CN101276207A - Multivariable non-linear system prediction function control method based on Hammerstein model - Google Patents

Multivariable non-linear system prediction function control method based on Hammerstein model Download PDF

Info

Publication number
CN101276207A
CN101276207A CNA2008100610280A CN200810061028A CN101276207A CN 101276207 A CN101276207 A CN 101276207A CN A2008100610280 A CNA2008100610280 A CN A2008100610280A CN 200810061028 A CN200810061028 A CN 200810061028A CN 101276207 A CN101276207 A CN 101276207A
Authority
CN
China
Prior art keywords
centerdot
linear
sigma
function control
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100610280A
Other languages
Chinese (zh)
Inventor
倪文涛
张泉灵
苏宏业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNA2008100610280A priority Critical patent/CN101276207A/en
Publication of CN101276207A publication Critical patent/CN101276207A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

The present invention provides a controlling method of a multivariate nonlinear system prediction function based on the hammerstein model, characterized in that the method includes following steps: (1) establishing the hammerstein model according to the process characteristic and the input output data; (2) solving the prediction function control rate of the multivariate linear subsystem according to the hammerstein model linear part model parameters, set values and practical process output of; (3) solving the equation V(k)=F(U(k)) to obtain optimal control law U(k) according to the hammerstein model nonlinear part model parameters and the multivariate linear multivariate nonlinear system prediction function control rate; (4) solving and implementing the optimal control law according to multivariate nonlinear system prediction function controller. The invention realizes one prediction function control of multivariate nonlinear system, realizing that the control problem of the nonlinear system is transformed to the linear system control problem and the solving problem of the nonlinear equation, improving the solving speed of the optimal control law, reducing the on-line computational complexity, ensuring the real-time requirement of the control system.

Description

Nonlinear multivariable systems Predictive function control method based on the Hammerstein model
Technical field
The present invention relates to industrial process control field, relate in particular to a kind of nonlinear multivariable systems Predictive function control method based on the Hammerstein model.
Background technology
Most of Industry Control all has constraint, and has a nonlinear characteristic, time variation and uncertainty, great majority have the object useable linear model approximation of small nonlinearity, as a kind of model mismatch, Robustness Design or on-line identification model parameter by system overcome the influence that small nonlinearity causes, and make these algorithms applicable to weakly non-linear system, and the achievement in research of using existing linear control theory obtains to control preferably effect.Though most of industrial process can carry out modeling and control by the local linearization method near the working point, have the non-linear controlled device of special construction for some, be difficult to obtain satisfied control effect with conventional linear control method.Therefore, be the focus and the difficult point of the research of control circle for the control of system with strong nonlinearity always, the PREDICTIVE CONTROL that adopts linear model departs from greatlyyer with actual, does not reach the purpose and the control effect of optimal control, must adopt nonlinear prediction to control.
Linearization technique is the conventional method of research nonlinear system.With the nonlinear system local linearization mainly is in order to continue to use existing achievement in the linear system, calculates simply, and real-time is good.For non-linear stronger system, be difficult to the dynamic and static characteristic of reflection system on a large scale with single inearized model, controlling performance even stability all are difficult to be guaranteed.Therefore during actual treatment, following three kinds of linearization techniques are arranged: a kind of method is with near the linearization each sampled point of non-linear mechanism model, then linearizing model is adopted linear predictive control algorithm, be characterized in all adopting new model, can reduce the error that linearization brings as far as possible in each sampling instant.But frequent online replacing model needing to cause the relevant matrix parameter of repeated calculation, and calculated amount strengthens, nor be beneficial to off-line the parameter of controller is optimized design; Another kind of effective method is a multi-model process.Introduce the approximate thought in by stages exactly, describe same nonlinear object with a plurality of linearizing models.The advantage of multi-model process be can off-line the most of controlled variable of calculating, difficult point then is the stationarity when how to determine the opportunity that model switches and guaranteeing that model switches; Also having a kind of is the method for feedback linearization, promptly nonlinear system is introduced the nonlinear feedback compensation rule, makes nonlinear system realize linearization to the virtual controlling input quantity, just can use linear forecast Control Algorithm.Yet there are many nonlinear system not satisfy the condition of feedback linearization, its application is restricted.
Model of mind such as fuzzy model, neural network model, also can approach many nonlinear system, thereby produced based on PREDICTIVE CONTROL side's neural network of neural network with its parallel processing, distributed storage, good robustness, adaptivity, self-study habit, the circle has broad application prospects in control.But PREDICTIVE CONTROL for neural network, the difficulty that exists is also many at present, the learning process of artificial neural network is a long quite slowly process, and PREDICTIVE CONTROL is owing to introduce multi-step prediction mechanism, calculated amount is original just very big, if introduce online learning process again, just further increased the weight of computation burden.Although the series connection of a plurality of neural networks can be obtained the prediction of output of multistep, can increase the complexity of controller like this, directly influence finding the solution of controlled quentity controlled variable.Simultaneously, onlinely if desired carry out Model Distinguish, so online network training can be consuming time more, the real-time of influence control.
The Hammerstein model description be the system that a class can be divided into static non linear and dynamic linear.This class model is simple in structure, the process that can be used for describing the pH N-process He have many nonlinear characteristics such as power function, dead band, switch.Based on the nonlinear multivariable systems Predictive function control method of Hammerstein model, can solve the PREDICTIVE CONTROL problem of many industrial processs.
Summary of the invention
The objective of the invention is to overcome the prior art deficiency, a kind of nonlinear multivariable systems Predictive function control method based on the Hammerstein model is provided.
Nonlinear multivariable systems Predictive function control method based on the Hammerstein model comprises the steps:
1) sets up the Hammerstein model according to process characteristic and inputoutput data;
2) find the solution the Predictive function control rate of multi-variable linear system according to the linear department pattern parameter of Hammerstein model, setting value and real process output;
3) obtain optimal control law U (k) according to Hammerstein model non-linear partial model parameter and multi-variable linear system Predictive function control rate solving equation group V (k)=F (U (k));
4) find the solution and implement optimal control law according to multivariable nonlinearity Predictive function control device.
Describedly set up Hammerstein model step according to process characteristic and inputoutput data:
Nonlinear multivariable systems Hammerstein model is:
Linear segment: X m ( k ) = A m X m ( k - 1 ) + B m V ( k - 1 ) Y m ( k ) = C m X m ( k )
Non-linear partial: V (k)=F m(U (k))
X wherein m(k) maintain the state variable of system for n, V (k) is the control variable of m dimensional linear subsystem, Y m(k) for q maintains the system output variable, U (k) maintains system control variable, F for p m() is R n→ R mNonlinear function, A m∈ R N * n, B m∈ R N * m, C m∈ R Q * nBe the state-space model parameter.
According to control theory as can be known the state-transition matrix of linear segment model be Φ ( k ) = A m k , Therefore the equation of motion of linear subsystem is:
X m ( k + h ) = Φ ( h ) X m ( k ) + Σ t = 0 h - 1 Φ ( h - t - 1 ) B m V ( k + t )
Described output according to the linear department pattern parameter of Hammerstein model, setting value and real process found the solution the Predictive function control rate step of multi-variable linear system:
(a), suppose the important v of V (k) with the input of intermediate variable V (k) as linear subsystem i(k), i=1 ..., the number of the basis function of m is N all, thereby obtains:
V ( k + h ) = v 1 ( k + h ) · · · v m ( k + h ) = μ 11 ( k ) · · · μ 1 N ( k ) · · · μ m 1 ( k ) · · · μ mN ( k ) · f 1 ( h ) · · · f N ( h ) = μ ( k ) f ( h )
Wherein: μ 11(k) ..., μ MN(k) be the linear combination coefficient of each basis function, f 1(h) ..., f N(h) be that each basis function is at h functional value constantly.
(b) will X m ( k + h ) = Φ ( h ) X m ( k ) + Σ t = 0 h - 1 Φ ( h - t - 1 ) B m V ( k + t ) Bring Y into m(k)=C mX m(k) can get:
Y m ( k + h ) = r 1 ( h ) + Σ i = 1 m Σ l = 1 N T il ( h , 1 ) · μ il ( k ) · · · r q ( h ) + Σ i = 1 m Σ l = 1 N T il ( h , p ) · μ il ( k ) .
Wherein:
r 1 ( h ) · · · r q ( h ) = C m Φ ( h ) X m ( k ) = r 11 ( h ) · · · r 1 n ( h ) · · · · · · · · · r q 1 ( h ) · · · r qn ( h ) · x m 1 ( k ) · · · x mn ( k ) ,
T il ( h , s ) = Σ t = 0 h - 1 g si ( h - 1 - t ) · f l ( t ) ; i=1,…,m;l=1,…,N;s=1,…,q,
C m Φ ( i ) B m = g 11 ( i ) · · · g 1 m ( i ) · · · · · · · · · g q 1 ( i ) · · · g qm ( i ) q × m , i=0,…,h-1.
(c) Predictive function control is a kind of closed loop control algorithm, therefore needs to introduce the feedback compensation link, gets predicated error and is: E (k+h)=Y (k)-Y m(k), wherein:
E (k+h)=[e 1(k+h) ..., e q(k+h)] TPredicated error for model;
Y (k)=[y 1(k) ..., y q(k)] TOutput for current time process object;
Y m(k)=[y M1(k) ..., y Mq(k)] TOutput for the current time forecast model.
(d) reference locus adopts the single order exponential form, and then k+H reference locus constantly is:
Y r ( k + h ) = y r 1 ( k + h ) · · · y rq ( k + h ) = c 1 ( k + h ) - α 1 h · [ c 1 ( k ) - y 1 ( k ) ] · · · c q ( k + h ) - α q h · [ c q ( k ) - y q ( k ) ]
Wherein: h=1 ..., H; H is the total number of match point; y R1(k+h) ..., y Rq(k+h) be the k+h value of q reference locus constantly; c 1(k+h) ..., c q(k+h) be k+h q setting value constantly; The calculating of setting value adopts polynomial form as follows: c i ( k + h ) = Σ l = 0 d i c il ( k ) h l , d iBe setting value polynomial expression exponent number, c Il(k) be the setting value multinomial coefficient; y 1(k) ..., y q(k) be current time q process object real output value; α i = e - T s T ri , I=1 ..., q, T sBe the sampling period, T RiFor following the tracks of the i bar reference locus Expected Response time.
(e) adopt following optimization aim:
J = Σ j = 1 H Σ i = 1 q [ y ~ i ( k + h ) - y ri ( k + h ) ] 2
Wherein: y ~ i ( k + h ) = y mi ( k + h ) + e i ( k + h ) ;
(f) by finding the solution above-mentioned optimization problem, promptly by finding the solution ∂ J ∂ μ ij ( k ) = 0 , Just can obtain matrix of coefficients:
μ 11 ( k ) · · · μ 1 N ( k ) · · · μ q 1 ( k ) · · · μ mN ( k ) = - Z - 1 · M · v ( 1,1 ) · · · v ( 1 , p ) · · · v ( s , 1 ) · · · v ( s , q ) Hq × 1
Wherein:
M = T 11 ( h 1 , 1 ) · · · T 11 ( h 1 , p ) · · · T 11 ( h s , 1 ) · · · T 11 ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T 1 N ( h 1 , 1 ) · · · T 1 N ( h 1 , p ) · · · T 1 N ( h s , 1 ) · · · T 1 N ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T m 1 ( h 1 , 1 ) · · · T m 1 ( h 1 , p ) · · · T m 1 ( h s , 1 ) · · · T m 1 ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T mN ( h 1 , 1 ) · · · T mN ( h 1 , p ) · · · T mN ( h s , 1 ) · · · T mN ( h s , p ) mN × Sq
Z = w 11 ( 1,1 ) · · · w 1 N ( 1,1 ) · · · w m 1 ( 1,1 ) · · · w mN ( 1,1 ) · · · · · · · · · · · · · · · · · · · · · w 11 ( 1 , N ) · · · w 1 N ( 1 , N ) · · · w m 1 ( 1 , N ) · · · w mN ( 1 , N ) · · · · · · · · · · · · · · · · · · · · · w 11 ( m , 1 ) · · · w 1 N ( m , 1 ) · · · w m 1 ( q , 1 ) · · · w mN ( q , 1 ) · · · · · · · · · · · · · · · · · · · · · w 11 ( m , N ) · · · w 1 N ( m , N ) · · · w m 1 ( q , N ) · · · w mN ( q , N ) mN × mN
Wherein:
w ij ( t , R ) = Σ l = 1 S Σ ρ = 1 p T tR ( h l , ρ ) · T ij ( h l , ρ ) ;
i=1,…,m;j=1,…,N;t=1,…,m;R=1,…,N
v ( i , j ) = - r j ( h i ) + y j ( k ) - y mj ( k ) + α j h i · [ c j ( k ) - y j ( k ) ] - Σ l = 1 d j c jl ( k ) h i l .
i=1,…,S;j=1,…,q
r 1 ( h ) · · · r q ( h ) = C m Φ ( h ) X m ( k ) = r 11 ( h ) · · · r 1 n ( h ) · · · · · · · · · r q 1 ( h ) · · · r qn ( h ) · x m 1 ( k ) · · · x mn ( k ) ,
T il ( h , s ) = Σ t = 0 h - 1 g si ( h - 1 - t ) · f l ( t ) ; i=1,…,m;l=1,…,N;s=1,…,q,
C m Φ ( i ) B m = g 11 ( i ) · · · g 1 m ( i ) · · · · · · · · · g q 1 ( i ) · · · g qm ( i ) q × m , i=0,…,h-1.
Thereby obtain matrix of coefficients μ (k).
(g) therefore obtain multi-variable linear system Predictive function control rate: V (k+h)=μ (k) f (h).
Describedly find the solution and implement the optimal control law step according to multivariable nonlinearity Predictive function control device:
(h) algorithm initialization: the correlation parameter of the parameter of given model, basis function and multivariable nonlinearity Predictive function control device;
(i) read in k process output valve Y (k) constantly, and k, k+H j, j=1 ..., q setting value constantly;
(j) calculate k+h j, h j=1 ..., H jReference locus value Y constantly r(k+h j);
(k) optimization is found the solution and is obtained k intermediate controlled amount V constantly m(k);
(l) find the solution the root of Nonlinear System of Equations, obtain current controlled quentity controlled variable U (k);
(m) calculate Y m(k+1) and carry out U (k);
(n) make k=k+1 change step (j).
The present invention carries out organic combination with the advantage of Predictive function control and Hammerstein model, to give full play to advantage separately; What propose has well brought into play the advantage of Predictive function control based on the nonlinear multivariable systems Predictive function control method of Hammerstein model, and control law is found the solution simply, and on-line calculation is little, has guaranteed the real-time requirement of control system.Realized quick control, also provide approach for the application of Nonlinear Predictive Functional Control in real process to Complex Nonlinear System.
Description of drawings
The present invention is further described below in conjunction with drawings and Examples;
Fig. 1 is multivariate Hammerstein model structure figure;
Fig. 2 is the control system structural drawing;
Fig. 3 (a) is a nonlinear multivariable systems Predictive function control analogous diagram, output 1.
Fig. 3 (b) is a nonlinear multivariable systems Predictive function control analogous diagram, output 2.
Embodiment
Nonlinear multivariable systems Predictive function control method based on the Hammerstein model comprises the steps:
1) sets up the Hammerstein model according to process characteristic and inputoutput data;
2) find the solution the Predictive function control rate of multi-variable linear system according to the linear department pattern parameter of Hammerstein model, setting value and real process output;
3) obtain optimal control law U (k) according to Hammerstein model non-linear partial model parameter and multi-variable linear system Predictive function control rate solving equation group V (k)=F (U (k));
4) find the solution and implement optimal control law according to multivariable nonlinearity Predictive function control device.
Describedly set up Hammerstein model step according to process characteristic and inputoutput data:
Nonlinear multivariable systems Hammerstein model is:
Linear segment: X m ( k ) = A m X m ( k - 1 ) + B m V ( k - 1 ) Y m ( k ) = C m X m ( k )
Non-linear partial: V (k)=F m(U (k))
X wherein m(k) maintain the state variable of system for n, V (k) is the control variable of m dimensional linear subsystem, Y m(k) for q maintains the system output variable, U (k) maintains system control variable, F for p m() is R n→ R mNonlinear function, A m∈ R N * n, B m∈ R N * m, C m∈ R Q * nBe the state-space model parameter.
According to control theory as can be known the state-transition matrix of linear segment model be Φ ( k ) = A m k , Therefore the equation of motion of linear subsystem is:
X m ( k + h ) = Φ ( h ) X m ( k ) + Σ t = 0 h - 1 Φ ( h - t - 1 ) B m V ( k + t )
Application is carried out PREDICTIVE CONTROL based on the nonlinear multivariable systems Predictive function control method of Hammerstein model to the binary distillation column object of separation of methanol and water, and object is following 2 inputs, 2 output nonlinear system:
y 1 ( z ) y 2 ( z ) = G 11 ( z ) G 12 ( z ) G 21 ( z ) G 22 ( z ) v 1 ( z ) v 2 ( z )
v 1 = 10 u 1 - 2 . 36 u 1 u 2 v 2 = 10 u 2 - 18.23 u 1 u 2
Wherein:
G 11 ( z ) = - 0.0157 z - 1 1 - 0.9552 z - 1
G 12 ( z ) = - 0.0047 z - 1 1 - 0.02754 z - 1
G 21 ( z ) = - 0.0201 z - 1 1 - 0.9060 z - 1
G 22 ( z ) = - 0.0302 z - 1 1 - 0.8991 z - 1
The state space description that can obtain multivariate Hammerstein model is as follows:
X m ( k ) = A m X m ( k - 1 ) + B m V ( k - 1 ) Y m ( k ) = C m X m ( k )
Wherein: A m = 0.9952 0.02754 0.9060 0.8991 , B m = 1 1 1 1 , C m = - 0.0157 - 0.0047 - 0.0201 - 0.0302
Described output according to the linear department pattern parameter of Hammerstein model, setting value and real process found the solution the Predictive function control rate step of multi-variable linear system:
(a), suppose the important v of V (k) with the input of intermediate variable V (k) as linear subsystem i(k), i=1 ..., the number of the basis function of m is N all, thereby obtains:
V ( k + h ) = v 1 ( k + h ) · · · v m ( k + h ) = μ 11 ( k ) · · · μ 1 N ( k ) · · · μ m 1 ( k ) · · · μ mN ( k ) · f 1 ( h ) · · · f N ( h ) = μ ( k ) f ( h )
Wherein: μ 11(k) ..., μ MN(k) be the linear combination coefficient of each basis function, f 1(h) ..., f N(h) be that each basis function is at h functional value constantly.
(b) will X m ( k + h ) = Φ ( h ) X m ( k ) + Σ t = 0 h - 1 Φ ( h - t - 1 ) B m V ( k + t ) Bring Y into m(k)=C mX m(k) can get:
Y m ( k + h ) = r 1 ( h ) + Σ i = 1 m Σ l = 1 N T il ( h , 1 ) · μ il ( k ) · · · r q ( h ) + Σ i = 1 m Σ l = 1 N T il ( h , p ) · μ il ( k ) .
Wherein:
r 1 ( h ) · · · r q ( h ) = C m Φ ( h ) X m ( k ) = r 11 ( h ) · · · r 1 n ( h ) · · · · · · · · · r q 1 ( h ) · · · r qn ( h ) · x m 1 ( k ) · · · x mn ( k ) ,
T il ( h , s ) = Σ t = 0 h - 1 g si ( h - 1 - t ) · f l ( t ) ; i=1,…,m;l=1,…,N;s=1,…,q,
C m Φ ( i ) B m = g 11 ( i ) · · · g 1 m ( i ) · · · · · · · · · g q 1 ( i ) · · · g qm ( i ) q × m , i=0,…,h-1.
(c) Predictive function control is a kind of closed loop control algorithm, therefore needs to introduce the feedback compensation link, gets predicated error and is: E (k+h)=Y (k)-Y m(k), wherein:
E (k+h)=[e 1(k+h) ..., e q(k+h)] TPredicated error for model;
Y (k)=[y 1(k) ..., y q(k)] TOutput for current time process object;
Y m(k)=[y M1(k) ..., y Mq(k)] TOutput for the current time forecast model.
(d) reference locus adopts the single order exponential form, and then k+H reference locus constantly is:
Y r ( k + h ) = y r 1 ( k + h ) · · · y rq ( k + h ) = c 1 ( k + h ) - α 1 h · [ c 1 ( k ) - y 1 ( k ) ] · · · c q ( k + h ) - α q h · [ c q ( k ) - y q ( k ) ]
Wherein: h=1 ..., H; H is the total number of match point; y R1(k+h) ..., y Rq(k+h) be the k+h value of q reference locus constantly; c 1(k+h) ..., c q(k+h) be k+h q setting value constantly; The calculating of setting value adopts polynomial form as follows: c i ( k + h ) = Σ l = 0 d i c il ( k ) h l , d iBe setting value polynomial expression exponent number, c Il(k) be the setting value multinomial coefficient; y 1(k) ..., y q(k) be current time q process object real output value; α i = e - T s T ri , I=1 ..., q, T sBe the sampling period, T RiFor following the tracks of the i bar reference locus Expected Response time.
(e) adopt following optimization aim:
J = Σ j = 1 H Σ i = 1 q [ y ~ i ( k + h ) - y ri ( k + h ) ] 2
Wherein: y ~ i ( k + h ) = y mi ( k + h ) + e i ( k + h ) ;
(f) by finding the solution above-mentioned optimization problem, promptly by finding the solution ∂ J ∂ μ ij ( k ) = 0 , Just can obtain matrix of coefficients:
μ 11 ( k ) · · · μ 1 N ( k ) · · · μ q 1 ( k ) · · · μ mN ( k ) = - Z - 1 · M · v ( 1,1 ) · · · v ( 1 , p ) · · · v ( s , 1 ) · · · v ( s , q ) Hq × 1
Wherein:
M = T 11 ( h 1 , 1 ) · · · T 11 ( h 1 , p ) · · · T 11 ( h s , 1 ) · · · T 11 ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T 1 N ( h 1 , 1 ) · · · T 1 N ( h 1 , p ) · · · T 1 N ( h s , 1 ) · · · T 1 N ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T m 1 ( h 1 , 1 ) · · · T m 1 ( h 1 , p ) · · · T m 1 ( h s , 1 ) · · · T m 1 ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T mN ( h 1 , 1 ) · · · T mN ( h 1 , p ) · · · T mN ( h s , 1 ) · · · T mN ( h s , p ) mN × Sq
Z = w 11 ( 1,1 ) · · · w 1 N ( 1,1 ) · · · w m 1 ( 1,1 ) · · · w mN ( 1,1 ) · · · · · · · · · · · · · · · · · · · · · w 11 ( 1 , N ) · · · w 1 N ( 1 , N ) · · · w m 1 ( 1 , N ) · · · w mN ( 1 , N ) · · · · · · · · · · · · · · · · · · · · · w 11 ( m , 1 ) · · · w 1 N ( m , 1 ) · · · w m 1 ( q , 1 ) · · · w mN ( q , 1 ) · · · · · · · · · · · · · · · · · · · · · w 11 ( m , N ) · · · w 1 N ( m , N ) · · · w m 1 ( q , N ) · · · w mN ( q , N ) mN × mN
Wherein:
w ij ( t , R ) = Σ l = 1 S Σ ρ = 1 p T tR ( h l , ρ ) · T ij ( h l , ρ ) ;
i=1,…,m;j=1,…,N;t=1,…,m;R=1,…,N
v ( i , j ) = - r j ( h i ) + y j ( k ) - y mj ( k ) + α j h i · [ c j ( k ) - y j ( k ) ] - Σ l = 1 d j c jl ( k ) h i l .
i=1,…,S;j=1,…,q
r 1 ( h ) · · · r q ( h ) = C m Φ ( h ) X m ( k ) = r 11 ( h ) · · · r 1 n ( h ) · · · · · · · · · r q 1 ( h ) · · · r qn ( h ) · x m 1 ( k ) · · · x mn ( k ) ,
T il ( h , s ) = Σ t = 0 h - 1 g si ( h - 1 - t ) · f l ( t ) ; i=1,…,m;l=1,…,N;s=1,…,q,
C m Φ ( i ) B m = g 11 ( i ) · · · g 1 m ( i ) · · · · · · · · · g q 1 ( i ) · · · g qm ( i ) q × m , i=0,…,h-1.
Thereby obtain matrix of coefficients μ (k).
(g) therefore obtain multi-variable linear system Predictive function control rate: V (k+h)=μ (k) f (h).
Describedly find the solution and implement the optimal control law step according to multivariable nonlinearity Predictive function control device:
(h) algorithm initialization: the correlation parameter of the parameter of given model, basis function and multivariable nonlinearity Predictive function control device;
(i) read in k process output valve Y (k) constantly, and k, k+H j, j=1 ..., q setting value constantly;
(j) calculate k+h j, h j=1 ..., H jReference locus value Y constantly r(k+h j);
(k) optimization is found the solution and is obtained k intermediate controlled amount V constantly m(k);
(l) find the solution the root of Nonlinear System of Equations, obtain current controlled quentity controlled variable U (k);
(m) calculate Y m(k+1) and carry out U (k);
(n) make k=k+1 change step (j).
Simulation result is as follows: when t=200min, and y 1Setting value by c 1=95% is changed to c 1=96%; During t=400min, y 2Setting value by c 2=0.5% changes to c 2=0.4%; During t=600min, y 1Setting value by c 1=96% is changed to c 1=95%; During t=800min, y 2Setting value by c 2=0.4% changes to c 2=0.5%.Get and optimize time domain H 1=10, H 2=20; The response time T of reference locus R1=T R2=0.01min; Sampling time T s=1min;
Carry out Computer Simulation under same condition, can see, nonlinear multivariable systems Predictive function control response speed is fast, and surplus difference is zero and setting value dynamic tracking effect is all controlled effective than traditional PID.

Claims (4)

1, a kind of nonlinear multivariable systems Predictive function control method based on the Hammerstein model is characterized in that comprising the steps:
1) sets up the Hammerstein model according to process characteristic and inputoutput data;
2) find the solution the Predictive function control rate of multivariate linear subsystem according to the linear department pattern parameter of Hammerstein model, setting value and real process output;
3) obtain optimal control law U (k) according to Hammerstein model non-linear partial model parameter and multi-variable linear system Predictive function control rate solving equation group V (k)=F (U (k));
4) find the solution and implement optimal control law according to multivariable nonlinearity Predictive function control device.
2, a kind of nonlinear multivariable systems Predictive function control method based on the Hammerstein model according to claim 1 is characterized in that describedly setting up Hammerstein model step according to process characteristic and inputoutput data:
Nonlinear multivariable systems Hammerstein model is:
Linear segment: X m ( k ) = A m X m ( k - 1 ) + B m V ( k - 1 ) Y m ( k ) = C m X m ( k )
Non-linear partial: V (k)=F m(U (k))
X wherein m(k) maintain the state variable of system for n, V (k) is the control variable of m dimensional linear subsystem, Y m(k) for q maintains the system output variable, U (k) maintains system control variable, F for p m() is R n→ R mNonlinear function, A m∈ R N * n, B m∈ R N * m, C m∈ R Q * nBe the state-space model parameter.
According to control theory as can be known the state-transition matrix of linear segment model be Φ ( k ) = A m k , Therefore the equation of motion of linear subsystem is:
X m ( k + h ) = Φ ( h ) X m ( k ) + Σ t = 0 h - 1 Φ ( h - t - 1 ) B m V ( k + t )
3, a kind of nonlinear multivariable systems Predictive function control method based on the Hammerstein model according to claim 1 is characterized in that describedly finding the solution the Predictive function control rate step of multi-variable linear system according to the linear department pattern parameter of Hammerstein model, setting value and real process output:
(a), suppose the important v of V (k) with the input of intermediate variable V (k) as linear subsystem i(k), i=1 ..., the number of the basis function of m is N all, thereby obtains:
V ( k + h ) = v 1 ( k + h ) · · · v m ( k + h ) = μ 11 ( k ) · · · μ 1 N ( k ) · · · μ m 1 ( k ) · · · μ mN ( k ) · f 1 ( h ) · · · f N ( h ) = μ ( k ) f ( h )
Wherein: μ 11(k) ..., μ MN(k) be the linear combination coefficient of each basis function, f 1(h) ..., f N(h) be that each basis function is at h functional value constantly.
(b) will X m ( k + h ) = Φ ( h ) X m ( k ) + Σ t = 0 h - 1 Φ ( h - t - 1 ) B m V ( k + t ) Bring Y into m(k)=C mX m(k) can get:
Y m ( k + h ) = r 1 ( h ) + Σ i = 1 m Σ l = 1 N T il ( h , 1 ) · μ il ( k ) · · · r q ( h ) + Σ i = 1 m Σ l = 1 N T il ( h , p ) · μ il ( k ) ,
Wherein:
r 1 ( h ) · · · r q ( h ) = C m Φ ( h ) X m ( k ) = r 11 ( h ) · · · r 1 n ( h ) · · · · · · · · · r q 1 ( h ) · · · r qn ( h ) · x m 1 ( k ) · · · x mn ( k ) ,
T il ( h , s ) = Σ t = 0 h - 1 g si ( h - 1 - t ) · f l ( t ) ; i = 1 , · · · , m ; l = 1 , · · · , N ; s = 1 , · · · , q ,
C m Φ ( i ) B m = g 11 ( i ) · · · g 1 m ( i ) · · · · · · · · · g q 1 ( i ) · · · g qm ( i ) q × m , i = 0 , · · · , h - 1 .
(c) Predictive function control is a kind of closed loop control algorithm, therefore needs to introduce the feedback compensation link, gets predicated error and is: E (k+h)=Y (k)-Y m(k), wherein:
E (k+h)=[e 1(k+h) ..., e q(k+h)] TPredicated error for model;
Y (k)=[y 1(k) ..., y q(k)] TOutput for current time process object;
Y m(k)=[y M1(k) ..., y Mq(k)] TOutput for the current time forecast model.
(d) reference locus adopts the single order exponential form, and then k+H reference locus constantly is:
Y r ( k + h ) = y r 1 ( k + h ) · · · y rq ( k + h ) = c 1 ( k + h ) - α 1 h · [ c 1 ( k ) - y 1 ( k ) ] · · · c q ( k + h ) - α q h · [ c q ( k ) - y q ( k ) ]
Wherein: h=1 ..., H; H is the total number of match point; y R1(k+h) ..., y Rq(k+h) be the k+h value of q reference locus constantly; c 1(k+h) ..., c q(k+h) be k+h q setting value constantly; The calculating of setting value adopts polynomial form as follows: c i ( k + h ) = Σ l = 0 d i c il ( k ) h l , d iBe setting value polynomial expression exponent number, c Il(k) be the setting value multinomial coefficient; y 1(k) ..., y q(k) be current time q process object real output value; α i = e - T s T ri , I=1 ..., q, T sBe the sampling period, T RiFor following the tracks of the i bar reference locus Expected Response time.
(e) adopt following optimization aim:
J = Σ j = 1 H Σ i = 1 q [ y ~ i ( k + h ) - y ri ( k + h ) ] 2
Wherein: y ~ i ( k + h ) = y mi ( k + h ) + e i ( k + h ) ;
(f) by finding the solution above-mentioned optimization problem, promptly by finding the solution ∂ J ∂ μ ij ( k ) = 0 , Just can obtain matrix of coefficients:
μ 11 ( k ) · · · μ 1 N ( k ) · · · μ q 1 ( k ) · · · μ mN ( k ) = - Z - 1 · M · v ( 1,1 ) · · · v ( 1 , p ) · · · v ( s , 1 ) · · · v ( s , q ) Hq × 1
Wherein:
M = T 11 ( h 1 , 1 ) · · · T 11 ( h 1 , p ) · · · T 11 ( h s , 1 ) · · · T 11 ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T 1 N ( h 1 , 1 ) · · · T 1 N ( h 1 , p ) · · · T 1 N ( h s , 1 ) · · · T 1 N ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T m 1 ( h 1 , 1 ) · · · T m 1 ( h 1 , p ) · · · T m 1 ( h s , 1 ) · · · T m 1 ( h s , p ) · · · · · · · · · · · · · · · · · · · · · T mN ( h 1 , 1 ) · · · T mN ( h 1 , p ) · · · T mN ( h s , 1 ) · · · T mN ( h s , p ) mN × Sq
Z = w 11 ( 1,1 ) · · · w 1 N ( 1,1 ) · · · w m 1 ( 1,1 ) · · · w mN ( 1,1 ) · · · · · · · · · · · · · · · · · · · · · w 11 ( 1 , N ) · · · w 1 N ( 1 , N ) · · · w m 1 ( 1 , N ) · · · w mN ( 1 , N ) · · · · · · · · · · · · · · · · · · · · · w 11 ( m , 1 ) · · · w 1 N ( m , 1 ) · · · w m 1 ( q , 1 ) · · · w mN ( q , 1 ) · · · · · · · · · · · · · · · · · · · · · w 11 ( m , N ) · · · w 1 N ( m , N ) · · · w m 1 ( q , N ) · · · w mN ( q , N ) mN × mN
Wherein:
w ij ( t , R ) = Σ l = 1 S Σ ρ = 1 p T tR ( h l , ρ ) · T ij ( h l , ρ ) ;
i=1,…,m;j=1,…,N;t=1,…,m;R=1,…,N
v ( i , j ) = - r j ( h i ) + y j ( k ) - y mj ( k ) + α j h i · [ c j ( k ) - y j ( k ) ] - Σ l = 1 d j c jl ( k ) h i l .
i=1,…,S;j=1,…,q
r 1 ( h ) · · · r q ( h ) = C m Φ ( h ) X m ( k ) = r 11 ( h ) · · · r 1 n ( h ) · · · · · · · · · r q 1 ( h ) · · · r qn ( h ) · x m 1 ( k ) · · · x mn ( k ) ,
T il ( h , s ) = Σ t = 0 h - 1 g si ( h - 1 - t ) · f l ( t ) ; i=1,…,m;l=1,…,N;s=1,…,q,
C m Φ ( i ) B m = g 11 ( i ) · · · g 1 m ( i ) · · · · · · · · · g q 1 ( i ) · · · g qm ( i ) q × m , i=0,…,h-1.
Thereby obtain matrix of coefficients μ (k).
(g) therefore obtain multi-variable linear system Predictive function control rate: V (k+h)=μ (k) f (h).
4, a kind of multivariable nonlinearity Predictive function control method based on the Hammerstein model according to claim 1 is characterized in that describedly finding the solution and implement the optimal control law step according to multivariable nonlinearity Predictive function control device:
(h) algorithm initialization: the correlation parameter of the parameter of given model, basis function and multivariable nonlinearity Predictive function control device;
(i) read in k process output valve Y (k) constantly, and k, k+H j, j=1 ..., q setting value constantly;
(j) calculate k+h j, h j=1 ..., H jReference locus value Y constantly r(k+h j);
(k) optimization is found the solution and is obtained k intermediate controlled amount V constantly m(k);
(l) find the solution the root of Nonlinear System of Equations, obtain current controlled quentity controlled variable U (k);
(m) calculate Y m(k+1) and carry out U (k);
(n) make k=k+1 change step (j).
CNA2008100610280A 2008-05-07 2008-05-07 Multivariable non-linear system prediction function control method based on Hammerstein model Pending CN101276207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100610280A CN101276207A (en) 2008-05-07 2008-05-07 Multivariable non-linear system prediction function control method based on Hammerstein model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100610280A CN101276207A (en) 2008-05-07 2008-05-07 Multivariable non-linear system prediction function control method based on Hammerstein model

Publications (1)

Publication Number Publication Date
CN101276207A true CN101276207A (en) 2008-10-01

Family

ID=39995709

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100610280A Pending CN101276207A (en) 2008-05-07 2008-05-07 Multivariable non-linear system prediction function control method based on Hammerstein model

Country Status (1)

Country Link
CN (1) CN101276207A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260732B2 (en) 2009-11-24 2012-09-04 King Fahd University Of Petroleum And Minerals Method for identifying Hammerstein models
CN102737151A (en) * 2012-07-04 2012-10-17 江南大学 Parameter identification method of Hammarstam non-linear model adopting dual-rate sampling
CN103019092A (en) * 2012-12-31 2013-04-03 上海师范大学 Prediction control method for positioning platform of mechanical transmission system
CN103268069A (en) * 2013-05-22 2013-08-28 常州大学 Adaptive prediction control method based on Hammerstein model
US9704470B2 (en) 2013-10-02 2017-07-11 Universiti Putra Malaysia Method and apparatus for nonlinear compensation in an active noise control system
CN109388062A (en) * 2018-04-18 2019-02-26 南京工业大学 A kind of global coordination Distributed Predictive Control algorithm based on system decomposition index
CN110492744A (en) * 2019-08-19 2019-11-22 华南理工大学 Constant power load control method and circuit applied to DC-DC converter
CN112947648A (en) * 2021-03-04 2021-06-11 江西理工大学 Agricultural greenhouse environment prediction method and system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260732B2 (en) 2009-11-24 2012-09-04 King Fahd University Of Petroleum And Minerals Method for identifying Hammerstein models
CN102737151A (en) * 2012-07-04 2012-10-17 江南大学 Parameter identification method of Hammarstam non-linear model adopting dual-rate sampling
CN103019092A (en) * 2012-12-31 2013-04-03 上海师范大学 Prediction control method for positioning platform of mechanical transmission system
CN103019092B (en) * 2012-12-31 2016-07-06 上海师范大学 A kind of forecast Control Algorithm of machine driven system locating platform
CN103268069A (en) * 2013-05-22 2013-08-28 常州大学 Adaptive prediction control method based on Hammerstein model
CN103268069B (en) * 2013-05-22 2015-10-28 常州大学 Based on the adaptive prediction control method of Hammerstein model
US9704470B2 (en) 2013-10-02 2017-07-11 Universiti Putra Malaysia Method and apparatus for nonlinear compensation in an active noise control system
CN109388062A (en) * 2018-04-18 2019-02-26 南京工业大学 A kind of global coordination Distributed Predictive Control algorithm based on system decomposition index
CN110492744A (en) * 2019-08-19 2019-11-22 华南理工大学 Constant power load control method and circuit applied to DC-DC converter
CN110492744B (en) * 2019-08-19 2020-09-22 华南理工大学 Constant power load control method and circuit applied to DC-DC converter
CN112947648A (en) * 2021-03-04 2021-06-11 江西理工大学 Agricultural greenhouse environment prediction method and system
CN112947648B (en) * 2021-03-04 2021-11-23 江西理工大学 Agricultural greenhouse environment prediction method and system

Similar Documents

Publication Publication Date Title
CN101276207A (en) Multivariable non-linear system prediction function control method based on Hammerstein model
Vasičkaninová et al. Control of a heat exchanger using neural network predictive controller combined with auxiliary fuzzy controller
Khani et al. Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models
CN104698842B (en) A kind of LPV model nonlinear forecast Control Algorithms based on interior point method
Kayacan et al. Single-step ahead prediction based on the principle of concatenation using grey predictors
Sivakumar et al. Application of fuzzy model predictive control in multivariable control of distillation column
Feng et al. Nonlinear model predictive control based on support vector machine and genetic algorithm
Andrášik et al. On-line tuning of a neural PID controller based on plant hybrid modeling
CN113988481A (en) Wind power prediction method based on dynamic matrix prediction control
Abonyi et al. Adaptive fuzzy inference system and its application in modelling and model based control
Chidrawar et al. Generalized predictive control and neural generalized predictive control
Agyeman et al. An LSTM‐based mixed‐integer model predictive control for irrigation scheduling
CN110750049B (en) Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance
Waheeb et al. Forecasting the behavior of gas furnace multivariate time series using ridge polynomial based neural network models
CN101900991A (en) Composite PID (Proportion Integration Differentiation) neural network control method based on nonlinear dynamic factor
Wanfeng et al. Adaptive PID controller based on online LSSVM identification
Gizaw et al. Artificial neural network based identification of process dynamics and neural network controller design for continuous distillation column
Kaipbergenov et al. Modeling of the Technological Process of Ammonization of Soda Production Under Conditions of Changing Initial Data
Guolian et al. Multiple-model predictive control based on fuzzy adaptive weights and its application to main-steam temperature in power plant
CN107918282B (en) Variable domain MPC method for automatic power generation control of interconnected power grid
CN101763082B (en) Effective industrial process dynamic optimization system and method based on two-point step size gradient method
CN111781821B (en) Parameter self-tuning method of SISO (SISO) compact-format model-free controller based on Attention mechanism cyclic neural network
Pucheta et al. A neuro-dynamic programming-based optimal controller for tomato seedling growth in greenhouse systems
CN203217277U (en) Non-linear model predication controller of tank reactor based on online support vector machine
Perez Adaptive Model Predictive Control for Offset-Free Setpoint Tracking of Nonlinear Processes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081001