CN101251627A - Photonic crystal waveguide polarizing beam splitter - Google Patents

Photonic crystal waveguide polarizing beam splitter Download PDF

Info

Publication number
CN101251627A
CN101251627A CNA2008100353239A CN200810035323A CN101251627A CN 101251627 A CN101251627 A CN 101251627A CN A2008100353239 A CNA2008100353239 A CN A2008100353239A CN 200810035323 A CN200810035323 A CN 200810035323A CN 101251627 A CN101251627 A CN 101251627A
Authority
CN
China
Prior art keywords
light
waveguide
photonic crystal
beam splitter
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100353239A
Other languages
Chinese (zh)
Inventor
陆卫
王健
陈效双
李宁
李志锋
张波
陈平平
李天信
甄红楼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CNA2008100353239A priority Critical patent/CN101251627A/en
Publication of CN101251627A publication Critical patent/CN101251627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种光子晶体波导偏振分束器。它是在二维碲介电柱光子晶体中引入线缺陷形成耦合波导的结构,利用TE光和TM光的波导耦合长度不同实现TE光和TM光的分光。采用二维光子晶体波导实现偏振分束器的特点是:首先,与现有各类偏振分束器件相比,它可以实现高偏振度、高消光比的偏振分光。其次,器件的尺寸可以做得很小,并与现有的光子晶体器件在结构上兼容,满足集成化的要求。第三,结构非常灵活,可以通过调节耦合区长度或晶格常数,实现波长在3.5到35μm范围内的任意一波长的偏振分光。本发明还介绍了该偏振分束器的设计思路、具体的结构设计以及在此设计思想下所获得的偏振分束器的光学性能等。

Figure 200810035323

The invention discloses a photonic crystal waveguide polarization beam splitter. It is a structure in which line defects are introduced into a two-dimensional tellurium dielectric column photonic crystal to form a coupling waveguide, and the splitting of TE light and TM light is realized by using the different waveguide coupling lengths of TE light and TM light. The characteristics of using a two-dimensional photonic crystal waveguide to realize a polarization beam splitter are as follows: First, compared with various existing polarization beam splitting devices, it can realize polarization splitting with high polarization degree and high extinction ratio. Secondly, the size of the device can be made very small, and it is structurally compatible with existing photonic crystal devices, meeting the requirements of integration. Third, the structure is very flexible, and the polarization splitting of any wavelength within the range of 3.5 to 35 μm can be realized by adjusting the length of the coupling region or the lattice constant. The invention also introduces the design idea of the polarization beam splitter, the specific structural design and the optical performance of the polarization beam splitter obtained under the design idea.

Figure 200810035323

Description

光子晶体波导偏振分束器 Photonic crystal waveguide polarizing beam splitter

技术领域 technical field

本发明涉及光学元件,具体是指一种基于光子晶体结构所形成的波导内应用的偏振分束器。The invention relates to an optical element, in particular to a polarization beam splitter applied in a waveguide based on a photonic crystal structure.

背景技术 Background technique

光子晶体是通过各种方法人工地引入周期性介电常数调制,其中介电常数的周期可与光波长相比的一种微型结构。介电函数的周期性变化能够调制材料中光子的状态模式,使光子带隙出现,当光的频率位于光子带隙范围内,它将不能在光子晶体中的任何方向传播。光子晶体具有重要的应用前景。由于其特性,可以制作全新原理或以前所不能制作的高性能器件。目前,在理论上和实验上所实现的光子晶体偏振分束器主要是利用光子禁带的偏振依赖性的原理,其中反射光和折射光利用的最多。这些偏振分束器不仅在结构上不能与现有的采用波导耦合方法实现的器件相兼容,而且由于采用了反射光和折射光,其光路比较难于控制。A photonic crystal is a microstructure in which periodic dielectric constant modulation is artificially introduced by various methods, and the period of the dielectric constant can be compared with the wavelength of light. The periodic change of the dielectric function can modulate the state mode of photons in the material, so that the photonic band gap appears. When the frequency of light is within the range of the photonic band gap, it will not be able to propagate in any direction in the photonic crystal. Photonic crystals have important application prospects. Due to its characteristics, it is possible to fabricate new principles or high-performance devices that could not be fabricated before. At present, the theoretically and experimentally realized photonic crystal polarization beam splitter mainly utilizes the principle of polarization dependence of the photonic band gap, among which reflected light and refracted light are most utilized. These polarizing beam splitters are not only structurally incompatible with existing devices implemented by waveguide coupling, but also difficult to control the optical path due to the use of reflected light and refracted light.

发明内容 Contents of the invention

本发明的目的是提供一种光子晶体波导偏振分束器,解决现有偏振分束器在结构上不能与现有的采用波导耦合方法实现的器件兼容的问题。The object of the present invention is to provide a photonic crystal waveguide polarization beam splitter, which solves the problem that the structure of the existing polarization beam splitter cannot be compatible with the existing devices realized by the waveguide coupling method.

本发明的光子晶体波导偏振分束器是根据光波导定向耦合器的原理实现TE光和TM光的分光。当两个结构完全相同波导靠得非常近时,由于波导之间的耦合作用,当光由一个波导入射时,光会在两个波导之间呈现空间周期地耦合向前传播的现象。如果TE光和TM光有着不同的耦合长度,就可以利用它们的耦合长度不同把它们分别耦合到不同的波导中去,从而实现TE光和TM光的分光。如,假设TE光的耦合长度为LE,TM光的耦合长度为LM。如果我们选择两个波导之间耦合区域的长度为L=偶数×LE,L=奇数×LM,那么TE光经过偶数次耦合后又回到原来的波导中传播,而TM光经过奇数次耦合后到另外一个波导中传播,从而实现TE光和TM光的分光。由于光子晶体波导与传统波导相比有着很多优势:例如弯曲损耗很低、有利于与其他光子晶体元件集成等,本发明采用光子晶体波导实现偏振分束器。The photonic crystal waveguide polarization beam splitter of the present invention realizes the splitting of TE light and TM light according to the principle of an optical waveguide directional coupler. When two waveguides with exactly the same structure are very close together, due to the coupling effect between the waveguides, when light is incident by one waveguide, the light will show a phenomenon of space-period coupling and forward propagation between the two waveguides. If TE light and TM light have different coupling lengths, they can be coupled into different waveguides by using their different coupling lengths, so as to realize the splitting of TE light and TM light. For example, suppose the coupling length of TE light is LE, and the coupling length of TM light is LM. If we choose the length of the coupling region between the two waveguides as L=even number×LE, L=odd number×LM, then TE light will return to the original waveguide after even number of couplings, and TM light will go through odd number of couplings. Propagate into another waveguide, so as to realize the splitting of TE light and TM light. Since the photonic crystal waveguide has many advantages compared with the traditional waveguide: for example, the bending loss is very low, and it is beneficial to integrate with other photonic crystal components, etc., the present invention adopts the photonic crystal waveguide to realize the polarization beam splitter.

基于上述设计思路,本发明的技术解决方案是:在二维介电柱型正方格子的光子晶体中引入波导耦合结构实现TE光和TM光的分光。我们采用与其他光子晶体器件(如,波分复用器、定向耦合器)完全兼容的结构,以便能够与这些器件形成集成光路,如附图1所示。入射光由波导4的端口1入射,在耦合区,TE光经过两次耦合后最终回波导4,由端口2引出;TM经过一次耦合到波导5,由端口3引出。光子晶体的介电柱材料为碲单晶,此材料的特点为各向异性材料,在波长为3.5μm到35μm的范围内,其寻常光的折射率no=4.8,反常光的折射率ne=6.2。Based on the above design idea, the technical solution of the present invention is: introducing a waveguide coupling structure into the photonic crystal of the two-dimensional dielectric columnar square lattice to realize the splitting of TE light and TM light. We adopt a structure that is fully compatible with other photonic crystal devices (eg, wavelength division multiplexers, directional couplers), so as to form an integrated optical circuit with these devices, as shown in Figure 1. The incident light is incident on the port 1 of the waveguide 4. In the coupling area, the TE light returns to the waveguide 4 after two couplings, and is extracted from the port 2; the TM is coupled to the waveguide 5 once, and is extracted from the port 3. The dielectric column material of the photonic crystal is tellurium single crystal. This material is characterized as an anisotropic material. In the wavelength range of 3.5 μm to 35 μm, the refractive index of ordinary light is n o = 4.8, and the refractive index of abnormal light is n e = 6.2.

在设计器件时,使得反常光轴的方向平行于介电圆柱的方向,器件结构按如下方法确定:When designing the device, the direction of the abnormal optical axis is parallel to the direction of the dielectric cylinder, and the device structure is determined as follows:

晶格常数为a和耦合区域长度为L2,可以根据分光波长λ的需要进行调节,其量级为微米,其中:The lattice constant is a and the length of the coupling region is L 2 , which can be adjusted according to the needs of the splitting wavelength λ, and its magnitude is microns, where:

a=0.3894×λ                    (1)a=0.3894×λ (1)

L2=偶数×LE=奇数×LM           (2)L 2 = even number x LE = odd number x LM (2)

式中:LE,LM可以通过如附图2所示平面波展开方法得到。In the formula: LE, LM can be obtained by the plane wave expansion method shown in Figure 2.

波导的宽度(波导上下两行介电圆柱之间的距离):The width of the waveguide (the distance between the two rows of dielectric cylinders above and below the waveguide):

W=2×a                          (3)W=2×a (3)

入射端口1到耦合区边缘的长度:The length from the entrance port 1 to the edge of the coupling region:

L1≥3a                (4)L 1 ≥ 3a (4)

介电圆柱的直径:Diameter of the dielectric cylinder:

D=0.4×a             (5)D=0.4×a (5)

由耦合区向非耦合区过渡的长度:Length of transition from coupled region to uncoupled region:

L3=4×a              (6)L 3 =4×a (6)

如附图1中在直角弯处波导凸直角6处删除一个介电柱,波导凹直角7处补一个介电柱。As shown in Figure 1, a dielectric column is deleted at the waveguide convex right angle 6 at the right-angle bend, and a dielectric column is added at the waveguide concave right angle 7.

非耦合区边缘到出射端口的长度:The length from the edge of the uncoupling region to the exit port:

L4≥3a                (7)L 4 ≥ 3a (7)

波导4到上边界的距离:Distance from waveguide 4 to upper boundary:

L7≥3a                (8)L 7 ≥ 3a (8)

波导4到5的距离:Distance from waveguide 4 to 5:

L6≥3a                (9) L6≥3a (9)

波导5到下边界的距离:Distance from waveguide 5 to lower boundary:

L5≥3a                (10)L 5 ≥ 3a (10)

本发明所实现的偏振分束器的优点集中表现在它可以在光子晶体波导中直接被集成进去,这是目前所有偏振分束器所难以实现的,也是在集成光学中采用光子晶体不断把光集成系统微型化中不可缺少的基本器件。The advantages of the polarization beam splitter realized by the present invention are concentrated in that it can be directly integrated in the photonic crystal waveguide, which is difficult for all current polarization beam splitters. An indispensable basic device in the miniaturization of integrated systems.

附图说明 Description of drawings

图1为本发明的器件结构示意图;Fig. 1 is a device structure schematic diagram of the present invention;

图中:1——光入射端口;In the figure: 1——light incident port;

      2——TE光出射端口;2——TE light output port;

3——TM光出射端口;3——TM light output port;

4——入射波导;4 - incident waveguide;

5——耦合波导;5—coupling waveguide;

6——波导拐角的凸直角;6—convex right angle of waveguide corner;

7——波导拐角凹直角。7—The waveguide corner is concave and right-angled.

图2为本发明器件的TE光和TM光的耦合长度。Fig. 2 is the coupling length of TE light and TM light of the device of the present invention.

图3为本发明的TE光的FDTD模拟结果(归一化的频率为0.3893(a/λ))。Fig. 3 is the FDTD simulation result of the TE light of the present invention (the normalized frequency is 0.3893 (a/λ)).

图4为本发明的TM光的FDTD模拟结果(归一化的频率为0.3893(a/λ))。Fig. 4 is the FDTD simulation result of the TM light of the present invention (the normalized frequency is 0.3893 (a/λ)).

图5为本发明器件的TE光透射谱。Fig. 5 is the TE light transmission spectrum of the device of the present invention.

图6为本发明器件的TM光透射谱。Fig. 6 is the TM light transmission spectrum of the device of the present invention.

图7为本发明器件的消光比曲线图。Fig. 7 is a graph of the extinction ratio of the device of the present invention.

具体实施方式 Detailed ways

根据本发明的技术解决方案,我们以工作波长为λ=5.13μm的偏振分束器为例,结合附图1来说明器件的实施方法。According to the technical solution of the present invention, we take a polarization beam splitter with an operating wavelength of λ=5.13 μm as an example, and illustrate the implementation method of the device with reference to FIG. 1 .

器件主要的结构参数设计如下:The main structural parameters of the device are designed as follows:

器件的晶格常数(两圆柱型介电柱之间的距离):a=0.3894×λ=2um。Lattice constant of the device (distance between two cylindrical dielectric pillars): a=0.3894×λ=2um.

介电圆柱的直径:D=0.4×a=0.8um。Diameter of the dielectric cylinder: D=0.4×a=0.8um.

波导的宽度(波导上下两行介电圆柱之间的距离):W=2×a=4um。The width of the waveguide (the distance between the two rows of dielectric cylinders above and below the waveguide): W=2×a=4um.

入射端口1到耦合区边缘的长度:L1≥3a实施例中取L1=4×a=8um。The length from the incident port 1 to the edge of the coupling region: L 1 ≥ 3a In the embodiment, L 1 =4×a=8um.

耦合区长度:L2=23×a=46um。The length of the coupling region: L 2 =23×a=46um.

由耦合区向非耦合区过渡的长度:L3=4×a=8um。(注,在直角弯处波导凸直角6处删除一个介电柱,波导凹直角7处补了一个介电柱,)。The transition length from the coupling region to the non-coupling region: L 3 =4×a=8um. (Note, a dielectric column is deleted at the convex right angle 6 of the waveguide at the right-angle bend, and a dielectric column is added at the concave right angle 7 of the waveguide).

非耦合区到出射端口的长度:L4≥3a,实施例中取L4=7×a=14um。The length from the non-coupling region to the exit port: L 4 ≥ 3a, in the embodiment, L 4 =7×a=14um.

波导4到上边界的距离:L7≥3a,实施例中取L7=3×a=6um。The distance from the waveguide 4 to the upper boundary: L 7 ≥ 3a, in the embodiment, L 7 =3×a=6um.

波导4到5的距离:L6≥3a,实施例中取L6=4×a=8um。The distance between waveguides 4 and 5: L 6 ≥ 3a, in the embodiment, L 6 =4×a=8um.

波导5到下边界的距离:L5≥3a,实施例中取L5=3×a=6um。The distance from the waveguide 5 to the lower boundary: L 5 ≥ 3a, in the embodiment, L 5 =3×a=6um.

系统性能如下:The system performance is as follows:

器件的透射谱:TE光和TM光分别对应的的透射率如附图5、6所示,从图中可以看出,在λ=5.13μm光波长附近,端口2对TE光的透过率达到84%,端口3对于TM光的透过率更高达98%。即:84%左右的TE光从端口2出射,98%的TM光从端口3出射。附图3、4是光波长在λ=5.13um时,分别对TE光和TM光模拟的结果,从图中可以看出在这个频率上实现了很好的分光。器件的消光比:在TE光的出射端口2,其消光比定义为:The transmission spectrum of the device: the transmittances corresponding to TE light and TM light are shown in Figures 5 and 6. It can be seen from the figure that the transmittance of port 2 to TE light is near the wavelength of λ=5.13μm The transmittance of port 3 for TM light is as high as 98%. That is: about 84% of TE light exits from port 2, and 98% of TM light exits from port 3. Figures 3 and 4 are the simulation results of TE light and TM light respectively when the light wavelength is λ=5.13um. It can be seen from the figures that good light splitting is achieved at this frequency. Extinction ratio of the device: at the exit port 2 of TE light, the extinction ratio is defined as:

RatioRatio == 1010 ×× loglog 1010 (( PP TETE pp TMtm ))

其中,PTE是TE光在端口2的出射光强;pTM是TM光在端口2的出射光强;Ratio的单位是分贝。同样在TM光的出射端口3,其消光比定义为:Wherein, P TE is the outgoing light intensity of TE light at port 2; p TM is the outgoing light intensity of TM light at port 2; the unit of Ratio is decibel. Also at the exit port 3 of TM light, the extinction ratio is defined as:

RatioRatio == 1010 ×× loglog 1010 (( PP TMtm pp TETE ))

其中,pTM是TM光在端口3的透射光强;PTE是TE光在端口3的透射光强;Ratio的单位是分贝。器件的消光比是对出射光偏振度进行衡量的一个重要参数,其物理含义是在光的出射端口一种偏振光的强度是另一种偏振光的强度的多少倍。我们所得到器件的消光比谱线图如附图7所示。从图中可以看出在光波长为λ=5.13μm附近,TE光出射端口2和TM光出射端口3的消光比分别达到了19dB和20dB。这一结果表明从端口2出射的TE光和从端口3出射的TM光有着很高的偏振度。Among them, p TM is the transmitted light intensity of TM light at port 3; P TE is the transmitted light intensity of TE light at port 3; the unit of Ratio is decibel. The extinction ratio of the device is an important parameter to measure the degree of polarization of the outgoing light. Its physical meaning is how many times the intensity of one polarized light is the intensity of the other polarized light at the light exit port. The extinction ratio spectrum line diagram of the device we obtained is shown in Figure 7. It can be seen from the figure that the extinction ratios of the TE light exit port 2 and the TM light exit port 3 reach 19 dB and 20 dB respectively when the light wavelength is around λ=5.13 μm. This result indicates that the TE light emitted from port 2 and the TM light emitted from port 3 have a high degree of polarization.

我们可以通过调节器件的晶格常数a的取值来获得工作于其他波长的器件。例如,我们需要获得工作于波长为8μm的器件,我们可以通过换算公式a=0.3894×λ得到工艺中需要的晶格常数a=3.12μm。按照此参数去制备器件,即可得到工作中心波长为8μm的偏振分束器。We can obtain devices working at other wavelengths by adjusting the value of the lattice constant a of the device. For example, we need to obtain a device working at a wavelength of 8 μm, we can use the conversion formula a=0.3894×λ to obtain the lattice constant a=3.12 μm required in the process. According to this parameter to prepare the device, a polarization beam splitter with a working center wavelength of 8 μm can be obtained.

Claims (2)

1. 一种光子晶体波导偏振分束器,其特征在于:它是在二维碲介电柱光子晶体中引入线缺陷形成耦合波导的结构,利用TE光和TM光的波导耦合长度不同实现TE光和TM光的分光,分束器件结构参数按如下方法确定:1. A photonic crystal waveguide polarization beam splitter, characterized in that: it is a structure in which line defects are introduced into a two-dimensional tellurium dielectric column photonic crystal to form a coupling waveguide, and the waveguide coupling length of TE light and TM light is different to realize TE For the splitting of light and TM light, the structural parameters of the beam splitting device are determined as follows: 晶格常数a和耦合区域长度L2Lattice constant a and coupling region length L 2 : a=0.3894×λ                    (1)a=0.3894×λ (1) L2=偶数×LE=奇数×LM           (2)L 2 = even number x LE = odd number x LM (2) 式中:LE,LM分别为TE光和TM光的耦合长度,可以通过平面波展开方法得到;In the formula: LE and LM are the coupling lengths of TE light and TM light respectively, which can be obtained by the plane wave expansion method; 波导的宽度W:The width W of the waveguide: W=2×a                           (3)W=2×a (3) 入射端口1到耦合区边缘的长度L1The length L 1 from the entrance port 1 to the edge of the coupling region: L1≥3a                            (4)L 1 ≥ 3a (4) 介电圆柱的直径D:Diameter D of the dielectric cylinder: D=0.4×a                         (5)D=0.4×a (5) 由耦合区向非耦合区过渡的长度L3The length L 3 of the transition from the coupling region to the uncoupling region: L3=4×a                          (6)L 3 =4×a (6) 并且在直角弯处波导凸直角(6)处删除一个介电柱,波导凹直角(7)处补一个介电柱;And delete a dielectric column at the convex right angle (6) of the waveguide at the right angle bend, and add a dielectric column at the concave right angle (7) of the waveguide; 非耦合区边缘到出射端口的长度L4The length L 4 from the edge of the uncoupling region to the exit port: L4≥3a                            (7)L 4 ≥ 3a (7) 波导4到上边界的距离L7The distance L 7 from the waveguide 4 to the upper boundary: L7≥3a                            (8)L 7 ≥ 3a (8) 波导4到5的距离L6Distance L6 of waveguides 4 to 5: L6≥3a                 (9) L6≥3a (9) 波导5到下边界的距离L5The distance L 5 from the waveguide 5 to the lower boundary: L5≥3a                 (10)L 5 ≥ 3a (10) 2. 根据权利要求1所述的一种光子晶体波导偏振分束器,其特征在于:所说的偏振分束器采用碲单晶材料制成。2. A photonic crystal waveguide polarization beam splitter according to claim 1, characterized in that: said polarization beam splitter is made of tellurium single crystal material.
CNA2008100353239A 2008-03-28 2008-03-28 Photonic crystal waveguide polarizing beam splitter Pending CN101251627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100353239A CN101251627A (en) 2008-03-28 2008-03-28 Photonic crystal waveguide polarizing beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100353239A CN101251627A (en) 2008-03-28 2008-03-28 Photonic crystal waveguide polarizing beam splitter

Publications (1)

Publication Number Publication Date
CN101251627A true CN101251627A (en) 2008-08-27

Family

ID=39955109

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100353239A Pending CN101251627A (en) 2008-03-28 2008-03-28 Photonic crystal waveguide polarizing beam splitter

Country Status (1)

Country Link
CN (1) CN101251627A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122026A (en) * 2011-03-15 2011-07-13 中国科学院半导体研究所 Photonic crystal surface state-based two-dimensional photonic crystal beam splitter
CN102156327A (en) * 2011-04-11 2011-08-17 中国计量学院 Terahertz wave polarizing beam splitter with dual resonance cavity structure
CN102200613A (en) * 2011-05-24 2011-09-28 北京邮电大学 A Realization Method of Polarizing Beam Splitter and Slow Optical Device Integration Using Bending Waveguide
CN102650715A (en) * 2012-01-13 2012-08-29 深圳大学 Photonic crystal waveguide TE-polarization separator
CN102650714A (en) * 2012-01-13 2012-08-29 深圳大学 T-shaped polarization beam splitter with photonic crystal waveguide
CN102902015A (en) * 2012-10-09 2013-01-30 中国计量学院 Pore-shaped flat plate TeraHertz wave polarization beam splitter with quadrilateral structure
CN102902017A (en) * 2012-10-09 2013-01-30 中国计量学院 Terahertz wave polarization beam splitter with double regular hexagon structures
CN102928927A (en) * 2012-10-12 2013-02-13 中国计量学院 Terahertz wave polarization beam splitter with polygonal liquid crystal pool structure
CN102928917A (en) * 2012-11-12 2013-02-13 中国计量学院 Double-fan-shaped terahertz wave polarization beam splitter
CN102928918A (en) * 2012-11-12 2013-02-13 中国计量学院 Trapezoid terahertz wave polarization beam splitter
CN102937730A (en) * 2012-11-12 2013-02-20 中国计量学院 Terahertz wave polarization beam splitter of L-shaped slot structure
CN103018826A (en) * 2012-12-20 2013-04-03 中国电子科技集团公司第三十八研究所 Directional coupler for photonic crystals
CN104407416A (en) * 2014-11-27 2015-03-11 中国计量学院 M-shaped one-dimensional photonic crystal terahertz wave polarization beam splitter
CN105137539A (en) * 2015-09-18 2015-12-09 浙江工业大学 Ultra-wideband photodiode based on photonic crystal
CN114545553A (en) * 2022-03-10 2022-05-27 浙江大学 An Optical Topological Duplexer Based on Coupling Topological Waveguide

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122026A (en) * 2011-03-15 2011-07-13 中国科学院半导体研究所 Photonic crystal surface state-based two-dimensional photonic crystal beam splitter
CN102156327A (en) * 2011-04-11 2011-08-17 中国计量学院 Terahertz wave polarizing beam splitter with dual resonance cavity structure
CN102200613A (en) * 2011-05-24 2011-09-28 北京邮电大学 A Realization Method of Polarizing Beam Splitter and Slow Optical Device Integration Using Bending Waveguide
CN102200613B (en) * 2011-05-24 2014-11-19 北京邮电大学 A Realization Method of Polarizing Beam Splitter and Slow Optical Device Integration Using Bending Waveguide
WO2013104306A1 (en) * 2012-01-13 2013-07-18 深圳大学 Photonic crystal waveguide t-polarization beam splitter
CN102650714A (en) * 2012-01-13 2012-08-29 深圳大学 T-shaped polarization beam splitter with photonic crystal waveguide
US9207400B2 (en) 2012-01-13 2015-12-08 Shenzhen University T-shape polarization beam splitter based on photonic crystal waveguide
CN102650715B (en) * 2012-01-13 2015-04-08 深圳大学 Photonic crystal waveguide TE-polarization separator
CN102650714B (en) * 2012-01-13 2015-04-08 深圳大学 T-shaped polarization beam splitter with photonic crystal waveguide
CN102650715A (en) * 2012-01-13 2012-08-29 深圳大学 Photonic crystal waveguide TE-polarization separator
CN102902015B (en) * 2012-10-09 2014-01-08 中国计量学院 Polarizing beam splitter for terahertz waves with a hole-like flat plate with quadrilateral structure
CN102902017A (en) * 2012-10-09 2013-01-30 中国计量学院 Terahertz wave polarization beam splitter with double regular hexagon structures
CN102902015A (en) * 2012-10-09 2013-01-30 中国计量学院 Pore-shaped flat plate TeraHertz wave polarization beam splitter with quadrilateral structure
CN102902017B (en) * 2012-10-09 2014-04-16 中国计量学院 Terahertz wave polarization beam splitter with double regular hexagon structures
CN102928927A (en) * 2012-10-12 2013-02-13 中国计量学院 Terahertz wave polarization beam splitter with polygonal liquid crystal pool structure
CN102937730A (en) * 2012-11-12 2013-02-20 中国计量学院 Terahertz wave polarization beam splitter of L-shaped slot structure
CN102928917B (en) * 2012-11-12 2013-10-23 中国计量学院 Double-fan annular terahertz wave polarizing beam splitter
CN102928918B (en) * 2012-11-12 2013-10-23 中国计量学院 Ladder-shaped terahertz wave polarizing beam splitter
CN102928918A (en) * 2012-11-12 2013-02-13 中国计量学院 Trapezoid terahertz wave polarization beam splitter
CN102928917A (en) * 2012-11-12 2013-02-13 中国计量学院 Double-fan-shaped terahertz wave polarization beam splitter
CN103018826B (en) * 2012-12-20 2014-08-20 中国电子科技集团公司第三十八研究所 Directional coupler for photonic crystals
CN103018826A (en) * 2012-12-20 2013-04-03 中国电子科技集团公司第三十八研究所 Directional coupler for photonic crystals
CN104407416A (en) * 2014-11-27 2015-03-11 中国计量学院 M-shaped one-dimensional photonic crystal terahertz wave polarization beam splitter
CN104407416B (en) * 2014-11-27 2017-06-06 中国计量学院 M shape 1-D photon crystal terahertz polarization beam splitters
CN105137539A (en) * 2015-09-18 2015-12-09 浙江工业大学 Ultra-wideband photodiode based on photonic crystal
CN114545553A (en) * 2022-03-10 2022-05-27 浙江大学 An Optical Topological Duplexer Based on Coupling Topological Waveguide
CN114545553B (en) * 2022-03-10 2022-12-16 浙江大学 Optical topology duplexer based on coupling topology waveguide

Similar Documents

Publication Publication Date Title
CN101251627A (en) Photonic crystal waveguide polarizing beam splitter
CN100538413C (en) Polarization beam apparatus based on photonic crystal and multi-mode interference coupler mixed type
CN109270627B (en) Polarization insensitive directional coupler based on multimode sub-wavelength grating
CN105572796B (en) A kind of path filter up and down based on antisymmetry multimode Bragg waveguide grating
JP2009528575A (en) Multi-core photonic bandgap fiber with inter-core coupling
CN106959163B (en) A kind of TE mould analyzers based on symmetrical three guide directional couplers structure
CN201069474Y (en) A mixed polarization bundler based on photon crystal/multi-mode interference coupler
CN101339273A (en) A Fiber Mode Converter
CN101126828A (en) Two-Dimensional Complete Bandgap Photonic Crystal Polarizing and Depolarizing Beamsplitters
CN107450126A (en) A kind of polarization beam apparatus and its design method
CN103645541B (en) A kind of terahertz polarization beam splitter
CN102650715A (en) Photonic crystal waveguide TE-polarization separator
CN103901537B (en) Cross polarized infrared light bridge based on photon crystal wave-guide
CN102289032A (en) Terahertz photonic crystal fiber coupler
CN101004466A (en) Rectangular, micro annular resonant cavity type light filter
Sinha et al. Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer
CN102650713A (en) Photonic crystal waveguide TM-polarization separator
CN200997432Y (en) Linear closed loop resonant cavity structure
CN104102016B (en) Photonic crystal based polarizing beam splitter design method
CN207408621U (en) A kind of polarization beam apparatus
Kalra et al. Design of ultra compact polarization splitter based on the complete photonic band gap
CN112612080B (en) Miniaturized broadband polarization beam splitter based on LNOI material preparation
CN116560001A (en) Polarization beam splitting-combining device based on cascade adiabatic coupler
CN204882937U (en) Light isolating device based on polyatomic photonic crystal
CN106094119A (en) Three pattern mode division multiplexing and demultiplexers based on photonic crystal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080827