CN101254544A - 纳米钙及制备方法 - Google Patents
纳米钙及制备方法 Download PDFInfo
- Publication number
- CN101254544A CN101254544A CNA2007100105446A CN200710010544A CN101254544A CN 101254544 A CN101254544 A CN 101254544A CN A2007100105446 A CNA2007100105446 A CN A2007100105446A CN 200710010544 A CN200710010544 A CN 200710010544A CN 101254544 A CN101254544 A CN 101254544A
- Authority
- CN
- China
- Prior art keywords
- nano
- preparation
- calcium
- scale
- calcium metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
本发明涉及纳米尺寸金属钙及其制备方法。在0~50℃和常压条件下,商品钙块锯成的小颗粒在四氢呋喃、1,4-二氧六环、吡啶、甲苯、正丁醚、异戊醚中的任意一种有机溶剂中与多环芳烃及其对应的衍生物中的任意一种,在TiCl4、ZrCl4、CoCl2、CuCl2、VCl4、NiCl2、CrCl3中的任意一种催化剂作用下生成金属有机中间体,将其在40~150℃真空热解得到纳米尺寸的金属钙。透射电镜测定基本颗粒尺寸小于100nm。纳米尺寸金属钙活性高,在常压40~120℃条件下与氢反应2-6小时,生成基本颗粒尺寸在20~50nm范围内的氢化钙。
Description
技术领域
本发明涉及纳米尺寸金属及制备方法,具体地说通过生成金属有机中间体真空热解制备纳米尺寸金属钙粉末的方法。
背景技术
纳米科学技术是80年代末发展起来的一种高新技术。它的内容是在纳米尺寸范围内认识和改造自然,通过直接操纵和安排原子、分子而创造新物质。现在纳米科学与技术正在转化为生产力。使用纳米技术可以使制备催化剂的工艺发生根本的变革,制备出环境友好的纳米金属催化剂,对环境保护和人类社会的发展都具有特别重要的意义。金属钙在有机和无机材料的合成中已经得到了广泛的应用。纳米材料的制备是纳米科技的基础,通常分为物理方法和化学方法。化学法主要通过适当的化学反应,从分子、原子出发制备纳米材料。目前尚未见到有关纳米金属钙及其制备方法的文献报道。
发明内容
本项发明的目的是提供一种在0~50℃和常压的条件下,在有机溶剂中金属钙与多环芳烃及其对应的衍生物在催化剂作用下生成金属有机中间体,在40~150℃条件下将其真空热解得到纳米尺寸金属钙粉未。
本项发明方法可用反应式表示为:
Ca+xC10H8+yTHF——Ca·xC10H8·yTHF——nano-Ca+xC10H8+yTHF
有机溶剂是四氢呋喃、1,4-二氧六环、吡啶、甲苯、正丁醚、异戊醚中的任意一种,优选的是四氢呋喃。
多环芳烃为联苯、蒽、萘、菲及其对应的衍生物中的任意一种,优选的是萘。
催化剂是金属氯化物TiCl4、ZrCl4、CoCl2、CuCl2、VCl4、NiCl2、CrCl3中的任意一种,优选的是四氯化钛。
本项发明设备简单、操作条件易于控制、生产成本低廉、得到的纳米钙金属粉末分散度好且活性高,遇到空气迅速变色,可应用于多种领域。
附图说明
图1是纳米尺寸金属钙的透射电镜照片。
具体实施方式
下面通过具体方法对本项发明提供的纳米尺寸金属钙及其制备方法作进一步说明。
商品片状金属钙(华北地区特种化学试剂开发中心)锯成小颗粒,称取约2.0g(50mmol)、萘3.8g(30mmol)置于一个反应瓶中,抽真空,在惰气气氛下加入20mL四氢呋喃,0.02mL四氯化钛,45℃下打开电磁搅拌器反应,反应十几分钟有棕黑色的萘钙金属有机中间体生成。反应5-7天后将有机中间体转移到热解管中,进行真空热解(40~150℃)2-3小时,当萘全部升华,瓶底留下金属钙粉未。用日本理学JEM-1200EX透射电镜测定基本颗粒尺寸在小于100nm。反应在惰性气体保护下进行。
在常压、40~120℃与氢气反应2-6小时生成纳米氢化钙,用日本理学JEM-1200EX透射电镜测定基本颗粒尺寸在20~50nm范围内。相同情况下,金属钙在常压、400~500℃才与氢气反应生成普通尺寸的氢化钙(何泽人编译《无机制备化学手册》增订第二版1972年8月北京第1版燃料化学工业出版社P570)。
Claims (5)
1. 纳米尺寸金属钙粉未,其特征是基本颗粒尺寸小于100nm。
2. 纳米尺寸金属钙的制备方法,其特征是在惰性气体保护下,0~50℃和常压条件下,钙块锯成的小颗粒在四氢呋喃、1,4-二氧六环、吡啶、甲苯、正丁醚、异戊醚中的任意一种有机溶剂中与多环芳烃及其对应的衍生物中的任意一种,在TiCl4、ZrCl4、CoCl2、CuCl2、VCl4、NiCl2、CrCl3中的任意一种催化剂作用下,经过5-7天反应后生成棕黑色的有机中间体,在40~150℃真空热解2-3小时得到纳米尺寸钙粉未。
3. 按照权利要求2所述的纳米尺寸金属钙的制备方法,其特征在于有机溶剂是四氢呋喃。
4. 按照权利要求2所述的纳米尺寸金属钙的制备方法,其特征在于有机配体是萘。
5. 按照权利要求2所述的纳米尺寸金属钙的制备方法,其特征在于催化剂是TiCl4。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100105446A CN101254544A (zh) | 2007-03-04 | 2007-03-04 | 纳米钙及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100105446A CN101254544A (zh) | 2007-03-04 | 2007-03-04 | 纳米钙及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101254544A true CN101254544A (zh) | 2008-09-03 |
Family
ID=39889840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100105446A Pending CN101254544A (zh) | 2007-03-04 | 2007-03-04 | 纳米钙及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101254544A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102395439A (zh) * | 2009-04-17 | 2012-03-28 | 国立大学法人山形大学 | 包覆银超微粒子及其制造方法 |
-
2007
- 2007-03-04 CN CNA2007100105446A patent/CN101254544A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102395439A (zh) * | 2009-04-17 | 2012-03-28 | 国立大学法人山形大学 | 包覆银超微粒子及其制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ji et al. | Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols | |
Wei et al. | In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes | |
Han et al. | MOF‐on‐MOF‐derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction | |
Cao et al. | Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@ Ni core–shell nanoparticles | |
Wang et al. | Metal-organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation | |
Shah et al. | Hydrogen production by catalytic decomposition of methane | |
Moustakas et al. | Photocatalytic CO2 Reduction on TiO2‐Based Materials under Controlled Reaction Conditions: Systematic Insights from a Literature Study | |
Cao et al. | In Situ Facile Synthesis of Ru‐Based Core–Shell Nanoparticles Supported on Carbon Black and Their High Catalytic Activity in the Dehydrogenation of Amine‐Boranes | |
George et al. | CO Oxidation on Colloidal Au0. 80Pd0. 20–Fe x O y Dumbbell Nanocrystals | |
Hu et al. | Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions | |
Lu et al. | Construction of cobalt phthalocyanine sensitized SnIn4S8/g-C3N4 composites with enhanced photocatalytic degradation and hydrogen production performance | |
Anjaneyulu et al. | Influence of rare earth (La, Pr, Nd, Gd, and Sm) metals on the methane decomposition activity of Ni–Al catalysts | |
Baguc et al. | Nanocrystalline metal organic framework (MIL-101) stabilized copper Nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane | |
Xue et al. | Understanding the injection process of hydrogen on Pt1-TiO2 surface for photocatalytic hydrogen evolution | |
Han et al. | Artificial Photosynthesis over Tubular In2O3/ZnO Heterojunctions Assisted by Efficient CO2 Activation and S‐Scheme Charge Separation | |
Yang et al. | First-principles investigation of graphene and Fe2O3 catalytic activity for decomposition of ammonium perchlorate | |
Shen et al. | Metal‐organic‐framework‐derived nitrogen‐doped hybrid nickel‐iron‐sulfide architectures on carbon cloth as efficient electrocatalysts for the oxygen evolution reaction | |
Cao et al. | Efficient non‐precious metal catalyst for propane dehydrogenation: atomically dispersed cobalt‐nitrogen compounds on carbon nanotubes | |
Xu et al. | Aminal‐based Hypercrosslinked Polymer Modified with Small Palladium Nanoparticles for Efficiently Catalytic Reduction of Nitroarenes | |
Li et al. | Pyridinic Nitrogen‐Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the N‐Allylation Reaction | |
Zheng et al. | Selective conversion of CO2 into cyclic carbonate on atom level catalysts | |
Tilgner et al. | H2-generation from alcohols by the MOF-based noble metal-free photocatalyst Ni/CdS/TiO2@ MIL-101 | |
Xu et al. | Ultrathin TiO x nanosheets rich in tetracoordinated Ti sites for propane dehydrogenation | |
Liu et al. | Ready hydrothermal reactions from carbon dioxide to methane | |
Li et al. | Interfacial Reaction-Directed Green Synthesis of CeO2–MnO2 Catalysts for Imine Production through Oxidative Coupling of Alcohols and Amines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080903 |