CN101216541B - Magnetic resonance image-forming system gradient field spherical harmonic coefficient obtaining method - Google Patents

Magnetic resonance image-forming system gradient field spherical harmonic coefficient obtaining method Download PDF

Info

Publication number
CN101216541B
CN101216541B CN2008100562041A CN200810056204A CN101216541B CN 101216541 B CN101216541 B CN 101216541B CN 2008100562041 A CN2008100562041 A CN 2008100562041A CN 200810056204 A CN200810056204 A CN 200810056204A CN 101216541 B CN101216541 B CN 101216541B
Authority
CN
China
Prior art keywords
mrow
msub
msup
image
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100562041A
Other languages
Chinese (zh)
Other versions
CN101216541A (en
Inventor
代亮
赵磊
韦巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYMBOW MEDICAL TECHNOLOGY Co Ltd
Original Assignee
SYMBOW MEDICAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYMBOW MEDICAL TECHNOLOGY Co Ltd filed Critical SYMBOW MEDICAL TECHNOLOGY Co Ltd
Priority to CN2008100562041A priority Critical patent/CN101216541B/en
Publication of CN101216541A publication Critical patent/CN101216541A/en
Application granted granted Critical
Publication of CN101216541B publication Critical patent/CN101216541B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The invention relates to a method for acquiring spherical harmonic coefficient of gradient field of magnetic resonance imaging system, which comprises the following steps of : (a) constructing a water model coordinate system selecting a mark point Pc(u0, v0) closest to the image center as the original point Op, selecting the u axis direction of an MRI image as the c axis direction, selecting the v axis direction in the image as the r axis direction, and selecting the direction forming a right-handed coordinate system with the c and the r axes as the s axis direction; (b) calculating the MRI coordinates of the mark point Pi according to the water model coordinate system by following steps: (1) ignoring the rotation of the water model in the plane thereof and the translation of the original point; (2) considering the rotation by a theta angle in the plane of the water model around the center of Op and a shaft in the direction of a scan layer slice; and (3) considering the translation of the coordination original point of the water model; and (c) obtaining a linear equation group concerning spherical harmonic coefficients a and b if the magnetic field intensity parameters gamma, theta, phi and image coordinates of a certain point are known, and calculating the coefficients a and b by solving the linear equation group.

Description

Method for acquiring gradient field spherical harmonic coefficient of magnetic resonance imaging system
Technical Field
The invention relates to a method for acquiring a coefficient, in particular to a method for acquiring a gradient field spherical harmonic coefficient of a magnetic resonance imaging system.
Background
In nuclear resonance systems, the non-linearity of the gradient field tends to cause geometric distortions of the image. The geometric distortion of the image is different whether on different magnetic resonance imaging apparatuses or within different fields of view (FOV) of the same magnetic resonance imaging apparatus. Therefore, image correction techniques aiming at the problem of nonlinearity of the gradient field are necessary to improve the accuracy of magnetic resonance image navigation surgery and to judge the feasibility of image research among multiple magnetic resonances in practical applications. The basic process of the magnetic resonance image gradient deformation correction is as follows: firstly, the position offset of a limited number of control points in the space of the magnetic resonance imaging equipment is solved by a certain method, then the coordinate of each pixel of the image to be corrected in the space of the magnetic resonance imaging equipment is calculated, and the offset of the pixel space is calculated by an interpolation method according to the coordinate of each pixel; and converting the spatial offset of the pixel into an offset in an image coordinate system according to the conversion relation between the coordinate system of the magnetic resonance imaging equipment and the image coordinate system, and then compensating the offset into the image coordinate of the pixel, namely completing the gradient deformation correction process of the magnetic resonance image.
Methods for calculating the offset of the control point in the magnetic resonance imaging space can be divided into two types: the first one is to use a three-dimensional water model, which provides control points in a three-dimensional space, to analyze the control points in the magnetic resonance image of the three-dimensional water model to obtain the image deformation amount on the control points in the limited space, and to convert the offset in the image coordinate system of the pixel into a space offset according to the conversion relation between the coordinate system of the magnetic resonance imaging device and the image coordinate system; another approach is to use a descriptive function of the magnetic field, the spherical harmonic function, to calculate the offset of a finite number of control points in the imaging space. The first method relies on the three-dimensional water model, the implementation cost is much higher than that of the second method, and the position offset of the control point can be obtained by imaging and analyzing the three-dimensional water model for multiple times, so the implementation efficiency is low. Before applying the second method, i.e. the calculation of spherical harmonics, the relevant correction parameters within the spherical harmonics are first given. The researchers at Harvard university Jorge Jovicich, SilvestercCzanner have their paper, Reliablility in Multi-Site Structural MRI students: effects of Gradient Non-linear Correction on Phantom and Human Data, Neuron Image (in press) (reliability research of multipoint structural magnetic resonance imaging, effect of Gradient Non-linear Correction in water model and Human body Image, translation in neuro Image) provides a method for calculating relevant Correction parameters. The method is to calculate correction parameters for image correction according to the design parameters of the gradient coil, but the design parameters of the gradient coil are only one of the main factors of image deformation, and other factors are not taken into consideration. Therefore, there is still a certain difference between the actual calibration parameters and the design parameters.
Disclosure of Invention
In view of the above problems, an object of the present invention is to provide a method for obtaining spherical harmonic coefficients of a gradient field of a magnetic resonance imaging system, which accurately calculates correction parameters for a specific gradient coil at a limited number of points in an image space, thereby obtaining real magnetic field gradient parameters.
In order to achieve the purpose, the invention adopts the following technical scheme: a method for obtaining the spherical harmonic coefficient of gradient field in magnetic resonance imaging system includes the following steps:
(a) establishing a water model coordinate system, wherein the origin of the MRI image is V (x)0,y0,z0) With the center V (x) of the MRI image closest to the center of the water-mode imagec,yc,zc) Is marked point Pc(u0,v0) Is the origin O of a water model coordinate systemp(ii) a Taking the u-axis direction in the MRI image as the c-axis direction; taking the v-axis direction in the image as the r-axis direction; the direction of a right-hand coordinate system formed by the c axis and the r axis is taken as the direction of an s axis; arbitrary mark point PiHas a water model coordinate system coordinate of (c)i,ri,si) (ii) a According to OpCalculating the MRI coordinates of the image to obtain
V o p ( x , y , z ) = v c * u 0 * p * v r * v 0 * p + V ( x 0 , y 0 , z 0 ) - - - ( 1 )
Where p is the distance between adjacent pixels. v. ofc,vr,vsThe unit vectors are in the directions of the c, r and s axes, respectively.
(b) Calculating MRI coordinates of the marker point, and comparing the marker point Pi(ci,ri,si) The MRI coordinate can be divided into the following steps through a water model coordinate system:
(i) irrespective of water mouldRotation in its own plane and translation of origin of coordinates, marking point Pi(ci,ri,si) The coordinates in the MRI coordinate system are
V p i ( x , y , z ) = c i * d * v c + r i * d * v r + s i * d * v s - - - ( 2 )
(ii) Considering the water model itself in the plane with OpA mark point P is rotated by an angle theta by taking the layer direction for scanning as an axis as a circle centeriThe coordinates in the MRI coordinate system need to be multiplied by the rotation matrix Trot
<math><mrow> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>*</mo> <msub> <mi>T</mi> <mi>rot</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math>
T rot = t * x * x + c t * x * y + s * z t * x * z - s * y 0 t * x * y - s * z t * y * y + c t * y * z + s * x 0 t * x * z + s * y t * y * y + c t * z * z + c 0 0 0 0 1
c=cos(θ),s=sin(θ),t=1-c
Wherein x, y, z are the coordinates of the layer direction vector;
(iii) considering the translation of the origin of the water model coordinates, the point P is markediThe coordinates in the MRI coordinate system are
<math><mrow> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>y</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>z</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>V</mi> <msub> <mi>o</mi> <mi>p</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
Wherein, Vpi(x ', y ', z ') is the mark point PiActual coordinates in the MRI coordinate system. The magnetic field strength can be expressed as:
Br(n,m)(r,θ,_)=rn[av(n,m)cos(m_)+bv(n,m)sin(m_)]×P(n,m)(cosθ) (5)
magnetic field gradient function:
<math><mrow> <msub> <mi>G</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&equiv;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>B</mi> </mrow> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>&equiv;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msubsup> <mi>B</mi> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>L</mi> </msubsup> </mrow> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>B</mi> </mrow> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>&equiv;</mo> <msubsup> <mi>G</mi> <mi>v</mi> <mi>L</mi> </msubsup> <mo>+</mo> <msubsup> <mi>G</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>L</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
the following equations (5), (6) and (7) conclude that:
Vx=∑rn[ax(n,m)cos(m_)+bx(n,m)sin(m_)]×P(n,m)(cosθ)/a(1,1)
Vy=∑rn[ay(n,m)cos(m_)+by(n,m)sin(m_)]×P(n,m)(cosθ)/b(1,1) (8)
Vz=∑rn[az(n,m)cos(m_)+bz(n,m)sin(m_)]×P(n,m)(cosθ)/az(1,0)
wherein a isv(n,m)、bv(n,m)Is a constant, and av(n,m)、bv(n,m)Is the coefficient of an n-th order m-order expansion term in the v direction, P(n,m)(cos θ) is a Legendre polynomial; the left end of the formula (8) is a mark point PiCoordinate values under the MRI coordinate system;
(c) as described above, if γ, θ, _ and MRI image coordinates of a certain point are known, a linear equation system with respect to spherical harmonic coefficients a, b is obtained, and the coefficients a, b can be found by solving the linear equation system.
And (c) gamma, theta and gamma are coordinates of the marking point in the MRI coordinate system. Can be composed of Vpi(x ', y ', z ') was obtained by the following conversion
The adjacent mark points in the step (a) are arranged at equal intervals, and the interval d of the adjacent mark points is a fixed value.
In the step (b), P is set1(u1,v1) In the c direction and P direction on the water moldc(u0,v0) Adjacent marker points; according to P1(u1,v1) And Pc(u0,v0) The image of (2) is calculated, then the calculation formula of the theta angle
θ=tg-1((v1-v0)/(u1-u0))。
Due to the adoption of the technical scheme, the invention has the following advantages: 1. the invention reversely calculates the magnetic field gradient parameters according to the actual image, and overcomes the defect that the design parameters of the gradient coil are different from the real magnetic field gradient parameters. 2. In the process of reversely solving the gradient parameters of the magnetic field, the influence of the arrangement position of the water model on the accuracy of the algorithm is considered, and the accuracy of the algorithm is improved. 3. The invention adopts the search algorithm of the gradient field spherical harmonic parameters, greatly simplifies the steps of algorithm implementation and improves the algorithm efficiency. The method provided by the invention aims at image deformation correction caused by gradient field nonlinearity in magnetic resonance imaging application, and has important significance for improving the precision of magnetic resonance image navigation operation and feasibility analysis of image research among multiple magnetic resonances.
Drawings
FIG. 1 is a schematic view of the structure of the water mold of the present invention
FIG. 2 is a schematic cross-sectional side view of FIG. 1
FIG. 3 is a schematic diagram of a water model image obtained by scanning and a water model coordinate system established based on the water model image
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings and examples.
The method for acquiring the spherical harmonic coefficient of the gradient field of the magnetic resonance imaging system provided by the invention is characterized in that limited points are acquired according to the actual image space, magnetic resonance correction parameters, namely the spherical harmonic coefficient, are reversely solved, and only the parameters below 5 th order are calculated due to the comprehensive consideration of the calculation amount and the correction accuracy.
As shown in fig. 1 and 2, the gradient correction water model is a tool for gradient correction, which is used for both searching system parameters and measuring corrected errors. The gradient correction water mold is a square box body 1, columns 2 which are arranged into a square matrix in an equidistant square matrix mode are arranged in the box body 1, and copper sulfate solution is filled in the columns 2 and can form images in magnetic resonance imaging equipment.
The water model is placed in the effective imaging space, the center of the magnetic field is ensured to be in the water model, and the scanning plane is arranged to scan the obtained water model image, as shown in figure 3. Closest to the MRI image center V (x) within the water-mode imagec,yc,zc) Is marked point PcThe water model image coordinate is (u)0,v0). MRI images with origin V (x)0,y0,z0) Here, x, y, and z in V (x, y, z) are coordinates in the MRI coordinate system. When a water model coordinate system is established, a mark point P is usedcAs the origin O of a coordinate systempThe u-axis direction in the MRI image is defined as the c-axis direction, the v-axis direction in the image is defined as the r-axis direction, and the direction constituting a right-hand coordinate system with the c and r-axes is defined as the s-axis direction. The original point O of the water model is obtained according to the placing mode of the water model and the scanning requirementpDistance V (x) from the center of the imagec,yc,zc) Very closely, the image distortion pairs O due to gradient non-linearity can therefore be ignoredpInfluence of position, then directly according to OpThe MRI coordinates were calculated as follows
V o p ( x , y , z ) = v c * u 0 * p + v r * v 0 * p + V ( x 0 , y 0 , z 0 ) - - - ( 1 )
Where p is the distance between adjacent pixels, vc,vr,vsThe unit vectors are in the directions of the c, r and s axes, respectively.
And for any one of the marker points PiSince image distortion due to the non-linearity of the gradient of the position is significant and the MRI coordinates cannot be calculated using the image coordinates any more, P isiThe MRI coordinates of (1) need to be calculated through a water model coordinate system. Marking point PiHas a water model coordinate system coordinate of (c)i,ri,si) And the interval between adjacent mark points is d, and the calculation can be divided into the following steps:
(i) marking point P without considering the rotation of water model in self plane and the translation of coordinate originiThe coordinates in the MRI coordinate system are
V p i ( x , y , z ) = c i * d * v c + r i * d * v r + s i * d * v s - - - ( 2 )
(ii) Considering the water model itself in the plane with OpAs the center of circle, rotate by theta angle with the slice direction of the scanning layer as the axis, mark point PiThe coordinates in the MRI coordinate system need to be multiplied by the rotation matrix Trot
<math><mrow> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>*</mo> <msub> <mi>T</mi> <mi>ros</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math>
T rot = t * x * x + c t * x * y + s * z t * x * z - s * y 0 t * x * y + s * z t * y * y + c t * y * z + s * x 0 t * x * z + s * y t * y * z - s * x t * z * z + c 0 0 0 0 1
c=cos(θ),s=sin(θ),t=1-c
Wherein x, y and z are coordinates of the slice direction vector; let P1(u1,v1) In the c direction and P direction on the water moldc(u0,v0) Adjacent marker points; according to P1(u1,v1) And Pc(u0,v0) The image of (2) is calculated, then the calculation formula of the theta angle
θ=tg-1((v1-v0)/(u1-u0));
(iii) Considering the translation of the origin of the water model coordinates, the point P is markediThe coordinates in the MRI coordinate system are
<math><mrow> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>y</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>z</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>V</mi> <msub> <mi>o</mi> <mi>p</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
Vpi(x ', y ', z ') is the mark point PiActual coordinates in the MRI coordinate system.
The formula (5), (6) and (7) are
Magnetic field intensity
Br(n,m)(r,θ,_)=rn[av(n,m)cos(m_)+bv(n,m)sin(m_)]×P(n,m)(cosθ)(5)
Magnetic field gradient function
<math><mrow> <msub> <mi>G</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&equiv;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>B</mi> </mrow> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>&equiv;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msubsup> <mi>B</mi> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>L</mi> </msubsup> </mrow> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mrow> <mo>&PartialD;</mo> <mi>B</mi> </mrow> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </msubsup> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>&equiv;</mo> <msubsup> <mi>G</mi> <mi>v</mi> <mi>L</mi> </msubsup> <mo>+</mo> <msubsup> <mi>G</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>L</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
Figure S2008100562041D00056
The following equations (5), (6) and (7) can be derived
Vx=∑rn[ax(n,m)cos(m_)+bz(n,m)sin(m_)]×P(n,m)(cosθ)/ax(1,1)
Vy=∑rn[ay(n,m)cos(m_)+by(n,m)sin(m_)]×P(n,m)(cosθ)/by(1,1) (8)
Vz=∑rn[az(n,m)cos(m_)+bz(n,m)sin(m_)]×P(n,m)(cosθ)/az(1,0)
The left end of the formula (8) is a coordinate value of a certain imaging point after deformation in the MRI coordinate system, and can be obtained by calculating the image coordinate of the imaging point. Wherein a isv(n,m)、bv(n,m)Is a constant number av(n,m)、bv(n,m)Is the coefficient of the n-order m-order expansion term in the v direction and is the inherent characteristic of the nonlinear gradient of the magnetic field. P(n,m)(cos θ) is a Legendre polynomial. γ, θ, _ at the right end are coordinates of the point in the MRI coordinate system (spherical coordinate system). Can be composed of Vpi(x ', y ', z ') is obtained by conversion of the formula (9).
Figure S2008100562041D00061
As described above, when γ, θ, _ and image coordinates of a certain point are known, a linear equation system for a and b is obtained, and coefficients a and b can be obtained by solving the linear equation system. Can then pass through the mark point PiCalculates the MRI coordinate V after the point deformationpi(x,y,z)。
V p i ( x , y , z ) = u * v c * p + v * v r * p + V ( x 0 , y 0 , z 0 ) - - - ( 10 )
For the comprehensive consideration of the calculation amount and the correction accuracy, only the parameter calculation below 5 th order is performed. In spherical harmonics, the parameter av(n,m),bv(n,m)Below order 5, only some of the values are non-zero, zero terms may be disregarded in the calculation, and the non-zero terms are listed in table 1:
TABLE 1
X a b
(n=1,m=1) 1 0
(n=3,m=1) 10-4 0
(n=5,m=1) 10-7 0
Y a b
(n=1,m=1) 0 1
(n=3,m=1) 0 10-4
(n=5,m=1) 0 10-7
Z a b
(n=1,m=0) 1 0
(n=3,m=0) 10-4 0
(n=5,m=0) 10-7 0
Note: wherein, the non-zero values of a and b are estimated values.
To calculate ax、bxFor example, equation (8) can be simplified as:
Figure S2008100562041D00063
Figure S2008100562041D00064
(11)
Figure S2008100562041D00065
let lagrange's function
Figure S2008100562041D00066
Equation (11) can be written in the form of a matrix multiplication:
<math><mrow> <msub> <mi>V</mi> <mi>x</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>*</mo> <mi>&gamma;</mi> <mo>*</mo> <msub> <mi>P</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mi>&gamma;</mi> <mn>3</mn> </msup> <mo>*</mo> <msub> <mi>P</mi> <mn>3</mn> </msub> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mi>&gamma;</mi> <mn>5</mn> </msup> <mo>*</mo> <msub> <mi>P</mi> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>*</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mn>1,1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mn>5,1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow></math>
gamma, theta, gamma, theta, gammapiSubstituting (x, y, z) into equation (12) can obtain a linear equation system,
by solving the system of linear equations, the following can be calculated: a x ( 1,1 ) a x ( 3,1 ) a x ( 5,1 ) . since the y and z parameters are calculated in a similar manner, the detailed description is omitted here.

Claims (5)

1. A method for acquiring a gradient field spherical harmonic coefficient of a magnetic resonance imaging system comprises the following steps:
(a) placing a gradient correction water model in an effective imaging space of a magnetic resonance imaging device, ensuring that the center of a magnetic field is in the gradient correction water model, and setting a scanning plane to scan to obtain a water model image;
(b) establishing a water model coordinate system, wherein the origin of the MRI image is V (x)0,y0,z0) With the center V (x) of the MRI image closest to the center of the water-mode imagec,yc,zc) Is marked point Pc(u0,v0) Is the origin O of a water model coordinate systemp(ii) a Taking the u-axis direction in the MRI image as the c-axis direction; taking the v-axis direction in the image as the r-axis direction; the direction of a right-hand coordinate system formed by the c axis and the r axis is taken as the direction of an s axis; arbitrary mark point PiHas a water model coordinate system coordinate of (c)i,ri,si) (ii) a According to OpCalculating the MRI coordinates of the image to obtain
V o p ( x , y , z ) = v c * u 0 * p + v r * v 0 * p + V ( x 0 , y 0 , z 0 ) - - - ( 1 )
Where p is the distance between adjacent pixels, vc,vr,vsUnit vectors in the directions of the c, r and s axes, u0、v0Is a mark point PcThe coordinates of (a);
(c) calculating MRI coordinates of the marker point, and comparing the marker point Pi(ci,ri,si) The MRI coordinate can be divided into the following steps through a water model coordinate system:
(i) irrespective of whether the water mould is in placeRotation in the body plane and translation of the origin of coordinates, the index point Pi(ci,ri,si) The coordinates in the MRI coordinate system are
V p i ( x , y , z ) = c i * d * v c + r i * d * v r + s i * d * v s - - - ( 2 )
Where p is the distance between adjacent pixels, vc,vr,vsUnit vectors in the directions of c, r and s axes, d is the interval between adjacent mark points, ci、ri、siIs a mark point PiThe coordinates of the water model coordinate system;
(ii) considering the water model itself in the plane with OpA mark point P is rotated by an angle theta by taking the layer direction for scanning as an axis as a circle centeriThe coordinates in the MRI coordinate system need to be multiplied by the rotation matrix Trot
<math> <mrow> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>*</mo> <msub> <mi>T</mi> <mi>rot</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
T rot = t * x * x + c t * x * y + s * z t * x * z - s * y 0 t * x * y - s * z t * y * y + c t * y * z + s * x 0 t * x * z + s * y t * y * z - s * x t * z * z + c 0 0 0 0 1
c=cos(θ),s=sin(θ),t=1-c
Wherein x, y, z are the coordinates of the layer direction vector;
(iii) considering the translation of the origin of the water model coordinates, the point P is markediThe coordinates in the MRI coordinate system are
<math> <mrow> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>y</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>z</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <msub> <mi>p</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>V</mi> <msub> <mi>o</mi> <mi>p</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
Figure FSB00000573510500016
is the mark point PiActual coordinates in the MRI coordinate system;
magnetic field intensity
Figure FSB00000573510500017
Magnetic field gradient function
<math> <mrow> <msub> <mi>G</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&equiv;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>B</mi> </mrow> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>&equiv;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msubsup> <mi>B</mi> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>L</mi> </msubsup> </mrow> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msubsup> <mi>B</mi> <mrow> <mi>zv</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </msubsup> </mrow> <mrow> <mo>&PartialD;</mo> <mi>v</mi> </mrow> </mfrac> <mo>&equiv;</mo> <msubsup> <mi>G</mi> <mi>v</mi> <mi>L</mi> </msubsup> <mo>+</mo> <msubsup> <mi>G</mi> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Figure FSB00000573510500022
The following equations (5), (6) and (7) can be derived
Figure FSB00000573510500023
Wherein a isv(n,m)、bv(n,m)Is a constant, and av(n,m)、bv(n,m)Is the coefficient of an n-th order m-order expansion term in the v direction, P(n,m)(cos θ) is a Legendre polynomial; the left end of the formula (8) is a mark point PiCoordinate values under the MRI coordinate system;
(d) if the magnetic field intensity parameters gamma, theta and theta at a certain point are known,
Figure FSB00000573510500026
And MRI image coordinates, and substituting them into equation (8) can obtain a linear equation set regarding spherical harmonic coefficients a, b, and the coefficients a, b can be obtained by solving the linear equation set.
2. The method for acquiring the spherical harmonic coefficients of the gradient field of the magnetic resonance imaging system as set forth in claim 1, wherein: gamma, theta, or a mixture thereof in the step (c),
Figure FSB00000573510500027
Is the coordinate of the marking point in the MRI coordinate system, which can be expressed by
Figure FSB00000573510500028
Obtained by the following conversion
3. A method of acquiring spherical harmonic coefficients of a gradient field of a magnetic resonance imaging system as claimed in claim 1 or 2, characterized by: the adjacent mark points in the step (a) are arranged at equal intervals, and the interval d of the adjacent mark points is a fixed value.
4. A method of acquiring spherical harmonic coefficients of a gradient field of a magnetic resonance imaging system as claimed in claim 1 or 2, wherein: in the step (b), P is set1(u1,v1) In the c direction and P direction on the water moldc(u0,v0) Adjacent marker points; according to P1(u1,v1) And Pc(u0,v0) The image of (2) is calculated, then the calculation formula of the theta angle
θ=tg-1((v1-v0)/(u1-u0))。
5. A method of acquiring spherical harmonic coefficients of a gradient field of a magnetic resonance imaging system as defined in claim 3, wherein: in the step (b), P is set1(u1,v1) In the c direction and P direction on the water moldc(u0,v0) Adjacent marker points; according to P1(u1,v1) And Pc(u0,v0) The image of (2) is calculated, then the calculation formula of the theta angle
θ=tg-1((v1-v0)/(u1-u0))。
CN2008100562041A 2008-01-15 2008-01-15 Magnetic resonance image-forming system gradient field spherical harmonic coefficient obtaining method Active CN101216541B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100562041A CN101216541B (en) 2008-01-15 2008-01-15 Magnetic resonance image-forming system gradient field spherical harmonic coefficient obtaining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100562041A CN101216541B (en) 2008-01-15 2008-01-15 Magnetic resonance image-forming system gradient field spherical harmonic coefficient obtaining method

Publications (2)

Publication Number Publication Date
CN101216541A CN101216541A (en) 2008-07-09
CN101216541B true CN101216541B (en) 2012-06-06

Family

ID=39623018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100562041A Active CN101216541B (en) 2008-01-15 2008-01-15 Magnetic resonance image-forming system gradient field spherical harmonic coefficient obtaining method

Country Status (1)

Country Link
CN (1) CN101216541B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151682A (en) * 2010-01-22 2011-08-04 Sony Corp Image processing apparatus and method
CN103885012B (en) * 2012-12-20 2017-11-28 上海联影医疗科技有限公司 Magnet electricity center positioning method
CN104166113B (en) * 2013-12-31 2017-02-15 上海联影医疗科技有限公司 magnetic resonance image reconstruction method and device
CN105487028B (en) * 2014-09-19 2018-05-25 西门子(深圳)磁共振有限公司 Magnetic foreign body localization method, device and magnetic resonance device
CN111445412A (en) * 2020-03-26 2020-07-24 北京易康医疗科技有限公司 Two-dimensional geometric correction method for magnetic resonance image

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424487A (en) * 1981-06-02 1984-01-03 Phillips Petroleum Company Dispersion coefficient determination
CN1499218A (en) * 2002-10-31 2004-05-26 西门子公司 Method of determining ADC coefficient using steady sequency in diffusion weighted magnetic resonance imaging
CN1885058A (en) * 2005-06-20 2006-12-27 西门子公司 Method and device for determining dispersion tensor by aid of magnetic resonance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424487A (en) * 1981-06-02 1984-01-03 Phillips Petroleum Company Dispersion coefficient determination
CN1499218A (en) * 2002-10-31 2004-05-26 西门子公司 Method of determining ADC coefficient using steady sequency in diffusion weighted magnetic resonance imaging
CN1885058A (en) * 2005-06-20 2006-12-27 西门子公司 Method and device for determining dispersion tensor by aid of magnetic resonance

Also Published As

Publication number Publication date
CN101216541A (en) 2008-07-09

Similar Documents

Publication Publication Date Title
CN101046506B (en) Method of correcting gradient deformation of magnetic resonant image based on spherical harmonic function
CN111027010B (en) Steel member cylinder fitting method
CN102155909B (en) Nano-scale three-dimensional shape measurement method based on scanning electron microscope
CN103162622B (en) The Portable ball target of single camera vision system and use thereof and measuring method thereof
CN101216541B (en) Magnetic resonance image-forming system gradient field spherical harmonic coefficient obtaining method
CN103499302B (en) The camshaft diameter dimension On-line Measuring Method of structure based light Vision imaging system
CN101673397B (en) Digital camera nonlinear calibration method based on LCDs
US8803943B2 (en) Formation apparatus using digital image correlation
CN101975588B (en) Global calibration method and device of rigid rod of multisensor vision measurement system
CN100557634C (en) A kind of camera marking method based on double 1-dimension drone
CN104820973B (en) The method for correcting image of distortion curve radian detection template
CN107507246A (en) A kind of camera marking method based on improvement distortion model
CN105205858A (en) Indoor scene three-dimensional reconstruction method based on single depth vision sensor
CN101149836B (en) Three-dimensional reconfiguration double pick-up camera calibration method
CN103808567A (en) Mechanical property testing device and mechanical property testing method for soldered joint
CN102283651B (en) Magnetic resonance imaging gradient field correction method
CN104771189B (en) Three-dimensional head image aligns method and device
CN112785654A (en) Calibration method and device for track geometry detection system
CN110264527A (en) Real-time binocular stereo vision output method based on ZYNQ
CN103900504A (en) Nano-scale real-time three-dimensional visual information feedback method
CN102096920A (en) Target image-based sub-pixel registering method
CN104200468A (en) Method for obtaining correction parameter of spherical perspective projection model
CN111538051A (en) Precision processing method for sweep large-width optical satellite
CN103413319A (en) Industrial camera parameter on-site calibration method
CN114066859A (en) Pipeline measuring method and device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SYMBOW MEDICAL TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: XINAO BOWEI TECHNOLOGY CO., LTD.

Effective date: 20110907

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 065001 LANGFANG, HEBEI PROVINCE TO: 100176 CHAOYANG, BEIJING

TA01 Transfer of patent application right

Effective date of registration: 20110907

Address after: 408, room 100176, block C, 18 West South Road, Beijing economic and Technological Development Zone, Beijing, China

Applicant after: Symbow Medical Technology Co., Ltd.

Address before: 065001 Langfang city of Hebei Province, Langfang economic and Technological Development Zone, Road No. 30

Applicant before: Xinao Bowei Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant