CN101266908A - 直接脊波导输出倍频程大功率螺旋线行波管 - Google Patents

直接脊波导输出倍频程大功率螺旋线行波管 Download PDF

Info

Publication number
CN101266908A
CN101266908A CNA2008100443038A CN200810044303A CN101266908A CN 101266908 A CN101266908 A CN 101266908A CN A2008100443038 A CNA2008100443038 A CN A2008100443038A CN 200810044303 A CN200810044303 A CN 200810044303A CN 101266908 A CN101266908 A CN 101266908A
Authority
CN
China
Prior art keywords
ridge waveguide
helix
wave tube
output
changeover portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100443038A
Other languages
English (en)
Other versions
CN100583367C (zh
Inventor
李家胤
汪海洋
李明光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN200810044303A priority Critical patent/CN100583367C/zh
Publication of CN101266908A publication Critical patent/CN101266908A/zh
Application granted granted Critical
Publication of CN100583367C publication Critical patent/CN100583367C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microwave Tubes (AREA)

Abstract

直接脊波导输出倍频程大功率螺旋线行波管,涉及微波电真空器件技术,特别涉及宽带大功率螺旋线行波管。本发明包括行波管和脊波导段,所述管体内设置有螺旋线,脊波导段包括输出脊波导,所述螺旋线通过匹配过渡段与波导壁连接,同时构成热传导连接;所述匹配过渡段由螺旋线-同轴线过渡段、同轴线-带状线过渡段、带状线-扁脊波导过渡段、扁脊波导-脊波导过渡段构成。本发明的有益效果是,在保持螺旋线行波管宽频带优势同时可有效大幅提高行波管输出功率,避免了传统同轴窗输出再转脊波导输出螺旋线行波管所带来的上述负面效应与输出功率限制。

Description

直接脊波导输出倍频程大功率螺旋线行波管
技术领域
本发明涉及微波电真空器件技术,特别涉及宽带大功率螺旋线行波管。
背景技术
宽带大功率行波管是雷达、电子对抗装备的核心器件。倍频程行波管一般采用螺旋线慢波线、同轴陶瓷输出窗结构。在实际应用中需要用宽频带脊波导将微波传输至天线时,常采用同轴-脊波导转换适配器过渡到脊波导传输线。
这种结构的优点是有足够的频带,可达一个倍频程甚至更高,但缺点是散热性能差,输出功率有限。因为:
①螺旋线末端与同轴输出窗内导体的连接处是热损坏的高危区。此段区域为行波管微波功率输出部分,高频损耗大,同时也是螺旋线因电子束扰动截获电流较多的区域,这两种因数构成了螺旋线末端主要热源。螺旋线热量耗散一般通过陶瓷夹持杆的接触传导至管壳,未与夹持杆接触的螺旋线拉直段和同轴输出内导体热量则只能通过同轴内导体传至圆柱陶瓷输出窗,再经此陶瓷窗体传导至管壳,整个热传导路径长,热阻大,常导致螺旋线与内导体连接处因过热变形甚至直接烧断造成整管烧毁。目前实验数据表明S波段同轴输出结构螺旋线行波管可承受连续波输出最大功率为1.8kW左右,有时小于此功率也可发生连接处烧断导致整管损坏现象。国内S波段此类行波管最大连续波输出功率为1.5kW。
②同轴输出窗与同轴-脊波导转换适配器的连接又是另外一个热毁伤薄弱点。由于同轴接头内外导体通过插针和螺纹连接,大功率应用时高频损耗大,发热严重;而发热反过来又加剧高频损耗。这种恶性循环是常常造成螺旋线行波管损坏又一原因,而且转换过渡装置的损耗也降低了行波管的有用输出功率和总体效率。
发明内容
本发明所要解决的技术问题是研制一种新型的螺旋线行波管,它在S波段具有2-4GHz带宽和超过目前国内最高水平的连续波输出功率,同时其输出可不经过转换直接与脊波导连接,以适应倍频程高平均功率直接送至脊波导传输实际应用需求。
本发明解决所述技术问题采用的技术方案是:直接脊波导输出倍频程大功率螺旋线行波管,包括管体和脊波导段,所述管体内设置有螺旋线,脊波导段包括输出脊波导,所述螺旋线通过匹配过渡段与波导壁连接,同时构成热传导连接;所述匹配过渡段由螺旋线-同轴线过渡段、同轴线-带状线过渡段、带状线-扁脊波导过渡段、扁脊波导-脊波导过渡段构成。
所述螺旋线-同轴线过渡段、同轴线-带状线过渡段、带状线-扁脊波导过渡段、扁脊波导-脊波导过渡段的厚度和宽度逐级增大。匹配过渡段所在的波导内腔宽度逐级增大。
进一步的说,具体尺寸为:
螺旋线-同轴线过渡段对应行波管外导体管壳切口角度范围为40-50°;带状线宽度为3.5mm,带状线对应波导高度8mm,宽度22mm;脊波导脊条宽度为14.5mm,脊条高度为9.5mm,脊波导高度为12mm,带状线-脊波导过渡对应波导宽度54mm,以后波导宽度与输出脊波导宽度一致,为72.14mm。
进一步的,所述脊波导段包括一个微波窗,所述微波窗包括陶瓷片和圆波导段,在圆波导段内,陶瓷片的两侧分别设置有一条匹配金属脊条。
本发明的有益效果是,
①直接脊波导输出提供了了一种倍频程大功率行波管新的技术途径,包括螺旋线-脊波导特殊匹配过渡和大功率脊波导微波窗,在保持螺旋线行波管宽频带优势同时可有效大幅提高行波管输出功率,避免了传统同轴窗输出再转脊波导输出螺旋线行波管所带来的上述负面效应与输出功率限制。
②采用本发明技术的S波段直接脊波导输出倍频程大功率螺旋线行波管样管在2GHz-4GHz频带范围内实现良好输出匹配性能,整管输出驻波系数小于1.6,频带内最大连续波输出功率已达3kW。
本发明是在S波段用单脊波导实现的,但结构原理同样适用于其它频率波段和双脊波导输出大功率螺旋线行波管。
以下结合附图和具体实施方式对本发明作进一步的说明。
附图说明
图1是现有技术同轴输出螺旋线行波管输出与对应同轴-脊波导转换适配器纵向剖面结构示意图。
图2和图3是本发明直接脊波导输出倍频程螺旋线行波管(包括大功率脊波导微波窗)输出结构侧向剖面示意图(左图)与正向剖面示意图(右图)。
具体实施方式
本发明有四个技术要点:
①螺旋线末端局部焊接技术,采用了四根梯形氧化铍陶瓷夹持杆(一般采用三根)夹持螺旋线。在发热最严重的一段夹持杆内侧与螺旋线铜带焊接,外侧与通水冷却的无氧铜外导体管壳焊接,实现了良好的热接触,改善了散热性能。
②新型螺旋线-脊波导过渡结构采用一种特殊的匹配金属条将螺旋线末端通过无氧铜直接以焊接方式连接到管壁上,保证了良好的散热通路;同时该金属条又与异形波导壁构成一种特殊变换结构,完成螺旋线模式向脊波导模式变换并保证阻抗匹配。在2-4GHz频段范围内,设计驻波系数小于1.2。
③大功率脊波导微波窗(发明专利申请号:200710048598.1)在保持真空密封同时,在两侧脊波导脊条无接触的情况下完成了倍频程大功率微波的正常传输,驻波系数小于1.3(包括测试用的端接脊波导同轴转换)。
④新型倍频程大功率螺旋线行波管的整体实现,采用了通水冷却无氧铜外导体管壳,部分填充周期永磁聚焦系统和合理的输出大部件结构,保证了上述改进措施可以很好地集成到一只行波管中,在2-4GHz带宽内连续波输出功率大于2kW,最大已达3kW。
图1为现有技术同轴输出螺旋线行波管输出与同轴-脊波导转换适配器结构,包括螺旋线1,夹持杆2,螺旋线-同轴内导体连接处3,同轴线内导体4和圆柱形陶瓷窗5,行波管输出同轴接头6,同轴-脊波导转换适配器同轴接头7,同轴接头内导体支撑绝缘子8,输出脊波导9。
这种结构输出具有频带宽的优点,但输出散热能力差,连续波输出功率很难超过2kW。图中行波管输出同轴接头6,同轴-脊波导转换适配器同轴接头7大功率应用时高频损耗较大,内导体不易散热,整个内导体组件主要通过圆柱陶瓷窗体与陶瓷支撑介质绝缘子散热,不能通过金属连接结构直接散热。
图2为本发明直接脊波导输出倍频程螺旋线行波管输出部分结构侧向剖面示意图(左图)与正向(右图)。从原理结构上来说,匹配过渡段包括螺旋线11,夹持杆12,螺旋线-同轴线过渡13,同轴线-带状线过渡14,带状线-扁脊波导过渡15,扁脊波导-脊波导过渡16,完成微波传播模式由螺旋线慢波向脊波导快波传输转换,其总体长度不大于150mm,为左右对称结构设计,如图2、3的右图。通过优化这一匹配过渡段结构参数,使得在保证螺旋线末端散热能力的同时,又具有良好微波功率传输性能。
本发明的直接脊波导输出倍频程大功率螺旋线行波管,包括行波管31和脊波导段23,所述管体31内设置有螺旋线11,脊波导段23包括输出脊波导18,所述螺旋线11通过匹配过渡段与波导壁20连接,同时构成热传导连接;
所述匹配过渡段由螺旋线-同轴线过渡段13、同轴线-带状线过渡段14、带状线-扁脊波导过渡段15、扁脊波导-脊波导过渡段16构成,并且厚度和宽度逐级增大,匹配过渡段所在的波导内腔宽度逐级增大。
所述脊波导段23包括一个微波窗17,所述微波窗17包括陶瓷片21和圆波导段22,在圆波导段22内,陶瓷片21的两侧分别设置有一条匹配金属脊条。具体结构参见申请号为200710048598.1的发明专利申请。
作为一个实施例,见图3。螺旋线-同轴线-带状线过渡由一段长度不大于20mm厚度为3.5mm无氧铜带构成,其中螺旋线-同轴线过渡段无氧铜带厚度为2.5mm。螺旋线-同轴线过渡段13对应行波管外导体管壳切口角度范围为40-50°。带状线宽度f为3.5mm,带状线对应波导高度g为8mm,宽度h为22mm;脊波导脊条宽度b为14.5mm,脊条高度a为9.5mm,扁脊波导高度c为12mm。图2(右图)带状线-脊波导过渡15对应波导宽度d为54mm,以后波导宽度与输出脊波导18宽度一致,为72.14mm,图示为e。
图2中其他几项参数为:k=3.75mm,m=42.98mm,n=15mm,p=16mm,q=25.5mm,r=9mm,t=6mm。通过本发明所公开的参数,本领域技术人员已经能够无困难的再现本发明。
本发明的脊波导脊条与波导壁焊接在一起,同时波导壁又与行波管管壳为一体结构,使得最后几圈螺旋线末端头的耗散热量通过这一特殊匹配过渡金属条直接传导至行波管管壳,保证了螺旋线末端具有良好的散热能力,大幅提高了螺旋线行波管整管连续波输出功率水平。
扁脊波导-脊波导过渡16输出与大功率脊波导微波窗17对接后,优化输出匹配过渡整体结构参数可获得整管倍频程良好驻波特性,在大幅提高整管输出功率同时保持了螺旋线行波管宽频带优点。

Claims (5)

1、直接脊波导输出倍频程大功率螺旋线行波管,包括管体(31)和脊波导段(23),所述管体(31)内设置有螺旋线(11),脊波导段(23)包括输出脊波导(18),其特征在于,
所述螺旋线(11)通过匹配过渡段与波导壁(20)连接,同时构成热传导连接;
所述匹配过渡段由螺旋线-同轴线过渡段(13)、同轴线-带状线过渡段(14)、带状线-扁脊波导过渡段(15)、扁脊波导-脊波导过渡段(16)构成。
2、如权利要求1所述的直接脊波导输出倍频程大功率螺旋线行波管,其特征在于,所述螺旋线-同轴线过渡段(13)、同轴线-带状线过渡段(14)、带状线-扁脊波导过渡段(15)、扁脊波导-脊波导过渡段(16)的厚度和宽度逐级增大。
3、如权利要求2所述的直接脊波导输出倍频程大功率螺旋线行波管,其特征在于,匹配过渡段所在的波导内腔宽度逐级增大。
4、如权利要求3所述的直接脊波导输出倍频程大功率螺旋线行波管,其特征在于,具体尺寸为:
螺旋线-同轴线过渡段(13)对应行波管外导体管壳切口角度范围为40-50°;带状线宽度为3.5mm,带状线对应波导高度8mm,宽度22mm;脊波导脊条宽度为14.5mm,脊条高度为9.5mm,脊波导高度为12mm,带状线-脊波导过渡(15)对应波导宽度54mm,以后波导宽度与输出脊波导(18)宽度一致,为72.14mm。
5、如权利要求1所述的直接脊波导输出倍频程大功率螺旋线行波管,其特征在于,所述脊波导段(23)包括一个微波窗(17),所述微波窗(17)包括陶瓷片(21)和圆波导段(22),在圆波导段(22)内,陶瓷片(21)的两侧分别设置有一条匹配金属脊条。
CN200810044303A 2008-04-28 2008-04-28 直接脊波导输出倍频程大功率螺旋线行波管 Expired - Fee Related CN100583367C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810044303A CN100583367C (zh) 2008-04-28 2008-04-28 直接脊波导输出倍频程大功率螺旋线行波管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810044303A CN100583367C (zh) 2008-04-28 2008-04-28 直接脊波导输出倍频程大功率螺旋线行波管

Publications (2)

Publication Number Publication Date
CN101266908A true CN101266908A (zh) 2008-09-17
CN100583367C CN100583367C (zh) 2010-01-20

Family

ID=39989211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810044303A Expired - Fee Related CN100583367C (zh) 2008-04-28 2008-04-28 直接脊波导输出倍频程大功率螺旋线行波管

Country Status (1)

Country Link
CN (1) CN100583367C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914116A (zh) * 2016-05-10 2016-08-31 电子科技大学 一种超宽带微波管能量耦合结构
CN110165350A (zh) * 2019-06-06 2019-08-23 西南应用磁学研究所 小型化波导同轴转换装置
CN110379691A (zh) * 2019-04-29 2019-10-25 电子科技大学 一种紧凑型高效率轴向输出te51模式相对论磁控管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914116A (zh) * 2016-05-10 2016-08-31 电子科技大学 一种超宽带微波管能量耦合结构
CN105914116B (zh) * 2016-05-10 2018-01-23 电子科技大学 一种超宽带微波管能量耦合结构
CN110379691A (zh) * 2019-04-29 2019-10-25 电子科技大学 一种紧凑型高效率轴向输出te51模式相对论磁控管
CN110165350A (zh) * 2019-06-06 2019-08-23 西南应用磁学研究所 小型化波导同轴转换装置
CN110165350B (zh) * 2019-06-06 2024-01-16 西南应用磁学研究所 小型化波导同轴转换装置

Also Published As

Publication number Publication date
CN100583367C (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
CN102446676B (zh) 一种螺旋线慢波结构
CN105161390B (zh) 新型超常材料高功率微波源
CN100583368C (zh) 全波导带宽标准波导输出大功率螺旋线行波管
CN108807113B (zh) 一种类同轴曲折带状注慢波结构
CN102243972B (zh) 一种宽带行波管能量输出窗及其制造方法
CN100583367C (zh) 直接脊波导输出倍频程大功率螺旋线行波管
CN101770920A (zh) 一种毫米波段行波管输出窗及其制造方法
US3670196A (en) Helix delay line for traveling wave devices
CN101715272A (zh) 大功率铁氧体加载变频调谐腔
CN112615123A (zh) 一种应用于介质加载回旋行波管中的角向功分波导结构
CN101017921A (zh) 大功率脊波导微波窗
CN112886158B (zh) 一种大功率同轴陶瓷窗冷却装置
CN110112046A (zh) 一种半矩形环螺旋线慢波结构
CN107919515B (zh) 一种仅存TE0n模式的强场模式滤波器
CN111524769B (zh) 用于Ka波段大功率空间行波管的输出波导窗
CN203386704U (zh) 一种螺旋线行波管慢波夹持结构
CN111048376B (zh) 一种螺旋线慢波结构及包括该慢波结构的行波管
US3666983A (en) Wave propagating structure for crossed field devices
JPH11149877A (ja) 進行波管のコレクタ構造
CN1347132A (zh) 全金属螺旋慢波结构
CN202940212U (zh) 一种用于行波管的慢波结构
CN209216913U (zh) 小尺寸的l波段宽带脉冲行波管的慢波电路
CN110473755B (zh) 一种两侧夹持的环杆带状线慢波结构
CN203277308U (zh) 用于螺旋线行波管中的高导热慢波系统散热结构
CN101533750A (zh) 一种宽频带毫米波行波管慢波系统的有效散热结构及其实现方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100120

Termination date: 20130428