CN101289314B - A kind of preparation method of spinel type ferrite nano hollow microsphere - Google Patents
A kind of preparation method of spinel type ferrite nano hollow microsphere Download PDFInfo
- Publication number
- CN101289314B CN101289314B CN2007100985874A CN200710098587A CN101289314B CN 101289314 B CN101289314 B CN 101289314B CN 2007100985874 A CN2007100985874 A CN 2007100985874A CN 200710098587 A CN200710098587 A CN 200710098587A CN 101289314 B CN101289314 B CN 101289314B
- Authority
- CN
- China
- Prior art keywords
- solution
- type ferrite
- preparation
- coo
- spinel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 75
- 239000004005 microsphere Substances 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 229910052596 spinel Inorganic materials 0.000 title claims abstract description 16
- 239000011029 spinel Substances 0.000 title claims abstract description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 53
- 150000003839 salts Chemical class 0.000 claims abstract description 25
- 239000002244 precipitate Substances 0.000 claims abstract description 14
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 239000002077 nanosphere Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 14
- 241000080590 Niso Species 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910021645 metal ion Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 12
- 239000013078 crystal Substances 0.000 abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract 2
- 238000001035 drying Methods 0.000 abstract 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 71
- 239000011572 manganese Substances 0.000 description 56
- 229910003321 CoFe Inorganic materials 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 229920001400 block copolymer Polymers 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 4
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000000707 layer-by-layer assembly Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- -1 wherein MnSO 4 Substances 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
发明领域field of invention
本发明涉及一种尖晶石型铁氧体纳米空心微球的制备方法。The invention relates to a preparation method of spinel type ferrite nano hollow microspheres.
背景技术Background technique
尖晶石型铁氧体是一种重要的软磁材料,其广泛应用于电子器件、信息储存及磁共振成像(MRI)等领域。随着技术的发展,人们发现,当材料尺寸达到纳米尺度时,其常常会表现出与块体材料不同的电、磁、光等性质,因而纳米材料得到了人们越来越多地关注。近年来,纳米磁性材料在磁存储、超流体、药物的磁性传输等方面的实际应用也日益广泛。铁氧体不但被用作传感和成像的靶标,而且其还被广泛用作抗癌治疗的活性剂。例如,日本神户大学医学院采用纳米铁氧体来治疗肝癌,肾癌就取得了较大成功。这表明纳米铁氧体在生物医药方面有着良好的应用前景。因此,合成新型纳米铁氧体磁性材料并对其性能进行研究已成为广泛研究的热点。Spinel ferrite is an important soft magnetic material, which is widely used in electronic devices, information storage and magnetic resonance imaging (MRI) and other fields. With the development of technology, it is found that when the size of the material reaches the nanoscale, it often exhibits different electrical, magnetic, and optical properties from bulk materials, so nanomaterials have attracted more and more attention. In recent years, the practical application of nanomagnetic materials in magnetic storage, superfluid, and magnetic transport of drugs has become increasingly widespread. Ferrites are not only used as targets for sensing and imaging, but they are also widely used as active agents for anticancer therapy. For example, Kobe University School of Medicine in Japan used nano-ferrite to treat liver cancer, and kidney cancer has achieved great success. This shows that nano-ferrite has a good application prospect in biomedicine. Therefore, the synthesis of new nano-ferrite magnetic materials and the study of their properties have become a hotspot of extensive research.
由于特殊的中空结构,纳米铁氧体磁性空心微球有望作为有效的药物传输的载体。目前,无机空心微球的制备通常采用模板方法,即以纳米氧化硅以及聚合物乳胶微球为模板,通过层层静电自组装法、溶胶凝胶法、均匀沉淀法等,将无机物包覆在模板上,然后通过热解或溶解除去模板,从而得到相应的无机空心微球。然而,采用该种方法通常面临成本高、制备过程繁杂等不利因素,难于大量制备和规模化生产。由于制备的特殊难度,单分散的纳米铁氧体磁性空心球的制备研究更是凤毛麟角,如J.Colloid & Interface Sci.2005,281,432(Journal of Colloid and InterfaceScience,281卷,432页,2005年),Chem.Phys.Lett.2006,422,294(Chemistry PhysicsLetters,422卷,294页,2006年)以及J.Am.Chem.Soc.2006,128,8382(Journal ofAmerican Chemistry Society,128卷,8382页,2006年)分别报道了采用模板法和溶剂热法制备了四氧化三铁和系列铁氧体嵌段共聚物空心微球,其中铁氧体嵌段共聚物空心微球的制备是将3.0mmol的三氯化铁,1.5mmol的氯化锰或钴,43.6mmol醋酸钠及0.525mmol的聚氧化乙烯-聚氧化丙烯-聚氧化乙烯嵌段共聚物(PEO-PPO-PEO)溶于35ml乙二醇溶液中,充分搅拌,转入反应釜,并在200℃保温4小时后经离心、醇洗、干燥,得铁氧体(Mn1-xFe2+xO4)/嵌段共聚物异质空心微米球。但制得的产品多为多晶结构且存在表面粗糙、尺寸分布不均匀、空腔不规则等不足。Due to the special hollow structure, nanoferrite magnetic hollow microspheres are expected to be effective carriers for drug delivery. At present, the preparation of inorganic hollow microspheres usually adopts the template method, that is, nano-silica and polymer latex microspheres are used as templates, and the inorganic materials are coated by layer-by-layer electrostatic self-assembly method, sol-gel method, uniform precipitation method, etc. On the template, the template is then removed by pyrolysis or dissolution to obtain the corresponding inorganic hollow microspheres. However, this method usually faces unfavorable factors such as high cost and complicated preparation process, and it is difficult to prepare in large quantities and produce on a large scale. Due to the special difficulty of preparation, the preparation research of monodisperse nano-ferrite magnetic hollow spheres is even rarer, such as J.Colloid & Interface Sci.2005, 281, 432 (Journal of Colloid and Interface Science, volume 281, page 432, 2005 Year), Chem.Phys.Lett.2006, 422, 294 (Chemistry Physics Letters, Volume 422, Page 294, 2006) and J.Am.Chem.Soc.2006, 128, 8382 (Journal of American Chemistry Society, Volume 128, 8382 pages, in 2006) have reported adopting template method and solvothermal method to prepare iron ferrite tetroxide and series ferrite block copolymer hollow microsphere respectively, wherein the preparation of ferrite block copolymer hollow microsphere is the 3.0mmol of ferric chloride, 1.5mmol of manganese chloride or cobalt, 43.6mmol of sodium acetate and 0.525mmol of polyoxyethylene-polyoxypropylene-polyoxyethylene block copolymer (PEO-PPO-PEO) are dissolved in 35ml In ethylene glycol solution, fully stirred, transferred to a reaction kettle, and kept at 200°C for 4 hours, then centrifuged, washed with alcohol, and dried to obtain ferrite (Mn 1-x Fe 2+x O 4 )/block copolymer Heterogeneous hollow microspheres. However, most of the products obtained are polycrystalline structures and have shortcomings such as rough surfaces, uneven size distribution, and irregular cavities.
发明内容Contents of the invention
本发明的目的在于克服现有技术制备尖晶石型铁氧体空心微球得到的产品表面粗糙、尺寸分布不均匀、空腔不规则等缺陷,从而提供一种粒径为纳米尺寸、粒度分布均匀的尖晶石型铁氧体纳米空心微球的制备方法。The purpose of the present invention is to overcome defects such as surface roughness, uneven size distribution, and irregular cavities obtained by preparing spinel-type ferrite hollow microspheres in the prior art, thereby providing a nanometer-sized, particle-size-distribution The invention discloses a method for preparing uniform spinel-type ferrite nano hollow microspheres.
本发明的目的是通过如下的技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
本发明提供了一种尖晶石型铁氧体纳米空心微球的制备方法,该方法包括如下步骤:The invention provides a preparation method of spinel ferrite nano hollow microspheres, the method comprising the following steps:
1)在常温常压下,将三价铁盐加入乙二醇溶液中,充分搅拌形成第一溶液,其中,三价铁盐的浓度为0.05~0.4mol/l;1) Add the ferric salt into the ethylene glycol solution at normal temperature and pressure, and fully stir to form the first solution, wherein the concentration of the ferric salt is 0.05-0.4 mol/l;
2)按照尖晶石型铁氧体通式MxM′yM″(1-x-y)Fe2O4中金属离子M、M′和M″的化学计量比分别称取含M、M′和M″的盐,并在常温常压下将其溶解于步骤1)制备的第一溶液中,充分搅拌形成第二溶液,其中,所述金属离子M,M′和M″分别选自Mn、Zn、Co和Ni的二价离子以及Fe的三价离子,且0<x≤1,0≤y<1,x+y≤1; 2 ) Weigh M , M ' and and M "salt, and under normal temperature and pressure, it is dissolved in the first solution prepared in step 1), fully stirred to form a second solution, wherein, the metal ions M, M' and M" are respectively selected from Mn , Zn, Co and Ni divalent ions and Fe trivalent ions, and 0<x≤1, 0≤y<1, x+y≤1;
3)然后,在常温常压下,将乙二胺加入到步骤2)制备的第二溶液中,充分搅拌得到第三溶液,其中,乙二胺与乙二醇的体积比为0.05~0.35∶1;3) Then, under normal temperature and pressure, ethylenediamine is added to the second solution prepared in step 2), and fully stirred to obtain a third solution, wherein the volume ratio of ethylenediamine to ethylene glycol is 0.05 to 0.35: 1;
4)接着,将步骤3)制备的第三溶液置于密闭的反应容器中,在200-250℃下,保温8~12小时,得到沉淀;4) Next, place the third solution prepared in step 3) in a closed reaction vessel, and keep it warm for 8-12 hours at 200-250° C. to obtain a precipitate;
5)最后,将上述步骤4)得到的沉淀用去离子水洗涤、干燥,即制得尖晶石型铁氧体纳米空心微球。5) Finally, the precipitate obtained in the above step 4) is washed with deionized water and dried to obtain spinel-type ferrite hollow nanospheres.
在本发明的一个实施方案中,所述M、M′和M″的盐优选为含Co、Mn、Zn或Ni的二价盐,或者为三价铁盐。In one embodiment of the present invention, the salts of M, M' and M" are preferably divalent salts containing Co, Mn, Zn or Ni, or ferric salts.
在本发明的另一个实施方案中,所述的含Mn的二价盐优选为Mn(NO3)2,MnCl2,MnSO4,Mn(CH3COO)2及其混合物。In another embodiment of the present invention, the said divalent salt containing Mn is preferably Mn(NO 3 ) 2 , MnCl 2 , MnSO 4 , Mn(CH 3 COO) 2 and mixtures thereof.
在本发明的又一个实施方案中,所述的含Zn的二价盐优选为Zn(NO3)2,ZnCl2,ZnSO4,Zn(CH3COO)2及其混合物。In yet another embodiment of the present invention, the Zn-containing divalent salt is preferably Zn(NO 3 ) 2 , ZnCl 2 , ZnSO 4 , Zn(CH 3 COO) 2 and mixtures thereof.
在本发明的再一个实施方案中,所述的含Co的二价盐优选为Co(NO3)2,CoCl2,CoSO4,Co(CH3COO)2及其混合物。In yet another embodiment of the present invention, the said divalent salt containing Co is preferably Co(NO 3 ) 2 , CoCl 2 , CoSO 4 , Co(CH 3 COO) 2 and mixtures thereof.
在本发明的再一个实施方案中,所述的含Ni的二价盐优选为Ni(NO3)2,NiCl2,NiSO4,Ni(CH3COO)2及其混合物。In yet another embodiment of the present invention, the Ni-containing divalent salt is preferably Ni(NO 3 ) 2 , NiCl 2 , NiSO 4 , Ni(CH 3 COO) 2 and mixtures thereof.
在本发明的再一个实施方案中,所述三价铁盐优选为FeCl3,Fe(NO3)3,Fe2(SO4)3及其混合物。In yet another embodiment of the present invention, the ferric salt is preferably FeCl 3 , Fe(NO 3 ) 3 , Fe 2 (SO 4 ) 3 and mixtures thereof.
由本发明提供的制备方法得到的尖晶石型铁氧体纳米空心微球,其尺寸在200~300nm,壁厚在20~40nm。The spinel type ferrite nano hollow microsphere obtained by the preparation method provided by the invention has a size of 200-300nm and a wall thickness of 20-40nm.
与现有技术相比,本发明提供的尖晶石型铁氧体纳米空心微球的制备方法具有如下优点:Compared with the prior art, the preparation method of the spinel ferrite nano hollow microspheres provided by the present invention has the following advantages:
1、本发明提供的方法制备得到的尖晶石型铁氧体纳米空心微球分散性好,尺寸均匀,尺寸在200~300nm,壁厚在20~40nm;1. The spinel-type ferrite nano hollow microspheres prepared by the method provided by the present invention have good dispersibility, uniform size, the size is 200-300nm, and the wall thickness is 20-40nm;
2、本发明提供的方法制备得到的尖晶石型铁氧体纳米空心微球晶型规整,是均相无杂质的单晶尖晶石型铁氧体;2. The spinel-type ferrite nano-hollow microspheres prepared by the method provided by the present invention have a regular crystal form and are homogeneous single-crystal spinel-type ferrite without impurities;
3、本发明提供的制备方法所需的原材料成本低廉;3. The cost of raw materials required by the preparation method provided by the invention is low;
4、本发明提供的整个制备过程均在空气条件下进行,无需氮气保护;4. The whole preparation process provided by the present invention is carried out under air conditions without nitrogen protection;
5、本发明提供的制备方法中,铁氧体的制备在较低温度(200~250℃)下溶剂热处理即可得到均相的尖晶石型铁氧体空心微球;5. In the preparation method provided by the present invention, homogeneous spinel-type ferrite hollow microspheres can be obtained by solvent heat treatment at a relatively low temperature (200-250° C.) for the preparation of ferrite;
6、本发明提供的制备方法工艺简单,可大量制备,适于规模化生产。6. The preparation method provided by the present invention has a simple process, can be prepared in large quantities, and is suitable for large-scale production.
附图说明Description of drawings
图1为实施例1制得的四氧化三铁纳米空心微球的扫描电镜(SEM)照片;Fig. 1 is the scanning electron microscope (SEM) photo of the iron ferric oxide nano hollow microspheres that
图2为实施例1制得的四氧化三铁纳米空心微球的电子能谱图(EDX);图3为实施例2制得的钴铁氧体纳米空心微球的透射电镜(TEM)照片;Fig. 2 is the electron energy spectrum (EDX) of the iron ferrite nano-hollow microspheres that
图4为实施例2制得的钴铁氧体纳米空心微球的电子衍射图(ED);Fig. 4 is the electron diffraction figure (ED) of the cobalt ferrite nano hollow microsphere that
图5为实施例3、5、11和15制得的MnFe2O4、CoFe2O4、Mn0.5Zn0.5Fe2O4、Co0.5Ni0.5Fe2O4纳米空心微球的的X射线衍射谱图(XRD)。Fig. 5 is the X-ray of MnFe 2 O 4 , CoFe 2 O 4 , Mn 0.5 Zn 0.5 Fe 2 O 4 , Co 0.5 Ni 0.5 Fe 2 O 4 nano hollow microspheres prepared in Examples 3, 5, 11 and 15 Diffraction pattern (XRD).
具体实施方式Detailed ways
以下结合附图和实施例进一步阐述本发明,但这些实施例仅限于说明本发明而不用于限制本发明的范围。本发明的保护范围以所附的权利要求书为准。The present invention will be further described below in conjunction with the accompanying drawings and examples, but these examples are only for illustrating the present invention and are not intended to limit the scope of the present invention. The protection scope of the present invention shall be determined by the appended claims.
实施例1Example 1
本实施例制备单分散四氧化三铁纳米空心微球,步骤和条件如下:This embodiment prepares monodisperse ferric oxide nano hollow microspheres, the steps and conditions are as follows:
1)将适量FeCl3溶于40ml乙二醇,充分搅拌形成FeCl3浓度为0.4mol/l的澄清溶液,即第一溶液;1) Dissolve an appropriate amount of FeCl3 in 40ml of ethylene glycol, and fully stir to form a clear solution with a FeCl3 concentration of 0.4mol/l, that is, the first solution;
2)将Fe(NO3)3按照摩尔比Fe(NO3)3:FeCl3=1:2加入到第一溶液中,充分搅拌形成第二溶液;2) Fe(NO 3 ) 3 is added into the first solution according to the molar ratio of Fe(NO 3 ) 3 :FeCl 3 =1:2, and fully stirred to form the second solution;
3)将乙二胺逐滴滴加到第二溶液中,其加入量与乙二醇的体积比为0.2:1,充分搅拌形成即第三溶液;3) Add ethylenediamine dropwise to the second solution, the volume ratio of the added amount to ethylene glycol is 0.2:1, and fully stir to form the third solution;
4)将上述所得的第三溶液转到密闭的反应容器中,在200℃的条件下,保温8小时,得到沉淀;4) Transfer the third solution obtained above into a closed reaction vessel, and keep it warm for 8 hours under the condition of 200° C. to obtain a precipitate;
5)最后,将上述步骤4)得到的沉淀用去离子水洗涤、干燥,即制得单分散的四氧化三铁纳米空心微球。5) Finally, the precipitate obtained in the above step 4) is washed with deionized water and dried to obtain monodisperse iron ferric oxide hollow nanospheres.
上述第一、第二、和第三溶液的配制都是在常温常压下进行的。The preparation of the first, second, and third solutions above is all carried out at normal temperature and pressure.
本实施例制备的四氧化三铁纳米空心微球的电子显微镜扫描照片和电子能谱图分别如图1和图2所示,从图1中可以看出制得的样品表面较为光滑,且分散性好,粒径均匀,尺寸在200~300nm,壁厚在20~40nm,部分破的球体呈现出半球形及碗形,证明制得的样品具有中空结构;从图2中可以看出制得的样品仅含有Fe和O两种元素(其中Au为导电需要,制样时所喷之金),且根据电子能谱数据可知,元素个数Fe/O~3/4,初步证明制得样品为Fe3O4。The electron microscope scanning photo and the electron energy spectrum of the ferroferric oxide nano hollow microspheres prepared in this example are shown in Figure 1 and Figure 2 respectively. Good performance, uniform particle size, size 200-300nm, wall thickness 20-40nm, partially broken spheres present a hemispherical and bowl shape, proving that the prepared sample has a hollow structure; it can be seen from Figure 2 that the prepared The sample contained only two elements, Fe and O (among which Au is required for electrical conductivity, and the gold was sprayed during sample preparation), and according to the electron spectrum data, the number of elements was Fe/O~3/4, which preliminarily proved that the prepared sample is Fe 3 O 4 .
实施例2Example 2
本实施例中除了步骤1)使用硝酸铁(Fe(NO3)3)或硫酸铁(Fe2(SO4)3)替代氯化铁(FeCl3)外,其他步骤和条件都与实施例1相同,同样可以得到单晶、单分散四氧化三铁纳米空心微球。In this example, except that step 1) uses iron nitrate (Fe(NO 3 ) 3 ) or iron sulfate (Fe 2 (SO 4 ) 3 ) instead of iron chloride (FeCl 3 ), other steps and conditions are the same as in Example 1. Similarly, single crystal, monodisperse ferric oxide nano hollow microspheres can also be obtained.
实施例3Example 3
本实施例制备单分散CoFe2O4铁氧体纳米空心微球,其步骤和条件如下:This example prepares monodisperse CoFe 2 O 4 ferrite nano hollow microspheres, the steps and conditions are as follows:
1)将适量Fe2(SO4)3溶于40ml乙二醇,充分搅拌形成Fe2(SO4)3浓度为0.05mol/l的第一溶液;1) Dissolving an appropriate amount of Fe 2 (SO 4 ) 3 in 40 ml of ethylene glycol, and fully stirring to form a first solution with a Fe 2 (SO 4 ) 3 concentration of 0.05 mol/l;
2)将Co(NO3)2按照化学计量比Co2+:Fe3+=1:2加入到第一溶液中,充分搅拌形成第二溶液;2) Adding Co(NO 3 ) 2 into the first solution according to the stoichiometric ratio Co 2+ : Fe 3+ =1:2, and fully stirring to form the second solution;
3)将乙二胺逐滴滴加到第二溶液中,其加入量与乙二醇的体积比为0.35:1,充分搅拌形成第三溶液;3) Add ethylenediamine dropwise to the second solution, the volume ratio of the added amount to ethylene glycol is 0.35:1, and fully stir to form the third solution;
4)将上述所得的第三溶液转到密闭的反应容器中,在250℃的条件下,保温12小时,得到沉淀;4) Transfer the third solution obtained above into a closed reaction vessel, and keep it warm for 12 hours under the condition of 250° C. to obtain a precipitate;
5)最后,将上述步骤4)得到的沉淀用去离子水洗涤、干燥,即制得单分散的CoFe2O4铁氧体纳米空心微球。5) Finally, the precipitate obtained in the above step 4) is washed with deionized water and dried to obtain monodisperse CoFe 2 O 4 hollow ferrite nanospheres.
上述第一、第二和第三溶液的配制都是在常温常压下进行的。The preparation of the above-mentioned first, second and third solutions is all carried out at normal temperature and pressure.
本实施例制备的CoFe2O4铁氧体纳米空心微球的透射电镜(TEM)照片和电子衍射图(ED)分别如图3和图4所示,从图3中可以看出制得的产品边缘和中心部分具有明显的对比度,其中边缘颜色较深,中心部分颜色较浅,这表明制得的样品具有中空结构,分散性好,粒径均匀,尺寸在200~300nm,壁厚在20~40nm;从图4中可以看出样品呈现出典型的单晶衍射花纹,表明制得的样品具有单晶特性。The CoFe 2 O 4 ferrite nano hollow microspheres prepared by the present embodiment are shown in Fig. 3 and Fig. 4 respectively for the transmission electron microscope (TEM) photo and the electron diffraction pattern (ED), as can be seen from Fig. 3 There is a clear contrast between the edge and the center of the product, where the edge is darker and the center is lighter, which indicates that the prepared sample has a hollow structure, good dispersion, uniform particle size, a size of 200-300nm, and a wall thickness of 20 ~40nm; It can be seen from Figure 4 that the sample presents a typical single crystal diffraction pattern, indicating that the prepared sample has single crystal characteristics.
实施例4Example 4
本实施例中除步骤1)中增加Fe2(SO4)3的浓度至0.4mol/l,同时将步骤3)中乙二胺与乙二醇体积比降低至0.05:1外,其他条件和步骤与实施例3相同,同样可以得到单分散CoFe2O4铁氧体纳米空心微球。In this example, in addition to increasing the concentration of Fe 2 (SO 4 ) 3 to 0.4 mol/l in step 1), and reducing the volume ratio of ethylenediamine to ethylene glycol in step 3) to 0.05:1, other conditions and The steps are the same as in Example 3, and monodisperse CoFe 2 O 4 ferrite hollow nanospheres can also be obtained.
实施例5Example 5
本实施例中除步骤2)使用MnCl2替代Co(NO3)2外,其他步骤和条件与实施例3相同,可以得到单晶、单分散的MnFe2O4铁氧体纳米空心微球。In this example, except that step 2) uses MnCl 2 instead of Co(NO 3 ) 2 , other steps and conditions are the same as in Example 3, and single crystal, monodisperse MnFe 2 O 4 ferrite hollow nanospheres can be obtained.
实施例6Example 6
本实施例中除步骤2)使用ZnSO4替代Co(NO3)2外,其他步骤和条件与实施例3相同,可以得到单晶、单分散的ZnFe2O4铁氧体纳米空心微球。In this example, except that step 2) uses ZnSO 4 instead of Co(NO 3 ) 2 , other steps and conditions are the same as in Example 3, and single crystal, monodisperse ZnFe 2 O 4 ferrite hollow nanospheres can be obtained.
实施例7Example 7
本实施例中除步骤2)使用Ni(CH3COO)2替代Co(NO3)2外,其他步骤和条件与实施例3相同,可以得到单晶、单分散的NiFe2O4铁氧体纳米空心微球。In this example, except that step 2) uses Ni(CH 3 COO) 2 instead of Co(NO 3 ) 2 , other steps and conditions are the same as in Example 3, and single crystal, monodisperse NiFe 2 O 4 ferrite can be obtained nano hollow microspheres.
实施例8Example 8
本实施例制备单分散Mn0.5Zn0.5Fe2O4铁氧体纳米空心微球,其步骤和条件如下:This example prepares monodisperse Mn 0.5 Zn 0.5 Fe 2 O 4 ferrite nano hollow microspheres, the steps and conditions are as follows:
1)将适量Fe(NO3)3溶于40ml乙二醇,充分搅拌形成Fe(NO3)3浓度为0.2mol/l的第一溶液;1) Dissolve an appropriate amount of Fe(NO 3 ) 3 in 40ml of ethylene glycol, and stir thoroughly to form a first solution with a Fe(NO 3 ) 3 concentration of 0.2 mol/l;
2)将Mn(NO3)2和ZnSO4按照化学计量比Mn2+:Zn2+:Fe3+=0.5:0.5:2;加入到第一溶液中,充分搅拌形成第二溶液;2) Mn(NO 3 ) 2 and ZnSO 4 are added to the first solution according to the stoichiometric ratio Mn 2+ : Zn 2 + : Fe 3+ =0.5:0.5:2, and fully stirred to form the second solution;
3)将乙二胺逐滴滴加到第二溶液中,其加入量与乙二醇的体积比为0.1:1,充分搅拌形成第三溶液;3) Add ethylenediamine dropwise to the second solution, the volume ratio of the added amount to ethylene glycol is 0.1:1, and fully stir to form the third solution;
4)将上述所得的第三溶液转到密闭的反应容器中,在250℃的条件下,保温10小时,得到沉淀;4) transfer the third solution obtained above into a closed reaction vessel, and keep it warm for 10 hours under the condition of 250° C. to obtain a precipitate;
5)最后,将上述步骤4)得到的沉淀用去离子水洗涤、干燥,即制得单分散的Mn0.5Zn0.5Fe2O4铁氧体纳米空心微球。5) Finally, the precipitate obtained in the above step 4) was washed with deionized water and dried to obtain monodisperse Mn 0.5 Zn 0.5 Fe 2 O 4 ferrite hollow nanospheres.
上述第一、第二和第三溶液的配制都是在常温常压下进行的。The preparation of the above-mentioned first, second and third solutions is all carried out at normal temperature and pressure.
实施例9Example 9
本实施例中除步骤1)增加Fe(NO3)3的浓度至0.4mol/l,同时将步骤3)中乙二胺与乙二醇体积比降低至0.05:1外,其他步骤和条件与实施例8相同,同样可以得到Mn0.5Zn0.5Fe2O4铁氧体纳米空心微球。In this example, except step 1) increasing the concentration of Fe(NO 3 ) 3 to 0.4mol/l, and simultaneously reducing the volume ratio of ethylenediamine to ethylene glycol in step 3) to 0.05:1, other steps and conditions are the same as The same as in Example 8, Mn 0.5 Zn 0.5 Fe 2 O 4 hollow ferrite nanospheres can also be obtained.
实施例10Example 10
本实施例中除步骤1)降低Fe(NO3)3的浓度至0.05mol/l,同时将步骤3)中乙二胺与乙二醇体积比增加至0.35:1外,其他步骤和条件与实施例8相同,同样可以得到Mn0.5Zn0.5Fe2O4铁氧体纳米空心微球。In this example, except that step 1) reduces the concentration of Fe(NO 3 ) 3 to 0.05 mol/l, and at the same time increases the volume ratio of ethylenediamine to ethylene glycol in step 3) to 0.35:1, other steps and conditions are the same as The same as in Example 8, Mn 0.5 Zn 0.5 Fe 2 O 4 hollow ferrite nanospheres can also be obtained.
实施例11Example 11
本实施例中除步骤2)中加入的Mn(NO3)2和ZnSO4分别被NiCl2和CoSO4替代外,其他条件和步骤与实施例8相同,同样也得到Mn0.5Zn0.5Fe2O4铁氧体纳米空心微球。In this example, except that Mn(NO 3 ) 2 and ZnSO 4 added in step 2) are replaced by NiCl 2 and CoSO 4 respectively, other conditions and steps are the same as in Example 8, and Mn 0.5 Zn 0.5 Fe 2 O is also obtained 4 ferrite nano hollow microspheres.
实施例12Example 12
本实施例中除步骤2)中加入的Mn(NO3)2和ZnSO4分别被Co(NO3)2和ZnCl2替代外,其他条件和步骤与实施例8相同,同样也得到Co0.5Zn0.5Fe2O4铁氧体纳米空心微球。In this example, except that Mn(NO 3 ) 2 and ZnSO 4 added in step 2) are replaced by Co(NO 3 ) 2 and ZnCl 2 respectively, other conditions and steps are the same as in Example 8, and Co 0.5 Zn 0.5 Fe 2 O 4 ferrite nano hollow microspheres.
实施例13Example 13
本实施例中除步骤2)中加入的Mn(NO3)2和ZnSO4分别被MnSO4和CoCl2替代外,其他条件和步骤与实施例8相同,同样也得到Mn0.5Co0.5Fe2O4铁氧体纳米空心微球。In this example, except that Mn(NO 3 ) 2 and ZnSO 4 added in step 2) are replaced by MnSO 4 and CoCl 2 respectively, other conditions and steps are the same as in Example 8, and Mn 0.5 Co 0.5 Fe 2 O is also obtained 4 ferrite nano hollow microspheres.
实施例14Example 14
本实施例中除步骤2)中加入的Mn(NO3)2和ZnSO4分别被NiSO4和Zn(NO3)2替代外,其他条件和步骤与实施例8相同,同样也得到Ni0.5Zn0.5Fe2O4铁氧体纳米空心微球。In this example, except that Mn(NO 3 ) 2 and ZnSO 4 added in step 2) are replaced by NiSO 4 and Zn(NO 3 ) 2 respectively, other conditions and steps are the same as in Example 8, and Ni 0.5 Zn 0.5 Fe 2 O 4 ferrite nano hollow microspheres.
实施例15Example 15
本实施例中除步骤2)中加入的Mn(NO3)2和ZnSO4分别被Co(CH3COO)2和Ni(CH3COO)2替代外,其他条件和步骤与实施例8相同,同样也得到Co0.5Ni0.5Fe2O4铁氧体纳米空心微球。In this example, except that Mn(NO 3 ) 2 and ZnSO 4 added in step 2) are replaced by Co(CH 3 COO) 2 and Ni(CH 3 COO) 2 respectively, other conditions and steps are the same as in Example 8, Also obtained Co 0.5 Ni 0.5 Fe 2 O 4 ferrite nano hollow microspheres.
实施例16Example 16
本实施例中除步骤2)中加入的Mn(NO3)2和NiSO4分别被Mn(CH3COO)2和Ni(NO3)2替代外,其他条件和步骤与实施例8相同,同样也得到Mn0.5Ni0.5Fe2O4铁氧体纳米空心微球。In this example, except that Mn(NO 3 ) 2 and NiSO 4 added in step 2) are replaced by Mn(CH 3 COO) 2 and Ni(NO 3 ) 2 respectively, other conditions and steps are the same as in Example 8, and the same Mn 0.5 Ni 0.5 Fe 2 O 4 ferrite nano hollow microspheres were also obtained.
图5给出了实施例3,5,11,15制得的CoFe2O4、MnFe2O4、Mn0.5Zn0.5Fe2O4、Co0.5Ni0.5Fe2O4纳米空心微球的的X射线衍射谱图(XRD),从图中可以看出制得的样品纯相的立方结构的尖晶石型铁氧体,且衍射峰的强度较高,表明制得的样品具有高的晶化度,晶形较为完整。Figure 5 shows the properties of CoFe 2 O 4 , MnFe 2 O 4 , Mn 0.5 Zn 0.5 Fe 2 O 4 , Co 0.5 Ni 0.5 Fe 2 O 4 hollow nanospheres prepared in Examples 3, 5, 11, and 15. X-ray diffraction spectrum (XRD), as can be seen from the figure the spinel ferrite of the cubic structure of the pure phase of the sample made, and the intensity of the diffraction peak is higher, shows that the sample made has high crystallinity The degree of crystallization is relatively complete.
实施例17Example 17
本实施例制备单分散Co0.4Mn0.4Zn0.2Fe2O4铁氧体纳米空心微球,其步骤和条件如下:This example prepares monodisperse Co 0.4 Mn 0.4 Zn 0.2 Fe 2 O 4 hollow ferrite nanospheres, the steps and conditions are as follows:
1)将适量Fe2(SO4)3溶于40ml乙二醇,充分搅拌形成Fe2(SO4)3浓度为0.4mol/l的第一溶液;1) Dissolving an appropriate amount of Fe 2 (SO 4 ) 3 in 40 ml of ethylene glycol, and stirring thoroughly to form a first solution with a Fe 2 (SO 4 ) 3 concentration of 0.4 mol/l;
2)将Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2按照化学计量比Co2+:Mn2+:Zn2+:Fe3+=0.4:0.4:0.2:2加入到第一溶液中,充分搅拌形成第二溶液;2) Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 according to the stoichiometric ratio Co 2+ :Mn 2+ :Zn 2+ :Fe 3+ =0.4:0.4: Add 0.2:2 to the first solution, stir well to form the second solution;
3)将乙二胺逐滴滴加到第二溶液中,其加入量与乙二醇的体积比为0.3:1,充分搅拌形成第三溶液;3) Add ethylenediamine dropwise to the second solution, the volume ratio of the added amount to ethylene glycol is 0.3:1, and fully stir to form the third solution;
4)将上述所得的第三溶液转到密闭的反应容器中,在210℃的条件下,保温11小时,得到沉淀;4) transfer the third solution obtained above into a closed reaction vessel, and keep it warm for 11 hours under the condition of 210° C. to obtain a precipitate;
5)最后,将上述步骤4)得到的沉淀用去离子水洗涤、干燥,即制得单分散的Co0.4Mn0.4Zn0.2Fe2O4铁氧体纳米空心微球。5) Finally, the precipitate obtained in the above step 4) is washed with deionized water and dried to obtain monodisperse Co 0.4 Mn 0.4 Zn 0.2 Fe 2 O 4 ferrite hollow nanospheres.
上述第一、第二和第三溶液的配制都是在常温常压下进行的。The preparation of the above-mentioned first, second and third solutions is all carried out at normal temperature and pressure.
实施例18Example 18
本实施例中除步骤1)降低Fe2(SO4)3的浓度至0.05mol/l,同时将步骤3)中乙二胺与乙二醇体积比降低至0.05:1外,其他步骤和条件与实施例17相同,同样可以得到Co0.4Mn0.4Zn0.2Fe2O4铁氧体纳米空心微球。In this example, except that step 1) reduces the concentration of Fe 2 (SO 4 ) 3 to 0.05 mol/l, and at the same time reduces the volume ratio of ethylenediamine to ethylene glycol in step 3) to 0.05:1, other steps and conditions Same as in Example 17, Co 0.4 Mn 0.4 Zn 0.2 Fe 2 O 4 hollow ferrite nanospheres can also be obtained.
实施例19Example 19
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被Ni(NO3)2、MnSO4和ZnCl2替代外,其他条件和步骤与实施例17相同,同样也得到Ni0.4Mn0.4Zn0.2Fe2O4铁氧体纳米空心微球。In this example, except that Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) are replaced by Ni(NO 3 ) 2 , MnSO 4 and ZnCl 2 respectively , other conditions and steps were the same as in Example 17, and Ni 0.4 Mn 0.4 Zn 0.2 Fe 2 O 4 ferrite hollow nanospheres were also obtained.
实施例20Example 20
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被Co(NO3)2、NiSO4和ZnCl2替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Ni0.4Zn0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) are replaced by Co(NO 3 ) 2 , NiSO 4 and ZnCl 2 respectively , other conditions and steps were the same as in Example 17, and Co 0.4 Ni 0.4 Zn 0.2 Fe 2 O 4 hollow ferrite nanospheres were also obtained.
实施例21Example 21
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被CoSO4、ZnSO4和MnSO4替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Zn0.4Mn0.2Fe2O4铁氧体纳米空心微球。In this example, except that Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) are replaced by CoSO 4 , ZnSO 4 and MnSO 4 respectively, other conditions and The steps are the same as in Example 17, and Co 0.4 Zn 0.4 Mn 0.2 Fe 2 O 4 hollow ferrite nanospheres are also obtained.
实施例22Example 22
Co0.4Ni0.4Mn0.2Fe2O4 Co 0.4 Ni 0.4 Mn 0.2 Fe 2 O 4
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被CoCl2、NiCl2和Mn(NO3)2、替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Ni0.4Mn0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) were replaced by CoCl 2 , NiCl 2 and Mn(NO 3 ) 2 , respectively. Besides, other conditions and steps were the same as in Example 17, and Co 0.4 Ni 0.4 Mn 0.2 Fe 2 O 4 ferrite hollow nanospheres were also obtained.
实施例23Example 23
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被Zn(NO3)2、Ni(CH3COO)2和MnSO4替代外,其他条件和步骤与实施例17相同,同样也得到Zn0.4Ni0.4Mn0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) were respectively replaced by Zn(NO 3 ) 2 , Ni(CH 3 COO) 2 Except for replacing MnSO 4 , other conditions and steps are the same as in Example 17, and Zn 0.4 Ni 0.4 Mn 0.2 Fe 2 O 4 ferrite hollow nanospheres are also obtained.
实施例24Example 24
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被MnSO4、ZnCl2和Co(NO3)2替代外,其他条件和步骤与实施例17相同,同样也得到Mn0.4Zn0.4Co0.2Fe2O4铁氧体纳米空心微球。In this example, except that Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) are replaced by MnSO 4 , ZnCl 2 and Co(NO 3 ) 2 respectively , other conditions and steps were the same as in Example 17, and Mn 0.4 Zn 0.4 Co 0.2 Fe 2 O 4 ferrite hollow nanospheres were also obtained.
实施例25Example 25
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被MnSO4、Ni(CH3COO)2和CoCl2替代外,其他条件和步骤与实施例17相同,同样也得到Mn0.4Ni0.4Co0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) were replaced by MnSO 4 , Ni(CH 3 COO) 2 and CoCl 2 respectively Besides, other conditions and steps were the same as in Example 17, and Mn 0.4 Ni 0.4 Co 0.2 Fe 2 O 4 ferrite hollow nanospheres were also obtained.
实施例26Example 26
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被Ni(NO3)2、ZnCl2、和CoSO4替代外,其他条件和步骤与实施例17相同,同样也得到Ni0.4Zn0.4Co0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) were replaced by Ni(NO 3 ) 2 , ZnCl 2 , and CoSO 4 respectively Besides, other conditions and steps are the same as in Example 17, and Ni 0.4 Zn 0.4 Co 0.2 Fe 2 O 4 ferrite hollow nanospheres are also obtained.
实施例27Example 27
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被Co(NO3)2、MnSO4和NiCl2替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Mn0.4Ni0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) are replaced by Co(NO 3 ) 2 , MnSO 4 and NiCl 2 respectively , other conditions and steps were the same as in Example 17, and Co 0.4 Mn 0.4 Ni 0.2 Fe 2 O 4 hollow ferrite nanospheres were also obtained.
实施例28Example 28
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被ZnCl2、MnCl2和Ni(CH3COO)2替代外,其他条件和步骤与实施例17相同,同样也得到Zn0.4Mn0.4Ni0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) were replaced by ZnCl 2 , MnCl 2 and Ni(CH 3 COO) 2 respectively In addition, other conditions and steps are the same as in Example 17, and Zn 0.4 Mn 0.4 Ni 0.2 Fe 2 O 4 ferrite hollow nanospheres are also obtained.
实施例29Example 29
本实施例中除步骤2)中加入的Co(CH3COO)2、Mn(CH3COO)2和Zn(CH3COO)2分别被Co(NO3)2、ZnCl2和NiSO4替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Zn0.4Ni0.2Fe2O4铁氧体纳米空心微球。In this example, Co(CH 3 COO) 2 , Mn(CH 3 COO) 2 and Zn(CH 3 COO) 2 added in step 2) are replaced by Co(NO 3 ) 2 , ZnCl 2 and NiSO 4 respectively , other conditions and steps were the same as in Example 17, and Co 0.4 Zn 0.4 Ni 0.2 Fe 2 O 4 hollow ferrite nanospheres were also obtained.
实施例30Example 30
本实施例中除步骤2)中加入的Co(CH3COO)2被Co(NO3)2和CoCl2的混合物替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Zn0.4Ni0.2Fe2O4铁氧体纳米空心微球,其中,Co(NO3)2和CoCl2可以任意比例混合,只要保持第二溶液中各金属离子的化学计量比仍然满足Co2+:Mn2+:Zn2+:Fe3+=0.4:0.4:0.2:2即可。In this example, except that the Co(CH 3 COO) 2 added in step 2) is replaced by a mixture of Co(NO 3 ) 2 and CoCl 2 , other conditions and steps are the same as in Example 17, and Co 0.4 Zn 0.4 is also obtained Ni 0.2 Fe 2 O 4 ferrite nano hollow microspheres, in which Co(NO 3 ) 2 and CoCl 2 can be mixed in any proportion, as long as the stoichiometric ratio of each metal ion in the second solution still satisfies Co 2+ : Mn 2+ : Zn 2+ : Fe 3+ = 0.4: 0.4: 0.2: 2.
实施例31Example 31
本实施例中除步骤2)中加入的Mn(CH3COO)2被MnSO4、Mn(NO3)2和MnCl2的混合物替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Zn0.4Ni0.2Fe2O4铁氧体纳米空心微球,其中,MnSO4、Mn(NO3)2和MnCl2可以任意比例混合,只要保持第二溶液中各金属离子的化学计量比仍然满足Co2+:Mn2+:Zn2+:Fe3+=0.4:0.4:0.2:2即可。In this example, except that the Mn(CH 3 COO) 2 added in step 2) is replaced by a mixture of MnSO 4 , Mn(NO 3 ) 2 and MnCl 2 , other conditions and steps are the same as in Example 17, and Co 0.4 Zn 0.4 Ni 0.2 Fe 2 O 4 ferrite hollow nanospheres, wherein MnSO 4 , Mn(NO 3 ) 2 and MnCl 2 can be mixed in any proportion, as long as the stoichiometric ratio of each metal ion in the second solution remains the same It is sufficient to satisfy Co 2+ : Mn 2+ : Zn 2+ : Fe 3+ =0.4:0.4:0.2:2.
实施例32Example 32
本实施例中除步骤2)中加入的Zn(CH3COO)2被ZnSO4、Zn(CH3COO)2、Zn(NO3)2和ZnCl2的混合物替代外,其他条件和步骤与实施例17相同,同样也得到Co0.4Zn0.4Ni0.2Fe2O4铁氧体纳米空心微球,其中,ZnSO4、Zn(CH3COO)2、Zn(NO3)2和ZnCl2可以任意比例混合,只要保持第二溶液中各金属离子的化学计量比仍然满足Co2+:Mn2+:Zn2+:Fe3+=0.4:0.4:0.2:2即可。In this example, except that the Zn(CH 3 COO) 2 added in step 2) is replaced by a mixture of ZnSO 4 , Zn(CH 3 COO) 2 , Zn(NO 3 ) 2 and ZnCl 2 , other conditions and steps are related to implementation Same as Example 17, Co 0.4 Zn 0.4 Ni 0.2 Fe 2 O 4 ferrite hollow nanospheres are also obtained, wherein ZnSO 4 , Zn(CH 3 COO) 2 , Zn(NO 3 ) 2 and ZnCl 2 can be in any proportion Mixing, as long as the stoichiometric ratio of each metal ion in the second solution still satisfies Co 2+ : Mn 2+ : Zn 2+ : Fe 3+ =0.4:0.4:0.2:2.
实施例33Example 33
本实施例中除步骤1)使用FeCl3和Fe(NO3)3的混合物替代Fe2(SO4)3外,其他其他条件和步骤与实施例17相同,同样也得到Co0.4Zn0.4Ni0.2Fe2O4铁氧体纳米空心微球,其中,FeCl3和Fe(NO3)3的配比可以是任意的,只要保证最终得到的第一溶液中Fe3+的浓度与实施例17中第一溶液中Fe3+的浓度相同即可。In this example, except step 1) using a mixture of FeCl 3 and Fe(NO 3 ) 3 instead of Fe 2 (SO 4 ) 3 , other conditions and steps are the same as in Example 17, and Co 0.4 Zn 0.4 Ni 0.2 is also obtained Fe 2 O 4 ferrite nano hollow microspheres, wherein the ratio of FeCl 3 and Fe(NO 3 ) 3 can be arbitrary, as long as it is ensured that the concentration of Fe 3+ in the first solution finally obtained is the same as that in Example 17 The concentration of Fe 3+ in the first solution should be the same.
以上已结合具体实施方式对本发明作了具体说明,本领域技术人员理解,本发明所述具体实施方式的所有变体、变型、替代方式和等同物均在本发明的范围之内。The present invention has been specifically described above in conjunction with the specific embodiments, and those skilled in the art understand that all variations, modifications, substitutions and equivalents of the specific embodiments of the present invention are within the scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100985874A CN101289314B (en) | 2007-04-20 | 2007-04-20 | A kind of preparation method of spinel type ferrite nano hollow microsphere |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100985874A CN101289314B (en) | 2007-04-20 | 2007-04-20 | A kind of preparation method of spinel type ferrite nano hollow microsphere |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101289314A CN101289314A (en) | 2008-10-22 |
CN101289314B true CN101289314B (en) | 2010-11-03 |
Family
ID=40033794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100985874A Expired - Fee Related CN101289314B (en) | 2007-04-20 | 2007-04-20 | A kind of preparation method of spinel type ferrite nano hollow microsphere |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101289314B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102219490A (en) * | 2011-06-23 | 2011-10-19 | 常州大学 | Spinel type multiferroics and synthesizing method thereof |
WO2013029200A1 (en) * | 2011-08-29 | 2013-03-07 | 山西省电力公司 | Method for preparing hollow ni-zn ferrite microsphere |
CN102408231B (en) * | 2011-08-29 | 2013-06-19 | 山西省电力公司晋城供电分公司 | Preparation method of hollow Ni-Zn ferrite microsphere |
CN102502867A (en) * | 2011-10-12 | 2012-06-20 | 上海第二工业大学 | Preparation method of F-doped gamma-ferric oxide hollow microspheres with adjustable bandwidth |
CN102963938B (en) * | 2012-11-20 | 2014-11-05 | 上海第二工业大学 | Spinel ferrite/CNx nanocomposite and preparation method thereof |
CN103101980A (en) * | 2013-03-06 | 2013-05-15 | 鲁东大学 | Preparation method of multiaperture ferrite |
CN104569080A (en) * | 2015-01-30 | 2015-04-29 | 吉林大学 | Acetone gas sensor based on hollow flower spherical ZnFe2O4 nanomaterial and its preparation method |
CN105692714B (en) * | 2016-01-24 | 2017-06-27 | 上海应用技术学院 | A hydrothermal synthesis method of iron-based spinel with high density of oxygen vacancies |
CN106229154B (en) * | 2016-08-23 | 2018-08-31 | 宁波中车新能源科技有限公司 | A kind of ultracapacitor aoxidizing combination electrode material based on nanometer ferromanganese |
CN106298256B (en) * | 2016-08-23 | 2019-03-08 | 宁波中车新能源科技有限公司 | A kind of nanostructured manganese iron oxidation combination electrode material and preparation method thereof for supercapacitor |
CN106582602B (en) * | 2016-12-28 | 2020-03-17 | 厦门大学 | Efficient synthesis method of series spinel nano-structure materials |
CN108101531B (en) * | 2017-12-15 | 2020-09-22 | 华南理工大学 | A kind of composite spinel material with high infrared emissivity and preparation method thereof |
CN116199266A (en) * | 2022-11-30 | 2023-06-02 | 常州大学 | Preparation method, product and application of iron spinel nano material |
-
2007
- 2007-04-20 CN CN2007100985874A patent/CN101289314B/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Hong Deng.Monodisperse Magnetic Single-Crystal Ferrite Microspheres.ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.2005,44(18),2782-2785. * |
Also Published As
Publication number | Publication date |
---|---|
CN101289314A (en) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101289314B (en) | A kind of preparation method of spinel type ferrite nano hollow microsphere | |
Xu et al. | Ultrathin 2D rare‐earth nanomaterials: compositions, syntheses, and applications | |
Liu et al. | Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size | |
Wang et al. | Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles | |
CN102786299B (en) | Mn element and Zn element-doped super-paramagnetic ferrite nanoparticles and preparation method thereof | |
Vazquez et al. | Magnetic nanoparticles: synthesis, ordering and properties | |
CN101406960A (en) | Method for preparing ferromagnetic metal simple-substance microsphere having flower-shaped layering nanostructure | |
CN103117389A (en) | Nickel-cobalt oxide/graphene composite material as well as preparation method and application thereof | |
Zhou et al. | Single crystalline FeNi3 dendrites: large scale synthesis, formation mechanism, and magnetic properties | |
CN101723655A (en) | Preparation method of Mn-Zn ferrite cobalt-doped nano material | |
CN102503390A (en) | Preparation method of manganese-zinc ferrite magnetic nanoparticle | |
CN101728045B (en) | Cobalt oxide/carbon composite nano wave-absorbing material and preparation method thereof | |
Liu et al. | Modified solvothermal synthesis of magnetic microspheres with multifunctional surfactant cetyltrimethyl ammonium bromide and directly coated mesoporous shell | |
CN101560101A (en) | Method for preparing cobalt zinc ferrite (CoxZn1-xFe2O4) magnetic nano powder by using alcohol thermal method | |
Artus et al. | Synthesis and magnetic properties of ferrimagnetic CoFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix | |
CN103214037A (en) | Self-assembly rod-shaped manganese-zinc ferrite magnetic material and preparation method thereof | |
CN106315684A (en) | Preparation method of size-controllable spherical MnZn ferrite magnetic nanoparticles | |
KR101505210B1 (en) | Nickel-iron-zinc alloy nanoparticles | |
Xu et al. | Structure and magnetic properties of multi-morphological CoFe2O4/CoFe nanocomposites by one-step hydrothermal synthesis | |
Sun et al. | Magnetite hollow spheres: solution synthesis, phase formation and magnetic property | |
CN112125344A (en) | Preparation method of monodisperse nano iron oxide dispersoid | |
CN108499530A (en) | A kind of porous flower-shaped CoFe2O4@C nucleocapsid compounds and preparation method thereof | |
Li et al. | Controlled synthesis of three-dimensional CoNi microstructures composed of single crystal CoNi nanoleaves | |
Liu et al. | Solvothermal synthesis of CoFe 2 O 4 hollow spheres | |
CN108461243A (en) | A kind of porous camellia shape MnFe2O4@C nucleocapsid compounds and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101103 Termination date: 20170420 |