CN101219897A - Sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder - Google Patents
Sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder Download PDFInfo
- Publication number
- CN101219897A CN101219897A CNA2007101760882A CN200710176088A CN101219897A CN 101219897 A CN101219897 A CN 101219897A CN A2007101760882 A CNA2007101760882 A CN A2007101760882A CN 200710176088 A CN200710176088 A CN 200710176088A CN 101219897 A CN101219897 A CN 101219897A
- Authority
- CN
- China
- Prior art keywords
- hours
- solution
- acid solution
- sol
- oxalic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 30
- UTBYQPSPFXHANA-UHFFFAOYSA-N [K].[Na].[Li] Chemical compound [K].[Na].[Li] UTBYQPSPFXHANA-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 239000011858 nanopowder Substances 0.000 title claims description 5
- 238000001308 synthesis method Methods 0.000 title claims description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 48
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 16
- 239000002244 precipitate Substances 0.000 claims abstract description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 15
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000047 product Substances 0.000 claims abstract description 13
- 238000001354 calcination Methods 0.000 claims abstract description 11
- 239000010955 niobium Substances 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 10
- 239000013067 intermediate product Substances 0.000 claims abstract description 10
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims abstract description 9
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims abstract description 9
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims abstract description 8
- 239000005416 organic matter Substances 0.000 claims abstract description 6
- KAQHZJVQFBJKCK-UHFFFAOYSA-L potassium pyrosulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OS([O-])(=O)=O KAQHZJVQFBJKCK-UHFFFAOYSA-L 0.000 claims abstract description 6
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 238000009826 distribution Methods 0.000 claims abstract description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 22
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- PSVBHJWAIYBPRO-UHFFFAOYSA-N lithium;niobium(5+);oxygen(2-) Chemical compound [Li+].[O-2].[O-2].[O-2].[Nb+5] PSVBHJWAIYBPRO-UHFFFAOYSA-N 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 27
- 239000000203 mixture Substances 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 7
- 229910052451 lead zirconate titanate Inorganic materials 0.000 abstract description 5
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 abstract description 4
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 238000000634 powder X-ray diffraction Methods 0.000 description 6
- 238000003980 solgel method Methods 0.000 description 6
- ZNULOBXNTNSWBE-UHFFFAOYSA-N ethanol;niobium Chemical compound [Nb].CCO ZNULOBXNTNSWBE-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000010532 solid phase synthesis reaction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 235000015320 potassium carbonate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019651 Nb(OC2H5)5 Inorganic materials 0.000 description 1
- 229910020294 Pb(Zr,Ti)O3 Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- OBTSLRFPKIKXSZ-UHFFFAOYSA-N lithium potassium Chemical compound [Li].[K] OBTSLRFPKIKXSZ-UHFFFAOYSA-N 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002821 niobium Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000003836 solid-state method Methods 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明属于压电陶瓷材料的制备技术领域。目前商用的压电陶瓷仍以锆钛酸铅基陶瓷为主,对环境造成很大损害。本发明步骤:将五氧化二铌和焦硫酸钾按摩尔比为1∶8混合经280-320℃煅烧1-2h得到的产物溶于草酸溶液调pH值至2-3,获得白色沉淀;离心沉淀并溶于草酸溶液,搅拌后得到澄清透明的含铌草酸溶液A;调溶液A至pH值为10-11,经离心得白色沉淀物B;按压电陶瓷铌酸锂钠钾成分配比,将碳酸锂,碳酸钠和碳酸钾溶于乙酸中制得溶液,该溶液与沉淀物B加入到浓度为8-10mol/L的柠檬酸水溶液中,搅拌得到淡黄色透明溶胶C;80-120℃干燥48h得到透明的干凝胶D;300-400℃下处理2h去除有机物得到中间产物E;500~600℃下煅烧2-8h。本发明粉体颗粒尺寸分布范围窄、成分均匀,降低了成本。
The invention belongs to the technical field of preparation of piezoelectric ceramic materials. At present, the commercial piezoelectric ceramics are still based on lead zirconate titanate-based ceramics, which cause great damage to the environment. The steps of the present invention: mix niobium pentoxide and potassium pyrosulfate in a molar ratio of 1:8, and dissolve the product obtained by calcination at 280-320°C for 1-2 hours in oxalic acid solution to adjust the pH value to 2-3 to obtain a white precipitate; centrifuge Precipitate and dissolve in oxalic acid solution, and get a clear and transparent niobium-containing oxalic acid solution A after stirring; adjust the solution A to a pH value of 10-11, and centrifuge to obtain a white precipitate B; press the composition ratio of piezoelectric ceramic lithium sodium potassium niobate , dissolving lithium carbonate, sodium carbonate and potassium carbonate in acetic acid to prepare a solution, adding the solution and precipitate B to an aqueous citric acid solution with a concentration of 8-10mol/L, and stirring to obtain a light yellow transparent sol C; 80-120 Drying at ℃ for 48 hours to obtain transparent xerogel D; treating at 300-400℃ for 2 hours to remove organic matter to obtain intermediate product E; calcining at 500-600℃ for 2-8 hours. The powder particle size distribution range of the invention is narrow, the composition is uniform, and the cost is reduced.
Description
技术领域technical field
无铅压电陶瓷铌酸锂钠钾纳米粉体的溶胶凝胶合成方法属于压电陶瓷材料的制备技术领域。The invention relates to a sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder, which belongs to the technical field of piezoelectric ceramic material preparation.
背景技术Background technique
目前,商用的压电陶瓷仍以锆钛酸铅(Pb(Zr,Ti)O3,缩写为PZT)基陶瓷为主。但是,PZT基陶瓷的主要生产原料为PbO,具有较高的毒性,在生产和回收处理过程中会对人类健康和环境造成很大的损害。At present, the commercial piezoelectric ceramics are still based on lead zirconate titanate (Pb(Zr,Ti)O3, abbreviated as PZT) based ceramics. However, the main raw material of PZT-based ceramics is PbO, which has high toxicity and will cause great damage to human health and the environment during production and recycling.
无铅压电陶瓷铌酸锂钠钾((Li0.06Na0.47K0.47)NbO3,缩写为LNKN)由于其优异的压电性能,引起了人们的广泛关注并被认为是PZT基压电陶瓷的可能替代品。目前,铌酸锂钠钾压电陶瓷粉体的合成一般采用传统固相法(参考文献:Guo Y,Kakimoto K,Ohsato H,“Phase transitional behavior andpiezoelectric properties ofNa0.5K0.5NbO3-LiNbO3 ceramics”[J].AppliedPhysics Letters,2004,85(18):4121-4123),该方法所需煅烧温度较高,且制得的粉体颗粒粗大,难以满足大功率多层压电器件对粉体超细(纳米级)的要求。同时,传统固相法合成的粉体团聚严重,烧结活性低,陶瓷烧结时一般需要1000℃以上高温,高温下K、Na挥发严重,劣化陶瓷性能。Lead-free piezoelectric ceramic lithium sodium potassium niobate ((Li0.06Na0.47K0.47)NbO3, abbreviated as LNKN) has attracted widespread attention due to its excellent piezoelectric properties and is considered to be the best choice for PZT-based piezoelectric ceramics. possible substitutes. At present, the synthesis of potassium lithium niobate piezoelectric ceramic powder generally adopts the traditional solid-phase method (references: Guo Y, Kakimoto K, Ohsato H, "Phase transitional behavior and piezoelectric properties ofNa0.5K0.5NbO3-LiNbO3 ceramics" [J ].AppliedPhysics Letters, 2004,85 (18): 4121-4123), the required calcination temperature of this method is higher, and the obtained powder particles are coarse, it is difficult to meet the requirements of high-power multilayer piezoelectric devices for ultrafine powder ( nanoscale) requirements. At the same time, the powder synthesized by the traditional solid-state method has serious agglomeration and low sintering activity. Generally, high temperature above 1000°C is required for ceramic sintering. At high temperature, K and Na volatilize seriously, deteriorating the performance of ceramics.
溶胶凝胶法是制备超细(纳米)粉体的重要化学方法,显示出超越传统固相法的许多优点,包括成分控制准确,结晶温度低以及由于液相前驱体混合带来的分子水平上的良好均匀性等。到目前为止,还未见溶胶凝胶法制备无铅压电陶瓷铌酸锂钠钾粉体的报道。溶胶凝胶法制备铌酸盐粉体的关键在于铌源的选取,由于乙醇铌(Nb(OC2H5)5)具有良好的溶解性,因此常用作溶胶凝胶法制备铅基铌酸盐陶瓷粉体(如:铌镁酸铅-钛酸铅(PMN-PT)、铌镍酸铅(PNN)等)的铌源(参考文献:ZHAI J W,SHEN B,ZHANG L Y,et a1.“Preparation and dielectric properties by sol-gel derived PMN-PT powder andceramic”[J].Material Chemistry and Physics,2000,64(1):1-4)。但是乙醇铌价格昂贵,极易水解并需要在特殊条件下保存,使用操作烦琐,这限制了用溶胶-凝胶法制备铌酸盐粉体的工业化推广。The sol-gel method is an important chemical method for the preparation of ultrafine (nano) powders, which shows many advantages over the traditional solid-phase method, including accurate composition control, low crystallization temperature and molecular level due to the mixing of liquid phase precursors. good uniformity etc. So far, there is no report on the preparation of lead-free piezoelectric ceramic lithium sodium potassium niobate powder by sol-gel method. The key to the preparation of niobate powder by sol-gel method is the selection of niobium source. Because niobium ethanol (Nb(OC2H5)5) has good solubility, it is often used as a sol-gel method to prepare lead-based niobate ceramic powder. (such as: lead magnesium niobate-lead titanate (PMN-PT), lead niobate nickelate (PNN), etc.) niobium source (references: ZHAI J W, SHEN B, ZHANG L Y, et a1."Preparation and dielectric properties by sol-gel derived PMN-PT powder and ceramic” [J]. Material Chemistry and Physics, 2000, 64(1): 1-4). However, niobium ethanol is expensive, easily hydrolyzed and needs to be stored under special conditions, and the operation is cumbersome, which limits the industrialization of niobate powder prepared by sol-gel method.
发明内容Contents of the invention
本发明的目的是在将五氧化二铌(Nb2O5)转化为可溶性铌盐,作为乙醇铌替代物的基础上,提供一种无铅压电陶瓷铌酸锂钠钾纳米粉体的溶胶凝胶合成方法。The purpose of the present invention is to provide a sol-gel synthesis of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder on the basis of converting niobium pentoxide (Nb2O5) into soluble niobium salt as a substitute for niobium ethanol method.
本发明所采用的无铅压电陶瓷铌酸锂钠钾纳米粉体的溶胶凝胶合成方法,其特征在于:包括以下工艺步骤:The sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder adopted in the present invention is characterized in that: comprising the following process steps:
(1)将五氧化二铌和焦硫酸钾按摩尔比为1∶8混合经280-320℃煅烧1-2h得到的产物溶于草酸溶液;然后用硝酸滴定pH值至2-3,获得白色沉淀;离心分离所得的白色沉淀并溶于草酸溶液,搅拌后得到澄清透明的含铌草酸溶液A;(1) The product obtained by mixing niobium pentoxide and potassium pyrosulfate in a molar ratio of 1:8 and calcining at 280-320°C for 1-2h is dissolved in oxalic acid solution; then titrate the pH value to 2-3 with nitric acid to obtain white Precipitation; the white precipitate obtained by centrifugation is dissolved in oxalic acid solution, and after stirring, a clear and transparent niobium-containing oxalic acid solution A is obtained;
(2)用氨水滴定步骤1中得到的含铌草酸溶液A至pH值为10-11,经离心分离和去离子水洗涤获得白色沉淀物B;(2) Titrate the niobium-containing oxalic acid solution A obtained in step 1 with ammonia water to a pH value of 10-11, and obtain a white precipitate B through centrifugation and deionized water washing;
(3)按压电陶瓷铌酸锂钠钾(Li0.06Na0.47K0.47)NbO3成分配比,将碳酸锂,碳酸钠和碳酸钾溶于乙酸中制得溶液,该溶液与步骤2中得到的白色沉淀物B同时加入到浓度为8-10mol/L的柠檬酸水溶液中,搅拌得到淡黄色透明溶胶C;(3) by piezoelectric ceramic lithium sodium potassium niobate (Li0.06Na0.47K0.47) NbO Composition ratio, lithium carbonate, sodium carbonate and salt of wormwood are dissolved in acetic acid and make solution, and this solution obtains in step 2 The white precipitate B was added to the citric acid aqueous solution with a concentration of 8-10mol/L at the same time, and stirred to obtain a light yellow transparent sol C;
(4)将上述透明溶胶C在80-120℃干燥48h,得到透明的干凝胶D;(4) Dry the above-mentioned transparent sol C at 80-120° C. for 48 hours to obtain a transparent xerogel D;
(5)将上述所得干凝胶D在300-400℃下处理2h去除有机物,得到中间产物E;(5) Treat the xerogel D obtained above at 300-400°C for 2 hours to remove organic matter, and obtain the intermediate product E;
(6)将上述所得中间产物E在500~600℃下煅烧2-8h。(6) Calcining the intermediate product E obtained above at 500-600° C. for 2-8 hours.
本发明采用更加便宜、更易获得的五氧化二铌来代替乙醇铌,通过简单的化学转化过程,得到含铌草酸溶液,从而大大降低了溶胶-凝胶法制备无铅铌酸盐粉体的生产成本。利用本发明提供的方法可以合成高纯、超细的铌酸锂钠钾粉体,该粉体的颗粒尺寸介于20~60nm之间,颗粒形貌近似于立方形,尺寸分布范围窄、成分均匀。本发明相对于固相法生产工艺简单,降低了合成温度,且所得产物具有纳米级均一的粒径。该粉体烧结活性大,满足制备大功率多层压电器件对于粉体超细(纳米级)的要求。The present invention uses cheaper and easier to obtain niobium pentoxide to replace niobium ethanol, and obtains niobium-containing oxalic acid solution through a simple chemical conversion process, thereby greatly reducing the production of lead-free niobate powder prepared by sol-gel method cost. The method provided by the invention can be used to synthesize high-purity, superfine lithium sodium potassium niobate powder, the particle size of the powder is between 20 and 60nm, the particle shape is approximately cubic, the size distribution range is narrow, and the composition uniform. Compared with the solid-phase method, the production process of the present invention is simple, the synthesis temperature is reduced, and the obtained product has a uniform particle diameter of nanometer scale. The powder has high sintering activity and meets the requirement of superfine powder (nanoscale) for the preparation of high-power multilayer piezoelectric devices.
附图说明Description of drawings
图1不同产物的粉末X射线衍射(XRD)图谱。所用仪器为Bruker D-8Advance粉末衍射仪(Cu Kα辐射,λ=1.5406)。其中,曲线a-h分别为按实施例1-8所得到的铌酸锂钠钾粉体的XRD图谱。The powder X-ray diffraction (XRD) pattern of different products of Fig. 1. The instrument used was a Bruker D-8 Advance powder diffractometer (Cu Kα radiation, λ=1.5406 Å). Wherein, the curves a-h are respectively the XRD patterns of the lithium sodium potassium niobate powder obtained according to Examples 1-8.
图2按实施例1得到的铌酸锂钠钾粉体的透射电镜照片和衍射花样。所用仪器为JEM-2010型透射电子显微镜。Fig. 2 is the transmission electron micrograph and diffraction pattern of lithium sodium potassium niobate powder obtained according to embodiment 1. The instrument used is a JEM-2010 transmission electron microscope.
具体实施方式Detailed ways
下面通过实施例进一步阐明本发明的实质性特点和显著优点,本发明决非仅局限于所陈述的实施例。The substantive characteristics and remarkable advantages of the present invention are further clarified by the following examples, and the present invention is by no means limited to the stated examples.
实施例1Example 1
(1)将五氧化二铌和焦硫酸钾按摩尔比为1∶8混合经300℃煅烧2h得到的产物溶于去离子水;然后用硝酸滴定pH值至2,获得白色沉淀;离心分离所得的白色沉淀并溶于草酸溶液,搅拌后得到澄清透明的含铌草酸溶液A;(1) The product obtained by mixing niobium pentoxide and potassium pyrosulfate in a molar ratio of 1:8 and calcining at 300°C for 2 hours was dissolved in deionized water; then the pH value was titrated to 2 with nitric acid to obtain a white precipitate; the obtained product was centrifuged The white precipitate is dissolved in oxalic acid solution, and after stirring, a clear and transparent niobium-containing oxalic acid solution A is obtained;
(2)用氨水滴定步骤1中得到的含铌草酸溶液A至pH值为10,经离心分离和去离子水洗涤获得白色沉淀物B;(2) Titrate the niobium-containing oxalic acid solution A obtained in step 1 with ammonia water to a pH value of 10, and obtain a white precipitate B through centrifugation and deionized water washing;
(3)按压电陶瓷铌酸锂钠钾(Li0.06Na0.47K0.47)NbO3成分配比,将碳酸锂,碳酸钠和碳酸钾溶于乙酸中制得溶液,该溶液与步骤2中得到的白色沉淀物B同时加入到浓度为8-10mol/L的柠檬酸水溶液中,搅拌得到淡黄色透明溶胶C;(3) press piezoelectric ceramic lithium sodium potassium niobate (Li0.06Na0.47K0.47) NbO Composition ratio, lithium carbonate, sodium carbonate and salt of wormwood are dissolved in acetic acid and make solution, this solution and step 2 obtain The white precipitate B was added to the citric acid aqueous solution with a concentration of 8-10mol/L at the same time, and stirred to obtain a light yellow transparent sol C;
(4)将上述透明溶胶C在80℃干燥48h,得到透明的干凝胶D;(4) drying the above-mentioned transparent sol C at 80° C. for 48 hours to obtain a transparent xerogel D;
(5)将上述所得干凝胶D在300℃下处理2h去除有机物,得到中间产物E;(5) Treat the xerogel D obtained above at 300°C for 2 hours to remove organic matter, and obtain the intermediate product E;
(6)将上述所得中间产物E在500℃下煅烧5h得到陶瓷粉体a。(6) Calcining the intermediate product E obtained above at 500° C. for 5 h to obtain ceramic powder a.
实验表明:所得的铌酸锂钠钾粉体均为纯钙钛矿结构,并具有大小均匀、近似立方体状的颗粒形貌,平均晶粒直径为20nm。其余实施例所得的粉末均具有纯钙钛矿相结构和类似的颗粒形貌,并且平均晶粒直径均为纳米级,约为20-60nm。Experiments show that the obtained lithium sodium potassium niobate powder has a pure perovskite structure, and has a uniform size and approximately cubic particle shape, with an average grain diameter of 20nm. The powders obtained in the remaining examples all have a pure perovskite phase structure and similar particle morphology, and the average grain diameters are all nanoscale, about 20-60nm.
实施例2Example 2
将五氧化二铌和焦硫酸钾按摩尔比为1∶8混合经280℃煅烧1h得到的产物溶于去离子水;然后用硝酸滴定pH值至3;将上述所得中间产物E在500℃下煅烧2h,其余条件同实施例1。制得陶瓷粉体b。产物b的粉末X射线衍射图见图1。Mix niobium pentoxide and potassium pyrosulfate at a molar ratio of 1:8 and calcinate at 280°C for 1 hour to dissolve in deionized water; then titrate the pH value to 3 with nitric acid; Calcination 2h, all the other conditions are the same as in Example 1. Prepare ceramic powder b. The powder X-ray diffraction pattern of product b is shown in Figure 1.
实施例3Example 3
将五氧化二铌和焦硫酸钾按摩尔比为1∶8混合经320℃煅烧2h得到的产物溶于去离子水;用氨水滴定含铌草酸溶液A至pH值为11;将透明溶胶C在120℃干燥48h,得到透明的干凝胶D;将上述所得中间产物E在600℃下煅烧5h,其余条件同实施例1。制得陶瓷粉体c。产物c的粉末X射线衍射图见图1。The product obtained by mixing niobium pentoxide and potassium pyrosulfate at a molar ratio of 1:8 and calcining at 320°C for 2 h was dissolved in deionized water; the niobium-containing oxalic acid solution A was titrated with ammonia water to a pH value of 11; the transparent sol C was Dry at 120°C for 48 hours to obtain a transparent xerogel D; the intermediate product E obtained above was calcined at 600°C for 5 hours, and the rest of the conditions were the same as in Example 1. Prepare ceramic powder c. The powder X-ray diffraction pattern of product c is shown in Figure 1.
实施例4Example 4
将符合压电陶瓷铌酸锂钠钾(Li0.06Na0.47K0.47)NbO3成分配比的碳酸锂,碳酸钠和碳酸钾溶于乙酸中制得溶液,该溶液与白色沉淀物B同时加入到浓度为10mol/L的柠檬酸水溶液中;将透明溶胶C在100℃干燥48h,得到透明的干凝胶D,其余条件同实施例1。制得陶瓷粉体d。产物d的粉末X射线衍射图见图1。Lithium carbonate, sodium carbonate and potassium carbonate that meet the piezoelectric ceramic lithium sodium niobate (Li0.06Na0.47K0.47) NbO3 composition ratio are dissolved in acetic acid to prepare a solution, and the solution is added to the white precipitate B at the same time In an aqueous citric acid solution with a concentration of 10 mol/L; the transparent sol C was dried at 100° C. for 48 hours to obtain a transparent xerogel D, and the rest of the conditions were the same as in Example 1. Prepared ceramic powder d. The powder X-ray diffraction pattern of product d is shown in Figure 1.
实施例5Example 5
将干凝胶D在350℃下处理2h去除有机物;将中间产物E在550℃下煅烧2h,其余条件同实施例4。制得陶瓷粉体e。产物e的粉末X射线衍射图见图1。The xerogel D was treated at 350°C for 2h to remove organic matter; the intermediate product E was calcined at 550°C for 2h, and the other conditions were the same as in Example 4. Prepared ceramic powder e. The powder X-ray diffraction pattern of product e is shown in Figure 1.
实施例6Example 6
将干凝胶D在400℃下处理2h去除有机物;将中间产物E在600℃下煅烧8h,其余条件同实施例4。制得陶瓷粉体f。产物f的粉末X射线衍射图见图1。Dry gel D was treated at 400°C for 2h to remove organic matter; intermediate product E was calcined at 600°C for 8h, and the other conditions were the same as in Example 4. Prepare ceramic powder f. The powder X-ray diffraction pattern of product f is shown in Figure 1.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710176088A CN100575305C (en) | 2007-10-19 | 2007-10-19 | Sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710176088A CN100575305C (en) | 2007-10-19 | 2007-10-19 | Sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101219897A true CN101219897A (en) | 2008-07-16 |
CN100575305C CN100575305C (en) | 2009-12-30 |
Family
ID=39630019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710176088A Expired - Fee Related CN100575305C (en) | 2007-10-19 | 2007-10-19 | Sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100575305C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102030530A (en) * | 2010-11-24 | 2011-04-27 | 华中科技大学 | Preparation method of potassium-sodium niobate leadless piezo-electric ferroelectric ceramic |
CN101386426B (en) * | 2008-10-16 | 2011-06-01 | 西安交通大学 | A kind of preparation method of lead-free piezoelectric potassium sodium niobate film |
CN101613201B (en) * | 2009-06-25 | 2011-11-30 | 南京航空航天大学 | Method for synthesizing potassium-sodium niobate leadless piezoelectric ceramic powder by two hydro-thermal steps |
CN102557636A (en) * | 2012-02-22 | 2012-07-11 | 北京工业大学 | Sol-gel synthesis method for bismuth layer high-temperature piezoelectric ceramic sodium bismuth niobate nanopowder |
CN101747056B (en) * | 2009-12-23 | 2012-12-12 | 聊城大学 | Preparation method of (1-x) PMN-xPT ceramic (powder) material |
US9548439B2 (en) | 2011-08-24 | 2017-01-17 | National Research Council Of Canada | Porosity control in piezoelectric films |
CN110683844A (en) * | 2018-07-06 | 2020-01-14 | 太阳诱电株式会社 | Piezoelectric ceramic composition, method for producing same, piezoelectric ceramic, piezoelectric element, and piezoelectric vibration device |
CN110862489A (en) * | 2019-12-10 | 2020-03-06 | 界首市方舟鞋业有限公司 | Noise-reduction high-strength high-heeled shoe sole material and preparation method thereof |
-
2007
- 2007-10-19 CN CN200710176088A patent/CN100575305C/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101386426B (en) * | 2008-10-16 | 2011-06-01 | 西安交通大学 | A kind of preparation method of lead-free piezoelectric potassium sodium niobate film |
CN101613201B (en) * | 2009-06-25 | 2011-11-30 | 南京航空航天大学 | Method for synthesizing potassium-sodium niobate leadless piezoelectric ceramic powder by two hydro-thermal steps |
CN101747056B (en) * | 2009-12-23 | 2012-12-12 | 聊城大学 | Preparation method of (1-x) PMN-xPT ceramic (powder) material |
CN102030530A (en) * | 2010-11-24 | 2011-04-27 | 华中科技大学 | Preparation method of potassium-sodium niobate leadless piezo-electric ferroelectric ceramic |
US9548439B2 (en) | 2011-08-24 | 2017-01-17 | National Research Council Of Canada | Porosity control in piezoelectric films |
CN102557636A (en) * | 2012-02-22 | 2012-07-11 | 北京工业大学 | Sol-gel synthesis method for bismuth layer high-temperature piezoelectric ceramic sodium bismuth niobate nanopowder |
CN102557636B (en) * | 2012-02-22 | 2013-07-31 | 北京工业大学 | Sol-gel synthesis method for bismuth layer high-temperature piezoelectric ceramic sodium bismuth niobate nanopowder |
CN110683844A (en) * | 2018-07-06 | 2020-01-14 | 太阳诱电株式会社 | Piezoelectric ceramic composition, method for producing same, piezoelectric ceramic, piezoelectric element, and piezoelectric vibration device |
CN110683844B (en) * | 2018-07-06 | 2023-01-03 | 太阳诱电株式会社 | Piezoelectric ceramic composition, method for producing same, piezoelectric ceramic, piezoelectric element, and piezoelectric vibration device |
US11895924B2 (en) | 2018-07-06 | 2024-02-06 | Taiyo Yuden Co., Ltd. | Piezoelectric ceramic composition and manufacturing method thereof, including piezoelectric ceramic, piezoelectric element, and piezoelectric vibration device |
CN110862489A (en) * | 2019-12-10 | 2020-03-06 | 界首市方舟鞋业有限公司 | Noise-reduction high-strength high-heeled shoe sole material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100575305C (en) | 2009-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101219897A (en) | Sol-gel synthesis method of lead-free piezoelectric ceramic lithium sodium potassium niobate nanopowder | |
CN103276448B (en) | A kind of preparation method of perovskite structure lead titanate monocrystal nano sheet | |
CN101618889B (en) | Method for preparing lead titanate nano column automatically assembled by perovskite structure nano pieces | |
CN102369162A (en) | Method for producing alkali metal niobate particles, and alkali metal niobate particles | |
CN102534794B (en) | Preparation method for perovskite lead titanate single-crystal nanometer sheet | |
CN102153350B (en) | Method for preparing potassium niobate nano powder | |
CN102925979A (en) | Method for preparing perovskite lead titanate crystal nanosheet | |
CN103253699A (en) | Self-assembled structure of perovskite/lead titanate nanosheet and preparation method thereof | |
GB2469285A (en) | Ferroelectric niobate materials formed by spray pyrolysis | |
CN102923766B (en) | Preparation method of lead-titanate ceramic single-crystal nanosheet | |
CN105129861A (en) | A kind of preparation method of bismuth ferrite BiFeO3 nanosheet | |
CN101831710B (en) | Method for preparing lead titanate monocrystal nanometer branch crystal with perovskite structure | |
CN101050118A (en) | Method for preparing ceramics powder body of perovskite | |
CN104211116A (en) | A preparation method and product of Bi4Ti3O12 single crystal nanorods | |
CN102925980B (en) | Preparation method of tetragonal perovskite structure lead zirconate ceramic single crystal nanosheet | |
CN102030531B (en) | Method for preparing potassium sodium niobate nano powder | |
CN103603030B (en) | The preparation method of the one-dimensional columnar structure lead titanate monocrystal nano fiber that a kind of size is controlled | |
CN102677145B (en) | Preparation method of perovskite structure lead titanate single crystal nanoparticles | |
CN1321901C (en) | Coprecipitation process of preparing relation base niobate ferroelectric powder | |
CN102557636B (en) | Sol-gel synthesis method for bismuth layer high-temperature piezoelectric ceramic sodium bismuth niobate nanopowder | |
CN104211117A (en) | A preparation method and product of Bi4Ti3O12 nanosheets | |
JP5765506B1 (en) | Method for producing barium titanate powder | |
CN115353145A (en) | A Method for Preparing Sn:(Ba,Ca)TiO3 Powder Using Vacuum Plasma Field Assisted Sol-Gel Technology | |
CN107128974A (en) | A kind of niobium pentoxide nano raw powder's production technology | |
CN1329304C (en) | Method for liquid phase synthesis of barium titanate nanopowder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091230 Termination date: 20101019 |