CN101221097A - Simulation method and device for detecting lateral stability of directly laid pipes on sea floor - Google Patents

Simulation method and device for detecting lateral stability of directly laid pipes on sea floor Download PDF

Info

Publication number
CN101221097A
CN101221097A CNA2008100566432A CN200810056643A CN101221097A CN 101221097 A CN101221097 A CN 101221097A CN A2008100566432 A CNA2008100566432 A CN A2008100566432A CN 200810056643 A CN200810056643 A CN 200810056643A CN 101221097 A CN101221097 A CN 101221097A
Authority
CN
China
Prior art keywords
pipeline
soil
sea floor
lateral stability
directly laid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100566432A
Other languages
Chinese (zh)
Other versions
CN100565169C (en
Inventor
高福平
闫术明
吴应湘
赵波
雒承才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mechanics of CAS
Original Assignee
Institute of Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mechanics of CAS filed Critical Institute of Mechanics of CAS
Priority to CNB2008100566432A priority Critical patent/CN100565169C/en
Publication of CN101221097A publication Critical patent/CN101221097A/en
Application granted granted Critical
Publication of CN100565169C publication Critical patent/CN100565169C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The invention discloses a simulation method for detecting the side direction stability of a directly paved submarine pipeline and a simulation device; the invention firstly prepares a soil sample to simulate a seabed, mounts a test pipeline, releases the pipeline to lead the pipeline to generate initial sedimentation under the action of self-gravity when the pipeline is just contacted with the seabed and simultaneously adopts a laser displacement sensor to measure the initial sedimentation amount of the pipeline in a soil body, applies an incline pull to the pipeline through a stepping motor to simulate the actions of a horizontal daggling force and a vertical lifting force of a sea flow to the pipeline, and simultaneously measures the pull of the stepping motor, a horizontal displacement and an additive sedimentation amount during the side direction destabilization process of the pipeline, a displacement field of the soil body at the lower side during the side direction destabilization process of the pipeline, and a soil pressure of the side direction. The utilization of the simulation method and the simulation device of the invention can effectively simulate a bearing soil body, the horizontal dragging force and the vertical lifting force of the single-direction sea flow to the pipeline, etc., of the directly paved submarine pipeline and can monitor the stability parameters like the limit side direction soil resistance of a pipeline foundation in real time, thus being capable of simulating the side stability of the directly paved submarine pipeline.

Description

Detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor
Technical field
The present invention relates to offshore engineering, marine soil mechanics, submarine pipeline engineering field, especially a kind of analogy method and analogue means thereof that detects lateral stability of directly laid pipes on sea floor.
Background technology
Submarine pipeline is an effective tool of carrying oil gas in the marine petroleum development process.Under current load, submarine pipeline will be subjected to the hydrodynamism of horizontal drag and vertical lift; Simultaneously, pipeline also is subjected to self gravitation, the vertical holding power that its below soil body provides and the combined action of lateral resistance.When lateral resistance that the soil body provides is not enough to drag that the balance ocean current causes, pipeline will produce horizontal shift, and loss of stability, when the horizontal displacement of each section of pipeline generation is inequality, pipeline can cause the pipe-line fracture accident with stressed bending when serious.As seen, under marine environment load, can the lateral stability that be laid immediately on the submarine pipeline on the sea bed be directly connected to piping system and normally run.Thereby, under certain pipeline initial settlement amount, the maximum horizontal soil resistance that the effective measuring channel of energy can bear, and then the stability condition of definite pipeline becomes the key issue in the submarine pipeline engineering.
Summary of the invention
Problem at the prior art existence, primary and foremost purpose of the present invention provides a kind of analogy method that detects lateral stability of directly laid pipes on sea floor, utilize this method can effectively simulate the environment that directly laid pipes on sea floor is laid, thereby effectively detect lateral stability of directly laid pipes on sea floor.Further purpose of the present invention provides a kind of analogue means of implementing said method.
For achieving the above object, the present invention detects the analogy method of lateral stability of directly laid pipes on sea floor, is specially:
1) preparation soil sample, the simulation sea bed;
2) installation test pipeline: when pipeline has just contacted with sea bed, discharge pipeline and make it under the self gravitation effect, produce initial settlement, adopt the initial settlement amount of laser displacement sensor measuring channel in the soil body simultaneously.
3) by stepper motor described pipeline is applied oblique pulling force, simulate of horizontal drag and the vertical lift effect of unidirectional ocean current pipeline; Measure pulling force, the horizontal shift of pipe side in the unstability process and the displacement field of subsequent settlement and pipe side below soil body in the unstability process of described stepper motor simultaneously, can analyze the lateral stability of directly laid pipes on sea floor situation by measured data.
A kind of analogue means of implementing the detection lateral stability of directly laid pipes on sea floor of said method, this analogue means comprises soil box and preparation of soil sample system, mechanical load system, parameter measurement system, preparation of soil sample system is used for preparation seabed soil sample in described soil box, so that the pressure-bearing soil body of simulation pipeline; The mechanical load system is used to simulate horizontal drag and the vertical lift effect of unidirectional ocean current to pipeline; Parameter measurement system is used for the DATA REASONING to experiment.
Further, described soil box adopts transparent tempered glass to make, so that observe the dynamic process of pipeline side direction unstability in measuring; Described preparation of soil sample system adopts sand rain legal system to be equipped with the sand soil sample.
Further, described mechanical load system comprises stepper motor, automatic fine tuning device, stay cord, model pipeline, automatic fine tuning device is provided with fixed pulley, stay cord one end is fixedly connected on the transmission shaft of stepper motor, the stay cord other end is fixedlyed connected with model pipeline after walking around described fixed pulley, described automatic fine tuning device can be adjusted described fixed pulley in the vertical direction motion, thereby guarantees to make that in pipe side the angle of described stay cord and soil body surface level is constant in the unstability process.
Further, the angular range of described stay cord and soil body surface level is between 40 °~60 °.
Further, described model pipeline is provided with central shaft and pipe ends freedom, and described stay cord is fixedly connected on the described central shaft, moves with parallel thereby make pipeline to rotate simultaneously.
Further, be set with the two parallel-crank mechanisms that prevent that pipeline from rotating on the described model pipeline, described stay cord is with after model pipeline is fixedlyed connected, and it is parallel mobile to make model pipeline to take place.
Further, described parameter measurement system comprises laser displacement sensor, pulling force sensor, laser particle image speed measurement instrument and soil pressure sensor, and pulling force sensor is arranged on the described stay cord, is used to measure the value of thrust that described stepper motor applies; Laser displacement sensor is used for measuring the initial settlement amount of described model pipeline at the soil body; Laser particle image speed measurement instrument is used for measuring the displacement field of the described model pipeline side direction unstability process below soil body; Soil pressure sensor is arranged under the described model pipeline on the outward flange, and is used to measure the soil pressure that described model pipeline is born.
Utilize the present invention to detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor, can effectively simulate the pressure-bearing soil body of directly laid pipes on sea floor, unidirectional ocean current to the horizontal drag of pipeline and vertical lift etc., and measurement stability parameter in real time, thereby but the lateral stability of sunykatuib analysis directly laid pipes on sea floor.
Description of drawings
Fig. 1 is the structural representation of the embodiment of the invention 1;
Fig. 2 is the structural representation of the embodiment of the invention 2.
Embodiment
Embodiment 1
As shown in Figure 1, the analogue means that the present invention detects lateral stability of directly laid pipes on sea floor comprises soil box and preparation of soil sample system 1, mechanical load system 2, parameter measurement system 3, wherein soil box and preparation of soil sample system 1 comprise soil box 11, the soil body 12, soil box 11 adopts transparent tempered glass to make, so that observe the state of pipeline in measuring; The soil body 12 is made for the sand soil sample that adopts the preparation of sand rain method, thereby better simulated sand sea bed mechanical load system 2 and comprised stepper motor 21, automatic fine tuning device 25, stay cord 22, model pipeline 23, simulation pipeline 23 is the two ends freedom in the present embodiment, pipeline center is provided with central shaft 24, and this pipeline not only translation takes place but also roll when unstability; Automatic fine tuning device 25 is provided with fixed pulley 251, stay cord 22 1 ends are fixedly connected on the transmission shaft of stepper motor 21, stay cord 22 other ends are fixedlyed connected with central shaft 24 via fixed pulley 251 backs, thereby making pipeline to rotate simultaneously moves with parallel, the automatic fine tuning device 25 adjustable pulley 251 in the vertical directions motions of adjusting, thereby guarantee that stay cord 22 is constant with the angle of soil body surface level, make like this and work as pulling force one timing that stepper motor is exported, the level that acts on the model pipeline 23 by stay cord 22 pulls power and the certain ratio of vertical tension maintenance, thereby better reflects the characteristics of the suffered hydrodynamic load of pipeline under the unidirectional action of ocean current.Parameter measurement system 3 comprises laser displacement sensor 32 and 34, pulling force sensor 31, laser particle image speed measurement instrument 33 and soil pressure sensor 35, pulling force sensor 31 is arranged on the stay cord 22, be used to measure the value of thrust that stepper motor 21 applies, laser displacement sensor 34 is used for the initial settlement amount of measurement model pipeline 23 at the soil body 12, laser displacement sensor 32 is used for the horizontal displacement of measurement model pipeline 23 in the unstability process, laser particle image speed measurement instrument 33 is used for the displacement field of the measurement model pipeline 23 side direction unstability processes below soil body, soil pressure sensor 35 is arranged on 23 times outward flanges of model pipeline, and is used for the soil pressure that measurement model pipeline 23 is born.
During work, at first prepare the seabed soil sample, in soil box 11, fill the soil body 12 and simulate sea bed; Model pipeline 23 is installed: when pipeline has just contacted with sea bed, discharge model pipeline 23 and make it under the self gravitation effect, produce initial settlement, adopt the initial settlement amount of laser displacement sensor 34 measurement model pipelines 23 in the soil body simultaneously; Apply oblique pulling force by 21 pairs of model pipeline 23 of stepper motor, simulate of horizontal drag and the vertical lift effect of unidirectional ocean current pipeline; Measure the pulling force of stepper motor 21, the displacement field that passes through horizontal shift and the subsequent settlement in laser displacement sensor 32, the 34 measurement model pipelines 23 side direction unstability processes and pass through the below soil body in the laser particle image speed measurement instrument 33 measuring channel side direction unstability processes by pulling force sensor 31 simultaneously, wherein for horizontal shift and subsequent settlement in the model pipeline 23 side direction unstability processes, also can come record, can show the state of pipeline in the unstability process more intuitively like this by digital camera system is set.Can analyze the lateral stability of directly laid pipes on sea floor situation by all measured data.
Embodiment 2
Simulation pipeline 23 is provided with the anti-rolling device of two parallel-crank mechanisms 26 in the present embodiment, and under the constraint of two parallel-crank mechanisms 26, simulation pipeline 23 can only be moved.Identical among other analogue means and method and the embodiment 1 in the present embodiment.
Detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor for the present invention, simulate the hydrodynamic force of ocean current by the pulling force that stepper motor 21, stay cord 22 apply, can change value of thrust by outputting torsion that changes motor or the angle that changes stay cord 22 and soil body surface level, the angle change scope of stay cord 22 and soil body surface level is between 40 °~60 ° usually.Simulation pipeline 23 weight (unit length) realize by the increase and decrease counterweight, can change its surfaceness by pasting various objectives sand paper at pipe surface.

Claims (8)

1. detect the analogy method of lateral stability of directly laid pipes on sea floor, be specially:
1) preparation soil sample, the simulation sea bed;
2) installation test pipeline: when pipeline has just contacted with sea bed, discharge pipeline and make it under the self gravitation effect, produce initial settlement, adopt the initial settlement amount of laser displacement sensor measuring channel in the soil body simultaneously.
3) by stepper motor described pipeline is applied oblique pulling force, simulate of horizontal drag and the vertical lift effect of unidirectional ocean current pipeline; Measure pulling force, the horizontal shift of pipe side in the unstability process and the displacement field of subsequent settlement and pipe side below soil body in the unstability process of described stepper motor simultaneously, can analyze the lateral stability of directly laid pipes on sea floor situation by measured data.
2. analogue means of implementing the detection lateral stability of directly laid pipes on sea floor of the described method of claim 1, it is characterized in that, this analogue means comprises soil box and preparation of soil sample system, mechanical load system, parameter measurement system, preparation of soil sample system is used for preparation seabed soil sample in described soil box, so that the pressure-bearing soil body of simulation pipeline; The mechanical load system is used to simulate horizontal drag and the vertical lift effect of unidirectional ocean current to pipeline; Parameter measurement system is used for the DATA REASONING to experiment.
3. the analogue means of detection lateral stability of directly laid pipes on sea floor as claimed in claim 2 is characterized in that, described soil box adopts transparent tempered glass to make, so that observe the dynamic process of pipeline side direction unstability in measuring; Described preparation of soil sample system adopts sand rain legal system to be equipped with the sand soil sample.
4. the analogue means of detection lateral stability of directly laid pipes on sea floor as claimed in claim 2, it is characterized in that, described mechanical load system comprises stepper motor, automatic fine tuning device, stay cord, model pipeline, automatic fine tuning device is provided with fixed pulley, stay cord one end is fixedly connected on the transmission shaft of stepper motor, the stay cord other end is fixedlyed connected with model pipeline after walking around described fixed pulley, described automatic fine tuning device can be adjusted described fixed pulley in the vertical direction motion, thereby guarantees to make that in pipe side the angle of described stay cord and soil body surface level is constant in the unstability process.
5. the analogue means of detection lateral stability of directly laid pipes on sea floor as claimed in claim 4 is characterized in that, the angular range of described stay cord and soil body surface level is between 40 °~60 °.
6. the analogue means of detection lateral stability of directly laid pipes on sea floor as claimed in claim 4, it is characterized in that, described model pipeline is provided with central shaft and pipe ends freedom, and described stay cord is fixedly connected on the described central shaft, moves with parallel thereby make pipeline to rotate simultaneously.
7. the analogue means of detection lateral stability of directly laid pipes on sea floor as claimed in claim 4, it is characterized in that, also can be set with the two parallel-crank mechanisms that prevent that pipeline from rotating on the described model pipeline, when described stay cord with after model pipeline is fixedlyed connected, make model pipeline that parallel moving can only be taken place.
8. the analogue means of detection lateral stability of directly laid pipes on sea floor as claimed in claim 2, it is characterized in that, described parameter measurement system comprises laser displacement sensor, pulling force sensor, laser particle image speed measurement instrument and soil pressure sensor, pulling force sensor is arranged on the described stay cord, is used to measure the value of thrust that described stepper motor applies; Laser displacement sensor is used for measuring the initial settlement amount of described model pipeline at the soil body; Laser particle image speed measurement instrument is used for measuring the displacement field of the described model pipeline side direction unstability process below soil body; Soil pressure sensor is arranged under the described model pipeline on the outward flange, and is used to measure the soil pressure that described model pipeline is born.
CNB2008100566432A 2008-01-23 2008-01-23 Detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor Expired - Fee Related CN100565169C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2008100566432A CN100565169C (en) 2008-01-23 2008-01-23 Detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2008100566432A CN100565169C (en) 2008-01-23 2008-01-23 Detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor

Publications (2)

Publication Number Publication Date
CN101221097A true CN101221097A (en) 2008-07-16
CN100565169C CN100565169C (en) 2009-12-02

Family

ID=39631071

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2008100566432A Expired - Fee Related CN100565169C (en) 2008-01-23 2008-01-23 Detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor

Country Status (1)

Country Link
CN (1) CN100565169C (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963542A (en) * 2010-09-13 2011-02-02 中国海洋石油总公司 Slope seabed pipeline in-place stability mechanical loading analog device and method thereof
CN101592588B (en) * 2009-06-23 2012-01-04 中国海洋石油总公司 Pile soil interaction mechanism testing device for riser
CN102435362A (en) * 2011-09-15 2012-05-02 北京航空航天大学 Flexible parallelogram mechanism based force sensor realizing two-stage force resolutions
CN102645346A (en) * 2012-04-09 2012-08-22 浙江大学 Novel submarine pipe soil interaction model test platform
CN102778395A (en) * 2011-05-13 2012-11-14 中国石油天然气股份有限公司 In-service pipeline settlement simulation test method and device
CN103292940A (en) * 2013-03-02 2013-09-11 杭州银江智慧城市技术有限公司 Low-voltage telegraph pole stay cable pre-tightening force remote monitoring system of power line carrier technology
CN103353370A (en) * 2013-06-27 2013-10-16 天津大学 Soil mass resistance determination apparatus when oil gas pipeline on seabed generates transverse large deformation
CN103364124A (en) * 2013-06-27 2013-10-23 天津大学 Measuring device for soil resistance stressed on subsea oil and gas pipeline during horizontal movement
CN103575858A (en) * 2013-10-16 2014-02-12 浙江海洋学院 Experimental device for interaction between three-dimensional steel catenary riser and soil
CN103969068A (en) * 2014-04-11 2014-08-06 中国科学院力学研究所 Method and device for simulating axial interaction between undersea pipe system structure and seabed soil body
CN104374656A (en) * 2014-08-29 2015-02-25 天津大学 Submarine pipeline lateral moving loadtest device
CN104677540A (en) * 2015-01-26 2015-06-03 天津大学 Testing device for measuring lateral soil resistance of pipeline
CN105021383A (en) * 2015-06-08 2015-11-04 浙江海洋学院 A steel catenary standpipe integral analyzing and testing apparatus
CN105065777A (en) * 2015-07-24 2015-11-18 天津大学 Anchoring plate type naked pipeline lateral displacement control device
CN106895955A (en) * 2017-02-27 2017-06-27 天津大学 The analogue measurement apparatus and method of landform are washed away around silt sea bed submarine pipeline
CN109030051A (en) * 2018-07-31 2018-12-18 莱茵技术监督服务(广东)有限公司 A kind of backrest durability degree detection device
CN111044007A (en) * 2019-12-31 2020-04-21 山东科技大学 On-line monitoring system and monitoring method for transverse deformation of filling body
CN111044006A (en) * 2019-12-31 2020-04-21 山东科技大学 On-line monitoring system and monitoring method for deformation of filling body
CN114018539A (en) * 2021-09-15 2022-02-08 山东大学 Seabed oil and gas pipeline stability model test device and test method
CN114034282A (en) * 2021-11-11 2022-02-11 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) Embedded ground settlement monitoring device and monitoring method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463801B1 (en) * 1998-12-02 2002-10-15 Marsco, Inc. Apparatus, method and system for measurement of sea-floor soil characteristics
CN1333252C (en) * 2005-09-16 2007-08-22 中国科学院力学研究所 Simulating method and device for submarine pipeline foundation suspension induced by permeation deformation

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592588B (en) * 2009-06-23 2012-01-04 中国海洋石油总公司 Pile soil interaction mechanism testing device for riser
CN101963542A (en) * 2010-09-13 2011-02-02 中国海洋石油总公司 Slope seabed pipeline in-place stability mechanical loading analog device and method thereof
CN102778395A (en) * 2011-05-13 2012-11-14 中国石油天然气股份有限公司 In-service pipeline settlement simulation test method and device
CN102435362A (en) * 2011-09-15 2012-05-02 北京航空航天大学 Flexible parallelogram mechanism based force sensor realizing two-stage force resolutions
CN102645346A (en) * 2012-04-09 2012-08-22 浙江大学 Novel submarine pipe soil interaction model test platform
CN103292940B (en) * 2013-03-02 2015-05-20 杭州银江智慧城市技术有限公司 Low-voltage telegraph pole stay cable pre-tightening force remote monitoring system of power line carrier technology
CN103292940A (en) * 2013-03-02 2013-09-11 杭州银江智慧城市技术有限公司 Low-voltage telegraph pole stay cable pre-tightening force remote monitoring system of power line carrier technology
CN103353370A (en) * 2013-06-27 2013-10-16 天津大学 Soil mass resistance determination apparatus when oil gas pipeline on seabed generates transverse large deformation
CN103364124A (en) * 2013-06-27 2013-10-23 天津大学 Measuring device for soil resistance stressed on subsea oil and gas pipeline during horizontal movement
CN103575858A (en) * 2013-10-16 2014-02-12 浙江海洋学院 Experimental device for interaction between three-dimensional steel catenary riser and soil
CN103575858B (en) * 2013-10-16 2015-06-17 浙江海洋学院 Experimental device for interaction between three-dimensional steel catenary riser and soil
CN103969068A (en) * 2014-04-11 2014-08-06 中国科学院力学研究所 Method and device for simulating axial interaction between undersea pipe system structure and seabed soil body
CN103969068B (en) * 2014-04-11 2016-08-17 中国科学院力学研究所 The method and device that simulated sea bottom tube structure and seabed soil axially interact
CN104374656A (en) * 2014-08-29 2015-02-25 天津大学 Submarine pipeline lateral moving loadtest device
CN104677540A (en) * 2015-01-26 2015-06-03 天津大学 Testing device for measuring lateral soil resistance of pipeline
CN105021383A (en) * 2015-06-08 2015-11-04 浙江海洋学院 A steel catenary standpipe integral analyzing and testing apparatus
CN105065777A (en) * 2015-07-24 2015-11-18 天津大学 Anchoring plate type naked pipeline lateral displacement control device
CN106895955A (en) * 2017-02-27 2017-06-27 天津大学 The analogue measurement apparatus and method of landform are washed away around silt sea bed submarine pipeline
CN106895955B (en) * 2017-02-27 2019-06-07 天津大学 The analogue measurement device and method of landform are washed away around silt sea bed submarine pipeline
CN109030051A (en) * 2018-07-31 2018-12-18 莱茵技术监督服务(广东)有限公司 A kind of backrest durability degree detection device
CN111044007A (en) * 2019-12-31 2020-04-21 山东科技大学 On-line monitoring system and monitoring method for transverse deformation of filling body
CN111044006A (en) * 2019-12-31 2020-04-21 山东科技大学 On-line monitoring system and monitoring method for deformation of filling body
CN111044006B (en) * 2019-12-31 2021-02-05 山东科技大学 On-line monitoring system and monitoring method for deformation of filling body
CN111044007B (en) * 2019-12-31 2021-02-05 山东科技大学 On-line monitoring system and monitoring method for transverse deformation of filling body
CN114018539A (en) * 2021-09-15 2022-02-08 山东大学 Seabed oil and gas pipeline stability model test device and test method
CN114018539B (en) * 2021-09-15 2023-08-29 山东大学 Submarine oil and gas pipeline stability model test device and test method
CN114034282A (en) * 2021-11-11 2022-02-11 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) Embedded ground settlement monitoring device and monitoring method thereof
CN114034282B (en) * 2021-11-11 2024-01-02 山东省地质矿产勘查开发局第一地质大队(山东省第一地质矿产勘查院) Buried ground subsidence monitoring device and monitoring method thereof

Also Published As

Publication number Publication date
CN100565169C (en) 2009-12-02

Similar Documents

Publication Publication Date Title
CN100565169C (en) Detect the analogy method and the analogue means thereof of lateral stability of directly laid pipes on sea floor
Gaurier et al. Flume tank characterization of marine current turbine blade behaviour under current and wave loading
CN1257407C (en) Wave flow-structural object-seabed power coupling experimental simulating method and appts. thereof
CN102053000B (en) Rotary testing device for vortex-induced vibration for oblique riser under shear current
An et al. A new facility for studying ocean-structure–seabed interactions: The O-tube
CN102109405B (en) Vortex-induced vibration test device for stand pipe under bidirectional shear flow and bidirectional ladder shear flow
CN102012306B (en) Vortex induced vibration rotation testing device for bidirectional shear flow lower inclined vertical pipe
CN103674479B (en) Non-smooth surface fluid friction resistance measurement device and method of testing
Wang et al. Interaction between catenary riser and soft seabed: large-scale indoor tests
CN106442181A (en) Fatigue test device for marine riser external corrosion
CN102072805B (en) Device for testing vortex-induced vibration and rotation of inclined riser under cascade shearing flow
Bridge et al. Steel catenary risers–results and conclusions from large scale simulations of seabed interaction
Jakobsen et al. Characterization of loads on a hemispherical point absorber wave energy converter
CN102607787A (en) Method for testing influences of internal flow to dynamic property of marine risers
CN103353370A (en) Soil mass resistance determination apparatus when oil gas pipeline on seabed generates transverse large deformation
Huang et al. Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test
Guo et al. Performance evaluation of a submerged tidal energy device with a single mooring line
CN104075936A (en) System for monitoring and testing overall process of transverse motion of unrestraint pipe section
Al-Baghdadi et al. Development of an inflight centrifuge screw pile installation and loading system
Xu et al. Experimental investigation on dynamic responses of a spar-type offshore floating wind turbine and its mooring system behaviour
Han et al. A review on the entire installation process of dynamically installed anchors
CN102944480A (en) Device and method for testing uplift bearing capacity of buried pipeline
Gao et al. Model test based soil spring model and application in pipeline thermal buckling analysis
Johanning et al. Offshore reliability approach for floating renewable energy devices
Wang et al. Centrifuge modelling of active pipeline-soil loading under different impact angle in soft clay

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091202

Termination date: 20150123

EXPY Termination of patent right or utility model