CN101251583A - 局部化且高度约束的图像重构方法 - Google Patents

局部化且高度约束的图像重构方法 Download PDF

Info

Publication number
CN101251583A
CN101251583A CNA2007101938368A CN200710193836A CN101251583A CN 101251583 A CN101251583 A CN 101251583A CN A2007101938368 A CNA2007101938368 A CN A2007101938368A CN 200710193836 A CN200710193836 A CN 200710193836A CN 101251583 A CN101251583 A CN 101251583A
Authority
CN
China
Prior art keywords
image
composograph
projection
view
picture frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101938368A
Other languages
English (en)
Other versions
CN101251583B (zh
Inventor
C·A·米斯特拉
J·维利吉纳
K·M·约翰逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisconsin Alumni Research Foundation
Original Assignee
Wisconsin Alumni Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisconsin Alumni Research Foundation filed Critical Wisconsin Alumni Research Foundation
Publication of CN101251583A publication Critical patent/CN101251583A/zh
Application granted granted Critical
Publication of CN101251583B publication Critical patent/CN101251583B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种图像重构方法包括使用常规的重构方法来重构受试者的合成图像。该合成图像采用关于扫描受试者可获得的最佳信息,并且该信息被用于约束高度欠采样的图像帧的重构过程,或者被用于改善图像帧的SNR。根据图像帧数据来产生变模糊且归一化的加权图像,并且该归一化加权图像与合成图像相乘。

Description

局部化且高度约束的图像重构方法
相关专利申请
本项申请基于2007年2月19日提交的、题为“局部化且高度约束的图像重构方法”的美国临时专利申请序列号No.60/901,728高度约束。
有关联邦政府资助研究的声明
本发明得到了国家健康研究院基金项目HL72260的政府资助。美国政府享有本项发明的某些权益。
技术领域
本发明领域是医学图像,尤其是适用于从采集的图像数据中重构图像的方法。
背景技术
核磁共振成像(MRI)使用核磁共振(NMR)现象来产生图像。当诸如人体组织之类的物质承受均匀磁场(极化场B0)时,在人体组织中的各个自旋磁矩试图对准该极化磁场,但是在其特征拉莫尔频率上按任意次序绕其进动。如果物质或者组织承受着磁场(激励场B1)且该磁场处于x-y平面并接近于拉莫尔频率,则静对准的磁矩Mz会发生旋转,或者被“俘获”到x-y平面,以产生静横向磁矩Mt。受激励的自旋发出一信号,并且在激励信号B1终止之后,可以接收和处理该信号,从而形成图像。
当采用这些信号来产生图像时,可以使用磁场梯度(Gx、Gy和Gz)。一般来说,要成像的区域可以测量周期的顺序来进行扫描,在这些测量周期中,可以根据所使用的指定限制方法来改变这些梯度。在本领域中,将每次测量结果称为“视图”并且由视图的个数来决定图像的质量。所产生的一组接收到的NMR信号、或视图、或K空间样本都被数字化且进行处理,以便于使用许多众所周知的重构技术中的一种技术来重构图像。总的扫描时间部分程度取决于各个测量周期或“脉冲序列”的长度,还部分程度取决于测量周期的个数或针对一图像所获得的视图的个数。有许多临床应用,在这些应用中,用于规定分辨率和SNR的图像的总的扫描时间是关键,并且其结果是,对于这一目的的许多改进还都在头脑中。
自从采用核磁共振成像诊断以来,投影重构方法一直是众所周知的方法,并且该方法再次被使用,正如美国专利No.6,487,435中所披露的那样。不同于在直线或笛卡尔扫描图案中对K空间进行采样(如在傅立叶成像中所实现的那样,并且如图2A所示),是以投影重构方法采样具有一系列视图的K空间,它采样是从K空间中心向外延伸的径向线段,正如图2B所示。采样K空间所需要的视图数量确定了扫描的长度,并且如果采集到足够数量的视图的话,就会在重构图像中产生条纹伪像。美国专利No.6,487,435所披露的技术通过采集具有交错视图的连续欠采样图像并共享在连续图像帧之间的外围K空间数据来减小这种条纹。
在计算X线断层摄影术(“CT”)系统中,X射线源投影出扇形波束,它在直角坐标系中x-y平面中成一条直线,术语将该平面称之为“成像平面”。X射线波束通过要成像的受试者,例如,生病的病人,并且在阵列辐射检测器上成像。传输辐射的目的取决于在受试者对X射线的衰减,并且各个检测器产生分离的电子信号,这就是波束衰减的测量。从所有检测器上获得的衰减测量被分别采集,用于产生称之为“传输剖面”的图像。
在常规CT系统的源和检测器都是在成像平面内的一个钢架上围绕着病人旋转的,使得X射线与受试者相交的角度恒定变化。以给定角度来自检测器阵列的传输剖面被认为是受试者的“视图”和“扫描”,它包括在一个X射线源和检测器的旋转过程中以不同的角度方位所产生的一系列视图。在2D扫描中,对数据进行处理,以便于重构对应于通过受试者所产生的两维片段的图像。
就MRI而言,有大量的适用于X射线CT的临床应用,但其中扫描时间较长。例如,在节省时间的血管造影术中,当造影剂在感兴趣的区域中流动时,采集一系列图像帧。尽可能快地采集各个图像,从而获得表示造影剂流入的快照。这一临床应用的特殊挑战是在对冠状动脉或者血管进行成像时需要心脏关闭来抑制运动伪像。
有两种方法可用于从采集到的一系列投影视图中重构图像,例如,在美国专利No.6,710,686中所讨论的那样。在MRI中,最常用的方法是将来自径向采样轨迹位置上的K空间采样重新映射到笛卡尔栅格中。随后,通过进行重新映射的K空间采样的2D或3D傅立叶变换来重构图像。第二种用于重构MRI图像的方法是通过第一次傅立叶变换各个投影视图将径向K空间投影视图变换到Radon空间。通过滤波以及将它们反向投影到视场(FOV)的这些信号投影中重构图像。正如本领域所众所周知的那样,如果所采集信号投影在数量上不足以满足尼奎斯特采样定律,则在重构图像中就会产生条纹伪像。
适用于从2DX射线CT数据来重构图像的流行方法在本领域中被称之为滤波反向投影技术。这种反向投影处理基本上相同于在上述MR图像重构中的处理,并且它将在扫描中所采集到的衰减信号测量转换成称之为“CT数字”或者“Hounsfield单元”的整数,这可以用于控制在显示上的对应像素的亮度。
在MRI和X射线CT中所使用的标准反向投影方法如图3所示。各个采集到的信号投影剖面10通过沿着箭头16所示的投影路径将在剖面10中的各个信号采样14投影通过FOV 12来反向投影到视图12的范围内。在将各个信号采样14反向投影到FOV 12的过程中,没有任何原有的知识可以适用于成像,并且假定在FOV 12中的信号都是相似的且信号采样14应该在通过投影的各个像素中是均匀分布的。例如,投影路径8如图3所示,对于在一个信号投影剖面10中的单个信号采样14而言,它穿过在FOV 12中的N个像素来通过上述投影路径。这一信号采样14的信号数值(P)可以等分在这些N像素中:
Sn=(P×1)/N                                            (1)
式中:Sn是分布在具有N像素的投影路径中的第n个像素中的信号数值。
很显然,在FOV 12中的反向投影信号都是相似的假定是不正确的。然而,众所周知,如果对各个信号剖面10都进行一定的校正并且以对应数量的投影角度来采集足够数量的剖面,则由这一不十分完美的假定所引起的误差就能最小化并且伪像得到抑制。在典型的图像重构的滤波反向投影方法,对于256×256像素的2D图像就需要400次投影,而对于256×256×256的3D图像则需要203,000次投影。
近来,在本领域中所熟知的新的图像重构方法是“HYPR”,并且在2006年7月7日所共同申请的美国专利申请序列号No.11/482,372、题为“高度约束性图像重构方法(Highly Constrained Image Reconstruction Method)”中进行了讨论,该专利通过引用合并与此。采用HYPR方法,合成的图像可以由所采集到的数据来重构,从而提供一种成像技术的现有知识。该合成图像随后可用于高度约束图像重构处理。HYPR可以用于多种不同的成像模式中,包括核磁共振成像(MRI)、X线计算断层摄影术(CT)、位置发射断层摄影术(PET)、但光子发射计算断层摄影术(SPECT)和数字层析照相组合(DTS)。
如图1所示,例如,在动态研究中,在采集一系列时间解析图像2时,可以使用非常有限的采集视图组来重构各个图像帧2。然而,这组中的各个视图是与其它图像帧2所采集的视图成交错的,并且在已经采集了大量的图像帧之后,可以有足够数量的不同视图有效地应用于重构具有一定质量的合成图像3,以便于根据HYPR方法的使用。于是,通过使用所有交错所形成的合成图像3具有较高的质量,并且通过使用高度约束图像重构方法4将该高质量转换成图像帧。在动态研究中,也可以采集图像帧2,在该项研究中,可减小各个图像帧的辐射剂量(例如,X射线)或者曝光时间(例如,PET或SPECT)。在这种情况下,合成图像是通过累加或者平均一系列采集图像帧的测量来形成的。各个图像帧2的高度约束性重构将较高SNR合成图像转换成所产生的重构图像。
HYPR方法的发现是能够采用十分少的投影信号剖面来产生高质量的图像,只要在FOV 12中的信号剖面的现有知识用于重构的处理。参照图4,例如,已知在FOV 12中的信号剖面还包括诸如血液血管18和20之类的结构。在这种情况下,当反向投影路径8通过这些结构时,就可以通过加权以该像素位置上的已知信号轮廓函数的分布,来获得在各个像素中的信号采样14的更精确分布。其结果是,在图4所示的实例中,大部分信号采样14分布在与结构18和20相交叉的反向投影像素。对于具有N像素的反向投影路径8而言,这高度约束性的反向投影可以下式来表示:
S n = ( P × C n ) / Σ n = 1 N C n - - - ( 2 )
式中,Sn=在要重构的图像帧中的像素上的反向投影信号幅值;P=要重构的投影剖面中的信号采样数值;以及Cn=在沿着反向投影路径的第n像素上的原先合成图像的信号数值。合成图像由扫描期间所采集的数据来重构,并且可以包括用于重构图像以及表示在视场中的结构的其它采集图像数据。
在公式(2)中的分子使用对应于合成图像中的信号数值来加权各个像素,分母归一化数值,使得所有的反向投影信号采样都能反映图像帧的投影之和并不乘以合成图像之和。
在反向投影之后分别对各个像素进行归一化的同时,在许多临床应用中,在反向投影之前对投影P进行归一化要更容易得多。在这种情况下,投影P通过除以在投影以相同观察角度通过合成图像所对应的数值Pc来进行归一化。随后,反向投影归一化投影P/Pc并且所产生的图像随后再乘以合成图像。
高度约束性反向投影的3D实施例如图5所图示,对于单个3D投影视图来说,它具有视角θ和。该投影视图沿着轴16反向投影并且沿着反向投影轴16以距离r传播到Radon平面21。替代对投影信号数值进行滤波并且沿着轴16均匀地分布在连续的Radon平面上的滤波反向投影,投影信号数值使用在合成图像中的信息分布在Radon平面21上。在图5所示实例中的合成图像包括血管18和20。加权信号轮廓数值基于在合成图像中所对应的位置x、y和z的强度沉积在Radon平面中的图像位置x、y和z上。这是反向投影信号轮廓数值P与所对应的合成图像元数值的简单乘法。该乘积随后通过将乘积除以投影剖面数值来归一化,其中投影剖面数值来自于合成图像所形成的对应图像空间投影剖面。3D重构的公式为:
I(x,y,z)=∑(P(r,θ,φ)*C(x,y,z)(r,θ,φ)/Pc(r,θ,φ)    (2a)
式中:和(∑)是在所要重构的图像帧中的总的所有投影,并且在特定Radon平面中的x,y和z数值是使用在该平面适当r,θ和数值上的投影剖面数值P(r,θ,)来计算的。Pc(r,θ,)是合成图像所对应的投影剖面数值,以及C(x,y,z)r,θ,是在(r,θ,)上的合成图像数值。
HYPR方法可以在一定的条件下很好地工作。首先,HYPR采用“稀疏”数据组工作最好,在这种情况下,在视场中所感兴趣的受试者只占据图像空间的小部分。在极其稀疏的图像或者具有完全空间—时间相关性的图像的限制中,HYPR重构方法提供了近乎精确的重构。随着系数和空间—时间相关性变差,HYPR重构的精确性就会下降并且局部信号会出现变化,这是由于在具有不同时间行为的视场中的信号影响所引起的。
发明内容
本发明是一种适用于产生医疗图像的新方法,尤其是一种适用于使用HYPR重构方法来产生图像的改进方法。由有限数据所产生的初始帧被用于产生归一化加权图像,它与高质量合成图像相乘以便于产生高质量的图像帧。通过用滤波器使初始图像变模糊并用合成图像的相似模糊版本来划分模糊图像帧,产生归一化加权图像。在初始图像帧因欠采样而比较有限的情况下,用于产生归一化加权图像的合成图像的版本限制于在初始图像帧中所嵌入的相同欠采样视图。
本发明的主要目的是改善用有限数据产生的图像帧的质量。该数据是有限的这一讲法可能是指:产生了具有较低信号噪声比(SNR)的图像帧;和/或它是从欠采样采集空间(例如,K空间或者Radon空间)的视图中产生的。在这两种情形下,较高质量的合成图像可以通过本发明而渗入在图像帧中。
本发明的另一主要目的是改善HYPR重构方法在采集非-稀疏数据组时的性能。为了减小在采用HYPR方法重构的图像的视场(FOV)中的距离信号的影响,视场可以划分成多个单独重构的更小部分。在该部分的HYPR重构中,仅仅使用通过所要重构的更小部分前向投影的投影视图中的那些部分。随后,将经重构的更小的图像部分组合起来,以便于提供整个FOV的重构图像。这如图19所描绘显示的,其中,投影P1、P2....Pn是在整个FOV 5的有限部分S(x,y)上反向投影出的。随着各个部分S(x,y)的尺寸减小以及部分的数量增加,这种“局部”HYPR重构可被视为分割成围绕着各个图像像素I(x,y)的小区域。通过将在部分S(x,y)中的所有反向投影数值P1lim到Pnlim累加起来,就能获得强度I(x,y)的数值。
I(x,y)=sum(P1lim-Pnlim)=sum(最接近的相邻区域)=I(x,y)局部的内核
在各个像素上的强度I(x,y)变成为像素x,y的最近邻之和,这是I(x,y)与统一有限内核的的卷积。这就等效于重构图像帧的低通滤波版本。更具体地说,通过除以合成图像的低通滤波版,便使图像帧的低通滤波版本得到归一化,并随后将所产生的归一化加权图像乘以全分辨率合成图像。低通滤波操作可以在Radon空间或者K空间中进行,或者它们可以在图像空间中进行。这种局部HYPR重构使用了环绕着各个像素的局部空间或者部分中的信号,并且消除了在视场中所产生的信号串扰。
本发明的另一目的是避免对Radon变换或者反向投影操作的需要。局部的HYPR重构可以通过一系列的低通滤波操作、除法操作和乘法操作来进行。这些操作可以在采集空间(例如,Radon空间或者K空间)或者图像空间中进行。
本发明的还有一个目的是提供一种能够使用许多不同成像模态所采集的数据和采用许多不同的采样图案的HYPR重构方法。该方法可以用于从MRI系统、X射线CT系统、PET扫描仪或者SPECT扫描仪所采集的数据中重构图像。当用于MRI系统时,可以使用任何采样轨迹来采集K空间数据。该方法还可以用于增强射线摄像的图像。
本发明的上述和其它目的和优点将在下列描述中变得更加清晰。在下列描述中,将参考作为本发明一部分的附图,并籍助于本发明的较佳实施例来显示这些附图。这些实施例并不需要表示本发明的全部范围,然而,可以参考所附权利要求书来解释本发明的范围。
附图的简要说明
图1图示了本发明在医疗图像应用中的应用;
图2A图示说明了在使用MRI系统的典型傅立叶或者卷积图像采集期间K空间被采样的方法;
图2B图示说明了在使用MRI系统的典型投影重构图像采集期间K空间被采样的方法;
图3图示了在图像重构处理中的常规反向投影步骤;
图4图示了根据本发明的高度约束的2D反向投影步骤;
图5图示了根据本发明的高度约束的2D反向投影步骤;
图6图示了用于实现本发明的核磁共振成像(MRI)系统的方框图;
图7图示了用于实现本发明一个实施例的图6所示MRI系统的脉冲序列;
图8图示了使用图7所示的脉冲序列采样K空间数据;
图9是本发明一个较佳实施例的流程图,该流程图将图7所示的脉冲序列应用于图6所示的MRI系统;
图10是适用于常规HYPR图像帧的一个较佳方法的流程图,该方法构成了图9所示方法中的一部分。
图11是适用于重构HYPR图像帧的另一较佳方法的流程图;
图12图示了在图6所示MRI系统中所使用的脉冲序列,以便于实现本发明的另一实施例;
图13是在图6所示MRI系统中所使用的本发明较佳实施例的流程图;
图14是在图13所示方法中所使用的高度约束性图像重构方法的流程图;
图15图示说明了图13所示的处理;
图16是本发明另一较佳实施例的流程图;
图17是在图16所示的处理流程中所使用的替代方法的流程图;以及,
图18是在图19所示的处理流程中所使用的另一替代方法的流程图。
具体实施方法
本发明可以应用于许多不同的医疗图像模式和应用于许多不同的治疗应用。在以下所讨论的较佳实施例采用MRI系统且该系统采集所要成像的受试者的投影视图的时候,其它成像模式也可以采用本发明并且可以采集不是径向投影视图的采样轨迹。
特别是,参照图6,在MRI系统中采用了本发明的较佳实施例。MRI系统包括工作站110,该工作站是可以运行商用操作系统的商用可编程机器。该工作站110提供操作的界面,该界面能够使扫描指令输入到MRI系统中。
工作站110与四台服务器相连接,包括,脉冲序列服务器118、数据采集服务器120、输出处理服务器122和数据存储服务器123。在较佳实施例中,数据存储服务器123是由工作站处理器116和相关的磁盘驱动界面电路来实现的。其余三台服务器118、120和122都可以通过安装在单个机箱中并使用64位底板总线的不同处理器来实现。脉冲序列服务器118采用商用的微处理器和商用的四通道通信控制器。数据采集服务器120和数据处理服务器122都采用相同的商用微处理器,并且数据处理服务器122还包括一个或者多个基于商用并行矢量处理器的阵列处理器。
工作站110和用于服务器18、20和22各个处理器连接着一些通信网络。该串联网络传输从工作站110下载到服务器118、120和122的数据,它传输在服务器之间和在工作站和服务器之间通信的标志数据。此外,在数据处理服务器122和工作站110之间提供了高速数据链接,以便于将图像数据传输到数据存储服务器123。
脉冲序列服务器118具有响应从工作站110下载的程序元件的功能,以便于操作梯度系统124和RF系统126。产生用于执行指定扫描所需要的梯度波形并施加于梯度系统124,由该系统激励在组件128中的梯度线圈,从而产生用于定位编码NMR信号的磁场梯度GX、GY和GZ。梯度线圈组件128形成磁性组件130中的一部分,磁性组件130还包括偏振磁铁132和整体的RF线圈134。
RF激励波形通过RF系统126施加到RF线圈134,从而执行指定的磁场共振脉冲序列。RF系统126接收由RF线圈134所检测到的共振NMR信号,并在脉冲序列服务器118所产生的命令指导下放大、解调、滤波和数字化。RF系统126包括用于产生用于MR脉冲序列中的多种RF脉冲的RF发射器。RF反射器响应脉冲序列服务器118的扫描规定和方向,产生所希望频率的RF脉冲,相位和脉冲幅值的波形。梯度RF脉冲可以施加于整体RF线圈134或者施加于一个或多个局部线圈或线圈阵列。
RF系统126还包括一个或者多个RF接收器通道。各个RF接收器通道包括RF放大器,用于放大所连接着的线圈所接收到的NMR信号;以及四象限检测器,用于检测和数字化所接收到的NMR信号的I和Q象限的分量。于是,通过I和Q分量的平方之和的平方根来确定在任何采样点上所接收到的NMR信号的幅值:
M = I 2 + Q 2
并且所接收到的NMR信号的相位也可以确定为:
φ=tan-1Q/I
脉冲序列服务器118也可以选择性接收来自生理采集控制器136的病人数据。该控制器136接收来自多个连接着病人的不同传感器的信号,例如,来自电极的ECG或者来自发引起的呼吸信号。这类信号一般被脉冲序列服务器118用于同步或者“选通”扫描与病人的呼吸或者心跳的性能。
脉冲序列服务器118还连接着扫描室界面电路138,该电路接收来自各种与病人条件有关的传感器和磁场系统的信号。病人定位系统140也通过扫描室界面电路138接收命令在扫描的过程中将病人移动到所要求的位置。
应该意识到的是,脉冲序列服务器118在扫描过程中执行对MRI系统元件的实时控制。其结果是,它的硬件元件必须通过运行程序以实时的方式与所要执行的程序指令一起工作。所讨论的用于扫描规定的元件可以采用目标的方式从工作站110下载。脉冲序列服务器118包括接收这些目标的程序并且将它们转换成运行程序所采用的目标。
RF系统126所产生的数字化NMR信号采样被数据采集服务器120所接收。数据采集服务器120响应从工作站110所下载的指定元件来操作,以便于接收实时NMR数据并提供数据缓冲存储,使得数据溢出不会造成数据丢失。在某些情形下,数据采集服务器120只将与所采集到的NMR数据差不多的数据传输到数据处理服务器122。然而,在需要采集NMR数据的引申信息来控制扫描的其它性能的情形下,数据采集服务器120就被编程为产生这类信息并且将其传输到脉冲序列服务器118。例如,在预扫描的过程中,采集NMR数据笔并用于校准脉冲序列服务器118所执行的脉冲序列。同样,在扫描过程中,可以采集导航信号并用于调整RF或者梯度系统的工作参数或者控制采样K空间的视图次序。另外,数据采集服务器120可用于处理NMR信号,该信号用于检测在MRA扫描中的造影剂的到来。在所有的这些实施例中,数据采集服务器120采集NMR数据并且实时进行处理,从而产生用于控制扫描的信息。
数据处理服务器122接收来自于数据采集服务器120的NMR数据并且根据从工作站110下载的描述元件对其进行处理。这类处理可以包括,例如,行K空间NMR数据的傅立叶变换从而产生两维或者三维的图像;用于重构图像的滤波器应用;所采集的NMR数据的反向投影图像重构的性能;功能性MR图像的计算;运动或者流动图像的计算,等等。正如以下更详细描述的那样,本发明是由MRI系统响应数据处理服务器122所执行的程序来实现的。
数据处理服务器122所重构的图像又传输回到工作站110,并进行存储。实时图像存储在基于数据的存储器缓冲器(未显示),并且从该缓冲器中输出至操作显示器112或者放置在磁场组件130附近接近医生的显示器142。将批模式的图像或选择的实时图像存储于在磁盘存储器144上的主数据库中。当这类图像已经重构并已经传输到存储器时,则数据处理服务器122就通知在工作站11中的数据存储服务器123。工作站110可以由操作者使用,用于存档图像,产生胶片或者通过网络将图像发送给其它用户。
为了实现本发明的较佳实施例。NMR数据可采用投影重构,或者径向、脉冲序列的方式来采集,如图7所示。这是一种快速梯度重放回声脉冲序列,在该时序中,当存在着选择片的梯度202的情况下,就会产生选择的、非对称的、截短的正弦rf激励脉冲200。该脉冲序列可以用于通过在一个单个的K空间圆形剖面中的采样来采集单个2D片段,或者它可以用于采样多个圆形K空间平面,正如图8中的204、206和208所示。当采集多个2D片段时,梯度202是一个梯形选择梯度并紧跟着极性相反的相位编码替代波辬210和倒带梯度波辬212。相位编码梯度210沿着这轴在扫描过程中通过这些数值逐步递增,从各个2D K空间平面204、206和208中采样。
在NMR回声信号218的采集过程中,两个共面的读出梯度214和216被释放,用于沿着径向轨迹采样在2D平面204、206或208中的K空间。这些共面梯度214和216垂直于轴梯度并且它们也相互垂直。在扫描的过程中,它们逐步递增一系列数值,使得径向采样轨迹的观察角度发生旋转,正如以下更详细的描述那样。各个共面读出梯度前有预定相梯度波辬220和222以及后有倒带梯度波辬224和226。
为了实现本发明另一较佳实施例,脉冲序列用于采集类似于3D径向投影的数据,如图12所示。该时序可以在上述装备有高性能梯度子系统(40mt/m最大幅度和150T/m/s最大回转率)的MRI系统上实现。全回声或者部分回声的读取可以在数据采集窗口199中进行。如果是选择部分回声,这K空间的下半部分(KZ<0)只是部分采集。因为在所有方向上存在着大的FOV,所以非选择的、射频(RF)脉冲209能够用于产生贯穿图像FOV的横断磁化。
梯度重放NMR回声信号203是通过载激励FOV中的自旋来产生并且在存在着三个读出梯度201、211和207的情况下才积极。由于梯形选择梯度是不需要的,因此读出梯度波形GX、GY和GZ都具有相似的形式。这种对称性只有在需要扰乱时序时才会中断,这是通过放置移相梯度波辬205来完成。GX、GY和GZ读出梯度201和211通过各个梯度脉冲213和215再次卷积,来实现稳定状态。
在扫描过程中,调制读出梯度波形GX、GY和GZ,以不同的角度来采样径向的轨迹。选择角度空间,使得K空间采样均匀地分布在所采样K空间区域外围边界(Kmax)上。尽管已知有几种方法用于计算分布,但可以使用通过采样具有螺旋轨迹、具有恒定路径速度和表面区域覆盖条件的球形表面来均匀分布投影的方法。这种解决方法也有利于产生连续的采样路径,这可减小梯度的切换和涡流电流。对于N总的投影来说,以投影数量n为函数的梯度幅值的公式:
G Z = 2 n - 1 2 N - - - ( 5 )
G X = cos ( 2 Nπ sin - 1 G Z ( n ) ) 1 - G Z ( n ) 2 - - - ( 6 )
G Y = cos ( 2 Nπ sin - 1 G Z ( n ) ) 1 - G Z ( n ) 2 - - - ( 7 )
对于在该系列中的第n脉冲序列而言,读出梯度幅值由公式(5)、(6)和(7)给出。在扫描过程中n可以单调序列从1变址到N时,这就意味着也有可能采用其它序列。正如以下所要讨论的那样,本发明使得所要采样的球形K空间具有较少的投影视图,从而导致较短的扫描时间。
本领域熟练技术人员应该意识到是,也可以使用不是较佳的直线轨迹的采样轨迹,这种直线轨迹是从K空间外围边界上的一点通过K空间的中心直接延伸到K空间外围边界上的另一点。正如以上所提及的那样,一种变体是采集部分NMR回声信号203,这是沿着不是穿过采样K空间体积的整个范围而延伸的轨迹进行采样。另一种变体是等效于直线投影穿过脉冲序列,它是沿着不是直线的曲线路径进行采样。这种脉冲序列都有过讨论。例如,F.E.Boada等人发表的“快速三维钠成像(Fast Three Dimensional Sodium Imaging)”(参见MRM,37:706-715,1997),K.V.Koladia等人发表的“使用球形投影成像的快速3D PC-MRA(Rapid 3D PC-MRA Using Spiral Projection Imaging)”(参见Proc.Intl.Soc.Magn.Reson.Med.13(2005))以及J.G.Pipe和Koladia发表的“球形投影成像:一种新的快速3D轨迹(Spiral Projection Imaging:a new fast 3D trajectory)”(参见Proc.Intl.Soc.Mag.Reson.Med.13(2005))。也十分显然,本发明可以采用这些采样方法的3D和2D的版本,并且在本文中,术语“像素”旨在表示在2D或3D图像中的位置。
以上所讨论的MRI系统可以广泛地应用于各种医疗应用中,用于采集投影视图的2D或3D组数据,这些数据可以用于重构一个或多个图像。本发明的图像重构方法特别适用于使用少于所有采集到的投影视图来重构一个或多个图像帧的扫描。在这种应用中,通常由于欠采样所产生的图像的伪像可以得到消除或抑制。
图像重构方法的第一实施例针对MRI系统的采集两维投影视图和重构在一段时间上表示受试者的一系列图像帧。尤其是,参照图9,采集投影视图的组,从重穿过一系列图像帧,正如处理方框225所示。在数量上,各组中的投影视图较少(例如,10个视图)并且均匀地分布,以便于尽可能均匀的采样K空间,正如图2所示。因为采集较少数量的投影视图,所以各个图像帧可以非常短的快照扫描时间来采集,但是因为K空间是高欠采样的,因此使用常规方法所重构的任何图像都会出现条纹伪像。
处理方框227所示的下一步骤是组合从被查受试者所采集到的投影视图并且重构合成图像。一般来说,这一步骤包括在围绕着当前图像帧的采集的时间窗中采集投影视图并且这与当前图像帧的视图成交错。合成图像投影在数量上要比图像帧数据组大得多,并且合成图像数据组提供更加完整的K空间的采样。因此,所重构的合成图像具有较高的信号噪声比(SNR)并且条纹伪像得到抑制。在较佳实施例中,这种重构包括将组合的K空间投影数据重新映射到笛卡尔坐标中并随后进行两维傅立叶逆变换(2DFE),从而产生合成图像。
正如处理方框229所示,下一步骤是根据本发明的有限方法来重构HYPR图像帧。可有许多不同的方法来完成这一步骤,这将参考图10和图11作更加详细的讨论。
在已经重构了HYPR图像帧之后,在判决方框243中进行测试,以确定是否产生其它图像帧。如果产生了其它图像帧,则系统环路就通过处理方框241返回重构另一个合成图像,正如处理方框277所示。在受试者的动态研究中,例如,采集一系列图像帧并且重构显示受试者是如何随时间变化的。在研究中所采集的投影视图是相互隔行交叉扫描的,使得它们采样K空间的不同部分并且通过组合投影视图来形成合成图像,所组合的投影视图是在以HYPR重构的图像帧为中心的时间窗采集的。该时间窗的宽度设置成包括足够的投影视图,以便于适应采样K空间,从而抑制条纹伪像,并获得高的SNR,但如不能包括如此多的投影视图,则图像帧的时间分辨率过分减小。
正如处理方框245所示,当在判决方框243中确定已经重构了最后的图像帧,则存储所重构的图像帧。所存储的图像帧可以每次显示一幅图像帧或者依次播放,从而显示在动态研究过程中受试者适合如何变化的。
可以证明各个重构图像帧的SND是由合成图像的SND所支配的。当目标信号电平与噪声标准偏差的比率在目标内时,计算SND;并且当目标和背景信号电平之间的差值除以背景噪声的标准偏差时,计算CNR。总的SNR和CNR都受限于随机噪声和由于条纹伪像所引起噪声的组合。很显然,在本发明的高度约束性反向投影重构中的SNR随机分量可由下式给出:
SNR HYPR = SNR composite / [ 1 + N f / N v 2 + N pix / ( N p N v 2 ) ] 1 / 2 - - - ( 3 )
式中:SNRcomposite是在合成图像中的SNR,Nf是在时间序列中的图像帧的数量,Nv是在投影中的目标像素的数量,Npix是在投影中的像素的数量(例如,对于2D是256或者对于3D是256×256),以及Np是每一图像帧中的投影的数量。如果Np在10的数量级上,这重构HYPR图像帧的SNR是由SNRcomposite所支配的。
合成图像可以根据临床应用的需要采用多种不同方法来采集和重构。在本发明的上述实施例中,初始的合成图像是由在以所要重构的图像帧的采集时间为中心的时间窗中所采集的交错的视图来重构的。这就特别适用于在动态研究过程中受试者运动或者在受试者中基本变化的情况。正如图9中的处理方框247所示,在其它临床应用中,初始的合成图像也可以在单独扫描的过程中采集,这种单独扫描并没有严格的时间限制并且在该扫描过程中K空间是全部采样的。这就有可能采集到高分辨率、高SNR的受试者解剖图像并且用于合成图像。
特别参考图10,在重构HYPR图像帧中的第一步骤是从当前图像帧的合成图像中重新投影出合成数据组Ct,正如处理方框250所示。当前图像帧包括以选择观察角度所采集到的一些投影视图,并且重新投影的合成数据组Ct是通过以这些系统的观察角度重新投影合成图像所产生的。
如处理方框252所示的下一步骤是模糊合成数据组Ct。这是通过对数据组Ct中的各个投影视图进行傅立叶变换并随后将所产生的K空间投影乘以傅立叶变换滤波器内核(以下将更加详细的讨论)来完成的。
正如处理方框254所示,合成图像Ct随后由模糊的数据组Ct重构。这是常规图像重构,例如,将径向K空间数据重新映射到笛卡尔坐标,跟着进行傅立叶逆变换。所产生的有限合成图像Ct将包含由于欠采样所引起的条纹伪像,然而,这些条纹伪像在后随的图像中都是基本相同的,因为各自都包含着相同的观察角度。
正如处理方框256所示,也采用傅立叶变换滤波器内核来模糊当前图像帧的K空间投影视图。这是通过使用上述滤波器使合成数据组Ct乘以各个K空间投影视图来完成的。随后,使用滤波的K空间数据组重构模糊的当前图像帧,如处理方框258所示。当采用模糊合成图像Ct时,这是标准的图像重构并且条纹是欠采样的结果。
正如处理方框260所示,接着通过当前模糊图像帧T除以当前合成图像Ct来产生归一化加权图像Tw。这是标准的前向像素对像素的出发,除了在滤波的合成图像Ct(这是为零的图像)中的像素第一次被设置为小的数值。相位信息时通过分别对复数像素数值得实部和虚部进行除法操作来保存的。正如处理方框262所示,随后,HYPR图像帧TH是通过将完全合成图像C乘以归一化加权图像TW来产生的。这是在两个图像中的对应像素的直接前向像素对像素的乘法。
在本发明的这样实施例中,归一化加权图像是通过乘法操作而在K空间中“模糊”的。在现在所要讨论的第二实施例中,这种模糊是通过滤波操作在图像空间中进行的。在任意一种情况下,高SNR合成图像采用归一化加权图像TW来修正,从而表示在扫描过程期间的受试者,在该扫描中采集当前图像帧。高SNR合成图像可以连同于当前图像帧的时间独立信息来保存。
特别参考图11,在本发明的第二实施例中,“模糊”是在图像空间中进行的,而不是上述的K空间。在本发明的第二实施例中的第二步骤是重新产生当前图像帧的合成数据组Ct,正如处理方框270所示。该步骤相同于处理方框250所示的步骤。正如处理方框272所示,随后,“有限”合成图像使用常规图像重构方法由合成数据组Ct重构。
正如处理方框274所示,该有限合成图像Ct随后通过滤波进行模糊。更具体地说,模糊是在图像空间中的卷积处理并且有限合成图像Ct与以下将进一步讨论的滤波器内核进行卷积。
正如处理方框276所示,图像帧仍是扫描过程中在当前时间点上所采集的有限投影视图来重构的。这是常规的图像重构,并因此会在所产生的图像帧T中出现由于欠采样所引起的条纹并且只具有相当较低的SNR。图像帧通过对它的滤波来模糊,正如处理方框278所示。该滤波是通过使用相同的滤波器内核对有限合成图像Ct进行以上所讨论的相同的常规处理来进行的。
正如处理方框279所示,归一化加权图像TW仍是通过将滤波的图像帧T除以滤波的合成图像Ct来产生的。这是在滤波图像帧T中的各个像素数字化与在滤波合成图像Ct中所对应的像素数值的常规除法。随后,将归一化加权图像TW乘以完全的合成图像C,正如处理方框280所示,以便于产生最后的HYPR图像帧TH
在上述前两个实施例中,滤波器内核或者傅立叶变换用于模糊在图像空间或者K空间中的图像。在较佳实施例中,7×7平方滤波器内核用于在图像空间中模糊两维图像并且它的傅立叶变换正弦函数用于模糊K空间图像数据。当重构3D图像时,立方9×9×9滤波器内核或者球形内核与贯穿内核的相等加权用于在图像空间模糊并且它的傅立叶变换用于在K空间中模糊。应该选择内核的大小,使得在进行模糊时,内核不包括过多来自感兴趣主体(例如,血管组织)以外的信息。内核的大小应该选择在被查目标的直径大小的数量级上或者稍小些,但它的精确形状不是关键的。高斯或者其它平滑内核也可以使用,并且所要执行的最终函数是低通滤波。[你应该附加任何或者所有信息或者教导你拥有能够在本发明中使用的滤波器内核。]
在前两个实施例中,滤波是分别对有限合成数据或者图像Ct和对当前图像帧数据或图像进行的。也有可能先在K空间或图像空间进行除法操作并随后对结果在K空间(乘法)或图像空间(卷积)进行模糊函数。当采用该实施例时,在除法操作之后所发生的条纹被模糊。
在本发明的上述实施例中,模糊或滤波操作是对K空间数据或者图像空间数据进行的。等效的,但是很少有希望获得相同结果的方法是将视图的图像空间域划分成更小的片段并且分别使用HYPR方法重构各个较小片段。该片段随后进行组合,以便于形成完全的重构图像,正如以上所示,该方法等效于上述模糊方法,因为如果片段的大小减小到一个像素,则结果在理论上是相同的。现在将讨论该大小“片段”HYPR方法的较佳实施例。
特别参考图13,所述脉冲序列都可以用于采集一系列图像帧,正如处理方框325所示。例如,这些图像帧可以作为CEMRA动态研究部分来采集,其中图像帧系列是在丸状造影剂输入视场时从血管系统中采集到的。各个图像帧都是高的欠采样,以便于增加研究的空间分辨率并且为各个欠采样图像帧所采集到的投影视图与为其它图像帧所采集的投影视图都是相互交错的。
正如处理方框327所示,下一步骤是重构高质量的合成图像,以便用于高度约束性重构处理。在该实施例中,合成图像是通过将来自采集图像帧的所有交错投影视图组合成一个单个的、高采样K空间数据组并且使用组合K空间数据组进行常规图像重构来产生的。常规的重构可以是各个投影视图的傅立叶变换紧跟着滤波反向投影,或者它可以是将在组合K空间数据组中的K空间采样重新映射到笛卡尔坐标紧跟着进行三维傅立叶变换。在替代实施例中,可以采集合重构单独的合成图像。
仍参考图13,接着进入环路,在该环路中重构图像帧。可以重构单个图像帧,但是,一般来说,多次重复图像帧重构环路,以重构在动态研究过程中所采集到的所有图像帧。
处理方框329所示的该环路中的第一步骤是使用所采集到的高欠采样图像帧来重构图像。这是常规的图像重构,并且由于所采集到的图像帧是高欠采样的,因此说产生的图像可以包含许多条纹和其它伪像,这些都会限制它的诊断价值。处理方框331所示的下一步骤是划分这一常规的图像帧。正如图15所示,在本发明中的片段是指将3D FOV 300分成为较小的3D尺寸或者片段302。
在将常规图像帧分段之后,进入环路,在该环路中,各个较小片段302重新映射到Radon空间。正如处理方框333所示,在3D FOV 300中的所有像素都被设置为零,除了在所要重新投影的片段中的像素之外。随后,该片段采用常规的方式重新投影,以形成一组投影视图,正如图15中的数据方框304所示。较佳的是沿着许多不同观察角度来重新投影,从处理时间的观点来看,这是可行的。该重新投影的处理一直继续道图像帧的所有分离的片段302都已经重新投影为此,正如判决方框335所示,以便于产生对应于投影过程数据的模块304。
随后,进入环路,在该环路中,各个重新投影的片段数据组304都使用高度约束性图像重构方法(HYPR)重构最后的图像片段306,正如处理方框337所示,并且如图15所示。这是在以上所提及的共同申请的美国专利序列号No.11/482,372中所讨论的方法,以下将参考图14作更加详细的讨论。值得注意的重要点是:在这种情况下,图像帧片段投影数据组304是非常稀疏的,因为所要重新投影的所有信号都是来自所采集的FOV中的仅仅一个小的片段302。当最后的图像帧片段302已经反向投影时,正如判决开发339所示,组合所有的较小的重构最后片段图像306,以便于形成一个单独的3D图像帧308,正如处理方框341所示和图15所示。这不会比在3D FOV 308中的适当位置上放置各个最后片段图像306有根多的事情。
在研究过程中所采集到的各个图像帧可以采用能够这种方式来重构。公已经重构了最后图像帧时,终止该处理过程,正如判决方框343所示。
上述方法的另一种可能的变体是分别存储适用于各个重构图像帧的各个最后图像片段306。这能够在诊断聚焦在图像帧FOV 308中的小部分的情况中,分别选择所要显示的片段306。这是特别有用的,例如,当产生MIP图像并且其它组织可以重叠和模糊在一个图像片段306中特别感兴趣的组织时。
特别参考图14,在上述方法中,各个图像帧片段306的高度约束性重构将参考上述公式(2)和图14的描述来讨论。更具体地说,对图像帧片段304投影P进行归一化,正如处理方框231所示。各个投影P通过将它除以相同观察角度的合成图像中的投影PC来进行归一化。随后,将归一化的投影P/Pc反向投影导FOV。这是标准的反向投影,但不具有滤波。
正如处理方框233所示,所产生的反向投影数值加上所要重构的图像帧片段306并且在判决方框235中进行测试,以确定适用于当前图像帧片段304的所有投影视图是否都已经反向投影了。如果没有,在当前图像帧片段304中的下一投影视图作反向投影,正如处理方框237所示。
当所有的投影视图都已经反向投影了并且对图像帧片段304进行了累加时,则所累加的图像帧片段乘以合成图像,正如处理方框239所示,以便于形成最后的图像帧片段306。这是矩阵乘积,在该乘积中,在图像帧片段中的像素数值乘以在合成图像中的对应像素的数值。应该意识到的是,也可以使用其它用于进行高度约束性图像帧片段重构的方法,正如在2006年7月7日所共同申请的美国专利申请序列号No.11/482,372。题为“高度约束性图像重构方法(Highly ConstrainedImage Reconstruction Method)”中所讨论的,通过引用该专利合并与此。
在本发明已经讨论了采用MRI系统采集的K空间投影视图的2D或3D图像重构,本领域熟练技术人员应该意识到的是,本发明也可以应用于采集Radon空间数据的其它医学图像系统,例如,X射线CT、PET和SPECT成像系统。同样,本发明并不限制于以径向投影所采集的K空间数据,而是也可以应用于其它K空间采样轨迹。例如,使用交错螺旋轨迹或者笛卡尔轨迹采集的图像能够被重新映射和经历上述相同的操作。
上述本发明的所有实施例都牢固地具有图像重构方法的特征,在该方法中,使用医学成像系统来采集受试者的有限组视图并且从这些视图中产生图像。本发明并不限制于图像重构,而是也可以应用于改善现有的图像质量。更具体地说,较高SNR的有效合成图像可以采用本发明的高度约束性图像处理去模糊成为有效德、低质量的图像。图像帧已经能够被采集到并且重构,这就可以通过组合图像帧,或者通过使用相同的成像系统采集较高质量的图像,或者通过使用不同的成像系统或者不同的模式所采集到的较高质量的图像来产生有效较高质量的合成图像。
特别参考图1和图16,以一系列图像帧2来进行高度约束性图像处理。在采集各个图像帧2时,正如处理方框400所示;将这些图像帧2存储和复制,用于更新合成图象3,正如处理方框402所示。该合成图象3是当前图像帧2与预先所选定数量的其它采集图像帧2的累加。这一累加是在2D图像帧2中所对应的像素除以贡献累加的图像帧数量的矩阵加法。该结果是合成图像3具有增加的SNR且直接正比于所累加的图像帧2选定的数量。例如,如果累加36个2D图像帧2,则SNR将是单个2D图像帧2的SNR的6倍。用于形成合成图像的图像帧2的数量取决于正在进行的特殊医疗流程。
正如404所示,下一步骤是使用当前2D图像帧2产生归一化的加权图像并且更新合成图像3。可有许多不同的方法来进行这一步骤,并且图16显示了较佳的方法。更具体地说,更新合成图像3是采用滤波的方法来“模糊”的,正如处理方框406所示。该滤波是常规的处理方法,在该方法中,更新2D合成图像阵列3市采用上述的滤波内核卷积的。应该选择内核的尺寸,使得在进行模糊时,该内核不会包括太多来自感兴趣主体(例如,血管组织)之外的信息。如果滤波器内核比感兴趣主体大得多,则会平均其中的信号幅值,但是它的形状是不会改变的。另一方面,如果滤波器的内核比感兴趣的主体要小得多,则它的形状或者轮廓就会改变。
仍参考图16,当前2D图像帧2也采用上述相同的方法进行模糊或滤波,正如处理方框408所示。即,2D图像帧阵列2与滤波器内核进行卷积,以便于进行低通滤波功能。正如处理方框410所示,随后,通过将在滤波当前图像帧(Tzhong的像素数值除以在滤波合成图像(Ct)中的对应像素数值来产生归一化加权图像(TW)。
正如处理方框412所示,随后,产生高度约束性实行(HYPR)图像帧4。该图像帧4是通过将更新合成图像阵列3乘以归一化加权图像阵列(TW)来产生的。这是在两个图像中的对应像素数值的乘法。随后,将所产生的2D HYPR图像4输出显示,正如处理方框414所示,并且该系统环路返回到下一2D图像帧2的采集和处理。当流程完成时,该程序就结束,正如判决方框416所示。
正如以上所示,有许多用于产生归一化加权图像(Tw)的替代方法。图17和图18图示说明了这些方法中的两种方法。特别参考图17,第一种替代方法包括在处理方框418所示的第一步骤,在该步骤中,将所采集到的2D图像帧阵列2除以所更新的合成图像3。这是在所采集到的图像帧2中的每一个像素数值与在更新合成图像阵列3中的对应像素数值的除法。随后,模糊或滤波所产生的2D被除之后的图像帧,正如处理方框420所示,以便于产生归一化加权图像(Tw)。该滤波操作是上述与处理方框406和408有关的相同卷积处理。
用于产生归一化加权图像(Tw)的另一替代方法如图18所示。该方法通过采用不同观察角度的图像投影视图将所采集到的2D图像帧2变换到Radon空间,正如处理方框422所示。正如处理方框424所示,通过在用于变换2D图像帧2的相同组观察角度上来计算投影视图,将更新合成图像3也变换到Radon空间。正如处理方框426所示,图像帧投影视图P通过将其除以合成图像投影视图Pc进行归一化的。这是一种在投影P和Pc中所对应的元素以相同观察角度进行的除法。随后,在处理方框428中,通过以卷积的方式反向投影归一化的投影(P/Pc)来产生归一化加权图像(Tw)。这不是滤波反向投影,而是直接前向反向投影。

Claims (16)

1.一种用于产生位于医学成像系统的视场FOV中的受试者的图像的方法,包括如下步骤:
a)用所述医学成像系统来获取位于所述FOV中的受试者的多个视图;
b)根据步骤a)中所获取的选出的视图,产生图像帧数据组;
c)根据步骤a)中所获取的视图,产生合成图像,其中,组合起来以产生所述合成图像的视图包括在所述图像帧数据组中的视图以及另外所获取的视图;
d)重构受试者的归一化加权图像,包括:
d)i)根据合成图像产生有限的合成数据组,所述合成图像包含所述图像帧数据组中选出的视图所对应的视图;
d)ii)用滤波函数使所述图像帧数据组变模糊;
d)iii)用滤波函数使所述有限的合成数据组变模糊;
d)iv)通过使变模糊的图像帧数据组除以变模糊的有限的合成数据组,计算所述归一化加权图像;以及
d)通过使所述归一化加权图像中的像素数值乘以所述合成图像中相对应的像素数值,产生所述FOV中的受试者的高度约束的图像。
2.如权利要求1所述的方法,其特征在于,步骤a)中所获取的视图是以交错投影角获得的投影视图,步骤b)中所产生的图像数据组包括根据所述投影视图中选定的组来产生图像数据组,并且步骤d)i)中所产生的有限的合成数据组是通过以所选定的投影视图组所对应的投影角度重新投影步骤c)中所产生的合成图像而形成的。
3.如权利要求1所述的方法,其特征在于,还包括:
d)通过使用步骤a)中所获取的视图中的不同视图来重复步骤d),产生所述受试者的另外的图像。
4.如权利要求1所述的方法,其特征在于,步骤d)ii)和d)iii)中变模糊的操作是通过使所述数据组乘以经变换的滤波内核来进行的。
5.如权利要求1所述的方法,其特征在于,步骤a)中所获取的视图是在受试者体内发生变化的一段时间内获取的;步骤b)包括选择在执行步骤a)的过程中一段时间间隔内所获取的一组视图;以及步骤c)包括选择在包括所述时间间隔并且长于所述时间间隔的一时间窗口中所获取的一组视图。
6.如权利要求1所述的方法,其特征在于,所述医学成像系统是核磁共振成像系统,并且每一个视图对K空间中的线条进行采样。
7.如权利要求1所述的方法,其特征在于,步骤d)iv)是通过如下步骤进行的:根据经滤波的图像帧数据组,重构经滤波的图像帧;根据经滤波的有限的合成数据组,重构经滤波的有限的合成图像;随后,使经滤波的图像帧中的像素数值除以经滤波的有限的合成图像中相对应的像素数值。
8.如权利要求1所述的方法,其特征在于,通过使变模糊的图像帧数据组除以所述有限的合成数据组并且将结果变换到图像空间,执行步骤d)iv)。
9.如权利要求1所述的方法,其特征在于,通过将所述数据组变换到图像空间并使经变换的数据组与滤波器内核卷积,执行步骤d)ii)和步骤d)iii)中变模糊的操作。
10.一种用于产生受试者的图像的方法,该方法包括如下步骤:
a)使用医学成像系统来获取具有相对较高质量的受试者的合成图像;
b)使用医学成像系统来获取具有相对较低质量的图像帧;以及,
c)通过以下步骤来产生更高质量的图像帧:
c)i)通过使用所述图像帧和所述合成图像,产生归一化加权图像;和,
c)ii)使所述归一化加权图像乘以所述合成图像。
11.如权利要求10所述的方法,其特征在于,步骤c)i)包括:使所述图像帧和所述合成图像变模糊;以及使变模糊的图像帧除以变模糊的合成图像。
12.如权利要求11所述的方法,其特征在于,所述变模糊是通过使各个图像与滤波器内核卷积来进行的。
13.一种对所获取的图像帧数据组进行高度约束重构的方法,该方法包括如下步骤:
根据所获取的图像帧数据组,重构常规图像帧;
将所述常规图像帧分成为多个片段;
将各个图像帧片段重新投影,以形成相对应的多个片段投影视图数据组;以及
在反向投影过程中使用相应的片段投影视图数据组来重构最终的图像帧片段,该反向投影过程受包含正被成像的受试者的现有信息的合成图像高度约束。
14.如权利要求13所述的方法,其特征在于,所述最终图像帧片段被组合起来以形成最终的图像帧。
15.如权利要求13所述的方法,其特征在于,最终的图像片段被选择性地显示。
16.如权利要求13所述的方法,其特征在于,所述合成图像是使用所获取的图像帧数据组与其它所获取的图像数据相组合而重构的。
CN200710193836.8A 2007-02-19 2007-11-26 局部化且高度约束的图像重构方法 Active CN101251583B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90172807P 2007-02-19 2007-02-19
US60/901,728 2007-02-19

Publications (2)

Publication Number Publication Date
CN101251583A true CN101251583A (zh) 2008-08-27
CN101251583B CN101251583B (zh) 2013-06-12

Family

ID=38983588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710193836.8A Active CN101251583B (zh) 2007-02-19 2007-11-26 局部化且高度约束的图像重构方法

Country Status (5)

Country Link
US (1) US8170315B2 (zh)
EP (1) EP1959396B1 (zh)
JP (2) JP5408641B2 (zh)
CN (1) CN101251583B (zh)
AT (1) ATE542196T1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179905A (zh) * 2010-10-27 2013-06-26 皇家飞利浦电子股份有限公司 欠采样多能量计算机断层摄影(ct)数据采集数据处理
CN103597499A (zh) * 2011-06-07 2014-02-19 瓦里安医疗系统公司 运动模糊成像增强的方法和系统
CN103955899A (zh) * 2014-05-02 2014-07-30 南方医科大学 基于组合图像引导的动态pet图像去噪方法
CN109752681A (zh) * 2019-01-22 2019-05-14 奥泰医疗系统有限责任公司 倾斜平面回波成像方法及核磁共振成像系统
CN110680321A (zh) * 2019-09-26 2020-01-14 东软医疗系统股份有限公司 脊柱mri扫描参数的确定方法、装置及图像处理设备
CN113349812A (zh) * 2021-06-08 2021-09-07 梅州市人民医院(梅州市医学科学院) 一种基于动态pet影像图像增强显示方法、介质及设备
CN115953600A (zh) * 2023-03-08 2023-04-11 中国测绘科学研究院 基于多方向滤波通道特征的多模态影像匹配方法及系统
CN117830311A (zh) * 2024-03-05 2024-04-05 中山大学 医学影像图片分段和关键帧标识方法、系统、设备及介质

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113060B2 (ja) * 2005-09-22 2013-01-09 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン 拍動している心臓の画像の再構成法
WO2008118238A2 (en) * 2007-01-02 2008-10-02 Wisconsin Alumni Research Foundation Contrast enhanced mra with highly constrained backprojection reconstruction using phase contrast composite image
ATE542196T1 (de) * 2007-02-19 2012-02-15 Wisconsin Alumni Res Found Verfahren zur lokalisierten und stark eingeschränkten bildrekonstruktion
EP1959397B1 (en) * 2007-02-19 2019-08-07 Wisconsin Alumni Research Foundation Iterative HYPR medical image reconstruction
US8825138B2 (en) * 2007-09-17 2014-09-02 Wisconsin Alumni Research Foundation Method for reducing motion artifacts in highly constrained medical images
EP2037413A3 (en) 2007-09-17 2011-01-26 Wisconsin Alumni Research Foundation A method for reducing motion artifacts in highly constrained medical images
WO2009064891A2 (en) * 2007-11-13 2009-05-22 Wisconsin Alumni Research Foundation A method for producing highly constrained ultrasound images
JP5220125B2 (ja) * 2007-12-20 2013-06-26 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン 先験的画像制限画像再構成法
EP2232444B1 (en) * 2007-12-20 2011-10-12 Wisconsin Alumni Research Foundation Method for dynamic prior image constrained image reconstruction
US8218907B2 (en) * 2008-01-14 2012-07-10 Wisconsin Alumni Research Foundation Method for prior image constrained progressive image reconstruction
US8396248B2 (en) * 2008-09-16 2013-03-12 Varian Medical Systems, Inc. Sequential stereo imaging for estimating trajectory and monitoring target position
EP2349008B1 (en) * 2008-11-26 2015-02-25 Wisconsin Alumni Research Foundation Method for prior image constrained image reconstruction in cardiac cone beam computed tomography
US8077955B2 (en) * 2009-03-19 2011-12-13 Kabushiki Kaisha Toshiba B1 mapping in MRI system using k-space spatial frequency domain filtering
US8111893B2 (en) * 2009-06-09 2012-02-07 Wisconsin Alumni Research Foundation Method for dynamic prior image constrained image reconstruction
US8761478B2 (en) * 2009-12-15 2014-06-24 General Electric Company System and method for tomographic data acquisition and image reconstruction
US8204172B1 (en) 2010-03-17 2012-06-19 General Electric Company System and method of prior image constrained image reconstruction using short scan image data and objective function minimization
US8653817B2 (en) 2010-04-02 2014-02-18 General Electric Company Accelerated pseudo-random data magnetic resonance imaging system and method
US8422756B2 (en) * 2010-04-27 2013-04-16 Magnetic Resonance Innovations, Inc. Method of generating nuclear magnetic resonance images using susceptibility weighted imaging and susceptibility mapping (SWIM)
US8483463B2 (en) 2010-05-19 2013-07-09 Wisconsin Alumni Research Foundation Method for radiation dose reduction using prior image constrained image reconstruction
US8781243B2 (en) 2011-01-07 2014-07-15 Wisconsin Alumni Research Foundation Method for constrained reconstruction of high signal-to-noise ratio images
US8913710B2 (en) 2011-04-27 2014-12-16 Varian Medical Systems, Inc. Truncation correction imaging enhancement method and system
US8620404B2 (en) 2011-07-26 2013-12-31 Wisconsin Alumni Research Foundation System and method of high-frame rate, time-resolved, three-dimensional magnetic resonance angiograpy
US8903150B2 (en) 2011-07-31 2014-12-02 Varian Medical Systems, Inc. Filtration imaging enhancement method and system
US20130107006A1 (en) * 2011-10-28 2013-05-02 New York University Constructing a 3-dimensional image from a 2-dimensional image and compressing a 3-dimensional image to a 2-dimensional image
US9295431B2 (en) * 2011-10-28 2016-03-29 New York University Constructing a 3-dimensional image from a 2-dimensional image and compressing a 3-dimensional image to a 2-dimensional image
WO2013166357A1 (en) * 2012-05-04 2013-11-07 The Regents Of The University Of California Multi-plane method for three-dimensional particle image velocimetry
KR101351583B1 (ko) * 2012-10-10 2014-01-16 한국과학기술원 의료 영상 이미징 방법, 그에 따른 의료 진단 장치 및 그에 따른 기록 매체
US9767536B2 (en) 2013-03-14 2017-09-19 Memorial Sloan Kettering Cancer Center Medical imaging
CN103338225B (zh) * 2013-05-27 2015-02-25 沈阳东软医疗系统有限公司 基于云平台的医疗影像数据共享的方法、云平台和系统
WO2015019970A1 (ja) 2013-08-08 2015-02-12 株式会社東芝 画像処理装置及び磁気共鳴イメージング装置
US9208588B2 (en) 2013-09-25 2015-12-08 Wisconsin Alumni Research Foundation Fast statistical imaging reconstruction via denoised ordered-subset statistically-penalized algebraic reconstruction technique
JP6072723B2 (ja) * 2014-04-21 2017-02-01 株式会社日立製作所 磁気共鳴イメージング装置、及び画像撮像方法
WO2016009309A1 (en) 2014-07-16 2016-01-21 Koninklijke Philips N.V. Irecon: intelligent image reconstruction system with anticipatory execution
US10456116B2 (en) * 2014-09-30 2019-10-29 Siemens Medical Solutions Usa, Inc. Shadow suppression in ultrasound imaging
US9659368B2 (en) * 2015-05-15 2017-05-23 Beth Israel Deaconess Medical Center, Inc. System and method for enhancing functional medical images
US9943280B2 (en) 2016-03-07 2018-04-17 General Electric Company Breast tomosynthesis with flexible compression paddle
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
EP3731749A4 (en) 2017-12-31 2022-07-27 Neuroenhancement Lab, LLC NEURO-ACTIVATION SYSTEM AND METHOD FOR ENHANCING EMOTIONAL RESPONSE
WO2019144092A1 (en) * 2018-01-22 2019-07-25 University Of Tennessee Research Foundation High-speed imaging using periodic optically modulated detection
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
WO2020028257A2 (en) 2018-07-30 2020-02-06 Hyperfine Research, Inc. Deep learning techniques for magnetic resonance image reconstruction
WO2020037121A1 (en) 2018-08-15 2020-02-20 Hyperfine Research, Inc. Deep learning techniques for suppressing artefacts in magnetic resonance images
CN113382683A (zh) 2018-09-14 2021-09-10 纽罗因恒思蒙特实验有限责任公司 改善睡眠的系统和方法
WO2020186013A2 (en) 2019-03-14 2020-09-17 Hyperfine Research, Inc. Deep learning techniques for generating magnetic resonance images from spatial frequency data
JP7509546B2 (ja) 2020-02-12 2024-07-02 キヤノンメディカルシステムズ株式会社 画像再構成装置
US11085979B1 (en) * 2020-02-24 2021-08-10 Uih America, Inc. System and method for magnetic resonance imaging with radial sampling of k-space

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603322A (en) 1993-01-19 1997-02-18 Mcw Research Foundation Time course MRI imaging of brain functions
EP0627633A1 (en) 1993-05-18 1994-12-07 Koninklijke Philips Electronics N.V. Method and apparatus for magnetic resonance imaging
DE4319539A1 (de) 1993-06-12 1994-12-15 Philips Patentverwaltung Verfahren zur Erzeugung einer MR-Bildfolge und Anordnung zur Durchführung des Verfahrens
DE4436688A1 (de) 1994-10-13 1996-04-25 Siemens Ag Computertomograph
DE19647537A1 (de) 1996-11-16 1998-05-20 Philips Patentverwaltung MR-Verfahren zur Reduzierung von Bewegungsartefakten und Anordnung zur Durchführung des Verfahrens
US6487435B2 (en) 1998-04-10 2002-11-26 Wisconsin Alumni Research Foundation Magnetic resonance angiography using undersampled 3D projection imaging
US6490472B1 (en) 1999-09-03 2002-12-03 The Mcw Research Foundation, Inc. MRI system and method for producing an index indicative of alzheimer's disease
EP1277439A4 (en) 2001-02-28 2007-02-14 Mitsubishi Heavy Ind Ltd TOMODENSITOMETRIC APPARATUS EMITTING X-RAYS FROM A MULTI-RADIATION SOURCE
DE10119660B4 (de) 2001-04-20 2006-01-05 Siemens Ag Verfahren zur schnellen Gewinnung eines Magnetresonanzbildes
EP1444530B1 (en) 2001-11-12 2008-08-13 Wisconsin Alumni Research Foundation Three-dimensional phase contrast magnetic resonance imaging using interleaved projection-reconstruction data
GB0321895D0 (en) 2003-09-18 2003-10-22 Inst Of Cancer Res The A method and apparatus for image reconstruction
US7403005B2 (en) 2004-01-14 2008-07-22 Koninklijke Philips Electronics, N.V. Regularized variable density SENSE
EP1902424B1 (en) 2005-07-08 2009-11-11 Wisconsin Alumni Research Foundation Highly constrained image reconstruction method
ATE492006T1 (de) 2005-07-08 2011-01-15 Wisconsin Alumni Res Found Rückprojektions-rekonstruktionsverfahren für ct- bildgebung
EP1927011A1 (en) 2005-09-22 2008-06-04 Wisconsin Alumni Research Foundation Highly constrained backprojection reconstruction in diffusion weighted mri
JP5123192B2 (ja) 2005-09-22 2013-01-16 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン 機能的磁気共鳴イメージング用の、画像の取得及び再構成の方法
US7408347B2 (en) 2005-09-22 2008-08-05 Wisconsin Alumni Research Foundation Highly constrained magnetic resonance spectroscopy image reconstruction method
WO2007037951A2 (en) 2005-09-22 2007-04-05 Wisconsin Alumni Research Foundation Reconstruction of motion encoded mr images involving a highly constrained backprojection
JP5113060B2 (ja) 2005-09-22 2013-01-09 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン 拍動している心臓の画像の再構成法
WO2008118238A2 (en) 2007-01-02 2008-10-02 Wisconsin Alumni Research Foundation Contrast enhanced mra with highly constrained backprojection reconstruction using phase contrast composite image
EP1959397B1 (en) 2007-02-19 2019-08-07 Wisconsin Alumni Research Foundation Iterative HYPR medical image reconstruction
ATE542196T1 (de) * 2007-02-19 2012-02-15 Wisconsin Alumni Res Found Verfahren zur lokalisierten und stark eingeschränkten bildrekonstruktion
US8825138B2 (en) 2007-09-17 2014-09-02 Wisconsin Alumni Research Foundation Method for reducing motion artifacts in highly constrained medical images
WO2009064891A2 (en) 2007-11-13 2009-05-22 Wisconsin Alumni Research Foundation A method for producing highly constrained ultrasound images

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179905A (zh) * 2010-10-27 2013-06-26 皇家飞利浦电子股份有限公司 欠采样多能量计算机断层摄影(ct)数据采集数据处理
CN103179905B (zh) * 2010-10-27 2015-12-09 皇家飞利浦电子股份有限公司 用于提取完全采样固定kVp正弦图的方法和系统
CN103597499A (zh) * 2011-06-07 2014-02-19 瓦里安医疗系统公司 运动模糊成像增强的方法和系统
CN103597499B (zh) * 2011-06-07 2017-10-31 瓦里安医疗系统公司 运动模糊成像增强的方法和系统
CN103955899A (zh) * 2014-05-02 2014-07-30 南方医科大学 基于组合图像引导的动态pet图像去噪方法
CN109752681A (zh) * 2019-01-22 2019-05-14 奥泰医疗系统有限责任公司 倾斜平面回波成像方法及核磁共振成像系统
CN109752681B (zh) * 2019-01-22 2021-10-29 奥泰医疗系统有限责任公司 倾斜平面回波成像方法及核磁共振成像系统
CN110680321A (zh) * 2019-09-26 2020-01-14 东软医疗系统股份有限公司 脊柱mri扫描参数的确定方法、装置及图像处理设备
CN113349812A (zh) * 2021-06-08 2021-09-07 梅州市人民医院(梅州市医学科学院) 一种基于动态pet影像图像增强显示方法、介质及设备
CN115953600A (zh) * 2023-03-08 2023-04-11 中国测绘科学研究院 基于多方向滤波通道特征的多模态影像匹配方法及系统
CN117830311A (zh) * 2024-03-05 2024-04-05 中山大学 医学影像图片分段和关键帧标识方法、系统、设备及介质
CN117830311B (zh) * 2024-03-05 2024-05-28 中山大学 医学影像图片分段和关键帧标识方法、系统、设备及介质

Also Published As

Publication number Publication date
EP1959396A1 (en) 2008-08-20
JP5408641B2 (ja) 2014-02-05
JP2008200478A (ja) 2008-09-04
JP2013208504A (ja) 2013-10-10
CN101251583B (zh) 2013-06-12
US8170315B2 (en) 2012-05-01
JP5737725B2 (ja) 2015-06-17
ATE542196T1 (de) 2012-02-15
US20080219535A1 (en) 2008-09-11
EP1959396B1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
CN101251583B (zh) 局部化且高度约束的图像重构方法
CN101248458B (zh) 高约束图像重构方法
CN101266290B (zh) 迭代的高度约束的图像重建方法
JP4951264B2 (ja) シェルk空間サンプリング軌跡を使用したアンダーサンプリング3DMRI
JP5123191B2 (ja) 高度に限定された画像再構成法を使用する拡散テンソル・イメージング
JP5113062B2 (ja) 心臓ゲート磁気共鳴イメージングのための画像再構成法
CN101297214B (zh) 心脏选通mri中的高度约束的背投重构过程
JP5113061B2 (ja) 運動コード化mr画像の高度に限定された再構成
CN102906791B (zh) 使用在先图像约束的图像重建的辐射计量减少的方法
CN101573629B (zh) 利用相衬合成图像进行高度约束反投影重建的对比增强磁共振血管造影
JP5167125B2 (ja) アンダーサンプリングされたmriの限定的な逆投影再構成法
CN101411620B (zh) 用于减少高抑制医学图像中运动伪像的方法
JP3556176B2 (ja) Mr投影画像の自動修正

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant