CN101236435A - Control Method of Permanent Magnet Synchronous Motor Position Servo System - Google Patents

Control Method of Permanent Magnet Synchronous Motor Position Servo System Download PDF

Info

Publication number
CN101236435A
CN101236435A CNA2008100202116A CN200810020211A CN101236435A CN 101236435 A CN101236435 A CN 101236435A CN A2008100202116 A CNA2008100202116 A CN A2008100202116A CN 200810020211 A CN200810020211 A CN 200810020211A CN 101236435 A CN101236435 A CN 101236435A
Authority
CN
China
Prior art keywords
motor rotor
servo system
permanent magnet
motor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100202116A
Other languages
Chinese (zh)
Inventor
方斯琛
周波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CNA2008100202116A priority Critical patent/CN101236435A/en
Publication of CN101236435A publication Critical patent/CN101236435A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种永磁同步电机位置伺服系统的控制方法,属交流变频及伺服系统领域的控制方案。该方法在传统PID位置伺服系统中,加入最大电机转子的转速趋近控制。通过电机转子的转角位置模式、电机转子的转速模式两种情况下的协调工作,实现永磁同步电机位置伺服系统的可靠起动、快速趋近及精确定位。该方法数字实现简单,通用性较好,对交流变频与伺服系统具有实用价值。The invention discloses a control method for a position servo system of a permanent magnet synchronous motor, belonging to a control scheme in the field of AC frequency conversion and servo systems. In this method, the speed approach control of the largest motor rotor is added to the traditional PID position servo system. Through the coordinated work of the angle position mode of the motor rotor and the speed mode of the motor rotor, the reliable start, fast approach and precise positioning of the permanent magnet synchronous motor position servo system are realized. This method is easy to implement digitally, has good versatility, and has practical value for AC frequency conversion and servo systems.

Description

永磁同步电机位置伺服系统的控制方法 Control Method of Permanent Magnet Synchronous Motor Position Servo System

一、技术领域1. Technical field

本发明涉及交流变频和伺服系统领域的控制方法The invention relates to a control method in the field of AC frequency conversion and servo systems

二、背景技术2. Background technology

现代伺服驱动系统一般都需要在稳定工作条件下,具有规定的转矩、速度或位置精度,并满足系统动态性能的要求,因此采取合理的控制策略至关重要。目前在工业过程控制中采用最多的依然是PID控制,其比例超过95%。PID控制算法简单、鲁棒性好、可靠性高且易于实现。以永磁同步电机交流伺服系统为例,一般采用位置、速度和电流三闭环串联PID控制模式。该控制模式中,当伺服电机逐渐趋近定位位置时,其趋近速度亦同步减小;当电机到达给定位置时,速度减小到零。Modern servo drive systems generally need to have specified torque, speed or position accuracy under stable working conditions, and meet the requirements of system dynamic performance, so it is very important to adopt a reasonable control strategy. At present, PID control is still the most used in industrial process control, and its proportion exceeds 95%. PID control algorithm is simple, robust, high reliability and easy to implement. Taking the permanent magnet synchronous motor AC servo system as an example, the three closed-loop series PID control mode of position, speed and current is generally adopted. In this control mode, when the servo motor gradually approaches the positioning position, its approach speed also decreases synchronously; when the motor reaches a given position, the speed decreases to zero.

已有的文献多立足于该控制模式下PID控制参数的设计和改善,也提出了很多十分有益的方案,但仍局限于先位置环后速度环的控制模式,同时其动、静态性能的提高也仅能依靠控制器参数的优化配置及相关补偿技术的合理运用。如何在保留PID控制稳态特性优良的同时,切实提高交流伺服系统的动态性能,是目前研究的一个热点,已有的解决方案均局限于先位置环后速度环这种控制模式且通用性不强。Most of the existing literature is based on the design and improvement of PID control parameters under this control mode, and many very beneficial schemes have also been proposed, but they are still limited to the control mode of the position loop first and then the speed loop. At the same time, the improvement of its dynamic and static performance It can only rely on the optimal configuration of controller parameters and the reasonable use of related compensation techniques. How to effectively improve the dynamic performance of the AC servo system while retaining the excellent steady-state characteristics of the PID control is a hot topic in current research. The existing solutions are limited to the control mode of the position loop first and then the speed loop and are not universal. powerful.

三、发明内容3. Contents of the invention

本发明的目的旨在提出了一种电机转子的转角位置、电机转子的转速两段式控制方法,以提高位置伺服系统的动态性能。该实现方案的特征在于将电机转子的转角位置定位误差绝对值|Δθ|视为电机转子的转角位置控制模式和电机转子的转速控制模式的切换阀值,并有:The purpose of the present invention is to propose a two-stage control method for the angular position of the motor rotor and the rotational speed of the motor rotor, so as to improve the dynamic performance of the position servo system. The feature of this implementation is that the absolute value of the angular position positioning error |Δθ| of the motor rotor is regarded as the switching threshold between the angular position control mode of the motor rotor and the speed control mode of the motor rotor, and has:

①当电机转子的转角位置定位误差绝对值|Δθ|>ξ(ξ为常数)时,系统进入电机转子的转速控制模式,保证伺服电机可靠起动,并以电机转子的最大转速(额定转速ωn)趋近给定电机转子的转角位置;① When the absolute value of the positioning error of the motor rotor’s angular position |Δθ|>ξ (ξ is a constant), the system enters the motor rotor speed control mode to ensure the reliable start of the servo motor, and the maximum speed of the motor rotor (rated speed ω n ) approaches the angular position of the given motor rotor;

②当电机转子的转角位置定位误差绝对值|Δθ|≤ξ时,系统进入电机转子的转角位置控制模式,并最终实现伺服电机的精确定位。②When the absolute value of the angular position positioning error of the motor rotor |Δθ|≤ξ, the system enters the angular position control mode of the motor rotor, and finally realizes the precise positioning of the servo motor.

四、附图说明4. Description of drawings

图1传统PID控制下永磁同步电机伺服系统的定位曲线。Fig. 1 Positioning curve of permanent magnet synchronous motor servo system under traditional PID control.

图2电机转子的转速控制模式(|Δθ|>ξ)。The speed control mode of the motor rotor in Fig. 2 (|Δθ|>ξ).

图3电机转子的转角位置控制模式(|Δθ|≤ξ)。The angle position control mode of the motor rotor in Fig. 3 (|Δθ|≤ξ).

图4实验结构框图。Fig. 4 Block diagram of experiment structure.

图5传统PID控制下系统的定位波形。Fig. 5 Positioning waveform of the system under traditional PID control.

图6新型控制策略下系统的定位波形。Fig.6 The positioning waveform of the system under the new control strategy.

五、具体实施方式5. Specific implementation

5.1新型交流位置伺服系统的控制方法5.1 The control method of the new AC position servo system

传统PID控制策略下的交流伺服系统(以永磁同步电机位置伺服系统为例)采用位置、速度和电流三闭环串联控制模式。同时在交流位置伺服系统中,位置控制常采用P调节器或带前馈环节的PD调节器;速度控制和电流控制则采用PI调节器或PID调节器。从已有的文献来看,各种交流伺服系统控制器的设计目标都可归纳为:在系统稳定的条件下,扩展定位或调速范围,加快动态响应,消除稳态误差,并保证控制的快速准确。以位置环采用P调节器,速度环采用PI调节器,电流环采用PI调节器控制的传统永磁同步电机位置伺服系统为例,当伺服电机逐渐趋近定位位置时,其趋近速度亦同步减小;当电机到达给定位置时,速度减小到零,其定位过程如图1所示。The AC servo system under the traditional PID control strategy (take the permanent magnet synchronous motor position servo system as an example) adopts three closed-loop series control modes of position, speed and current. At the same time, in the AC position servo system, the position control often uses a P regulator or a PD regulator with a feedforward link; the speed control and current control use a PI regulator or a PID regulator. From the existing literature, the design objectives of various AC servo system controllers can be summarized as follows: under the condition of system stability, expand the range of positioning or speed regulation, speed up dynamic response, eliminate steady-state errors, and ensure control accuracy. Fast and accurate. Take the traditional permanent magnet synchronous motor position servo system controlled by the position loop using the P regulator, the speed loop using the PI regulator, and the current loop using the PI regulator as an example. When the servo motor gradually approaches the positioning position, its approach speed is also synchronized. Decrease; when the motor reaches a given position, the speed decreases to zero, and its positioning process is shown in Figure 1.

本发明在传统PID位置伺服系统控制思路的基础上,通过对电机转子的转角位置伺服系统运行特性进行研究,提出了一种电机转子的转角位置、电机转子的转速两段式控制方法。它将电机转子的转角位置定位误差的绝对值|Δθ|视为电机转子的转角位置、电机转子的转速两种控制模式的切换阀值,当|Δθ|>ξ(常数)时,运用电机转子的转速控制模式实现电机的可靠起动与定位趋近;当|Δθ|≤ξ时,系统切换到电机转子的转角位置控制模式并最终实现伺服电机的精确定位,其实现思想如图2~3所示。On the basis of the traditional PID position servo system control idea, the invention proposes a two-stage control method of the motor rotor's rotational angle position and the motor rotor's rotational speed by studying the operating characteristics of the motor rotor's rotational angle position servo system. It regards the absolute value |Δθ| of the positioning error of the angular position of the motor rotor as the switching threshold between the angular position of the motor rotor and the speed of the motor rotor. When |Δθ|>ξ (constant), the motor rotor is used The speed control mode realizes the reliable starting and positioning approach of the motor; when |Δθ|≤ξ, the system switches to the motor rotor angle position control mode and finally realizes the precise positioning of the servo motor. Show.

该伺服控制方案设计的关键在于两种控制模式的协调工作及其切换阀值的选取。切换阀值|Δθ|取值越小,则伺服系统达到稳态的时间越短,但极易引起超调;切换阀值|Δθ|取值越大,则伺服系统达到稳态的时间越长,影响了伺服系统定位的快速性,故需综合考虑|Δθ|的取值。The key to the design of the servo control scheme lies in the coordination of the two control modes and the selection of the switching threshold. The smaller the value of the switching threshold |Δθ|, the shorter the time for the servo system to reach a steady state, but it is easy to cause overshoot; the larger the value of the switching threshold |Δθ|, the longer the time for the servo system to reach a steady state , affects the rapidity of servo system positioning, so the value of |Δθ| needs to be considered comprehensively.

5.2实验验证5.2 Experimental verification

为进一步验证控制策略的有效性,构建了以TMS320LF2407A为核心的永磁同步电机伺服系统实验平台,其组成部分有:PC+DSP主控运算制单元、智能功率模块IPM(PS21865)、电流及电压传感器单元和2500线的光栅式位置检测单元等,其实验结构框图如图4所示。其中作为被控对象的永磁同步电机参数为:额定功率800W,额定转速3000r/min,每相电枢绕组电阻1.30Ω,直轴电感1.48mH,交轴电感1.47mH,转动惯量1.03kg·cm2In order to further verify the effectiveness of the control strategy, a permanent magnet synchronous motor servo system experiment platform with TMS320LF2407A as the core was built. Its components include: PC+DSP main control operation control unit, intelligent power module IPM (PS21865), current and voltage The block diagram of the experimental structure of the sensor unit and the 2500-line grating position detection unit is shown in Figure 4. Among them, the parameters of the permanent magnet synchronous motor as the controlled object are: rated power 800W, rated speed 3000r/min, armature winding resistance of each phase 1.30Ω, direct axis inductance 1.48mH, quadrature axis inductance 1.47mH, moment of inertia 1.03kg cm 2 .

本发明的算法与传统算法相比并未增加软件实现的复杂性,却显著地提高了伺服系统的动态性能,同时又完全保留了PID控制技术的相关优点。两种算法的实验波形如图5~6所示,两者比较,本发明的算法控制下系统定位时间减少了约80%。Compared with the traditional algorithm, the algorithm of the invention does not increase the complexity of software implementation, but significantly improves the dynamic performance of the servo system, and at the same time completely retains the relevant advantages of the PID control technology. The experimental waveforms of the two algorithms are shown in Figures 5-6. Compared with the two, the system positioning time under the control of the algorithm of the present invention is reduced by about 80%.

Claims (1)

1、一种永磁同步电机位置伺服系统的控制方法,其特征在于将电机转子的转角位置定位误差绝对值|Δθ|视为电机转子的转角位置控制模式和电机转子的转速控制模式的切换阀值,并有:1. A control method for a permanent magnet synchronous motor position servo system, characterized in that the absolute value of the angular position positioning error |Δθ| of the motor rotor is regarded as the switching valve of the angular position control mode of the motor rotor and the speed control mode of the motor rotor value, and have: ①当电机转子的转角位置定位误差绝对值|Δθ|>ξ时,系统进入电机转子的转速控制模式,保证伺服电机可靠起动,并以电机转子的最大转速趋近给定电机转子的转角位置;① When the absolute value of the positioning error of the motor rotor's angular position |Δθ|>ξ, the system enters the motor rotor speed control mode to ensure the reliable start of the servo motor and approach the given motor rotor's angular position at the maximum speed of the motor rotor; ②当电机转子的转角位置定位误差绝对值|Δθ|≤ξ时,系统进入电机转子的转角位置控制模式,并最终实现伺服电机的精确定位,上述式中ξ为常数。②When the absolute value of the angular position positioning error of the motor rotor |Δθ|
CNA2008100202116A 2008-02-27 2008-02-27 Control Method of Permanent Magnet Synchronous Motor Position Servo System Pending CN101236435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100202116A CN101236435A (en) 2008-02-27 2008-02-27 Control Method of Permanent Magnet Synchronous Motor Position Servo System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100202116A CN101236435A (en) 2008-02-27 2008-02-27 Control Method of Permanent Magnet Synchronous Motor Position Servo System

Publications (1)

Publication Number Publication Date
CN101236435A true CN101236435A (en) 2008-08-06

Family

ID=39920096

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100202116A Pending CN101236435A (en) 2008-02-27 2008-02-27 Control Method of Permanent Magnet Synchronous Motor Position Servo System

Country Status (1)

Country Link
CN (1) CN101236435A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820839A (en) * 2011-06-10 2012-12-12 北京理工大学 Precision positioning method for motor servo system in backlash transmission
CN103488189A (en) * 2013-09-24 2014-01-01 国家电网公司 Control method of servo motor
CN104601068A (en) * 2013-10-30 2015-05-06 北京精密机电控制设备研究所 Micro motor direct-drive angle servo device
CN105425640A (en) * 2015-12-15 2016-03-23 北京无线电测量研究所 Hierarchical virtual closed-loop control method and system for turntable
CN106411188A (en) * 2016-11-16 2017-02-15 天津动核芯科技有限公司 Industrial robot intelligent driving system
CN106489105A (en) * 2015-06-18 2017-03-08 三菱电机株式会社 Control parameter adjusting apparatus
CN108227756A (en) * 2018-01-23 2018-06-29 南京科远自动化集团股份有限公司 A kind of high-precision valve door control method
CN110611470A (en) * 2019-09-26 2019-12-24 新乡艾迪威汽车科技有限公司 Control method of speed servo system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820839A (en) * 2011-06-10 2012-12-12 北京理工大学 Precision positioning method for motor servo system in backlash transmission
CN103488189A (en) * 2013-09-24 2014-01-01 国家电网公司 Control method of servo motor
CN103488189B (en) * 2013-09-24 2017-01-18 国家电网公司 Control method of servo motor
CN104601068A (en) * 2013-10-30 2015-05-06 北京精密机电控制设备研究所 Micro motor direct-drive angle servo device
CN106489105A (en) * 2015-06-18 2017-03-08 三菱电机株式会社 Control parameter adjusting apparatus
CN106489105B (en) * 2015-06-18 2018-06-22 三菱电机株式会社 Control parameter adjusting apparatus
CN105425640A (en) * 2015-12-15 2016-03-23 北京无线电测量研究所 Hierarchical virtual closed-loop control method and system for turntable
CN105425640B (en) * 2015-12-15 2018-02-13 北京无线电测量研究所 A kind of layering void closed loop control method and system for turntable
CN106411188A (en) * 2016-11-16 2017-02-15 天津动核芯科技有限公司 Industrial robot intelligent driving system
CN108227756A (en) * 2018-01-23 2018-06-29 南京科远自动化集团股份有限公司 A kind of high-precision valve door control method
CN108227756B (en) * 2018-01-23 2020-12-11 南京科远智慧科技集团股份有限公司 High-precision valve control method
CN110611470A (en) * 2019-09-26 2019-12-24 新乡艾迪威汽车科技有限公司 Control method of speed servo system

Similar Documents

Publication Publication Date Title
CN101236435A (en) Control Method of Permanent Magnet Synchronous Motor Position Servo System
CN102868350B (en) The accurate closed loop starting method of brushless DC motor without position sensor
CN206564553U (en) Brushless DC motor control system based on current hysteresis-band control
CN102055401B (en) System and method for controlling indirect torque of single regulating loop of three-phase induction motor
CN102324882A (en) Hybrid excitation synchronous motor wide speed regulation system and current distribution method
CN101207352B (en) Control method and control device of power supply soft launch for intermittent power supply by balance beam type pumping unit
CN103872951A (en) Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer
CN102957372A (en) Double closed-loop control system of permanent-magnet synchronous motor
CN102904509B (en) Switched reluctance motor substep afterflow method for controlling position-less sensor
CN105071731A (en) Efficient acceleration control method for permanent-magnet synchronous motor
CN103916062A (en) Vector control type electric actuator based on DSP
CN206041865U (en) Direct torque control system of switched reluctance motor based on space voltage vector in commutation region
CN103326390B (en) Dual-singlechip flywheel energy storage system controller and control method
CN105846745A (en) Brushless DC motor direct torque control system and control method
CN104506092A (en) Switched reluctance motor current hysteresis control method based on inductance Fourier decomposition
CN201937536U (en) Single regulating loop indirect torque control device of three-phase induction motor
CN110797891A (en) Flywheel energy storage system of double three-phase brushless direct current motor and control method thereof
CN106982022A (en) A kind of starting method of no electrolytic capacitor inverter permagnetic synchronous motor
CN110266221A (en) A brushless DC motor feedback braking control system for electric vehicles
CN105763121B (en) Synchronous electric spindle towards varying load superhigh speed grinding accelerates strong magnetic control method
CN105811848A (en) Proportional integral (PI) control method for variable gain of switched reluctance motor
CN207339709U (en) Four phase switch reluctances power of motor converter topology structure used for electric vehicle
CN206004563U (en) A kind of brushless DC motor without position sensor commutation phase System with Real-Time
CN102324883B (en) Static frequency conversion starting power factor optimal control method for pumped storage power station
CN103414421A (en) Method for suppressing brushless direct current motor phase change torque fluctuation based on Bang-bang control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080806