CN101299020B - Optical gas sensor based on single polymer nano-wire - Google Patents

Optical gas sensor based on single polymer nano-wire Download PDF

Info

Publication number
CN101299020B
CN101299020B CN2008100624194A CN200810062419A CN101299020B CN 101299020 B CN101299020 B CN 101299020B CN 2008100624194 A CN2008100624194 A CN 2008100624194A CN 200810062419 A CN200810062419 A CN 200810062419A CN 101299020 B CN101299020 B CN 101299020B
Authority
CN
China
Prior art keywords
wire
nano
single polymer
polymer nano
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100624194A
Other languages
Chinese (zh)
Other versions
CN101299020A (en
Inventor
童利民
谷付星
张磊
殷学锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2008100624194A priority Critical patent/CN101299020B/en
Publication of CN101299020A publication Critical patent/CN101299020A/en
Application granted granted Critical
Publication of CN101299020B publication Critical patent/CN101299020B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention discloses an optical gas sensor based on single polymer nano wire. One cone drawing micro-nano optical fiber is used for inputting the light to one end of the single polymer nano wire through the coupling area of evancent wave. The other cone drawing micro-nano optical fiber is used for outputting the light that is conducted by the single polymer nano wire through the coupling area of evancent wave at the other end of the single polymer nano wire to form the optical gas sensor which transmits the variation of optical signal. The optical gas sensor has the advantages of miniaturization, simple structure, high response speed, high sensitivity and low price. Currently the ammonia gas and nitrogen dioxide which has relative moisture from 5% to 95% and are ppm magnitude can be detected. The response speed of the optical gas sensor is faster than that of the traditional film sensor for 1-2 magnitude order.

Description

Optical gas sensor based on single polymer nano-wire
Technical field
The present invention relates to sensor, especially a kind of optical gas sensor based on single polymer nano-wire.
Background technology
The single polymer nano-wire optical gas sensor is a kind of novel sensor, is widely used aspect a lot of in scientific research, industry, environment, medical treatment, military affairs and food, health etc., and has wide application potential and development prospect.
Along with the improvement of optical fiber preparation technology, low-loss micro-nano fiber is produced out, and has been applied to make micro-nano photonics device, and wherein fine ring resonator of low-light and full optical fiber add-drop wave filter are proved to be.Realized in the world at present based on the gas sensing of single nano-wire mainly be based on electricity mechanism, as single semiconductor nanowires and single polymer nano-wire electricity gas sensor.
Summary of the invention
The object of the present invention is to provide a kind of optical gas sensor based on single polymer nano-wire.
The technical scheme that the present invention solves its technical matters employing is:
With an end that draws the awl micro-nano fiber light to be input to single polymer nano-wire by the evanescent wave coupled zone, draw the awl micro-nano fiber also to pass through the evanescent wave coupled zone light output, with the optical gas sensor of formation transmitting optical signal variation with another root through the single polymer nano-wire conduction at the other end of single polymer nano-wire.
Described two are drawn the tip diameter of awl micro-nano fiber to be 0.1-2 μ m.
Described high molecular nanometer linear diameter is 50-1000nm, and sensing length is 10-500 μ m.
The beneficial effect that the present invention has is:
Single polymer nano-wire sensor of the present invention is a kind of optical sensor, has miniaturization, and simple in structure, response speed is fast, highly sensitive and cheap characteristics.Can detect the relative humidity of 5%-95% at present, the ammonia of ppm magnitude and nitrogen dioxide, response speed is than fast 1~2 order of magnitude of conventional films sensor
Description of drawings
Fig. 1 is a structural principle synoptic diagram of the present invention.
Fig. 2 is polyacrylamide nano line round-robin response diagram between relative humidity 75-88 of 410nm diameter; The detection optical wavelength is 532nm.
Fig. 3 is that the polyaniline/polystyrene nano wire of camphorsulfonic acidization of 250nm diameter is to the nitrogen dioxide response diagram of concentration 0.1-4ppm; The detection optical wavelength is 532nm.
Fig. 4 is the ammonia response diagram of the polymethyl methacrylate nano wire that mixes of the Bromothymol blue of 270nm diameter to concentration 3-28ppm; The detection optical wavelength is 660nm.
Among the figure: 1, draw the micro-nano fiber of awl, 2, the coupled zone, 3, the coupled zone, 4, single polymer nano-wire, 5, draw the micro-nano fiber of awl.
Embodiment
As shown in Figure 1, the present invention draws with one and bores the end that micro-nano fiber 1 is input to light by evanescent wave coupled zone 2 single polymer nano-wire 4, draw awl micro-nano fiber 5 also to pass through 3 the light outputs in evanescent wave coupled zone with another root, with the optical gas sensor of formation transmitting optical signal variation through single polymer nano-wire 4 conduction at the other end of single polymer nano-wire 4.
Described two are drawn the tip diameter of awl micro-nano fiber to be 0.1-2 μ m.
Described high molecular nanometer linear diameter is 50-1000nm, and sensing length is 10-500 μ m.
Preparation process of the present invention is as follows:
(1) at first from the polymer nano-wire of the stretched various functions in Polymer Solution the inside, nano wire is cut off and microoperation such as transfer at microscopically then, nano wire is placed on the substrate that needs, and nano wire is placed to the shape that needs by microoperation;
(2) put into the receptacle of a good airproof performance being placed on nano wire on the substrate then.Receptacle has the environmental change of thermohygrometer in can detection receptacle.Container has the mouth of supplied gas turnover.For ease of evanescent wave coupling, can guarantee to draw the fine coupling of the low-light nano wire of awl can make seal of vessel again at the device of container limit particular design;
(3) with drawing by high temperature farad system general single mode fiber, prepare the low-light fibre of tip diameter at 0.1-2 μ m
(4) two tapered fiber probes are deep into airtight container the inside, at optical microscope lower-pilot low-light fibre, by the evanescent wave coupled zone the light input and output.
(5) one of design cover gas control system can guarantee various gas to be analyzed turnover airtight containers, and the contact nanometer line.The light signal of nano wire output has photo-detector to monitor in real time.
Applicating example:
Use general single mode fiber drawing by high temperature method prepares the low-light fibre of the about 100nm of end full to the brim, pulls out the nano wire of 410nm diameter from the aqueous solution the inside of polyacrylamide.Under optical microscope, prepare the sensor that length is 200 μ m.Fig. 1 is a structural principle synoptic diagram of the present invention; Fig. 2 is this nano wire round-robin response diagram between relative humidity 75%-88%.About 30ms of response time.The detection optical wavelength is 532nm.
Use general single mode fiber drawing by high temperature method to prepare the low-light fibre of the about 500nm of end full to the brim, pull out the nano wire of 250nm diameter inside the chloroformic solution of the polyaniline/polystyrene of camphorsulfonic acidization.Under optical microscope, prepare the sensor that length is 500 μ m.Fig. 3 is the nitrogen dioxide response diagram of this nano wire to concentration 0.1-4ppm.About 7s of response time.The detection optical wavelength is 532nm.
Use general single mode fiber drawing by high temperature method to prepare the low-light fibre of the about 1500nm of end full to the brim, pull out the nano wire of 900nm diameter inside the acetone soln of the polymethyl methacrylate that mixes from Bromothymol blue.Under optical microscope, prepare the sensor that length is 25 μ m.Fig. 4 is the ammonia response diagram of this nano wire to concentration 3-28ppm.The detection optical wavelength is 660nm.
When gas contact nanometer line to be detected, can penetrate into the nano wire the inside and and the indicator of macromolecule or the inside react, cause the refractive index of nano wire and the variation of absorption band, and then influence is by the light intensity variation of nano wire.So just can detect gas to be detected by detecting output intensity.
Above-mentioned embodiment is used for the present invention that explains, rather than limits the invention, and in the protection domain of spirit of the present invention and claim, any modification and change to the present invention makes all fall into protection scope of the present invention.

Claims (1)

1. optical gas sensor based on single polymer nano-wire, it is characterized in that: with an end that draws the awl micro-nano fiber light to be input to single polymer nano-wire by the evanescent wave coupled zone, draw the awl micro-nano fiber also to pass through the evanescent wave coupled zone light output, with the optical gas sensor of formation transmitting optical signal variation with another root through the single polymer nano-wire conduction at the other end of single polymer nano-wire; Described two tapered fiber probes are deep into airtight container the inside, at optical microscope lower-pilot low-light fibre, by the evanescent wave coupled zone the light input and output;
Described two are drawn the tip diameter of awl micro-nano fiber to be 0.1-2 μ m;
Described polymer nano-wire is the chloroformic solution of polyaniline/polystyrene of aqueous solution, camphorsulfonic acidization from polyacrylamide or the stretched polymer nano-wire in acetone soln the inside of the polymethyl methacrylate that Bromothymol blue mixes, diameter is 50-1000nm, and sensing length is 10-500 μ m.
CN2008100624194A 2008-06-16 2008-06-16 Optical gas sensor based on single polymer nano-wire Expired - Fee Related CN101299020B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100624194A CN101299020B (en) 2008-06-16 2008-06-16 Optical gas sensor based on single polymer nano-wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100624194A CN101299020B (en) 2008-06-16 2008-06-16 Optical gas sensor based on single polymer nano-wire

Publications (2)

Publication Number Publication Date
CN101299020A CN101299020A (en) 2008-11-05
CN101299020B true CN101299020B (en) 2010-06-09

Family

ID=40078912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100624194A Expired - Fee Related CN101299020B (en) 2008-06-16 2008-06-16 Optical gas sensor based on single polymer nano-wire

Country Status (1)

Country Link
CN (1) CN101299020B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718693B (en) * 2009-12-04 2011-06-22 天津理工大学 Nitrogen dioxide gas concentration measuring instrument of optical fiber with mismatched fiber core
CN101880024B (en) * 2010-05-25 2013-04-17 中国科学院物理研究所 Preparation method of novel probe based on gold-silver nano-wire optical waveguide
CN101902013B (en) * 2010-07-13 2012-11-14 浙江大学 Semiconductor nanoribbon-based annular cavity laser
CN101957308B (en) * 2010-09-08 2012-09-05 华中科技大学 Micro-nano optical fiber evanescent field illuminator
CN102141512A (en) * 2010-12-30 2011-08-03 华中科技大学 Refractive index sensor of micro/nano optical fiber
CN102141513A (en) * 2010-12-30 2011-08-03 华中科技大学 Refractive index sensor of micro-nano optical fiber
CN102374972A (en) * 2011-10-13 2012-03-14 浙江大学 Humidity sensor for single quantum-dot doped polymer nanowire and preparation method thereof
CN103308488B (en) * 2013-05-24 2015-07-15 上海理工大学 Monocrystal palladium nanowire surface plasma hydrogen sensor and preparation method and application thereof
CN103308474A (en) * 2013-05-29 2013-09-18 燕山大学 Method for detecting petroleum pollutants in water by employing optical-fiber evanescent wave probe unit
CN103323439B (en) * 2013-06-09 2016-03-30 华侨大学 A kind of micro-fluidic chip fluorescence excitation device, micro-fluidic chip and preparation method thereof
CN103954590A (en) * 2014-04-30 2014-07-30 电子科技大学 Micro optical fiber gas sensor covered by adopting graphene
CN105973842A (en) * 2016-05-19 2016-09-28 天津理工大学 Ammonia gas sensor of titanium oxide/bromocresol purple composite thin film modified micro-nano optical fiber grating
CN107356641A (en) * 2017-07-18 2017-11-17 中国工程物理研究院材料研究所 Micro-nano fiber hydrogen sensor and detecting system
CN113109271A (en) * 2021-04-08 2021-07-13 中山大学 Preparation and application of biosensor based on polylactic acid nanowires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793849A (en) * 2005-12-31 2006-06-28 浙江大学 Gas concentration detection method and equipment based on optical fiber laser intracavity sensitivity
CN201222030Y (en) * 2008-06-16 2009-04-15 浙江大学 Optical gas sensors based on single high molecule nanometer line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793849A (en) * 2005-12-31 2006-06-28 浙江大学 Gas concentration detection method and equipment based on optical fiber laser intracavity sensitivity
CN201222030Y (en) * 2008-06-16 2009-04-15 浙江大学 Optical gas sensors based on single high molecule nanometer line

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Jingyi Lou等.Modeling of silica nanowires for optical sensing.OPTICS EXPRESS13 6.2005,13(6),2135-2140.
Jingyi Lou等.Modeling of silica nanowires for optical sensing.OPTICS EXPRESS13 6.2005,13(6),2135-2140. *
JP特开平8-213430A 1996.11.29
Limin Tong等.Photonic nanowires directly drawn from bulk glasses.OPTICS EXPRESS14 1.2006,14(1),82-87.
Limin Tong等.Photonic nanowires directly drawn from bulk glasses.OPTICS EXPRESS14 1.2006,14(1),82-87. *
童利民等.亚波长直径光纤的光学传输特性及其应用.物理36 8.2007,36(8),626-630.
童利民等.亚波长直径光纤的光学传输特性及其应用.物理36 8.2007,36(8),626-630. *

Also Published As

Publication number Publication date
CN101299020A (en) 2008-11-05

Similar Documents

Publication Publication Date Title
CN101299020B (en) Optical gas sensor based on single polymer nano-wire
CN201222030Y (en) Optical gas sensors based on single high molecule nanometer line
Rifat et al. Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach
Pathak et al. Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber
Liu et al. One-dimensional plasmonic sensors
CN103822666A (en) Multi-parameter sensor based on long-period fiber bragg grating and Mach-Zehnder interferometer
CN102680452A (en) Dual-detection biochemical sensing detector integrated with optofluidics
CN103308488B (en) Monocrystal palladium nanowire surface plasma hydrogen sensor and preparation method and application thereof
Li et al. Selective and sensitive Escherichia coli detection based on a T4 bacteriophage‐immobilized multimode microfiber
CN109520994A (en) A kind of micro-fluidic biological detection system and method
CN108645511A (en) A kind of new ultra-violet light intensity detector of Mach-Zehnder interferometers structure
CN102374972A (en) Humidity sensor for single quantum-dot doped polymer nanowire and preparation method thereof
Girei et al. Tapered multimode fiber sensor for ethanol sensing application
CN105136747B (en) Multimode fibre probe biosensing device based on surface plasma
CN104535540A (en) Single crystal palladium nano short rod surface plasma hydrogen sensor based on whispering gallery mode and preparation method and application thereof
CN1558209A (en) Coupled type monomode fiber fadeout wave sensor
Johari et al. Formaldehyde sensing using tapered U-shape plastic optical fiber coated with zinc oxide nanorods
CN102735368A (en) Tapered optical fiber temperature sensor and sensing probe manufacture method thereof
CN204855373U (en) System based on optic fibre draws awl characteristic real -time detection liquid refracting index
CN204575538U (en) A kind of laser-induced fluorescence (LIF) food detector
CN209542438U (en) Micro-nano fiber grating nitric oxide gas detection system with temperature-compensating
CN102692244B (en) Optical sensing system based on planar optical waveguide
CN203287309U (en) Double-cavity methane gas concentration sensitive detection device
CN202404025U (en) Humidity sensor with single quantum-dot-doped polymer nanowire
CN207423802U (en) Optical fibre refractivity sensing device based on capture card

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100609

Termination date: 20170616

CF01 Termination of patent right due to non-payment of annual fee