CN101230799A - 在燃烧室上游注入膨胀机冷排气实现的燃气轮机功率增大 - Google Patents

在燃烧室上游注入膨胀机冷排气实现的燃气轮机功率增大 Download PDF

Info

Publication number
CN101230799A
CN101230799A CNA2007101281750A CN200710128175A CN101230799A CN 101230799 A CN101230799 A CN 101230799A CN A2007101281750 A CNA2007101281750 A CN A2007101281750A CN 200710128175 A CN200710128175 A CN 200710128175A CN 101230799 A CN101230799 A CN 101230799A
Authority
CN
China
Prior art keywords
air
flow
decompressor
gas turbine
main compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101281750A
Other languages
English (en)
Other versions
CN101230799B (zh
Inventor
米歇尔·纳哈姆京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Rand Co
Original Assignee
米歇尔·纳哈姆京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米歇尔·纳哈姆京 filed Critical 米歇尔·纳哈姆京
Publication of CN101230799A publication Critical patent/CN101230799A/zh
Application granted granted Critical
Publication of CN101230799B publication Critical patent/CN101230799B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supercharger (AREA)

Abstract

本发明提供通过在燃烧室上游注入膨胀机冷排气而增大功率的燃气轮机。燃气轮机功率产生系统(10)包括燃气轮机组件(11),其包括:构造并布置成接收外界进气的主压缩机(12);与主压缩机运行关联的主膨胀涡轮(14);构造并布置成接收来自主压缩机的压缩空气并向主膨胀涡轮供气的燃烧室(16);和与主膨胀涡轮关联以产生电力的发电机(15)。压缩空气储存器(18)储存压缩空气。热交换器(24)构造并布置成接收热源并接收来自储存器的压缩空气,以加热从储存器接收的压缩空气。与热交换器关联的空气膨胀机(28)构造并布置成使加热的压缩空气膨胀以产生额外电力。从膨胀机抽取的气流在燃烧室上游注入燃气轮机组件,以增大燃气轮机组件的功率。

Description

在燃烧室上游注入膨胀机冷排气实现的燃气轮机功率增大
技术领域
本发明涉及带有压缩空气能量储存器和附加膨胀机的功率增大的燃气轮机功率系统;更具体地涉及这样来增大系统的功率,即:使来自储存器的加热了的、高压压缩空气膨胀以产生额外的膨胀机功率,从该膨胀机抽取气流并在燃烧室上游将所抽取的气流注入到燃气轮机内以使燃气轮机功率增大。
背景技术
公知燃气轮机随着外界温度升高或在高海拔情况下功率显著降低。该功率损耗主要与由于进气密度降低引起的燃气轮机气流的质量下降有关。
存在许多旨在恢复燃气轮机由于高外界温度/高海拔而引起的功率损耗的功率增大技术,这些技术包括:
空气注入式功率增大技术,其基于在燃烧室上游注入由外部辅助压缩机输送的(湿润或干燥的)额外气流;
入口冷却器,其冷却外界空气从而提供相应的功率增大;
蒸发性冷却剂、入口雾化以及“湿压缩”技术,所述技术通过将冷却进气与通过燃气轮机的质量流量的增大相结合而提供功率增大;
本申请人的在先美国专利No.5,934,063中公开了一种注入式功率增大技术,该技术基于利用压缩空气能量存储器在燃烧室上游注入空气,通过引用将该专利的内容结合于此。然而,存储器中的压缩空气通常具有比用于增大功率的注入空气所需要的压力高很多的压力。
因此,需要利用压缩空气存储器的高压来进一步提高功率增量,并改进系统的整体耗热率。
发明内容
本发明的目的在于实现以上提到的需求。根据本发明的原理,通过提供这样一种燃气轮机功率产生系统而实现该目的,该系统包括燃气轮机组件,该燃气轮机组件包括:主压缩机,该主压缩机构造并布置成接收外界进气;主膨胀涡轮,该主膨胀涡轮与所述主压缩机在运行上相关联;燃烧室,所述燃烧室构造并布置成接收来自所述主压缩机的压缩空气并向所述主膨胀涡轮供气;以及发电机,该发电机与所述主膨胀涡轮相关联以产生电力。压缩空气储存器储存压缩空气。热交换器构造并布置成接收热源并接收来自所述储存器的压缩空气,从而加热从所述储存器接收的压缩空气。空气膨胀机与所述热交换器相关联,并且构造并布置成使加热了的压缩空气膨胀,以产生额外电力。从所述膨胀机抽取的气流在所述燃烧室上游被注入到所述燃气轮机组件,注入气流的参数与所述主压缩机在注入位置处的流动参数一致。
根据本发明的另一方面,提供了一种增大燃气轮机组件功率的方法。该燃气轮机组件包括:主压缩机,该主压缩机构造并布置成接收外界进气;主膨胀涡轮,该主膨胀涡轮与所述主压缩机在运行上相关联;燃烧室,所述燃烧室构造并布置成接收来自所述主压缩机的压缩空气并向所述主膨胀涡轮供气;以及发电机,该发电机与所述主膨胀涡轮相关联以产生电力。所述方法从压缩空气储存器提供存储的压缩空气。来自所述储存器的压缩空气被加热。在空气膨胀机中使加热了的所述压缩空气膨胀,以产生额外电力。从所述膨胀机抽取气流并在所述燃烧室上游将所抽取的气流注入到所述燃气轮机组件内,所述注入气流的注流参数与所述主压缩机在注入位置处的流动参数一致。
参照附图考虑以下详细描述和所附权利要求,将更加清楚本发明的其它目的、特点及特征,以及结构的有关元件的运行方法和功能、部件的组合以及制造的经济状况,所述附图构成本说明书的一部分。
附图说明
从以下结合附图对本发明优选实施例的详细说明将会更好地理解本发明,在附图中用相同的附图标记指代相同部件,其中:
图1是根据本发明原理提供的燃气轮机功率产生系统的示意性视图,该系统这样增大功率,即:利用压缩空气储存器向膨胀机供应在热交换器中预热的压缩空气,该膨胀机使空气膨胀以通过在燃烧室上游注射膨胀机排放气流而提供额外功率。
图2是根据本发明另一实施例的原理提供的燃气轮机功率产生系统的示意性视图,该系统这样增大功率,即:利用压缩空气储存器向膨胀机供应在热交换器中预热的压缩空气,该膨胀机使空气膨胀以通过在燃烧室上游注射从膨胀机的一级抽取的气流而提供额外功率。
具体实施方式
参照图1,示出了根据本发明实施例的功率增大的燃气轮机功率产生系统,其整体由附图标记10表示。系统10包括整体以附图标记11表示的传统燃气轮机组件11,该燃气轮机组件具有:主压缩机12,该主压缩机在入口13处接收处于外界温度下的进气源并向燃烧室16供应压缩空气;主膨胀涡轮14,该主膨胀涡轮14与主压缩机12在运行上相关联,其中燃烧室16向主膨胀涡轮14供气,而发电机15用于产生电力。
设置有压缩空气储存器18,该储存器优选为地下储存器结构,用于储存被至少一个辅助压缩机20压缩过的空气。在本实施例中,辅助压缩机20由电机21驱动,但是其可由膨胀机或任何其它源驱动。辅助压缩机20在非高峰时间向储存器18填充压缩空气。储存器18的出口22优选与热交换器24相连接。热交换器24还接收来自主膨胀涡轮14的排气25。作为替代或除来自主涡轮14的排气25之外,热交换器24还可接收任何可用的外部热源。
热交换器24的出口26连接至与发电机30相连的膨胀机28。根据本实施例,在高峰时间,从储存器18抽取压缩空气在热交换器24中预热并被送至膨胀机28。加热后的空气通过与发电机30相连的膨胀机28而膨胀,从而产生额外功率。来自膨胀机28的排气在燃烧室16的上游被注入燃气轮机组件11,射流参数由燃气轮机的限制和优化确定。因此,如图1所示,结构32与结构35连通以便于注入空气。在本实施例中,结构32和35优选为管道结构。
燃气轮机与空气注入技术有关的功率总增量通常为20%至25%。附加膨胀机28的额外功率大约为燃气轮机组件11的功率的5至10%,该膨胀机通过大约(占燃气轮机组件入流)12至14%的注入气流进行工作,并利用入口压力为大约60至80巴(典型的存储的压缩空气的压力)、在热交换器24中预热到大约480至500C的入口温度的存储的压缩空气。作为示例,在35C下工作的GE 7241燃气轮机组件通过燃气轮机组件入流的约12%的注入的气流可具有大约38至40MW的总功率增量;膨胀机28的额外功率大约为10MW,从而总的功率增量大约为40至50MW。由于不通过任何额外燃料流(即耗热率为零)而形成额外的膨胀机28功率,从而降低了功率产生系统10的耗热率。
该系统10具有(带有燃气轮机组件11、压缩空气储存器18以及充气压缩机20的原始实施例之外的)以下附加部件:
附加空气膨胀机28
回收燃气涡轮14的排出热并供给膨胀机28的热交换器24
BOP管道及专用件
基于工厂的整体经济状况对系统10的整体参数进行优化,这些经济状况包括:
额外部件的资本及运行成本
燃气轮机功率增量
膨胀机28所产生的额外高峰功率
图2示出了系统10′的另一实施例,该实施例与图1的实施例类似,不过附加膨胀机28将预热了的压缩存储空气从存储空气压力膨胀到大气压力,从而产生更大的功率。此外,膨胀机流速不限制为特定燃气轮机组件所允许的注入流速。而且,按照特定的参数从膨胀机28抽取为了以特定参数增大功率而需要注入燃气轮机组件的空气。
参照图2,来自储存器18的压缩空气被引向从热源(例如,涡轮14的排气)接收热的热交换器24。加热了的空气通过与发电机30相连的膨胀机28膨胀,从而产生额外功率。对膨胀机28的气流进行优化,从而其可与燃气轮机进流一样高。膨胀机28可使得抽取的气流具有与由燃气轮机组件的限制所确定的空气注入技术要求相一致的参数。换言之,注入气流的注入流参数与主压缩机12在注入位置处的流动参数一致。在燃烧室16的上游经由结构33将所抽取的气流注入燃气轮机组件11(经由结构35),燃气轮机功率增量大约20至25%。膨胀机28中的剩余气流通过低压级而膨胀到大气压。膨胀机的额外功率是进行优化的对象,其可以等于燃气轮机的功率。
作为示例,在35度下工作的GE 7241燃气轮机通过(从附加膨胀机28)抽取并注入占燃气轮机入流的约12%的气流可具有大约38至40MW的总功率增量;膨胀机的额外功率可以和燃气轮机功率一样大,并且是进行优化的对象。
燃气轮机/联合循环电厂可采用膨胀机28。该系统优选包括(燃气轮机组件11、压缩空气储存器18以及充气压缩机20之外的)以下附加部件:
空气膨胀机28
回收燃气涡轮14的排出热并供给膨胀机28的热交换器24
BOP管道及专用件
为了说明本发明的结构和功能原理并说明运用优选实施例的方法而示出并描述了上述优选实施例,并且可在不背离这些原理的情况下对所述实施例进行改变。因此,本发明包括涵盖在所附权利要求的精神内的所有修改。

Claims (19)

1.一种燃气轮机功率产生系统,该系统包括:
燃气轮机组件,该燃气轮机组件包括:主压缩机,该主压缩机构造并布置成接收外界进气;主膨胀涡轮,该主膨胀涡轮与所述主压缩机在运行上相关联;燃烧室,所述燃烧室构造并布置成接收来自所述主压缩机的压缩空气并向所述主膨胀涡轮供气;以及发电机,该发电机与所述主膨胀涡轮相关联以产生电力;
用于储存压缩空气的压缩空气储存器;
热交换器,该热交换器构造并布置成接收热源并接收来自所述储存器的压缩空气,从而加热从所述储存器接收的压缩空气,以及
空气膨胀机,该空气膨胀机与所述热交换器相关联,并且构造并布置成使加热了的压缩空气膨胀,以产生额外电力;
其中,从所述膨胀机抽取的气流在所述燃烧室上游被注入到所述燃气轮机组件。
2.根据权利要求1所述的系统,其特征在于,抽取并注入的所述气流是所述膨胀机的排放气流,并且注入气流的注流参数与所述主压缩机在注入位置处的流动参数一致。
3.根据权利要求1所述的系统,其特征在于,抽取并注入的所述气流是来自所述膨胀机的第一级的气流部分,并且所述注入气流的注流参数与所述主压缩机在注入位置处的流动参数一致,剩余部分的气流通过所述膨胀机的至少一个第二级被膨胀到大气压力。
4.根据权利要求1所述的系统,其特征在于,所述热交换器构造并布置成接收来自所述主膨胀涡轮的排气,从而形成所述热源。
5.根据权利要求1所述的系统,其特征在于,该系统还包括至少一个用于对所述压缩空气储存器进行充气的辅助压缩机。
6.根据权利要求1所述的系统,其特征在于,该系统还包括与所述膨胀机相关联的发电机,用于产生额外电力。
7.一种燃气轮机功率产生系统,该系统包括:
燃气轮机组件,该燃气轮机组件包括:主压缩机,该主压缩机构造并布置成接收外界进气;主膨胀涡轮,该主膨胀涡轮与所述主压缩机在运行上相关联;燃烧室,所述燃烧室构造并布置成接收来自所述主压缩机的压缩空气并向所述主膨胀涡轮供气;以及发电机,该发电机与所述主膨胀涡轮相关联以产生电力,
用于储存压缩空气的装置;
接收热源并从所述用于储存的装置接收压缩空气的装置,该装置用于加热从所述用于储存的装置接收的压缩空气,以及
与所述用于加热的装置相关联、用于使加热了的压缩空气膨胀以产生额外电力的装置;
其中,从所述用于膨胀的装置抽取的气流在所述燃烧室上游被注入所述燃气轮机组件。
8.根据权利要求7所述的系统,其特征在于,所述用于膨胀的装置是空气膨胀机。
9.根据权利要求8所述的系统,其特征在于,从所述膨胀机抽取并注入到所述燃气轮机组件内的所述气流是所述膨胀机的排放气流,并且所述注入气流的注流参数与所述主压缩机在注入位置处的流动参数一致。
10.根据权利要求8所述的系统,其特征在于,从所述膨胀机抽取并注入到所述燃气轮机组件内的所述气流是来自所述膨胀机的第一级的气流部分,并且注入气流的注流参数与所述主压缩机在注入位置处的流动参数一致,剩余部分的气流通过所述膨胀机的至少一个第二级被膨胀到大气压力。
11.根据权利要求7所述的系统,其特征在于,所述用于加热的装置是热交换器,该热交换器构造并布置成接收来自所述主膨胀涡轮的排气,从而形成所述热源。
12.根据权利要求7所述的系统,其特征在于,所述用于储存的装置是地下空气储存器。
13.根据权利要求12所述的系统,其特征在于,该系统还包括至少一个用于对所述空气储存器进行充气的辅助压缩机。
14.根据权利要求7所述的系统,其特征在于,该系统还包括与所述膨胀机相关联的发电机,用于产生额外电力。
15.一种增大燃气轮机组件功率的方法,该燃气轮机组件包括:主压缩机,该主压缩机构造并布置成接收外界进气;主膨胀涡轮,该主膨胀涡轮与所述主压缩机在运行上相关联;燃烧室,所述燃烧室构造并布置成接收来自所述主压缩机的压缩空气并向所述主膨胀涡轮供气;以及发电机,该发电机与所述主膨胀涡轮相关联以产生电力;该方法包括:
从压缩空气储存器提供存储的压缩空气;
对来自所述储存器的压缩空气进行加热;
在一空气膨胀机中使加热了的所述压缩空气膨胀,以产生额外电力;以及
从所述膨胀机抽取气流并在所述燃烧室的上游将所抽取的气流注入到所述燃气轮机组件内。
16.根据权利要求15所述的方法,其中,所述抽取并注入的气流是所述膨胀机的排放气流,并且注入气流的注流参数与所述主压缩机在注入位置处的流动参数一致。
17.根据权利要求15所述的方法,其中,所述抽取并注入的气流是来自所述膨胀机的第一级的气流部分,并且所述注入气流的注流参数与所述主压缩机在注入位置处的流动参数一致,剩余部分的气流通过所述膨胀机的至少一个第二级被膨胀到大气压力。
18.根据权利要求15所述的方法,其中,所述加热步骤包括利用来自所述主膨胀涡轮的排热。
19.根据权利要求15所述的方法,其中,该方法包括通过提供与所述膨胀机相结合的发电机而产生额外电力。
CN2007101281750A 2007-01-25 2007-07-09 在燃烧室上游注入膨胀机冷排气实现的燃气轮机功率增大 Expired - Fee Related CN101230799B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/657,661 US20080178601A1 (en) 2007-01-25 2007-01-25 Power augmentation of combustion turbines with compressed air energy storage and additional expander with airflow extraction and injection thereof upstream of combustors
US11/657,661 2007-01-25

Publications (2)

Publication Number Publication Date
CN101230799A true CN101230799A (zh) 2008-07-30
CN101230799B CN101230799B (zh) 2010-06-02

Family

ID=39645042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101281750A Expired - Fee Related CN101230799B (zh) 2007-01-25 2007-07-09 在燃烧室上游注入膨胀机冷排气实现的燃气轮机功率增大

Country Status (5)

Country Link
US (3) US20080178601A1 (zh)
CN (1) CN101230799B (zh)
EA (1) EA010271B1 (zh)
UA (1) UA88929C2 (zh)
WO (1) WO2008091503A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518516A (zh) * 2011-12-14 2012-06-27 华北电力大学 压缩空气蓄能-煤气化发电一体化系统及集成发电方法
CN102588114A (zh) * 2012-02-14 2012-07-18 宁波赛盟科技发展有限公司 一种新型柴油发电机系统
CN102822474A (zh) * 2009-12-08 2012-12-12 德赛尔-兰德公司 用于具有附加发电膨胀器的压缩空气储能应用的简单循环燃气轮机的改造
CN104395684A (zh) * 2012-03-07 2015-03-04 空气光能源Ip有限公司 蓄热器布置在过压区中的蓄压器电站
US8978380B2 (en) 2010-08-10 2015-03-17 Dresser-Rand Company Adiabatic compressed air energy storage process
CN104896764A (zh) * 2015-04-29 2015-09-09 南京瑞柯徕姆环保科技有限公司 一种太阳能热发电方法及装置
CN107407204A (zh) * 2015-03-06 2017-11-28 能源技术研究所 混合燃气轮机发电系统
CN112154262A (zh) * 2018-05-22 2020-12-29 西门子股份公司 具有膨胀机的扩展的燃气轮机工艺

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028531A1 (de) * 2004-06-11 2006-01-05 Alstom Technology Ltd Verfahren zum Betrieb einer Kraftwerksanlage, und Kraftwerksanlage
US7614237B2 (en) * 2007-01-25 2009-11-10 Michael Nakhamkin CAES system with synchronous reserve power requirements
US8261552B2 (en) 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
US7669423B2 (en) * 2007-01-25 2010-03-02 Michael Nakhamkin Operating method for CAES plant using humidified air in a bottoming cycle expander
US7640643B2 (en) * 2007-01-25 2010-01-05 Michael Nakhamkin Conversion of combined cycle power plant to compressed air energy storage power plant
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US7802426B2 (en) 2008-06-09 2010-09-28 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
EP2280841A2 (en) 2008-04-09 2011-02-09 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US20100005809A1 (en) * 2008-07-10 2010-01-14 Michael Anderson Generating electricity through water pressure
WO2010105155A2 (en) 2009-03-12 2010-09-16 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US20110016864A1 (en) * 2009-07-23 2011-01-27 Electric Power Research Institute, Inc. Energy storage system
US8347628B2 (en) * 2009-08-18 2013-01-08 Gerard Henry M Power generation directly from compressed air for exploiting wind and solar power
US20110100010A1 (en) * 2009-10-30 2011-05-05 Freund Sebastian W Adiabatic compressed air energy storage system with liquid thermal energy storage
WO2011056855A1 (en) 2009-11-03 2011-05-12 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8453444B2 (en) * 2010-01-11 2013-06-04 David Haynes Power plant using compressed or liquefied air for energy storage
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
DE102010034246B4 (de) 2010-08-13 2014-09-18 Thomas Seiler Verfahren zum Auf- und Entladen eines Druckgasspeichers
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
WO2012141979A1 (en) * 2011-04-13 2012-10-18 The Regents Of The University Of California Compression-ratio dehumidifier
JP2014522460A (ja) 2011-05-17 2014-09-04 サステインエックス, インコーポレイテッド 圧縮空気エネルギー貯蔵システムにおける効率的二相熱移送のためのシステムおよび方法
US20130091836A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
FR2988433B1 (fr) * 2012-03-23 2014-04-11 Alfred Procede de generation d'energie electrique a partir d'une energie stockee sous forme de gaz comprime et installation de stockage d'energie et de production d'electricite correspondante
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
US8726629B2 (en) 2012-10-04 2014-05-20 Lightsail Energy, Inc. Compressed air energy system integrated with gas turbine
WO2014055717A1 (en) 2012-10-04 2014-04-10 Kraft Robert J Aero boost - gas turbine energy supplementing systems and efficient inlet cooling and heating, and methods of making and using the same
US9003763B2 (en) * 2012-10-04 2015-04-14 Lightsail Energy, Inc. Compressed air energy system integrated with gas turbine
US9388737B2 (en) 2012-10-04 2016-07-12 Powerphase Llc Aero boost—gas turbine energy supplementing systems and efficient inlet cooling and heating, and methods of making and using the same
JP6290909B2 (ja) 2012-10-26 2018-03-07 パワーフェイズ・エルエルシー ガスタービンエネルギー補助システムおよび加熱システム、ならびに、その製造方法および使用方法
US10480418B2 (en) * 2012-10-26 2019-11-19 Powerphase Llc Gas turbine energy supplementing systems and heating systems, and methods of making and using the same
US9938895B2 (en) 2012-11-20 2018-04-10 Dresser-Rand Company Dual reheat topping cycle for improved energy efficiency for compressed air energy storage plants with high air storage pressure
US9915201B2 (en) 2013-03-04 2018-03-13 Rolls-Royce Corporation Aircraft power system
US8984893B2 (en) 2013-04-10 2015-03-24 General Electric Company System and method for augmenting gas turbine power output
WO2015002402A1 (ko) * 2013-07-04 2015-01-08 삼성테크윈 주식회사 가스 터빈 시스템
KR102256476B1 (ko) * 2013-07-04 2021-05-27 한화에어로스페이스 주식회사 가스 터빈 시스템
DE102014105237B3 (de) * 2014-04-11 2015-04-09 Mitsubishi Hitachi Power Systems Europe Gmbh Verfahren und Vorrichtung zum Speichern und Rückgewinnen von Energie
US10215060B2 (en) 2014-11-06 2019-02-26 Powerphase Llc Gas turbine efficiency and power augmentation improvements utilizing heated compressed air
US9777630B2 (en) 2014-11-06 2017-10-03 Powerphase Llc Gas turbine fast regulation and power augmentation using stored air
US10526966B2 (en) 2014-11-06 2020-01-07 Powerphase Llc Gas turbine efficiency and power augmentation improvements utilizing heated compressed air and steam injection
WO2017011151A1 (en) * 2015-07-15 2017-01-19 Powerphase Llc Gas turbine efficiency and power augmentation improvements utilizing heated compressed air and steam injection
US10982599B2 (en) 2015-12-04 2021-04-20 Powerphase International, Llc Gas turbine firing temperature control with air injection system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10393017B2 (en) 2017-03-07 2019-08-27 Rolls-Royce Corporation System and method for reducing specific fuel consumption (SFC) in a turbine powered aircraft
US10767557B1 (en) 2017-03-10 2020-09-08 Ladan Behnia Gas-assisted air turbine system for generating electricity
CN109681279B (zh) * 2019-01-25 2023-10-03 西安热工研究院有限公司 一种含液态空气储能的超临界二氧化碳发电系统及方法
EP4058659A1 (en) 2019-11-16 2022-09-21 Malta Inc. Pumped heat electric storage system
CA3166613A1 (en) * 2020-02-03 2021-08-12 Robert B. Laughlin Reversible turbomachines in pumped heat energy storage systems
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
CN112302742B (zh) * 2020-10-30 2022-11-04 西安热工研究院有限公司 一种具备调峰和稳燃功能的空气储能系统和方法
CN112943393B (zh) * 2021-03-09 2022-12-09 西安交通大学 一种地热能热化学和压缩空气复合储能系统及其运行方法
CN113565590B (zh) * 2021-06-18 2023-07-21 东方电气集团东方汽轮机有限公司 压缩空气储能和燃煤机组耦合的宽负荷深度调峰发电系统
CN114483231B (zh) * 2022-02-09 2023-08-29 西安交通大学 一种压缩空气储能系统及其控制方法
CN116667399B (zh) * 2023-08-01 2023-09-29 九州绿能科技股份有限公司 一种串联储能系统、储能方法及发电方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2061867A5 (zh) * 1969-08-08 1971-06-25 Edf
SU383859A1 (ru) * 1970-12-11 1973-05-23 Способ получения пиковой электроэнергии
US4885912A (en) 1987-05-13 1989-12-12 Gibbs & Hill, Inc. Compressed air turbomachinery cycle with reheat and high pressure air preheating in recuperator
RU2029119C1 (ru) * 1988-05-04 1995-02-20 Гришин Александр Николаевич Газотурбинная установка
CA2110262C (en) * 1991-06-17 1999-11-09 Arthur Cohn Power plant utilizing compressed air energy storage and saturation
IL108546A (en) * 1994-02-03 1997-01-10 Israel Electric Corp Ltd Compressed air energy storage method and system
US5442904A (en) * 1994-03-21 1995-08-22 Shnaid; Isaac Gas turbine with bottoming air turbine cycle
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
US5934063A (en) * 1998-07-07 1999-08-10 Nakhamkin; Michael Method of operating a combustion turbine power plant having compressed air storage
US6038849A (en) 1998-07-07 2000-03-21 Michael Nakhamkin Method of operating a combustion turbine power plant using supplemental compressed air
GB0102028D0 (en) * 2001-01-26 2001-03-14 Academy Projects Ltd An engine and bearings therefor
US6745569B2 (en) * 2002-01-11 2004-06-08 Alstom Technology Ltd Power generation plant with compressed air energy system
DE102004040890A1 (de) * 2003-09-04 2005-03-31 Alstom Technology Ltd Kraftwerksanlage, und Verfahren zum Betrieb

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822474A (zh) * 2009-12-08 2012-12-12 德赛尔-兰德公司 用于具有附加发电膨胀器的压缩空气储能应用的简单循环燃气轮机的改造
US8978380B2 (en) 2010-08-10 2015-03-17 Dresser-Rand Company Adiabatic compressed air energy storage process
CN102518516A (zh) * 2011-12-14 2012-06-27 华北电力大学 压缩空气蓄能-煤气化发电一体化系统及集成发电方法
CN102518516B (zh) * 2011-12-14 2014-01-29 华北电力大学 压缩空气蓄能-煤气化发电一体化系统及集成发电方法
CN102588114A (zh) * 2012-02-14 2012-07-18 宁波赛盟科技发展有限公司 一种新型柴油发电机系统
CN104395684A (zh) * 2012-03-07 2015-03-04 空气光能源Ip有限公司 蓄热器布置在过压区中的蓄压器电站
CN107407204A (zh) * 2015-03-06 2017-11-28 能源技术研究所 混合燃气轮机发电系统
CN104896764A (zh) * 2015-04-29 2015-09-09 南京瑞柯徕姆环保科技有限公司 一种太阳能热发电方法及装置
CN112154262A (zh) * 2018-05-22 2020-12-29 西门子股份公司 具有膨胀机的扩展的燃气轮机工艺

Also Published As

Publication number Publication date
WO2008091503A3 (en) 2009-01-08
US20080178601A1 (en) 2008-07-31
US20080178602A1 (en) 2008-07-31
US20080272598A1 (en) 2008-11-06
EA200701014A1 (ru) 2008-08-29
US7406828B1 (en) 2008-08-05
WO2008091503A4 (en) 2009-02-26
CN101230799B (zh) 2010-06-02
UA88929C2 (uk) 2009-12-10
WO2008091503A2 (en) 2008-07-31
EA010271B1 (ru) 2008-08-29

Similar Documents

Publication Publication Date Title
CN101230799B (zh) 在燃烧室上游注入膨胀机冷排气实现的燃气轮机功率增大
CN101225769B (zh) 通过在压缩机上游注入冷空气而实现的燃气轮机功率增大
US7640643B2 (en) Conversion of combined cycle power plant to compressed air energy storage power plant
US8261552B2 (en) Advanced adiabatic compressed air energy storage system
CA1284587C (en) Compressed air energy storage turbomachinery cycle with compression heat recovery, storage, steam generation and utilization during powergeneration
US5934063A (en) Method of operating a combustion turbine power plant having compressed air storage
CN102292533B (zh) 在底循环式膨胀机中使用增湿的空气的caes电站
CN103967616A (zh) 火力发电系统
US20010000091A1 (en) Method of operating a combustion turbine power plant at full power at high ambient temperature or at low air density using supplemental compressed air
CN104769256A (zh) 燃气轮机能量补充系统和加热系统
MX2014012308A (es) Sistema de almacenamiento de energia de aire comprimido.
CN101936220A (zh) 用二氧化碳冷却涡轮翼型件的系统和方法
US9027322B2 (en) Method and system for use with an integrated gasification combined cycle plant
CN100497902C (zh) 煤联合循环发电系统能量回收方法及装置
JPH07247863A (ja) 空気貯蔵式複合発電プラント
GB2236808A (en) Power generation using energy storage/transfer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: DIESEL LAND COMPANY

Free format text: FORMER OWNER: NAKHAMKIN MICHAEL

Effective date: 20121108

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121108

Address after: American New York

Patentee after: Dresser Rand Company

Address before: new jersey

Patentee before: Michael Nakhamkin

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100602

Termination date: 20140709

EXPY Termination of patent right or utility model