CN101252089A - 利用微汽泡喷射沸腾冷却微电子芯片的方法 - Google Patents

利用微汽泡喷射沸腾冷却微电子芯片的方法 Download PDF

Info

Publication number
CN101252089A
CN101252089A CNA2008100348531A CN200810034853A CN101252089A CN 101252089 A CN101252089 A CN 101252089A CN A2008100348531 A CNA2008100348531 A CN A2008100348531A CN 200810034853 A CN200810034853 A CN 200810034853A CN 101252089 A CN101252089 A CN 101252089A
Authority
CN
China
Prior art keywords
microelectronic chip
microchannel
spray
micro
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100348531A
Other languages
English (en)
Other versions
CN101252089B (zh
Inventor
王国栋
郑平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN2008100348531A priority Critical patent/CN101252089B/zh
Publication of CN101252089A publication Critical patent/CN101252089A/zh
Application granted granted Critical
Publication of CN101252089B publication Critical patent/CN101252089B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种微电子技术领域的利用微汽泡喷射沸腾冷却微电子芯片的方法,步骤为:步骤一,通过微加工的方法将微电子芯片固定在硼硅酸玻璃上;步骤二,通过微加工中的蚀刻工艺,在<100>硅片上蚀刻微通道;步骤三,通过微加工中的阳极扩散焊工艺,将蚀刻有微通道的硅片和固定有微电子芯片的硼硅酸玻璃键合在一起,形成一端为入口、另一端为出口的具有良好密封性的微通道;步骤四,提供常温下的水从微通道的入口注入,水和微电子芯片直接接触进行冷却后从通道的出口排出。本发明可以对热流密度高达14.41MW/m2的微电子芯片(长为2mm,宽为0.2mm)进行有效冷却,是传统冷却技术极限的十几倍。

Description

利用微汽泡喷射沸腾冷却微电子芯片的方法
技术领域
本发明所涉及的是一种微电子技术领域的芯片冷却方法,特别是一种利用微汽泡喷射沸腾冷却微电子芯片的方法。
背景技术
随着微全分析系统(μ-TAS)和微机电系统(MEMS)概念的提出和发展,电子芯片的特征尺寸不断减小,已从微米量级向亚微米量级发展,同时集成度每年以40%-50%高速度递增。近年来,随着超大规模集成电路技术和高速电子计算机技术的迅速发展,电子芯片热流密度接近目前的冷却极限——1MW/m2。如果这些热量不及时排出,将严重影响到微电子元件的工作性能和使用寿命。但是要在毫米甚至微米量级的器件上把如此高的热量带走,以风扇推动空气为特点的常规冷却技术已无法满足日益增长的微电子芯片散热需求。因而,探寻高热流密度微电子芯片的冷却方法开始成为一个研究热点。
为了实现对微电子芯片实现有效的冷却,已有文献报道了一些冷却方法。目前比较常用的散热方式为由外及内散热,一般是用空气通过风扇或相变流体与微电子元件直接接触,从而实现将热量从微电子元件中带出,进而降低电子元件的工作温度。这种散热方式由于散热热阻较大,使得散热效率较低;近年来随着微电子机械加工技术的迅速发展,将散热元件与芯片集成制作已经成为一种有效的强化散热手段。但是这两类冷却方式仍然没有摆脱传统的散热方式的不足之处,冷却极限没有超过1MW/m2
早在上世纪80年代,Inada等人在过冷的池沸腾中发现加热面上小汽泡的湮灭时会产生许多微汽泡,并且发现加热表面不容易烧干。作者称之为微汽泡喷射沸腾,但是并没有提及利用微汽泡喷射沸腾技术进行芯片冷却的方案。
经对现有技术的文献检索发现,Tange等在《Thermal Science andEngineering》(热科学与工程)(2004年第12卷第23-29页)发表的“Microbubble Emission Boiling in a Microchannel and Minichannel”(小通道和微通道中的微汽泡喷射沸腾),该文中发现在小通道中会出现微汽泡喷射沸腾。其不足在于通道过长,在高热流密度下,上游通道内刚刚出现微汽泡喷射沸腾,其下游通道已经烧干,远远没有发挥出微汽泡喷射沸腾技术的优势。
发明内容
本发明针对现有技术的不足和缺陷,提出了一种利用微汽泡喷射沸腾冷却微电子芯片的方法,使其可以对热流密度高达14.41MW/m2的微电子芯片(长为2mm,宽为0.2mm)进行有效冷却,是传统冷却技术极限的十几倍。
本发明是通过以下技术方案实现的,本发明包括如下步骤:
步骤一,通过微加工的方法将微电子芯片固定在硼硅酸玻璃上。
步骤二,通过微加工中的蚀刻工艺,在<100>硅片上蚀刻微通道。
所述微通道的尺寸取决于芯片的尺寸:通道长度、宽度略大于微电子芯片的长度和宽度,通道底部距微电子芯片约为0.15mm。
步骤三,通过微加工中的阳极扩散焊工艺,将蚀刻有微通道的硅片和固定有微电子芯片的硼硅酸玻璃键合在一起,形成一端为入口、另一端为出口的具有良好密封性的微通道。
所述微电子芯片位于微通道内部的中间位置。
步骤四,提供常温下的水,从微通道的入口注入,水和微电子芯片直接接触进行冷却后从通道的出口排出。
水的质量流率和入口温度决定了用微汽泡喷射沸腾技术冷却微电子芯片的临界热流密度。水的质量流率越大、入口温度越低,临界热流密度就越大。
所述水以恒定质量流率和入口温度注入。
所述水的入口温度小于或者等于60℃,水的质量流率大于250kg/m2s。
微汽泡喷射沸腾是一种出现在高热流密度条件下的独特沸腾换热方式。在过冷的液体从核沸腾向膜沸腾发展的过程中,如有适当的过冷度和流速,会有大量的微小汽泡在大汽泡湮灭过程中喷射而出。此时的热流密度将大大超过临界热流密度,可超过10MW/m2,而芯片温度却几乎保持不变;另外,出现微汽泡喷射沸腾时,所需的压降却与单相液体流动时的压降相当。因而,微汽泡喷射沸腾具有强大的换热效果和较小的压降等优越性,完全适用于高热流密度微电子芯片的冷却。
本发明利用过冷沸腾中的微汽泡喷射沸腾技术进行微电子芯片的冷却,微汽泡喷射沸腾技术具有换热效果强(可以对热流密度高达14.41MW/m2的微电子芯片进行冷却)、压降小(接近单相流动压降)和不易出现烧干现象等传统冷却技术所不具备的优越性。因而用微汽泡喷射沸腾技术对高热流密度的微电子芯片进行冷却既能够克服传统散热方式的不足,又能明显地达到强化换热的目的,为下一代微电子芯片的冷却提供了一种行之有效的方法。
附图说明
图1为集成有微加热膜的微通道的结构图。
图2为微汽泡喷射沸腾随时间的照片,其中:图2a-c:三个汽泡聚结合并成一个大汽泡;图2d-f:许多微汽泡在大汽泡的湮灭的时候出现。
图3为不同质量流率下微汽泡喷射沸腾曲线图。
图4为不同入口温度下沸腾曲线图。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本实施例按照以下的步骤进行:
步骤一,通过微加工技术中的溅射工艺和剥离工艺在微通道下壁面1的硼硅酸玻璃上加工微加热膜4作为微电子芯片。微电子芯片以厚度为
Figure S2008100348531D00031
的TiW和
Figure S2008100348531D00032
的Pt复合而成。用厚度为
Figure S2008100348531D00033
的Au做引线5,并和直流电源相连。通过调节直流电源的电压使微电子芯片产生的不同的热流密度。
步骤二,通过微加工的方法在0.25mm厚的硅片减薄至0.1mm。将经过上述处理过的硅片置于900~1100℃的高温环境下进行氧化反应,参与反应的氧气流动速率为4~5L/min,氧化时间为350~450分钟,使硅片上生成一层均匀的厚度为的氧化膜层;然后采用红外对准工艺,将通道图形显影到硅片上,最后在二氧化硅的选择性保护下进行刻蚀,刻蚀速率为
Figure S2008100348531D00035
直至将硅片刻穿。以形成微通道侧壁3。通道截面为等腰梯形,上底宽为0.43mm,下底宽为0.26mm,深为0.10mm,通道长为15mm。待除去硅片表面的杂质后对其进行双面抛光处理,然后用阳极扩散焊工艺将微通道侧壁3与硅片上下面分别于微通道上下壁面1、2键合在一起,从而保证微通道良好的密封性和可视化要求。
步骤三,用去离子水作为工作流体,以恒定质量流率和入口温度,将去离子水从微通道一端注入,流经微加热膜,从微通道另一端流出。逐渐增加直流电源的电压,通过显微镜和高速摄像机观察微电子芯片的流型,直至出现微汽泡喷射沸腾现象。
下面以图1所示的集成有微加热膜的微通道结构,以附图2-4所示的实施为例,来说明用微汽泡喷射沸腾技术冷却高热流密度的微电子芯片。具体实施参数条件和结果描述如下:
如图2所示,设微电子芯片为微加热膜,施加的入口水温为20℃,质量流率为294.6kg/m2s,可以利用微汽泡喷射沸腾技术对热流密度为6.21MW/m2的微电子芯片进行冷却。通过显微镜和高速摄像机的可视化研究,可以观察到微汽泡喷射沸腾现象:在0.0682ms内,三个汽泡聚结合并成一个大汽泡(图2a-c)。由于强烈的冷凝和汽液界面的不稳定性的作用,许多微汽泡在大汽泡的湮灭的时候出现(图2d-f)。
如图3所示,设微电子芯片为微加热膜,施加的入口水温为20℃,质量流率分别为254.6kg/m2s,589.2kg/m2s,和883.8kg/m2s。可以看到:质量流率为254.6kg/m2s时,对热流密度从4.17MW/m2到7.19MW/m2的微电子芯片进行冷却时,芯片温度从141.5℃增至146.7℃;质量流率为589.2kg/m2s时,对热流密度从5.99MW/m2到12.44MW/m2的微电子芯片进行冷却时,芯片温度从144.3℃增至159.1℃;质量流率为883.8kg/m2s时,对热流密度从6.14MW/m2到14.40MW/m2的微电子芯片进行冷却时,芯片温度从145.2℃增至165.9℃。
如图4所示,设微电子芯片为微加热膜,施加的质量流率为589.2kg/m2s,入口水温分别为20℃,60℃和80℃。可以看到:入口水温为20℃时,对热流密度从5.99MW/m2到12.44MW/m2的微电子芯片进行冷却时,芯片温度从144.3℃增至159.1℃;入口水温为60℃时,对热流密度从3.24MW/m2到6.43MW/m2的微电子芯片进行冷却时,芯片温度从147.2℃增至149.5℃;入口水温为80℃时,对热流密度从2.61MW/m2到5.13MW/m2的微电子芯片进行冷却时,芯片温度从146.7℃迅速增至213.3℃。该工况没有出现微汽泡喷射沸腾现象,不能有效的对该热流密度芯片进行有效的冷却。
本实施例利用微汽泡喷射沸腾技术对高热流密度的微电子芯片进行冷却,是传统冷却技术极限的几倍到十几倍。需要指出的是,在以上实施例中,当入口水温为20℃和60℃时出现了微汽泡喷射沸腾现象;当入口水温升为80℃时没有出现微汽泡喷射沸腾现象。因此高入口水温是限制本发明方法使用的重要因素。

Claims (8)

1、一种利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征在于,包括如下步骤:
步骤一,通过微加工的方法将微电子芯片固定在硼硅酸玻璃上;
步骤二,通过微加工中的蚀刻工艺,在<100>硅片上蚀刻微通道;
步骤三,通过微加工中的阳极扩散焊工艺,将蚀刻有微通道的硅片和固定有微电子芯片的硼硅酸玻璃键合在一起,形成一端为入口、另一端为出口的具有良好密封性的微通道;
步骤四,提供常温下的水从微通道的入口注入,水和微电子芯片直接接触进行冷却后从通道的出口排出。
2、根据权利要求1所述的利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征是,所述微通道,其通道长度、宽度大于微电子芯片的长度和宽度。
3、根据权利要求1或2所述的利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征是,所述微通道,其通道底部距微电子芯片0.15mm。
4、根据权利要求1或2所述的利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征是,所述微电子芯片位于微通道内部的中间位置。
5、根据权利要求1所述的利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征是,所述水的质量流率和入口温度决定了用微汽泡喷射沸腾技术冷却微电子芯片的临界热流密度,水的质量流率越大、入口温度越低,临界热流密度就越大。
6、根据权利要求1或5所述的利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征是,所述水以恒定质量流率和入口温度注入。
7、根据权利要求1或5所述的利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征是,所述水的入口温度小于或者等于60℃。
8、根据权利要求1或5所述的利用微汽泡喷射沸腾冷却微电子芯片的方法,其特征是,所述水的质量流率大于250kg/m2s。
CN2008100348531A 2008-03-20 2008-03-20 利用微汽泡喷射沸腾冷却微电子芯片的方法 Expired - Fee Related CN101252089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100348531A CN101252089B (zh) 2008-03-20 2008-03-20 利用微汽泡喷射沸腾冷却微电子芯片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100348531A CN101252089B (zh) 2008-03-20 2008-03-20 利用微汽泡喷射沸腾冷却微电子芯片的方法

Publications (2)

Publication Number Publication Date
CN101252089A true CN101252089A (zh) 2008-08-27
CN101252089B CN101252089B (zh) 2010-10-06

Family

ID=39955405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100348531A Expired - Fee Related CN101252089B (zh) 2008-03-20 2008-03-20 利用微汽泡喷射沸腾冷却微电子芯片的方法

Country Status (1)

Country Link
CN (1) CN101252089B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895879A (zh) * 2017-11-03 2018-04-10 中国电子科技集团公司第十研究所 一种散热组件及散热方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620590B (zh) * 2012-03-30 2014-02-12 中国科学院工程热物理研究所 一种微通道热沉及微通道热沉性能测试装置
CN107148201B (zh) * 2017-07-14 2020-03-31 四川大学 一种利用微细化沸腾高效换热技术的冷却装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928207A (en) * 1989-06-15 1990-05-22 International Business Machines Corporation Circuit module with direct liquid cooling by a coolant flowing between a heat producing component and the face of a piston
CN100495692C (zh) * 2005-11-18 2009-06-03 华南理工大学 带有微沟槽翅结构的毛细泵吸冷却装置及其制造方法
CN100490135C (zh) * 2007-07-05 2009-05-20 上海交通大学 集成脉动芯片热管制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895879A (zh) * 2017-11-03 2018-04-10 中国电子科技集团公司第十研究所 一种散热组件及散热方法

Also Published As

Publication number Publication date
CN101252089B (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
Xie et al. Review of critical-heat-flux enhancement methods
US7692926B2 (en) Integrated thermal systems
KR101675028B1 (ko) 전자 냉각을 위한 cmos 호환 가능 마이크로채널 히트 싱크 및 그의 제조
Koukoravas et al. Spatially-selective cooling by liquid jet impinging orthogonally on a wettability-patterned surface
CN103188912A (zh) 使用液态金属工质的藕状规则多孔金属微通道热沉
CN101252089B (zh) 利用微汽泡喷射沸腾冷却微电子芯片的方法
CN101447467B (zh) 一种种子气泡微换热器及种子气泡微换热器系统
CN1979825A (zh) 用于发光二极管led的微喷射流水冷却系统
CN110572990A (zh) 一种冲击冷却式波纹形表面复合强化散热装置
CN210464154U (zh) 一种基于液态金属混合工质的脉动热管
CN103096689A (zh) 散热装置与散热系统
CN110662403A (zh) 一种阵列扰流柱射流冷却装置
CN108735693A (zh) 高散热性硅/玻璃复合转接板及其制造方法
CN108225079B (zh) 一种顶部联通的非均匀润湿性硅基微通道相变换热器
JPWO2007102498A1 (ja) 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品
CN102169838B (zh) 碳纳米管微通道冷却器系统的制备方法
Yin et al. Spray cooling as a high-efficient thermal management solution: a review
Xiang et al. High-performance thermal management system for high-power LEDs based on double-nozzle spray cooling
CN108321135A (zh) 一种组合式柱状的芯片强化沸腾换热微结构及其制造方法
WO2022121950A1 (zh) 一种低温满液式蒸发器及使用方法
TWI232013B (en) Device and method for cooling hot spot in micro system
Chen et al. Enhanced boiling heat transfer performance on mini-pin-finned copper surfaces in FC-72
CN201490185U (zh) 一种芯片冷却装置
CN206274227U (zh) 一种具有多流路互联结构的微通道换热器
CN209785920U (zh) 散热板及散热板铸型

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101006

Termination date: 20130320