CN101244859A - Method for treating heavy metal wastewater - Google Patents
Method for treating heavy metal wastewater Download PDFInfo
- Publication number
- CN101244859A CN101244859A CNA2007100484724A CN200710048472A CN101244859A CN 101244859 A CN101244859 A CN 101244859A CN A2007100484724 A CNA2007100484724 A CN A2007100484724A CN 200710048472 A CN200710048472 A CN 200710048472A CN 101244859 A CN101244859 A CN 101244859A
- Authority
- CN
- China
- Prior art keywords
- heavy metal
- wastewater
- desulfovibrio
- salt
- nanometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 21
- 241000894006 Bacteria Species 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 150000002500 ions Chemical class 0.000 claims abstract description 13
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 241000605716 Desulfovibrio Species 0.000 claims abstract description 6
- 241000205108 Desulfobacter sp. Species 0.000 claims abstract description 5
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 5
- 241000605786 Desulfovibrio sp. Species 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 238000001556 precipitation Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 5
- 230000001580 bacterial effect Effects 0.000 claims description 5
- 241000131498 Desulfotomaculum sp. Species 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000006477 desulfuration reaction Methods 0.000 claims 4
- 230000023556 desulfurization Effects 0.000 claims 4
- 241000233866 Fungi Species 0.000 claims 2
- 210000000936 intestine Anatomy 0.000 claims 2
- 230000000050 nutritive effect Effects 0.000 claims 1
- 239000011651 chromium Substances 0.000 abstract description 52
- 229910052804 chromium Inorganic materials 0.000 abstract description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 12
- 239000002244 precipitate Substances 0.000 abstract description 9
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract description 6
- 239000001963 growth medium Substances 0.000 abstract description 4
- 241000588914 Enterobacter Species 0.000 abstract description 3
- 229910005432 FeSx Inorganic materials 0.000 abstract description 3
- 238000004065 wastewater treatment Methods 0.000 abstract description 3
- 241000193830 Bacillus <bacterium> Species 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract description 2
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052976 metal sulfide Inorganic materials 0.000 abstract description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 abstract 1
- 241000607598 Vibrio Species 0.000 abstract 1
- 238000010494 dissociation reaction Methods 0.000 abstract 1
- 230000005593 dissociations Effects 0.000 abstract 1
- 229910000859 α-Fe Inorganic materials 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000010949 copper Substances 0.000 description 15
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000011701 zinc Substances 0.000 description 9
- 239000010802 sludge Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 208000028659 discharge Diseases 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 241000588697 Enterobacter cloacae Species 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241000607471 Edwardsiella tarda Species 0.000 description 1
- 241000605986 Fusobacterium nucleatum Species 0.000 description 1
- 241000589597 Paracoccus denitrificans Species 0.000 description 1
- 241000206591 Peptococcus Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- -1 sulfide ions Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
技术领域 technical field
本发明属于废水处理技术领域,具体涉及废水中铬等重金属离子的去除方法。The invention belongs to the technical field of waste water treatment, and in particular relates to a method for removing heavy metal ions such as chromium in waste water.
背景技术 Background technique
目前国内外处理重金属废水的方法有物理法、化学法和生物法三大类,共20余种,这些方法各有利弊。寻求更有效的处理方法始终是人们向往的目标。中国专利ZL 93106616.6《微生物治理电镀废水方法》首次提出了具核梭杆菌、脱氮副球菌、迟钝爱德华氏菌和厌氧消化球菌等四株菌组成的复合菌,对低浓度(≤80mg/L)Cr、Zn、Cu、Ni电镀废水的处理有较好的效果。中国专利ZL 96117479.X《治理电镀废水的复合功能菌、其培养方法及其使用方法》采用脱硫杆菌、脱硫弧菌、阴沟肠杆菌、脱硫肠杆菌和芽孢杆菌等五株菌组成复合菌,比专利ZL 93106616.6去除电镀废水中重金属的理论基础和实用性有较大的提高,但反应滞留时间长,pH值限在5.0~7.5范围。中国专利ZL00112916.3《生物化学法治理含金属废水的方法》采用脱硫杆菌、阴沟肠杆菌、脱硫肠杆菌组成复合菌提出:“菌与废水按1∶10的体积比加入反应池反应,反应之后再按每吨废水加入0.05~5公斤化学试剂Na2S或/和FeS来去除废水中的重金属离子,该方法基本上是依靠加Na2S或/和FeS来去除废水中的重金属离子,其处理成本高,并存在硫化氢的二次污染问题。At present, there are more than 20 kinds of methods for treating heavy metal wastewater at home and abroad, including physical methods, chemical methods and biological methods. These methods have their own advantages and disadvantages. Seeking a more effective treatment method is always the goal that people yearn for. Chinese patent ZL 93106616.6 "Methods for Microbial Treatment of Electroplating Wastewater" firstly proposed a composite bacteria composed of four strains of Fusobacterium nucleatum, Paracoccus denitrificans, Edwardsiella tarda and Peptococcus anaerobic, which is effective for low concentrations (≤80mg/L ) Cr, Zn, Cu, Ni electroplating wastewater treatment has a better effect. Chinese Patent ZL 96117479.X "Composite Functional Bacteria for Treating Electroplating Wastewater, Its Cultivation Method and Its Application Method" adopts five strains of Desulfobacillus, Desulfovibrio, Enterobacter cloacae, Desulfur Enterobacter and Bacillus to form a composite bacteria. Patent ZL 93106616.6 has greatly improved the theoretical basis and practicability of removing heavy metals in electroplating wastewater, but the reaction residence time is long, and the pH value is limited to the range of 5.0 to 7.5. Chinese patent ZL00112916.3 "Method for Treating Metal-Containing Wastewater by Biochemical Method" adopts Desulfobacillus, Enterobacter cloacae, and Enterobacter desulfurum to form composite bacteria and proposes: "Bacteria and wastewater are added to the reaction tank at a volume ratio of 1:10 for reaction. After the reaction Then add 0.05-5 kg of chemical reagents Na 2 S or/and FeS per ton of waste water to remove heavy metal ions in waste water. This method basically relies on adding Na 2 S or/and FeS to remove heavy metal ions in waste water. The treatment cost is high, and there is a secondary pollution problem of hydrogen sulfide.
发明内容 Contents of the invention
为了克服上述微生物法去除废水中重金属离子反应时间长、培菌池和反应池体积大,还要用Na2S和FeS来去除重金属离子的缺陷,本发明提供一种由微生物菌株原位产生纳米硫化铁(FeSx)材料去除废水中铬等重金属离子的方法。In order to overcome the defects of long reaction time for removing heavy metal ions in waste water by microbial method, large volume of culture tank and reaction tank, and the need to use Na 2 S and FeS to remove heavy metal ions, the present invention provides a method for in-situ production of nano A method for removing heavy metal ions such as chromium in wastewater by iron sulfide (FeS x ) materials.
本发明通过如下方式来实现:The present invention is realized in the following manner:
在专利ZL93106616.6和ZL 96117479.X的基础上,研究出特定的工艺,用脱硫弧菌CB1.268(Desulfovibrio Sp.)、脱硫肠状菌CB1.139(Desulfotomaculum Sp.)和脱硫杆菌CB1.168(Desulfobacter Sp.)组成的复合菌,能原位生产纳米多硫化亚铁(FeSx)材料,经x-电子衍射能谱仪检测,FeSx式中,x=1.1~1.2,该FeSx在酸性条件下,能很好地去除废水中的重金属离子。本复合菌的菌株组成比为:脱硫弧菌CB 1.268(DesulfovibrioSp.):脱硫肠状菌CB 1.139(Desulfotomaculum Sp.):脱硫杆菌CB 1.168(Desulfobacter Sp.)=1∶1∶1。本复合菌生产纳米硫化铁的条件是:厌氧或兼氧培养,pH7.0~7.4,温度30~39℃,含有0.5%~5%(重量/重量)的乳酸蛋白盐、1%~10%(重量/重量)亚铁盐和1%~10%(重量/重量)硫酸盐及K、Mg、Ca、Cu、Mn、B、Si、Mo元素,培养36~72小时便生产出纳米FeSx。该纳米FeSx材料长45~80nm,长宽比15~20,放大30万倍时为条丝状,放大40万倍时为晶格条纹和晶格颗粒,在pH3~4的酸性条件下离解为S2-和Fe2+。S2-和Fe2+离子均能较好地还原Cr6+为Cr3+,S2-还与Ni2+、Cu2+、Zn2+等生成难溶的金属硫化物沉淀,经分离沉淀,这些离子被去除。On the basis of patents ZL93106616.6 and ZL 96117479.X, a specific process has been developed, using Desulfovibrio CB1.268 (Desulfovibrio Sp.), Desulfotomaculum Sp. The composite bacteria composed of 168 (Desulfobacter Sp.) can produce nanometer polysulfide ferrous sulfide (FeS x ) materials in situ. It is detected by x-electron diffraction energy spectrometer, FeS x where x=1.1~1.2, the FeS x Under acidic conditions, it can well remove heavy metal ions in wastewater. The strain composition ratio of the composite bacteria is: Desulfovibrio CB 1.268 (Desulfovibrio Sp.): Desulfovibriobacter CB 1.139 (Desulfotomaculum Sp.): Desulfobacillus CB 1.168 (Desulfobacter Sp.)=1:1:1. The conditions for the composite bacteria to produce nano-iron sulfide are: anaerobic or facultative culture, pH7.0~7.4, temperature 30~39°C, containing 0.5%~5% (weight/weight) of lactic acid protein salt, 1%~10 % (weight/weight) ferrous salt and 1% to 10% (weight/weight) sulfate and K, Mg, Ca, Cu, Mn, B, Si, Mo elements, cultivated for 36 to 72 hours to produce nano-FeS x . The nano-FeS x material is 45-80nm in length, with an aspect ratio of 15-20. When magnified 300,000 times, it is in the form of filaments, and when magnified 400,000 times, it is lattice stripes and lattice particles. It dissociates under acidic conditions of pH 3-4. For S 2- and Fe 2+ . Both S 2- and Fe 2+ ions can effectively reduce Cr 6+ to Cr 3+ , and S 2- can also form insoluble metal sulfide precipitates with Ni 2+ , Cu 2+ , Zn 2+ , etc. Precipitation, these ions are removed.
本发明处理重金属废水方法的工艺步骤如下:The process steps of the present invention's method for processing heavy metal wastewater are as follows:
在培菌器中加入含乳酸蛋白盐、亚铁盐和硫酸盐及K、Mg、Ca、Cu、Mn、B、Si、Mo元素的培养基,调节pH7.0~7.4,加入复合菌剂,控制温度30~39℃,厌氧或兼氧培养36~72小时,将生成的含纳米FeSx的发酵液转移到反应器中,调pH3~4,待纳米FeSx与重金属废水反应后,加NaOH调pH6~8,废水中的重金属离子生成难溶的沉淀,经分离沉淀,达到去除废水中金属离子的目的。Add lactic acid protein salt, ferrous salt and sulfate, and K, Mg, Ca, Cu, Mn, B, Si, Mo elements into the incubator, adjust the pH to 7.0-7.4, add the compound bacterial agent, Control the temperature at 30-39°C, cultivate anaerobic or facultative oxygen for 36-72 hours, transfer the fermented liquid containing nano-FeS x to the reactor, adjust the pH to 3-4, and after the nano-FeS x reacts with heavy metal wastewater, add NaOH adjusts the pH to 6-8, and the heavy metal ions in the wastewater form insoluble precipitates, which can be separated and precipitated to achieve the purpose of removing metal ions in the wastewater.
S2-和Fe2+与Cr6+、Ni2+、Cu2+、Zn2+等的反应见离子反应式(1)至(9)。The reactions of S 2- and Fe 2+ with Cr 6+ , Ni 2+ , Cu 2+ , Zn 2+ etc. are shown in the ionic reaction formulas (1) to (9).
S2-与Cr6+的反应如下式:The reaction of S 2- and Cr 6+ is as follows:
FeSx+H+→Fe2++S2- (1)FeS x +H + →Fe 2+ +S 2- (1)
HCrO4 -+S2-→S↓+H2O+Cr3+ (2)HCrO 4 - +S 2- →S↓+H 2 O+Cr 3+ (2)
Cr2O7 2-+S2-→S↓+H2O+Cr3+ (3)Cr 2 O 7 2- +S 2- →S↓+H 2 O+Cr 3+ (3)
反应式(2)、(3)表明FeSx酸解产生的S2-还原Cr6+为Cr3+,反应完毕后,用NaOH调pH6~7,Cr3+与OH-生成Cr(OH)3沉淀,经固液分离,Cr6+被去除。Reaction formulas (2) and (3) show that the S 2- produced by the acidolysis of FeS x reduces Cr 6+ to Cr 3+ . After the reaction is completed, the pH is adjusted to 6-7 with NaOH, and Cr 3+ and OH- form Cr(OH) 3 Precipitation, after solid-liquid separation, Cr 6+ is removed.
Fe2+与Cr6+的反应式如下:The reaction formula of Fe 2+ and Cr 6+ is as follows:
Fe2++Cr2O7 2-→Cr3++Fe3+ (4)Fe 2+ +Cr 2 O 7 2- →Cr 3+ +Fe 3+ (4)
反应(4)表明FeSx酸解产生的Fe2+还原Cr6+为Cr3+,反应完毕后,用NaOH调pH6~7,生成Cr(OH)3沉淀,经固液分离,Cr6+被去除。Reaction (4) shows that the Fe 2+ produced by the acidolysis of FeS x reduces Cr 6+ to Cr 3+ . After the reaction is completed, the pH is adjusted to 6-7 with NaOH to form Cr(OH) 3 precipitates. After solid-liquid separation, Cr 6+ be removed.
FeS也能直接与CrO4 2-和Cr2O7 2-反应,使其Cr6+还原为Cr3+:FeS can also directly react with CrO 4 2- and Cr 2 O 7 2- to reduce Cr 6+ to Cr 3+ :
CrO4 2-+FeSx→Cr3++Fe3++S↓ (5)CrO 4 2- +FeS x →Cr 3+ +Fe 3+ +S↓ (5)
Cr2O7 2-+FeSx→Cr3++Fe3++S↓ (6)Cr 2 O 7 2- +FeS x →Cr 3+ +Fe 3+ +S↓ (6)
反应完毕后,用NaOH调pH6~7,Cr3+与OH-生成Cr(OH)3沉淀,经固液分离,Cr6+被去除。After the reaction is completed, adjust the pH to 6-7 with NaOH, and Cr 3+ and OH- form Cr(OH) 3 to precipitate. After solid-liquid separation, Cr 6+ is removed.
其次,纳米FeSx酸解产生的S2-还与Ni2+、Cu2+、Zn2+等生成难溶的硫化物沉淀,经分离沉淀,使Ni2+、Cu2+、Zn2+被去除,反应式如下:Secondly, the S 2- produced by the acidolysis of nano-FeS x also forms insoluble sulfide precipitates with Ni 2+ , Cu 2+ , Zn 2+ , etc. After separation and precipitation, Ni 2+ , Cu 2+ , Zn 2+ is removed, the reaction is as follows:
Ni2++S2-→NiS↓ (7)Ni 2+ +S 2- →NiS↓ (7)
Cu2++S2-→CuS↓ (8)Cu 2+ +S 2- →CuS↓ (8)
Zn2++S2-→ZnS↓ (9)Zn 2+ +S 2- →ZnS↓ (9)
从硫化镍溶度积:α1.6×10-24,β2.5×10-22,γ2×10-26和硫化铜溶度积:Cu2S 6×10-48,CuS 6×10-36及硫化锌溶度积:α1.6×10-24,β2.5×10-22可知,这些离子的硫化物的溶解度很小,其生成硫化物沉淀后,残存在溶液中的金属离子的浓度都在国标排放标准以下。Solubility products from nickel sulfide: α1.6×10 -24 , β2.5×10 -22 , γ2×10 -26 and copper sulfide solubility products: Cu 2 S 6×10 -48 ,
再次,纳米FeSx中的Fe2+被氧化为Fe3+,在用NaOH调pH6~7时,Fe3+生成Fe(OH)3沉淀,Fe(OH)3沉淀有很好吸附和混(絮)凝作用,使少许的无机和有机物被吸附去除,使出水水质稳定达标。Thirdly, Fe 2+ in nano-FeS x is oxidized to Fe 3+ , and when the pH is adjusted to 6-7 with NaOH, Fe 3+ forms Fe(OH) 3 precipitates, and Fe(OH) 3 precipitates have good adsorption and mixing ( Flocculation, so that a small amount of inorganic and organic matter is adsorbed and removed, so that the effluent water quality is stable and up to standard.
示范工程表明:纳米FeSx去除废水中重金属离子是化学法(如用化学试剂Na2SO3或FeSO4)去除率的2倍。对Cr6+的去除率达99.99%,对Ni2+、Cu2+、Zn2+的去除率达99.9%。处理出水中Cr6+<0.1mg/L,Ni2+、Cu2+<0.5mg/L,Zn2+<0.2mg/L。所以本发明方法具有去处效率高、成本低等特点。Demonstration projects show that the removal rate of heavy metal ions in wastewater by nano-FeS x is twice that of chemical methods (such as using chemical reagents Na 2 SO 3 or FeSO 4 ). The removal rate of Cr 6+ is 99.99%, and the removal rate of Ni 2+ , Cu 2+ , Zn 2+ is 99.9%. Cr 6+ <0.1mg/L, Ni 2+ , Cu 2+ <0.5mg/L, Zn 2+ <0.2mg/L in the treated water. Therefore, the method of the present invention has the characteristics of high removal efficiency and low cost.
本发明复合菌经36~72小时培养生长后,生成了纳米FeSx,将所生成的纳米FeSx及菌种等混合物,经浓缩、密封、包装即可备用。The compound bacterium of the present invention produces nano- FeSx after 36-72 hours of culture and growth, and the mixture of the produced nano- FeSx and strains is concentrated, sealed and packaged for use.
附图说明 Description of drawings
附图为本发明的纳米FeS处理重金属废水的工艺流程示意图。The accompanying drawing is a schematic diagram of the technological process of treating heavy metal wastewater with nano-FeS of the present invention.
图中:1、2为培菌器;3为废液调节池;4、5为反应器;6为过滤器;7为清水池;8为培养基槽;9为污泥池;10为金属回收器;11为无害化泥饼。In the figure: 1, 2 is the incubator; 3 is the waste liquid adjustment tank; 4, 5 is the reactor; 6 is the filter; 7 is the clear water tank; 8 is the culture medium tank; 9 is the sludge tank; 10 is the metal Recycler; 11 is harmless mud cake.
在培菌器1、2产生的纳米FeSx材料与来自废水调节池3的废水进入反应器4,接着进反应器5进行两级反应,再经过滤器过滤后达标排放7,或回用8,向回用水加培养基进培菌器1或2,在pH7.0~7.4,30~39℃,培养36~72小时产生纳米FeSx供使用。过滤器6的污泥进污泥池9,向回收器10加酸溶解回收金属铬、铜、锌、镍,无害泥饼11可作肥料。The nano-FeS x materials produced in the
具体实施方式 Detailed ways
下面结合说明书附图,对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings of the description.
实施例一:某冷扎厂某车间含高浓度铬废水处理Example 1: Treatment of high-concentration chromium-containing wastewater in a certain workshop of a cold-rolling factory
在培菌器中加入含0.5%的乳酸蛋白盐、1%的亚铁盐和1%的硫酸盐及K、Mg、Ca、Cu、Mn、B、Si、Mo元素的培养基,调节pH7.0~7.4,加入复合菌剂,控制温度30℃,厌氧或兼氧培养36小时,生成含纳米FeSx的复合物,供使用。Add the medium containing 0.5% lactic acid protein salt, 1% ferrous salt and 1% sulfate and K, Mg, Ca, Cu, Mn, B, Si, Mo elements in the incubator to adjust pH7. 0 to 7.4, add compound bacterial agent, control the temperature at 30°C, anaerobic or facultative culture for 36 hours, and generate a composite containing nano-FeS x for use.
每小时处理0.4m3高浓度铬废水,废水(W)与生物纳米FeSx(BN)的比例为2∶1,经过静态混合、反应器反应30min。加1‰的阳离子聚炳烯酰胺(PAM)絮凝沉淀和过滤处理,测出水中铬和硫化物。从表1可见出水中的总铬(TCr≤0.17mg/L)和六价铬(Cr6+≤0.05mg/L)均优于国标的一级排放标(TCr1.5mg/L,Cr6+0.5mg/L),出水中未检出S2-。污泥中的Cr回收率大于97.0%。Treat 0.4m 3 high-concentration chromium wastewater per hour, the ratio of wastewater (W) to bionano FeS x (BN) is 2:1, after static mixing, the reactor reacts for 30 minutes. Add 1‰ of cationic polyacrylamide (PAM) to flocculate and precipitate and filter to measure chromium and sulfide in water. It can be seen from Table 1 that the total chromium (TCr≤0.17mg/L) and hexavalent chromium (Cr 6+ ≤0.05mg/L) in the effluent are both better than the first-level discharge standard of the national standard (TCr1.5mg/L, Cr 6+ 0.5mg/L), S 2- was not detected in the effluent. The recovery rate of Cr in the sludge is greater than 97.0%.
表1冷扎含铬废水处理结果单位:mg/LTable 1 Treatment results of cold-rolled chromium-containing wastewater Unit: mg/L
注:ND为未检出。Note: ND is not detected.
实施例二:某铬渣山渗沥液处理Example 2: Treatment of leachate from a chromium slag mountain
在培菌器中加入含5%的乳酸蛋白盐、10%的亚铁盐和10%的硫酸盐及K、Mg、Ca、Cu、Mn、B、Si、Mo元素的培养基,调节pH7.0~7.4,加入复合菌剂,控制温度35℃,厌氧或兼氧培养48小时,生成含纳米FeSx的复合物,供使用。Add the culture medium that contains 5% lactic acid protein salt, 10% ferrous salt and 10% sulfate and K, Mg, Ca, Cu, Mn, B, Si, Mo elements in the incubator, adjust pH7. 0 to 7.4, add compound bacterial agent, control the temperature at 35°C, anaerobic or facultative culture for 48 hours, and generate a composite containing nano-FeS x for use.
该渗沥液含Cr6+5500mg/L,TCr 5800mg/L,pH14,每小时处理9m3渗沥液,W/BN=1∶1。经静态混合,反应器反应,沉淀和过滤处理,结果列于表2。可见出水中TCr≤0.21mg/L和Cr6+≤0.05mg/L均优于国标的一级排放标准,出水中未检出S2-。污泥中的Cr回收率大于97.5%。The leachate contains Cr 6+ 5500mg/L, TCr 5800mg/L, pH 14, treats 9m 3 leachate per hour, W/BN=1:1. After static mixing, reactor reaction, precipitation and filtration, the results are listed in Table 2. It can be seen that TCr ≤ 0.21mg/L and Cr 6+ ≤ 0.05mg/L in the effluent are better than the first-level discharge standard of the national standard, and no S 2- was detected in the effluent. The recovery rate of Cr in the sludge is greater than 97.5%.
表2某铬渣山渗沥液处理结果单位:mg/LTable 2 Treatment results of leachate from a chromium slag mountain Unit: mg/L
注:ND为未检出。Note: ND is not detected.
实施例三:某矿业废液处理Embodiment 3: A certain mining waste liquid treatment
在培菌器中加入含3%的乳酸蛋白盐、6%的亚铁盐和6%的硫酸盐及K、Mg、Ca、Cu、Mn、B、Si、Mo元素的培养基,调节pH7.0~7.4,加入复合菌剂,控制温度39℃,厌氧或兼氧培养72小时,生成含纳米FeSx的复合物,供使用。Add the medium containing 3% lactic acid protein salt, 6% ferrous salt and 6% sulfate and K, Mg, Ca, Cu, Mn, B, Si, Mo elements in the incubator to adjust pH7. From 0 to 7.4, add compound bacterial agent, control the temperature at 39°C, and cultivate for 72 hours in anaerobic or facultative oxygen to generate a composite containing nano-FeS x for use.
该废液含Cr6+1280mg/L,V3800mg/L,pH2~3,每小时处理1m3废液,W/BN=1∶3。经静态混合,反应器反应,沉淀和过滤处理,结果列于表3。可见出水中Cr6+≤0.05mg/L,TCr≤0.15mg/L,V≤0.01mg/L,均优于国标和四川省的一级排放标准,出水中未检出S2-。污泥中的Cr回收率大于96%,钒的回收率大于93%。The waste liquid contains Cr 6+ 1280mg/L, V3800mg/L, pH2~3, 1m 3 waste liquid is treated per hour, W/BN=1:3. After static mixing, reactor reaction, precipitation and filtration, the results are listed in Table 3. It can be seen that Cr 6+ ≤0.05mg/L, TCr≤0.15mg/L, and V≤0.01mg/L in the effluent are all better than the national standard and the primary discharge standard of Sichuan Province, and no S 2- was detected in the effluent. The recovery rate of Cr in the sludge is greater than 96%, and the recovery rate of vanadium is greater than 93%.
表2某铬渣山渗沥液处理结果 单位:mg/LTable 2 Treatment results of leachate from a chromium slag mountain Unit: mg/L
注:ND为未检出;*四川省标准。Note: ND means not detected; *Standard of Sichuan Province.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710048472A CN100584771C (en) | 2007-02-13 | 2007-02-13 | A method for treating heavy metal wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710048472A CN100584771C (en) | 2007-02-13 | 2007-02-13 | A method for treating heavy metal wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101244859A true CN101244859A (en) | 2008-08-20 |
CN100584771C CN100584771C (en) | 2010-01-27 |
Family
ID=39945584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710048472A Expired - Fee Related CN100584771C (en) | 2007-02-13 | 2007-02-13 | A method for treating heavy metal wastewater |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100584771C (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101428929B (en) * | 2008-12-09 | 2010-08-25 | 中南大学 | Method for direct advanced treatment for heavy metal wastewater with biological agent |
CN102432139A (en) * | 2011-11-04 | 2012-05-02 | 张再峰 | Method for treating steel wire rope acidic heavy metal wastewater |
CN103320811A (en) * | 2013-06-05 | 2013-09-25 | 中南大学 | Method for removing impurities from nickel electrolysis anolyte |
CN104531593A (en) * | 2015-01-15 | 2015-04-22 | 南京工业大学 | Staphylococcus equinus and application thereof in degradation of heavy metal ions |
CN105441361A (en) * | 2015-12-29 | 2016-03-30 | 中国电建集团中南勘测设计研究院有限公司 | Method for preparing strain and microbial agent for heavy metal contaminated water treatment |
CN106115932A (en) * | 2016-06-29 | 2016-11-16 | 华南理工大学 | Sponge iron is collaborative with microorganism goes removing sulfate and the method for Cr (VI) waste water |
CN106115931A (en) * | 2016-06-29 | 2016-11-16 | 华南理工大学 | Sponge iron is collaborative with microorganism goes removing sulfate and the method for Cd (II) waste water |
CN106396124A (en) * | 2016-06-29 | 2017-02-15 | 华南理工大学 | A method of removing sulfates and Cu (II) in waste water through combining sponge iron and microbes |
CN108117224A (en) * | 2016-11-29 | 2018-06-05 | 中国石油化工股份有限公司 | A kind of preprocess method of desulfurization wastewater |
CN108977395A (en) * | 2018-07-31 | 2018-12-11 | 李昕 | Preparation method of bionano material for passivation solidification repairing soil hexavalent chromium pollution |
CN109715814A (en) * | 2016-06-24 | 2019-05-03 | 发育研究院 | Co-culture method for mesophilic pedigree bacterium and at least one hydrogen auxotype sulfate reducing bacteria |
CN109957523A (en) * | 2017-12-25 | 2019-07-02 | 北京有色金属研究总院 | One plant of oligotrophic sulfate reducing bacteria and its technique for river bottom mud heavy metal pollution reparation |
CN112844330A (en) * | 2020-12-30 | 2021-05-28 | 安徽工业大学 | Preparation method and application of chitosan-stabilized zirconium-modified nano ferrous sulfide composite material |
CN116803931A (en) * | 2023-08-15 | 2023-09-26 | 连云港绿润环保科技有限公司 | Recovery system and method for waste alkali liquor containing heavy metals |
TWI835415B (en) * | 2022-11-22 | 2024-03-11 | 國立屏東科技大學 | A kind of bio-produced sulfuric acid fermentation liquid for removing heavy metals in sludge and its manufacturing method and use |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522723A (en) * | 1984-06-01 | 1985-06-11 | Kerr-Mcgee Corporation | Process for the removal and recovery of heavy metals from aqueous solutions |
CN1079083C (en) * | 1996-03-14 | 2002-02-13 | 中国科学院成都生物研究所 | Compound functional bacteria for treatment of various electroplating wastes |
EP1016633A1 (en) * | 1998-12-29 | 2000-07-05 | Pâques Bio Systems B.V. | Process for the treatment of waste water containing heavy metals |
CN1162355C (en) * | 2000-05-10 | 2004-08-18 | 裴锡理 | Biochemical process of treating metal-containing waste water |
CN1290779C (en) * | 2004-02-13 | 2006-12-20 | 成都科泰技术有限公司 | A method for treating high-concentration hazardous waste chromium waste liquid with composite functional bacteria |
-
2007
- 2007-02-13 CN CN200710048472A patent/CN100584771C/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101428929B (en) * | 2008-12-09 | 2010-08-25 | 中南大学 | Method for direct advanced treatment for heavy metal wastewater with biological agent |
CN102432139A (en) * | 2011-11-04 | 2012-05-02 | 张再峰 | Method for treating steel wire rope acidic heavy metal wastewater |
CN103320811A (en) * | 2013-06-05 | 2013-09-25 | 中南大学 | Method for removing impurities from nickel electrolysis anolyte |
CN103320811B (en) * | 2013-06-05 | 2015-08-12 | 中南大学 | A kind of method removing impurity from nickle electrolysis anode solution |
CN104531593A (en) * | 2015-01-15 | 2015-04-22 | 南京工业大学 | Staphylococcus equinus and application thereof in degradation of heavy metal ions |
CN104531593B (en) * | 2015-01-15 | 2017-05-17 | 南京工业大学 | Staphylococcus equinus and application thereof in degradation of heavy metal ions |
CN105441361A (en) * | 2015-12-29 | 2016-03-30 | 中国电建集团中南勘测设计研究院有限公司 | Method for preparing strain and microbial agent for heavy metal contaminated water treatment |
CN109715814A (en) * | 2016-06-24 | 2019-05-03 | 发育研究院 | Co-culture method for mesophilic pedigree bacterium and at least one hydrogen auxotype sulfate reducing bacteria |
CN106115932A (en) * | 2016-06-29 | 2016-11-16 | 华南理工大学 | Sponge iron is collaborative with microorganism goes removing sulfate and the method for Cr (VI) waste water |
CN106115931A (en) * | 2016-06-29 | 2016-11-16 | 华南理工大学 | Sponge iron is collaborative with microorganism goes removing sulfate and the method for Cd (II) waste water |
CN106396124A (en) * | 2016-06-29 | 2017-02-15 | 华南理工大学 | A method of removing sulfates and Cu (II) in waste water through combining sponge iron and microbes |
CN108117224A (en) * | 2016-11-29 | 2018-06-05 | 中国石油化工股份有限公司 | A kind of preprocess method of desulfurization wastewater |
CN108117224B (en) * | 2016-11-29 | 2021-01-05 | 中国石油化工股份有限公司 | Pretreatment method of desulfurization wastewater |
CN109957523A (en) * | 2017-12-25 | 2019-07-02 | 北京有色金属研究总院 | One plant of oligotrophic sulfate reducing bacteria and its technique for river bottom mud heavy metal pollution reparation |
CN109957523B (en) * | 2017-12-25 | 2021-02-23 | 有研工程技术研究院有限公司 | Oligotrophic sulfate reducing bacteria and process for restoring heavy metal pollution of bottom mud of river channel by using oligotrophic sulfate reducing bacteria |
CN108977395A (en) * | 2018-07-31 | 2018-12-11 | 李昕 | Preparation method of bionano material for passivation solidification repairing soil hexavalent chromium pollution |
CN108977395B (en) * | 2018-07-31 | 2022-03-22 | 李昕 | Preparation method of biological nano material for repairing hexavalent chromium pollution in soil through passivation and solidification |
CN112844330A (en) * | 2020-12-30 | 2021-05-28 | 安徽工业大学 | Preparation method and application of chitosan-stabilized zirconium-modified nano ferrous sulfide composite material |
CN112844330B (en) * | 2020-12-30 | 2022-01-04 | 安徽工业大学 | A kind of preparation method and application of chitosan-stabilized zirconium-modified nano-ferrous sulfide composite material |
TWI835415B (en) * | 2022-11-22 | 2024-03-11 | 國立屏東科技大學 | A kind of bio-produced sulfuric acid fermentation liquid for removing heavy metals in sludge and its manufacturing method and use |
CN116803931A (en) * | 2023-08-15 | 2023-09-26 | 连云港绿润环保科技有限公司 | Recovery system and method for waste alkali liquor containing heavy metals |
CN116803931B (en) * | 2023-08-15 | 2024-03-08 | 连云港绿润环保科技有限公司 | Recovery system and method for waste alkali liquor containing heavy metals |
Also Published As
Publication number | Publication date |
---|---|
CN100584771C (en) | 2010-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101244859A (en) | Method for treating heavy metal wastewater | |
Hu et al. | An assessment of sulfate reducing bacteria on treating sulfate-rich metal-laden wastewater from electroplating plant | |
Luptakova et al. | Bioremediation of acid mine drainage contaminated by SRB | |
Liu et al. | Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH | |
Liu et al. | Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment | |
Remoudaki et al. | The mechanism of metals precipitation by biologically generated alkalinity in biofilm reactors | |
He et al. | Enhanced biological antimony removal from water by combining elemental sulfur autotrophic reduction and disproportionation | |
Maree et al. | Biological removal of sulphate from industrial effluents and concomitant production of sulphur | |
US8142658B2 (en) | Process for preparation of substrate for microbial digestion | |
Colling et al. | Bioprocessing of pyrite concentrate from coal tailings for the production of the coagulant ferric sulphate | |
Selvi et al. | Characterization of biospheric bacterial community on reduction and removal of chromium from tannery contaminated soil using an integrated approach of bio-enhanced electrokinetic remediation | |
Stott et al. | Thiocyanate removal from saline CIP process water by a rotating biological contactor, with reuse of the water for bioleaching | |
CN112250197B (en) | Method for treating copper-containing chromium-containing industrial wastewater by using bacterial detoxification | |
CN112605118A (en) | Method for treating extract after persulfate remediation of organic contaminated soil | |
CN112174440A (en) | Heavy metal wastewater treatment process | |
Singh et al. | Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor | |
CN102531271A (en) | Method for treating acid waste water containing copper and iron | |
AU2007234313B2 (en) | Nickel sulphide precipitation processes | |
CN104787933B (en) | Treatment method for gold-smelting cyanide-containing wastewater | |
DE69910062T2 (en) | PROCESS FOR PRODUCING SULFUR HYDROGEN FROM ELEMENTARY SULFUR AND ITS USE FOR THE RECOVERY OF HEAVY METALS | |
CN1559937A (en) | Method for treating high-concentration hazardous waste chromium waste liquid by using efficient functional bacteria | |
Menezes et al. | Effect of pyrite concentration on the quality of ferric sulfate coagulants obtained by leaching from coal tailings | |
CN116143343A (en) | A kind of treatment method and application of liquid, nitrifying bacteria fermentation waste liquid | |
CN101597128A (en) | Method for treating electroplating wastewater by complex breaking | |
CN115893683A (en) | Biological treatment method for acid mine water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100127 Termination date: 20190213 |