CN101286535A - pn结MgxZn1-xO薄膜日盲区紫外探测器件 - Google Patents
pn结MgxZn1-xO薄膜日盲区紫外探测器件 Download PDFInfo
- Publication number
- CN101286535A CN101286535A CNA2008100507839A CN200810050783A CN101286535A CN 101286535 A CN101286535 A CN 101286535A CN A2008100507839 A CNA2008100507839 A CN A2008100507839A CN 200810050783 A CN200810050783 A CN 200810050783A CN 101286535 A CN101286535 A CN 101286535A
- Authority
- CN
- China
- Prior art keywords
- film
- knot
- mgxzn1
- membrane
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
pn结MgxZn1-xO薄膜日盲区紫外探测器件属于光电探测技术领域。现有技术采用MgxZn1-xO薄膜作为光电转换器件,其光谱响应度有待提高;而虽然pn结MgxZn1-xO薄膜因pn结的雪崩作用而具有很高的转换效率,但只是被用做电光转换器件。本发明采用pn结MgxZn1-xO薄膜,底部电极介于衬底与pn结MgxZn1-xO薄膜之间,偏置电压电极、信号电压电极位于pn结MgxZn1-xO薄膜上表面且相离,偏置电压电极与底部电极为pn结MgxZn1-xO薄膜提供偏置电压,信号电压电极与底部电极将pn结MgxZn1-xO薄膜产生的信号电压输出。该方案应用于200~300nm紫外导弹尾焰探测、紫外告警、化学火焰探测等领域。
Description
技术领域
本发明涉及一种采用II-VI族宽带隙半导体光电功能材料MgxZn1-xO薄膜制作的日盲区紫外探测器件,属于光电探测技术领域。
背景技术
日盲区(200~300nm)紫外探测避开了太阳这一最强大的自然光源造成的复杂的背景干扰,虚假信号少,能够实现更为精确的紫外探测,应用于导弹尾焰探测、紫外告警、化学火焰探测等领域。
MgxZn1-xO薄膜作为一种半导体光电功能材料能将极微弱的紫外辐射转换成电信号,MgxZn1-xO随着Mg组分含量的变化,其带隙在3.3~7.8eV之间连续变化,对应的波长范围覆盖日盲区,能够实现日盲区紫外光电转换,被用作日盲区紫外探测装置中的光电转换器件。专利号为US 7,132,668B2的一篇题为“基于MgZnO的紫外探测器件”的专利文献公开了一种方案,见图1所示,所述的紫外探测器件由衬底1、缓冲层2、MgxZn1-xO薄膜3以及两个电极4组成,缓冲层2介于衬底1和MgxZn1-xO薄膜3之间,两个电极4相离附着于MgxZn1-xO薄膜3上表面。其衬底1采用c-Al2O3,为了使衬底1与MgxZn1-xO薄膜3晶格匹配,在其间生长缓冲层2,两个电极4为叉指状。该方案MgxZn1-xO薄膜3采用Mg0.34Zn0.66O薄膜,膜厚为0.1~1.0μm,紫外响应波段150~400nm,用0.1μW、308nm紫外光照射,在加于两个电极4之间的偏压为5V的条件下,暗电流约为40nA,光谱响应度高达1200A/W。
在台湾中华大学网站(http://www.mee.chu.edu.tw/)上发表了一篇题为“ZnO系列发光二极管的发光特性”的文章,在其制作的发光二极管的方案中采用了pn结MgxZn1-xO薄膜。通常的MgxZn1-xO为n型,当掺入氮等杂质,则为p型,在n型MgxZn1-xO薄膜与p型MgxZn1-xO薄膜之间形成pn结,构成一个pn结MgxZn1-xO薄膜。由于pn结具有雪崩效应,当为pn结MgxZn1-xO薄膜提供较小的电流,就可以获得较强的发光。该方案利用的是MgxZn1-xO薄膜的电光转换功能。
发明内容
已知技术采用MgxZn1-xO薄膜作为紫外探测器件,尤其采用了叉指状电极,明显提高了150~400nm紫外探测的光谱响应度。已知技术中的pn结MgxZn1-xO薄膜虽然转换效率大幅度提高,但是,该方案利用的是MgxZn1-xO薄膜的电光转换功能。为了进一步提高以MgxZn1-xO薄膜为光电转换器件的紫外探测装置的探测精确性,或者说进一步提高MgxZn1-xO薄膜光电转换器件的光谱响应度,以及使得pn结MgxZn1-xO薄膜的具有雪崩效应的光电转换功能得以在紫外探测领域应用,我们发明了一种pn结MgxZn1-xO薄膜日盲区紫外探测器件。
本发明是这样实现的,见图2所示,pn结MgxZn1-xO薄膜日盲区紫外探测器件由衬底、生长于衬底上的MgxZn1-xO薄膜和为MgxZn1-xO薄膜提供偏置电压的电极组成,其特征在于,MgxZn1-xO薄膜为pn结MgxZn1-xO薄膜5,底部电极6介于衬底7与pn结MgxZn1-xO薄膜5之间,偏置电压电极8、信号电压电极9位于pn结MgxZn1-xO薄膜5上表面且相离,偏置电压电极8与底部电极6为pn结MgxZn1-xO薄膜5提供偏置电压V,信号电压电极9与底部电极6将pn结MgxZn1-xO薄膜5产生的信号电流A输出。
当将pn结MgxZn1-xO薄膜5偏置在接近雪崩的偏压下,如5V,即使λ=200~300nm的光信号hυ微弱,其所激发的少量光生载流子(电子)通过接近雪崩的强场区时,由于碰撞电离而数量倍增,因而得到一个很强的信号电压,作为紫外探测装置中的光电转换器件,其光谱响应度与采用MgxZn1-xO薄膜的方案相比,将至少高一个数量级,并且上升时间和下降时间缩短,响应迅速,光电转换效率显著提高。
附图说明
图1是已知技术基于MgZnO的紫外探测器件结构示意图。图2是本发明pn结MgxZn1-xO薄膜日盲区紫外探测器件结构示意图,该图兼作摘要附图。
具体实施方式
下面具体介绍本发明,见图2所示,pn结MgxZn1-xO薄膜日盲区紫外探测器件由衬底、生长于衬底上的MgxZn1-xO薄膜和为MgxZn1-xO薄膜提供偏置电压的电极组成。衬底7选用ZnO陶瓷或者MgO陶瓷,以与MgxZn1-xO薄膜实现晶格匹配,省去缓冲层,简化器件结构。MgxZn1-xO薄膜为pn结MgxZn1-xO薄膜5。为了将光谱响应范围限定在日盲区紫外波长λ=200~300nm范围,确定x=0.1~0.8。p型MgxZn1-xO薄膜采用掺氮(N)的方式实现。底部电极6介于衬底7与pn结MgxZn1-xO薄膜5之间。偏置电压电极8、信号电压电极9位于pn结MgxZn1-xO薄膜5上表面且相离。偏置电压电极8与底部电极6为pn结MgxZn1-xO薄膜5提供偏置电压V,V=0~10V。信号电压电极9与底部电极6将pn结MgxZn1-xO薄膜5产生的信号电流A输出。底部电极6、偏置电压电极8、信号电压电极9材质为Ag或者In。
现举例说明本发明,为制备日盲区270nm响应的紫外探测器件,衬底为10×10mmZnO陶瓷。底部电极6、偏置电压电极8、信号电压电极9材质为In。偏置电压电极8、信号电压电极9呈条状,宽度为3mm,间距为4mm。在偏置电压电极8与底部电极6之间施加的偏压V=5V。p型MgxZn1-xO薄膜采用掺氮的方式实现。取x=0.4,则获得pn结Mg0.4Zn0.6O薄膜。
Claims (5)
1、一种pn结MgxZn1-xO薄膜日盲区紫外探测器件,由衬底、生长于衬底上的MgxZn1-xO薄膜和为MgxZn1-xO薄膜提供偏置电压的电极组成,其特征在手,MgxZn1-xO薄膜为pn结MgxZn1-xO薄膜(5),底部电极(6)介于衬底(7)与pn结MgxZn1-xO薄膜(5)之间,偏置电压电极(8)、信号电压电极(9)位于pn结MgxZn1-xO薄膜(5)上表面且相离,偏置电压电极(8)与底部电极(6)为pn结MgxZn1-xO薄膜(5)提供偏置电压(V),信号电压电极(9)与底部电极(6)将pn结MgxZn1-xO薄膜(5)产生的信号电流(A)输出。
2、根据权利要求1所述的日盲区紫外探测器件,其特征在于,衬底(7)选用ZnO陶瓷或者MgO陶瓷。
3、根据权利要求1所述的日盲区紫外探测器件,其特征在于,pn结MgxZn1-xO薄膜(5)x=0.1~0.8。
4、根据权利要求1所述的日盲区紫外探测器件,其特征在于,偏置电压(V)为0~10V。
5、根据权利要求1所述的日盲区紫外探测器件,其特征在于,底部电极(6)、偏置电压电极(8)、信号电压电极(9)材质为Ag或者In。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100507839A CN101286535A (zh) | 2008-06-04 | 2008-06-04 | pn结MgxZn1-xO薄膜日盲区紫外探测器件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100507839A CN101286535A (zh) | 2008-06-04 | 2008-06-04 | pn结MgxZn1-xO薄膜日盲区紫外探测器件 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101286535A true CN101286535A (zh) | 2008-10-15 |
Family
ID=40058598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100507839A Pending CN101286535A (zh) | 2008-06-04 | 2008-06-04 | pn结MgxZn1-xO薄膜日盲区紫外探测器件 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101286535A (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102148281A (zh) * | 2010-02-05 | 2011-08-10 | 中国科学院物理研究所 | 一种具有快响应高灵敏度和低噪声的紫外光探测器 |
CN104810418A (zh) * | 2015-03-13 | 2015-07-29 | 纳米新能源(唐山)有限责任公司 | 基于氧化物的紫外光敏传感器 |
CN106252454A (zh) * | 2016-09-26 | 2016-12-21 | 京东方科技集团股份有限公司 | 一种光电探测器及光电探测装置 |
CN106847954A (zh) * | 2017-01-18 | 2017-06-13 | 福建农林大学 | 一种垂直结构ZnMgO自驱动日盲紫外光电探测器面阵及其制备方法 |
CN106997907A (zh) * | 2016-01-22 | 2017-08-01 | 中国科学院物理研究所 | 一种高灵敏度可见盲紫外光探测器 |
CN106997909A (zh) * | 2016-01-22 | 2017-08-01 | 中国科学院物理研究所 | 一种高灵敏度日盲深紫外光探测器 |
US9806125B2 (en) | 2015-07-28 | 2017-10-31 | Carrier Corporation | Compositionally graded photodetectors |
US9865766B2 (en) | 2015-07-28 | 2018-01-09 | Carrier Corporation | Ultraviolet photodetectors and methods of making ultraviolet photodetectors |
US9928727B2 (en) | 2015-07-28 | 2018-03-27 | Carrier Corporation | Flame detectors |
US10126165B2 (en) | 2015-07-28 | 2018-11-13 | Carrier Corporation | Radiation sensors |
CN114823930A (zh) * | 2022-03-24 | 2022-07-29 | 电子科技大学 | 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法 |
-
2008
- 2008-06-04 CN CNA2008100507839A patent/CN101286535A/zh active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102148281B (zh) * | 2010-02-05 | 2012-09-05 | 中国科学院物理研究所 | 一种具有快响应高灵敏度和低噪声的紫外光探测器 |
CN102148281A (zh) * | 2010-02-05 | 2011-08-10 | 中国科学院物理研究所 | 一种具有快响应高灵敏度和低噪声的紫外光探测器 |
CN104810418B (zh) * | 2015-03-13 | 2017-08-08 | 纳米新能源(唐山)有限责任公司 | 基于氧化物的紫外光敏传感器 |
CN104810418A (zh) * | 2015-03-13 | 2015-07-29 | 纳米新能源(唐山)有限责任公司 | 基于氧化物的紫外光敏传感器 |
US10718662B2 (en) | 2015-07-28 | 2020-07-21 | Carrier Corporation | Radiation sensors |
US9928727B2 (en) | 2015-07-28 | 2018-03-27 | Carrier Corporation | Flame detectors |
US11029202B2 (en) | 2015-07-28 | 2021-06-08 | Carrier Corporation | Radiation sensors |
US10126165B2 (en) | 2015-07-28 | 2018-11-13 | Carrier Corporation | Radiation sensors |
US9806125B2 (en) | 2015-07-28 | 2017-10-31 | Carrier Corporation | Compositionally graded photodetectors |
US9865766B2 (en) | 2015-07-28 | 2018-01-09 | Carrier Corporation | Ultraviolet photodetectors and methods of making ultraviolet photodetectors |
CN106997909B (zh) * | 2016-01-22 | 2019-04-05 | 中国科学院物理研究所 | 一种高灵敏度日盲深紫外光探测器 |
CN106997907B (zh) * | 2016-01-22 | 2019-04-05 | 中国科学院物理研究所 | 一种高灵敏度可见盲紫外光探测器 |
CN106997907A (zh) * | 2016-01-22 | 2017-08-01 | 中国科学院物理研究所 | 一种高灵敏度可见盲紫外光探测器 |
CN106997909A (zh) * | 2016-01-22 | 2017-08-01 | 中国科学院物理研究所 | 一种高灵敏度日盲深紫外光探测器 |
CN106252454A (zh) * | 2016-09-26 | 2016-12-21 | 京东方科技集团股份有限公司 | 一种光电探测器及光电探测装置 |
US10825946B2 (en) | 2016-09-26 | 2020-11-03 | Boe Technology Group Co., Ltd. | Photoelectric detector and photoelectric detection device |
CN106847954B (zh) * | 2017-01-18 | 2018-05-01 | 福建农林大学 | 一种垂直结构ZnMgO自驱动日盲紫外光电探测器面阵及其制备方法 |
CN106847954A (zh) * | 2017-01-18 | 2017-06-13 | 福建农林大学 | 一种垂直结构ZnMgO自驱动日盲紫外光电探测器面阵及其制备方法 |
CN114823930A (zh) * | 2022-03-24 | 2022-07-29 | 电子科技大学 | 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法 |
CN114823930B (zh) * | 2022-03-24 | 2023-04-11 | 电子科技大学 | 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101286535A (zh) | pn结MgxZn1-xO薄膜日盲区紫外探测器件 | |
Varshney et al. | Current advances in solar-blind photodetection technology: Using Ga 2 O 3 and AlGaN | |
Guo et al. | Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction | |
Li et al. | Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core–shell microwire heterojunction | |
Ahmed et al. | Fabrication and characterization of high performance MSM UV photodetector based on NiO film | |
Wang et al. | p-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity | |
Alaie et al. | Recent advances in ultraviolet photodetectors | |
Hou et al. | Semiconductor ultraviolet photodetectors based on ZnO and MgxZn1− xO | |
Liu et al. | Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film | |
Bie et al. | Self‐powered, ultrafast, visible‐blind UV detection and optical logical operation based on ZnO/GaN nanoscale p‐n junctions | |
Hazra et al. | Ultraviolet photodetection properties of ZnO/Si heterojunction diodes fabricated by ALD technique without using a buffer layer | |
Yuan et al. | Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum | |
Li et al. | Self-powered GaN ultraviolet photodetectors with p-NiO electrode grown by thermal oxidation | |
Fan et al. | Realization of cubic ZnMgO photodetectors for UVB applications | |
Ma et al. | High-photoresponsivity self-powered a-, ε-, and β-Ga2O3/p-GaN heterojunction UV photodetectors with an in situ GaON layer by MOCVD | |
Bhardwaj et al. | High responsivity Mg x Zn 1–x O based ultraviolet photodetector fabricated by dual ion beam sputtering | |
CN103400888A (zh) | 高增益的AlGaN紫外雪崩光电探测器及其制备方法 | |
Salunkhe et al. | Performance evaluation of transparent self-powered n-ZnO/p-NiO heterojunction ultraviolet photosensors | |
Han et al. | Self-powered Au/MgZnO/nanolayered Ga-Doped ZnO/In metal–insulator–semiconductor UV detector with high internal gain at deep UV light under low voltage | |
Varshney et al. | Ga2O3/GaN heterointerface-based self-driven broad-band ultraviolet photodetectors with high responsivity | |
Kasirajan et al. | Structural, morphological, optical and enhanced photodetection activities of CdO films: an effect of Mn doping | |
Wang et al. | Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature | |
Mohammadi et al. | High performance n-ZnO/p-metal-oxides UV detector grown in low-temperature aqueous solution bath | |
CN105261668A (zh) | 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法 | |
Liu et al. | Enhancement-mode normally-off β-Ga2O3: Si metal-semiconductor field-effect deep-ultraviolet phototransistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081015 |