en) * | 2016-03-01 | 2016-07-27 | 广东欧珀移动通信有限公司 | An information prompt method and user terminal |
CN106258009A (en) * | 2015-04-16 | 2016-12-28 | 华为技术有限公司 | A kind of gather the method for fingerprint, fingerprint capturer and terminal |
CN106682567A (en) * | 2015-11-11 | 2017-05-17 | 方正国际软件(北京)有限公司 | Acquisition processing method of fingerprint images and device |
CN106709396A (en) * | 2015-07-27 | 2017-05-24 | 联想(北京)有限公司 | Fingerprint image registration method and registration position |
CN107016324A (en) * | 2016-01-28 | 2017-08-04 | 厦门中控生物识别信息技术有限公司 | A kind of fingerprint image processing method and fingerprint detection equipment |
CN107992800A (en) * | 2017-11-10 | 2018-05-04 | 杭州晟元数据安全技术股份有限公司 | A kind of fingerprint image quality determination methods based on SVM and random forest |
CN108681714A (en) * | 2018-05-18 | 2018-10-19 | 济南浪潮高新科技投资发展有限公司 | A kind of finger vein recognition system and method based on individualized learning |
CN110059649A (en) * | 2019-04-24 | 2019-07-26 | 济南浪潮高新科技投资发展有限公司 | Level complementation convolutional neural networks model, robust fingerprint recognition methods and system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7136515B2 (en) * | 2001-09-13 | 2006-11-14 | Intel Corporation | Method and apparatus for providing a binary fingerprint image |
CN1327387C (en) * | 2004-07-13 | 2007-07-18 | 清华大学 | Method for identifying multi-characteristic of fingerprint |
CN100347719C (en) * | 2004-07-15 | 2007-11-07 | 清华大学 | Fingerprint identification method based on density chart model |
CN100370472C (en) * | 2006-09-18 | 2008-02-20 | 山东大学 | Image Acquisition Equipment Independence Technology Method in Fingerprint Recognition Algorithm |
CN101178773B (en) * | 2007-12-13 | 2010-08-11 | 北京中星微电子有限公司 | Image recognition system and method based on characteristic extracting and categorizer |
-
2008
- 2008-07-01 CN CN200810138117A patent/CN100592323C/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567993B (en) * | 2011-12-15 | 2014-06-11 | 中国科学院自动化研究所 | Fingerprint image quality evaluation method based on main component analysis |
CN102567993A (en) * | 2011-12-15 | 2012-07-11 | 中国科学院自动化研究所 | Fingerprint image quality evaluation method based on main component analysis |
CN104268529A (en) * | 2014-09-28 | 2015-01-07 | 深圳市汇顶科技股份有限公司 | Judgment method and device for quality of fingerprint images |
CN104268587A (en) * | 2014-10-22 | 2015-01-07 | 武汉大学 | False fingerprint detection method based on finger wave conversion and SVM |
CN104268587B (en) * | 2014-10-22 | 2017-05-24 | 武汉大学 | False fingerprint detection method based on finger wave conversion and SVM |
US10268862B2 (en) | 2015-04-16 | 2019-04-23 | Huawei Technologies Co., Ltd. | Fingerprint collection method, fingerprint collector, and terminal |
CN106258009A (en) * | 2015-04-16 | 2016-12-28 | 华为技术有限公司 | A kind of gather the method for fingerprint, fingerprint capturer and terminal |
CN106258009B (en) * | 2015-04-16 | 2019-06-21 | 华为技术有限公司 | Method for collecting fingerprints, fingerprint collector and terminal |
CN106709396B (en) * | 2015-07-27 | 2020-04-24 | 联想(北京)有限公司 | Fingerprint image registration method and fingerprint image registration device |
CN106709396A (en) * | 2015-07-27 | 2017-05-24 | 联想(北京)有限公司 | Fingerprint image registration method and registration position |
CN106682567A (en) * | 2015-11-11 | 2017-05-17 | 方正国际软件(北京)有限公司 | Acquisition processing method of fingerprint images and device |
CN105631863A (en) * | 2015-12-23 | 2016-06-01 | 苏州汇莱斯信息科技有限公司 | Quality assessment method for fingerprint image |
CN107016324A (en) * | 2016-01-28 | 2017-08-04 | 厦门中控生物识别信息技术有限公司 | A kind of fingerprint image processing method and fingerprint detection equipment |
CN107016324B (en) * | 2016-01-28 | 2020-03-20 | 厦门中控智慧信息技术有限公司 | Fingerprint image processing method and fingerprint detection equipment |
CN105809117B (en) * | 2016-03-01 | 2019-05-21 | Oppo广东移动通信有限公司 | Information prompting method and user terminal |
CN105809117A (en) * | 2016-03-01 | 2016-07-27 | 广东欧珀移动通信有限公司 | An information prompt method and user terminal |
CN107992800A (en) * | 2017-11-10 | 2018-05-04 | 杭州晟元数据安全技术股份有限公司 | A kind of fingerprint image quality determination methods based on SVM and random forest |
CN108681714A (en) * | 2018-05-18 | 2018-10-19 | 济南浪潮高新科技投资发展有限公司 | A kind of finger vein recognition system and method based on individualized learning |
CN110059649A (en) * | 2019-04-24 | 2019-07-26 | 济南浪潮高新科技投资发展有限公司 | Level complementation convolutional neural networks model, robust fingerprint recognition methods and system |
Also Published As
Publication number | Publication date |
---|---|
CN100592323C (en) | 2010-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100592323C (en) | Image Quality Oriented Fingerprint Recognition Method | |
CN102194114B (en) | Method for recognizing iris based on edge gradient direction pyramid histogram | |
CN108052980B (en) | Image-based air quality grade detection method | |
CN106650812B (en) | A Method for Extracting Urban Water from Satellite Remote Sensing Images | |
CN105320962B (en) | A kind of road surface breakage kind identification method based on combining classifiers | |
CN103544502A (en) | High-resolution remote-sensing image ship extraction method based on SVM | |
CN101551863A (en) | Method for extracting roads from remote sensing image based on non-sub-sampled contourlet transform | |
CN108520278A (en) | A Detection Method and Evaluation Method for Pavement Cracks Based on Random Forest | |
CN107818321A (en) | A kind of watermark date recognition method for vehicle annual test | |
CN102892048B (en) | Video watermark anti-counterfeiting method capable of resisting geometric attacks | |
CN102645436B (en) | Engineering ceramic grinding surface damage detection method based on grinding grain removal technology | |
CN104376564A (en) | Method for extracting rough image edge based on anisotropism Gaussian directional derivative filter | |
CN102411711A (en) | A Finger Vein Recognition Method Based on Personalized Weights | |
CN108710862B (en) | High-resolution remote sensing image water body extraction method | |
CN103810707B (en) | A kind of image vision significance detection method based on moving-vision focus | |
CN103268587B (en) | Imitative building site index is utilized to obtain the method for urban built-up land information | |
CN103309982A (en) | Remote sensing image retrieval method based on vision saliency point characteristics | |
CN104021567B (en) | Based on the fuzzy altering detecting method of image Gauss of first numeral law | |
CN101655912B (en) | Method for detecting computer generated image and natural image based on wavelet transformation | |
CN103268494B (en) | Parasite egg recognition methods based on rarefaction representation | |
CN113030244A (en) | Power transmission line tower corrosion defect magnetic leakage detection signal inversion imaging method and system | |
CN103065296B (en) | High-resolution remote sensing image residential area extraction method based on edge feature | |
CN109544614B (en) | Method for identifying matched image pair based on image low-frequency information similarity | |
CN107665347A (en) | Visual saliency target detection method based on filtering optimization | |
CN106324708B (en) | Digitizing solution, the device of rainfall record drawing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100224 Termination date: 20130701 |