CN101298999A - 工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法 - Google Patents

工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法 Download PDF

Info

Publication number
CN101298999A
CN101298999A CN200810105788.7A CN200810105788A CN101298999A CN 101298999 A CN101298999 A CN 101298999A CN 200810105788 A CN200810105788 A CN 200810105788A CN 101298999 A CN101298999 A CN 101298999A
Authority
CN
China
Prior art keywords
temperature
fiber grating
sensor
temperature sensor
sensitivity optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810105788.7A
Other languages
English (en)
Other versions
CN100554901C (zh
Inventor
李阔
周振安
叶晓平
刘爱春
王永根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jing'ao Optronics Sci & Tech Co Ltd
Institute of Crustal Dynamics of China Earthquake Administration
Original Assignee
Beijing Jing'ao Optronics Sci & Tech Co Ltd
Institute of Crustal Dynamics of China Earthquake Administration
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jing'ao Optronics Sci & Tech Co Ltd, Institute of Crustal Dynamics of China Earthquake Administration filed Critical Beijing Jing'ao Optronics Sci & Tech Co Ltd
Priority to CN200810105788.7A priority Critical patent/CN100554901C/zh
Publication of CN101298999A publication Critical patent/CN101298999A/zh
Priority to PCT/IB2009/051802 priority patent/WO2009136339A1/en
Application granted granted Critical
Publication of CN100554901C publication Critical patent/CN100554901C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/02204Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using thermal effects, e.g. heating or cooling of a temperature sensitive mounting body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明提供的是一种工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法。该传感器采用双金属结构,通过调节光纤光栅的预松长度,调节传感器的开始工作的温度。该方法解决了高灵敏度光纤光栅温度传感器无法在高、低温下工作的难题,将在温度测量领域有广泛应用前景。

Description

工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法
一、技术领域
本发明涉及光纤传感器,尤其是双金属光纤光栅温度增敏传感器设计方法和制作工艺。
二、技术背景
光纤光栅具有许多其它传感器无法比拟的优点:全光测量,在监测现场无电气设备,不受电磁及核辐射干扰;零点无漂移,长期稳定;以反射光的中心波长表征被测量,不受光源功率波动、光纤微弯效应及耦合损耗等因素的影响;绝对量测量,系统安装及长期使用过程中无需定标;使用寿命长等等。
光纤光栅是利用光纤材料的光敏性,即外界入射光子和纤芯相互作用而引起后者折射率的永久性变化,用紫外激光直接写入法在单模光纤的纤芯内形成的空间相位光栅,其实质是在纤芯内形成一个窄带的滤光器或反射镜。光纤光栅属于反射型工作器件,当光源发出的连续宽带光通过传输光纤射入时,它与光栅发生耦合作用,光栅对该宽带光有选择地反射回相应的一个窄带光,并沿原传输光纤返回;其余宽带光则直接透射过去。反射回的窄带光的中心波长值(也叫Bragg波长)为:
λB=2neffΛ
上式中,neff为FBG的有效反射系数,Λ为FBG的相邻两个栅隔之间的几何距离。当温度变化时,引起返回波长变化量相对温度变化量的灵敏度为:
ΔλB/ΔT=[(1-Pe)ε+ζ]λB    (1)
其中,Pe为FBG的有效弹光常数;ε为单位温度变化下FBG的应变量;ζ为FBG的热光系数。
FBG固有的温度分辨率很低,约0.1℃/pm。这在很多应用领域都无法满足要求。因此,很多研究人员就提高其温度灵敏度做了很多工作。FBG温度传感器增敏的原理是利用FBG对温度和应变同时敏感的特性,通过合理的结构设计,把FBG和高热膨胀系数材料封装在一起。当被测温度变化时,通过高热膨胀系数材料的形变向FBG施加一个应变量,使得FBG的返回波长变化量加大。最初,研究人员通过将FBG直接粘贴在大膨胀系数材料上进行温度增敏。这种方法取得的增敏效果有限,受到材料的热膨胀系数制约。1999年3月,Jeahooh Hung等人在Applied Optics期刊上,提出了通过双金属实现温度增敏,效果明显。双金属温度增敏原理:温度变化时,把两种热膨胀系数不同的金属长度变化量的差转化成光栅长度的变化量,使得光纤光栅的返回中心波长的变化量增加,从而提高光纤光栅的温度灵敏度。
双金属的温度增敏方法的结构原理图如附图1所示。单位温度变化下光纤光栅的两个粘贴点间的距离d的变化量为:
Δd=α1L-α2(L-d)
L为底座3上的两固定点间的长度,α1为3的热膨胀系数,α2为2的热膨胀系数。
当光纤光栅被拉伸后,它的应变变化即为两个粘贴点间的应变变化。因此有此时单位温度变化下光纤光栅的应变变化为:
ε=[α1L-α2(L-d)]/d    (2)
把(2)式代入(1),得到光纤光栅的温度灵敏度系数为:
ΔλB/ΔT={(1-Pe)[α1L-α2(L-d)]/d+ζ}λB  (3)
对于高灵敏度光纤光栅温度传感器,光纤光栅热光系数对传感器温度灵敏度的贡献远小于光纤光栅应变变化产生的贡献。传感器的测温量程约等于光纤光栅能承受的最大应变量与传感器灵敏度的商。因光纤光栅所能承受的应变有限,致使高灵敏度光纤光栅温度传感器的量程有限。例如,当高灵敏度光纤光栅温度传感器的灵敏度为1000pm/℃时,因为光纤光栅所能承受的最大应变量约为4000ustrain,对应的波长变化约为4800pm,所以此时光纤光栅温度传感器的量程约为4.8℃(4800pm÷1000pm/℃)。
如何使高灵敏度光纤光栅温度传感器能在高温和低温下工作,就显得尤为重要。
三、发明内容
为解决该问题,我们提出通过调节光纤光栅的预松长度,改变其开始被拉紧的温度,从而使传感器工作在不同的温度。
设制作传感器时的温度为Tr,要求传感器的起始工作温度为Ts。在传感器的环境温度由Tr变化到Ts的过程中,以增加为正,底座3的长度变化量为α1L(Ts-Tr),长条2的长度变化量为α2(L-d)(Ts-Tr)。因此,光纤光栅的两个粘贴点之间的长度变化量应为:
Δd=α1L(Ts-Tr)-α2(L-d)(Ts-Tr)
   =[α1L-α2(L-d)](Ts-Tr)
为了使光纤光栅在温度Ts才开始被拉紧,在温度Tr下制作传感器时,光纤光栅在其两粘贴点之间的长度应比两粘贴点之间的距离长Δd,即光纤光栅的预松长度为Δd。
Δd>0时,传感器在温度Tr下,其光纤光栅为松弛状态。而且,在光纤光栅有一定的长度的情况下,其松弛量可以很大,Δd可以很大(当d=40mm,Δd>4mm)。Δd<0时,传感器在温度Tr下,其光纤光栅为拉紧状态。由于光纤光栅所能承受的应变有限,当d=40mm,Δd<-0.2mm。为了使高灵敏度温度传感器的光纤光栅在温度Ts下不被拉断,应取Δd>0。
为了使Δd>0,同时传感器的温度灵敏度ΔλB/ΔT较高,当Ts>Tr时(即传感器工作于高温),制作传感器时应使α1>>α2;当Ts<Tr时(即传感器工作于低温),制作传感器时应使α1<<α2
为了更好的控制光纤光栅的预松长度,我们设计了一款传感器,结构示意图如说明书附图图2和图3所示。通过调整长条2的位置,可以改变光纤光栅的两个粘贴点间的距离。先调整长条2的位置,配合使用波长解调仪,使光纤光栅刚好开始被拉紧,记下此时两粘贴点间的距离d。然后,再调整长条2的位置以缩短d,缩短的量即为预松长度Δd。通过改变Δd,就可以使传感器可以工作在不同的温度区间。
四、附图说明
附图1是双金属温度增敏原理图;附图2是本发明的结构示意图(正视图);附图3是本发明的结构示意图(俯视图)。
其中,1为光纤光栅,4为固定点,5为条孔,6为固定螺钉,7为螺帽;当制作工作在高温的高灵敏度温度传感器时,2为小热膨胀系数材料,3为大热膨胀系数材料;当制作工作在低温的传感器时,2为大热膨胀系数材料,3为小热膨胀系数材料。
五、具体实施方案
下面结合举例对本发明做更详细的描述:
实例1:在20℃的环境下,制作起始工作温度为120℃的传感器。该传感起主要由以下部分组成:一根光纤光栅,大热膨胀系数铝(α=22*10-6/K)底座,小热膨胀系数invar(α=0.5*10-6/K)长条,其中invar长条上制作了一个长条孔,一个固定螺钉和一个螺母。根据图2和图3所示方式,先把铝底座和invar长条通过螺丝和螺母固定在一起。然后再用环氧树脂胶将光纤光栅的两端分别粘贴到铝底座和invar长条的端点。然后,就可以通过移动invar长条,确定d,并根据不同的Ts,选择不同的Δd了。
不妨设L=500mm,d=15mm。此时,光纤光栅的预松长度应为:
Δd=[α2L-α1(L-d)](Ts-Tr)≈1.05mm
传感器的温度灵敏度为:
ΔλB/ΔT={(1-0.22)[22*500-0.5*(500-15)]/15+6.7}*1.55=877pm/℃
ΔλB/ΔT={(1-0.22)[22*500-0.5*(500-15)]/15+6.7}*1.55=877pm/℃
实例2:在20℃的环境下,制作起始工作温度为-80℃的传感器。该传感起主要由以下部分组成:一根光纤光栅,小热膨胀系数invar底座,大热膨胀系数铝长条,其中铝长条上制作了一个长条孔,一个固定螺钉和一个螺母。根据图2和图3所示方式,先把invar底座和铝长条通过螺丝和螺母固定在一起。然后再用环氧树脂胶将光纤光栅的两端分别粘贴到invar底座和铝长条的端点。然后,就可以通过移动铝长条,确定d,并根据不同的Ts,选择不同的Δd了。
不妨设L=500mm,d=15mm。此时,光纤光栅的预松长度应为:
Δd=[α2L-α1(L-d)](Ts-Tr)≈1.04mm,
传感器的温度灵敏度为:
ΔλB/ΔT={(1-0.22)[22*500-0.5*(500-15)]/15+6.7}*1.55=-829pm/℃

Claims (3)

1.一种工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法,其特征在于:对于以双金属方式制作高灵敏度光纤光栅温度传感器,为了改变其开始工作的温度,光纤光栅预松长度Δd=[α1L-α2(L-d)](Ts-Tr)。
2.按照权利要求1所述的工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法,其特征在于:采用长条形孔对光纤光栅的预松长度Δd进行调节。
3.按照权利要求2所述的工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法,其特征在于:通过螺钉固定两种热膨胀系数不同的元件。
CN200810105788.7A 2008-05-05 2008-05-05 工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法 Expired - Fee Related CN100554901C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200810105788.7A CN100554901C (zh) 2008-05-05 2008-05-05 工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法
PCT/IB2009/051802 WO2009136339A1 (en) 2008-05-05 2009-05-04 A method to make high sensitive fiber bragg grating temperature sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810105788.7A CN100554901C (zh) 2008-05-05 2008-05-05 工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法

Publications (2)

Publication Number Publication Date
CN101298999A true CN101298999A (zh) 2008-11-05
CN100554901C CN100554901C (zh) 2009-10-28

Family

ID=40078893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810105788.7A Expired - Fee Related CN100554901C (zh) 2008-05-05 2008-05-05 工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法

Country Status (2)

Country Link
CN (1) CN100554901C (zh)
WO (1) WO2009136339A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136339A1 (en) * 2008-05-05 2009-11-12 Institute Of Crustal Dynamics, China Earthquake Administration A method to make high sensitive fiber bragg grating temperature sensors
CN101893492A (zh) * 2010-04-06 2010-11-24 中国地震局地壳应力研究所 一种互卡式光纤光栅温度传感器
CN101943614A (zh) * 2010-08-27 2011-01-12 广东电网公司佛山供电局 提高光纤光栅温度传感器灵敏度的装置及方法
CN102798484A (zh) * 2012-08-14 2012-11-28 广东电网公司佛山供电局 低迟滞特性的光纤光栅温度传感器
CN103134609A (zh) * 2011-11-23 2013-06-05 成都酷玩网络科技有限公司 灵敏度系数可调的高灵敏度光纤光栅温度传感器
WO2014059833A1 (zh) * 2012-10-18 2014-04-24 无锡华润上华半导体有限公司 一种压力传感器
CN105241572A (zh) * 2015-10-13 2016-01-13 西安石油大学 单金属双灵敏度宽范围光纤光栅温度传感器及其封装方法
CN105371979A (zh) * 2015-05-25 2016-03-02 赵瑞申 基于mems技术的光纤温度传感芯片
CN114199406A (zh) * 2021-12-10 2022-03-18 哈尔滨电机厂有限责任公司 一种发电机光纤测温元件制作工艺方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243527B1 (en) * 1998-01-16 2001-06-05 Corning Incorporated Athermalization techniques for fiber gratings and temperature sensitive components
US6147341A (en) * 1998-02-13 2000-11-14 Lucent Technologies Inc. Temperature compensating device for fiber gratings
JP4193357B2 (ja) * 2000-12-08 2008-12-10 住友電気工業株式会社 光ファイバ回折格子を有する光学装置
CA2357242A1 (en) * 2001-02-22 2002-08-22 Teraxion Inc. Adjustable athermal package for optical fiber devices
JP4403674B2 (ja) * 2001-06-28 2010-01-27 日立電線株式会社 光ファイバセンサ
CN1145049C (zh) * 2001-07-25 2004-04-07 华为技术有限公司 一种无源温度补偿的光纤光栅及其制造方法
JP2003247899A (ja) * 2002-02-27 2003-09-05 Toyoko Elmes Co Ltd 光ファイバ張力検出装置
CN2572422Y (zh) * 2002-10-11 2003-09-10 东南大学 光纤光栅单端温度补偿封装装置
CN100554901C (zh) * 2008-05-05 2009-10-28 中国地震局地壳应力研究所 工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136339A1 (en) * 2008-05-05 2009-11-12 Institute Of Crustal Dynamics, China Earthquake Administration A method to make high sensitive fiber bragg grating temperature sensors
CN101893492A (zh) * 2010-04-06 2010-11-24 中国地震局地壳应力研究所 一种互卡式光纤光栅温度传感器
CN101943614A (zh) * 2010-08-27 2011-01-12 广东电网公司佛山供电局 提高光纤光栅温度传感器灵敏度的装置及方法
CN103134609A (zh) * 2011-11-23 2013-06-05 成都酷玩网络科技有限公司 灵敏度系数可调的高灵敏度光纤光栅温度传感器
CN102798484A (zh) * 2012-08-14 2012-11-28 广东电网公司佛山供电局 低迟滞特性的光纤光栅温度传感器
CN102798484B (zh) * 2012-08-14 2014-06-25 广东电网公司佛山供电局 低迟滞特性的光纤光栅温度传感器
WO2014059833A1 (zh) * 2012-10-18 2014-04-24 无锡华润上华半导体有限公司 一种压力传感器
CN105371979A (zh) * 2015-05-25 2016-03-02 赵瑞申 基于mems技术的光纤温度传感芯片
CN105241572A (zh) * 2015-10-13 2016-01-13 西安石油大学 单金属双灵敏度宽范围光纤光栅温度传感器及其封装方法
CN105241572B (zh) * 2015-10-13 2017-10-13 西安石油大学 单金属双灵敏度宽范围光纤光栅温度传感器及其封装方法
CN114199406A (zh) * 2021-12-10 2022-03-18 哈尔滨电机厂有限责任公司 一种发电机光纤测温元件制作工艺方法
CN114199406B (zh) * 2021-12-10 2024-05-07 哈尔滨电机厂有限责任公司 一种发电机光纤测温元件制作工艺方法

Also Published As

Publication number Publication date
CN100554901C (zh) 2009-10-28
WO2009136339A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
CN100554901C (zh) 工作于高、低温的高灵敏度光纤光栅温度传感器的制作方法
Díaz et al. A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers
Guo et al. Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam
JP6021285B2 (ja) 光デバイスおよびファイバブラッググレーティングの使用方法
Xu et al. Thermally-compensated bending gauge using surface-mounted fibre gratings
CN100367016C (zh) 光纤温度测量仪及其测量方法
CN102829893B (zh) 一种通过腐蚀得到不同直径光纤光栅来同时测量温度和应力的方法
Zhao et al. A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber
Zhao et al. High sensitive modal interferometer for temperature and refractive index measurement
Li et al. High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity
CN103852191B (zh) 一种折射率不敏感的光纤温度传感器
CN101298980A (zh) 高灵敏度自温度补偿光纤光栅应变传感器的设计方法和制作工艺
Pang et al. Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber
Ramakrishnan et al. Hybrid fiber optic sensor system for measuring the strain, temperature, and thermal strain of composite materials
Wu et al. Simultaneous measurement of micro-displacement and temperature based on balloon-like interferometer and fiber Bragg grating
Mansoursamaei et al. Simultaneous measurement of temperature and strain using a single fiber bragg grating on a tilted cantilever beam
Dai et al. Highly sensitive liquid-level sensor based on weak uniform fiber Bragg grating with narrow-bandwidth
Liu et al. Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain
CN201203488Y (zh) 灵敏度可调式光纤光栅温度传感器
Gao et al. In-fiber double-layered resonator for high-sensitive strain sensing
CN201488837U (zh) 一种温度、应变同时测量光纤光栅传感器
CN201464078U (zh) 单套管蚀刻式光纤光栅温度增敏传感器
Miao et al. Dynamic temperature compensating interrogation technique for strain sensors with tilted fiber Bragg gratings
Meng et al. A novel liquid level monitoring sensor system using a fiber Bragg grating
CN103698048A (zh) 一种简易的高灵敏度光纤温度传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091028

Termination date: 20140505