CN101188476A - Method and apparatus for determining a reverse link transmission rate in a wireless communication system - Google Patents

Method and apparatus for determining a reverse link transmission rate in a wireless communication system Download PDF

Info

Publication number
CN101188476A
CN101188476A CNA2007103005365A CN200710300536A CN101188476A CN 101188476 A CN101188476 A CN 101188476A CN A2007103005365 A CNA2007103005365 A CN A2007103005365A CN 200710300536 A CN200710300536 A CN 200710300536A CN 101188476 A CN101188476 A CN 101188476A
Authority
CN
China
Prior art keywords
reverse link
base station
signal
busy
transmission rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007103005365A
Other languages
Chinese (zh)
Other versions
CN101188476B (en
Inventor
P·E·本德
M·S·格罗布
G·卡米
R·帕多瓦尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23361421&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101188476(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN101188476A publication Critical patent/CN101188476A/en
Application granted granted Critical
Publication of CN101188476B publication Critical patent/CN101188476B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • H04B7/264Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA] for data rate control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Transceivers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Optical Communication System (AREA)
  • Meter Arrangements (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Selective Calling Equipment (AREA)

Abstract

Reverse link busy bits are independently generated by each base station (102, 104 and 106) and indicative of whether the transmitting base station (102, 104 and 106) has reached a reserve link capacity limit. In a first exemplary embodiment, the remote station (122) combines the multipath components of the reverse link busy bits from each of the transmitting base stations (102, 104 and 106) in its Active Set and in response transmits a reverse link signal only when all of the reverse link busy bits indicate that the base stations (102, 104 and 106) in the remote stations Active Set have reverse link capacity. In a first alternative embodiment, the remote station weights, the reverse link busy signals in accordance with the signal strength of the base station (102, 104 or 106) transmitting the busy signal and determines whether to transmit based on the weighted sum of the busy signals.

Description

The method and apparatus of decision reverse link transmission rate in the wireless communication system
The application is that the PCT international application no is that PCT/US00/18322, international filing date are that June 30, China national application number in 2000 are 00809986.3, are entitled as the dividing an application of application of " method and apparatus of decision reverse link transmission rate in the wireless communication system ".
Background of invention
1. invention field
The present invention relates to communication.Carry out the novel improvements method and apparatus of signal combination when particularly, the present invention relates to soft handover in the wireless communication system.
2. description of Related Art
Code division multiple access (CDMA) modulation technique that adopts is a kind of technology that promotes to exist the communication of a large amount of system users.Known other multi-address communication system technology in this area are such as time division multiple access (TDMA) and frequency division multiple access (FDMA).Yet the CDMA spread-spectrum modulation technique has than the significant advantage of these multi-address communication system modulation techniques.Disclose the application of CDMA technology in multi-address communication system in No. 4901307, the United States Patent (USP), this patent exercise question is: " adopting the spread spectrum multiple access communication (SPREAD SPECTRUMMULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIALREPEATERS) of satellite or terrestrial repeaters ", transferred the assignee of the present invention, be incorporated herein its content by list of references.United States Patent (USP) further discloses the application of CDMA technology in multi-address communication system No. 5103459, this patent exercise question is " system and method (SYSTEM AND METHOD FORGENERATING SIGNAL WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM) that produces signal waveform in the cdma cellular net telephone system ", transferred the assignee of the present invention, be incorporated herein its content by list of references.
CDMA utilizes its broadband signal inherency, and a kind of frequency diversity that gets at big frequency range diffusion signal energy is provided.Therefore, the frequency selective fading instrument influences the sub-fraction of CDMA signal bandwidth.Utilization communication link by from mobile subscriber to 2 or station, a plurality of district the time provides many signal paths, obtains space or path diversity.In addition,, utilize multi-path environment, also can obtain path diversity by spread processing by the signal that arrives with different propagation delays can separately be received and handle.The example of United States Patent (USP) 5101501 and No. 5109390 explanation path diversities, the former exercise question is " cdma cellular net telephone system provides the method and system (METHOD AND SYSTEM FOR PROVIDING A SOFT HANDOFF INCOMMUNICATIONS IN A CDMA CELLULAR TELEPHONE SYSTEM) of soft handover in communication ", latter's exercise question is " diversity receiver in the cdma cellular net telephone system (DIVERSITY RECEIVER IN A CELLULARTELEPHONE SYSTEM) ", all transfer the assignee of the present invention, be incorporated herein by list of references.
The effective ways of travelling carriage power control are the signal powers that receives from travelling carriage at base station monitoring in the communication system.Base station in response monitors the gained power level, gives travelling carriage transmission power control position at the interval of regulation.United States Patent (USP) 5056109 discloses a kind of method and apparatus of controlling transmitting power by this way, this patent exercise question is " method and apparatus (METHOD ANDAPPARATUS FOR CONTROLLING TRANSMISSION POWER IN A CDMA CELLULAR MOBILETELEPHONE SYSTEM) of control transmitting power in the cdma cellular net mobile telephone system ", transferred the possession of the assignee of the present invention, be incorporated herein its content by list of references.
Demand to the wireless communication system that can two-forty sends digital information is increasing.Is to make distant station send data with the CDMA spread spectrum from distant station to a kind of method that center base station sends the two-forty numerical data.There is a kind of method to propose to make distant station send its information with group's orthogonal channel, describe the method in detail in the Application No. 08/886604 that awaits the reply jointly, the exercise question of this patent application is " high data rate CDMA wireless communication system (HIGH DATA RATE CDMA WIRELESS COMMUNICATIONSYSTEM) ", transferred the assignee of the present invention, be incorporated herein by list of references.
Summary of the invention
The present invention is the novel improvements method and apparatus of composite signal in the high-rate wireless communication system.In the example embodiment, each base station of communicating by letter with distant station sends the forward link data that comprises business datum (traffic data), pilot frequency code element (pilot symbols) and overhead data (overhead data).In the example embodiment, overhead data comprises that reverse link shows busy position (busy bit), power of reverse link control (RPC) order and forward link validity (FAC) position.Reverse link shows that busy position illustrates when reaching its reverse chain-circuit capacity limit in the base station.The RPC position should reduce indicating its emitted energy should increase maybe with each travelling carriage of base station communication.The FAC position is a kind of message, unmatchedly after in the base station indicates when link data sends the predetermined quantity time slot.
In the example embodiment of the present invention, only given distant station is sent forward link traffic from a base station.Therefore, the soft handover (soft handoff) that does not have the forward link traffic data.Adopt traditional Rake (RAKE) receiver (rake receiver) that the multipath component of forward link traffic data is made up, so that the improvement estimated value (estimate) of forward link traffic data to be provided.
In the example embodiment of the present invention, each base station independently produces reverse link and shows busy position, and whether the base station that indication is launched has reached the reverse chain-circuit capacity limit.In the 1st example embodiment, the reverse link that distant station makes up each transmitting base station in its effective group shows busy position, and only shows that at the revert all link busy the base station in the effective group in indicating remote station responds when having reverse chain-circuit capacity, sends anti-chain road signal.In the 1st alternative embodiment, distant station according to the signal of base station intensity of emission busy-flash signal to the weighting of reverse link busy-flash signal, and according to the weighted sum of busy-flash signal whether decision launches.In the 2nd alternative embodiment, remote terminal is weighted the reverse link busy-flash signal according to the signal of base station intensity of emission busy-flash signal, and determines maximum reverse link data speed according to the weighted sum of busy-flash signal.
In the example embodiment, the independent FAC signal that produces.FAC signal multipath component from common base station is carried out soft combination also to be deciphered.Each FAC signal is offered the corresponding SNR calculator of each base station.Calculate gained SNR with each base station and determine which base station sends forward link data with which kind of data rate to distant station.
Description of drawings
Can more understand characteristic of the present invention, purpose and advantage from the detailed description below in conjunction with accompanying drawing, identical reference character is all done identical expression in the accompanying drawing, wherein
Fig. 1 is the key diagram of soft handoff environments part and signal;
Fig. 2 is the key diagram of the forward link time slot format of example embodiment;
Fig. 3 is the flow chart of the method for composite signal in the explanation example embodiment;
Fig. 4 is the block diagram of the base station system of explanation example embodiment;
Fig. 5 is the block diagram of distant station of the present invention;
Fig. 6 is the block diagram of the traffic demodulator of example embodiment;
Fig. 7 is the block diagram that the reverse link of example embodiment shows busy position demodulator;
Fig. 8 is the block diagram of the power control demodulator of example embodiment;
Fig. 9 is the block diagram of forward link validity (FAC) bit decoder of example embodiment;
Figure 10 is the block diagram of distant station emission subsystem.
Preferred embodiment describes in detail
Fig. 1 illustrates the part of wireless communication system during the operating in soft handover.Travelling carriage 122 communicates with base station 102,104 and 106 simultaneously under the soft handover situation shown in Figure 1.Above-mentioned United States Patent (USP) discloses the method and apparatus that carries out soft handover in the wireless communication system No. 5101501.Base station controller 100 is as to base station 102,104 and 106, and the information that will send is issued distant station 122.
In the example embodiment, use propagation path that the forward link traffic data are sent to distant station 122 to distant station 122 the bests by the base station of selecting (102,104 or 106).Base station 102,104 and 106 sends forward link signal respectively, comprising the overhead data of forward link traffic, pilot frequency code element and forward link signal 110,114 and 118.In the example embodiment, forward link signal 110,114 and 118 and multipath component signal 108 all be code division multiple access (CDMA) signal of communication.
Signal 108 explanations are called the situation of multipath, and thus, the signal that base station 102 sends passes two different propagation paths and arrives distant station 122.The 1st signal 110 reflects the 2nd signal as forward link signal 108 from barrier 124 simultaneously through the line-of-sight propagation path.In the cdma communication system, such as No. 5109390, above-mentioned United States Patent (USP) announcement, can make up multipath component at receiver, so that the improvement estimated value that sends data to be provided.
Distant station 122 sends data to base station 102,104 and 106 in reverse link signal 112,116 and 120 respectively.In the example embodiment, reverse link signal 112,116 and 120 is cdma communication signals.Carry out soft combination in 100 pairs of base stations of base station controller (BSC) 102,104 and 106 reverse link signal that receive, so that the preferable estimated value of 122 photos and sending messages of distant station to be provided.Be noted that reverse link signal 102,104 is actually the same signal that passes different propagation paths with 106.
Fig. 2 illustrates example embodiment forward link time slot.In the example embodiment, a time slot continues 1.66ms in time.This time slot comprises 2 pilot tone sections of bursting 206 and 214.The 2nd pilot tone section of bursting 214 has overhead data 212 and 216 in its both sides.The overhead data of example embodiment comprises forward link validity (FAC) information, reverse link shows busy position and power of reverse link control command.Different overhead datas utilizes quadrature to cover mutually and distinguishes.Quadrature covers, and the present technique field is known, and above-mentioned United States Patent (USP) also is illustrated for No. 5103459, and forward link validity information is 1 binary digit, and during set, the time slot of expression predetermined quantity does not have the forward link traffic data that the base station will send later on.Reverse link shows that the indication of busy position has arrived the reverse chain-circuit capacity limit of base station.Power control command covers with unique Walsh.And require the particular remote platform to increase or reduce its emitted energy.Remainder 202,210 and 218 at frame sends forward link data.
Fig. 3 is the description of flow diagram of distant station 122 its received signal combination operation when carrying out soft handover with a plurality of base stations.In the frame 250, to many combination of the forward link signal (carrying business datum) that is dealt into distant station 122 through component.In the example embodiment, have only and distant station 122 between the base station of propagation path the best distant station 122 is sent the forward link traffic data.For example base station 102 has the best propagation path to distant station 122, and then 102 pairs of distant stations in base station 122 send the forward link traffic data.In this example, distant station carries out soft combination through signal 108 and 110 more than 122 pairs, so that the improvement estimated value of forward link traffic data to be provided.In the example embodiment, carry out soft combination, wherein determine the weighting of demodulation code element pro rata with the signal strength signal intensity of the receive signal that carries code element according to weighted sum.Describe the action of combination multipath signal in No. 5109390, the above-mentioned United States Patent (USP) in detail.
In the frame 252, the reverse link that each base station sent during distant station 122 was effectively organized it shows that the multipath component of busy position (RLBT) carries out soft combination, shows busy estimated value so that reverse link that each base station is sent to be provided.Be noted that the power control command from different base station can have different values, thereby its combination is meaningless.That is to say that base station 102 may exhaust its reverse chain-circuit capacity, and base station 104 still has the residue reverse chain-circuit capacity, thereby the reverse link that can send different value shows busy position,
In the frame 254, combination is shown busy position from the reverse link of each base station 102,104 and 106, with the maximum data rate of decision distant station 122 next reverse links transmission.In the 1st example embodiment, only when the revert all link showed that busy the base station in the effective group of indication has the additional reverse link capacity, distant station sent reverse link signal.In the 1st alternative embodiment, distant station 122 shows busy signal of base station intensity according to transmission, and reverse link is shown a busy position weighting, and according to showing busy position weighted sum determines whether to forbid that its reverse link sends.Among the 2nd conversion embodiment, distant station shows busy signal of base station intensity according to transmission, and reverse link is shown a busy position weighting, and according to showing that busy position weighted sum determines maximum instead with the link data transmission rate.
In the frame 256, the multipath component of the reverse power control position that 122 pairs of each base stations of distant station send carries out soft combination, is sent the estimated value of reverse power control position so that each base station to be provided.Be noted that from the beginning that the power control command of different base station can not be identical value, thereby its combination is meaningless.For example, reverse link signal is propagated 114 and may be surpassed the base station 104 reliable required energy of signal that send, and meanwhile, the energy of reverse link signal 122 may be not suitable for base station 102 reliable reception.In this case, base station 102 can send " rising " order, and base station 104 sends " reduction " order.Therefore, do not carry out soft combination from the power control command of different base station.In the example embodiment, the hard decision of relevant its power command value of each base station decision.Proceed to frame 258, in the example embodiment, when whole power control commands that distant station 122 only sends when the base station in its effective group require this increase emitted energy, increase its emitted energy.
In the frame 260, the forward link validity bit (FAC) that receives from common base station is carried out soft combination on multipath.In the frame 262, each combination gained forward direction validity bit is offered corresponding SNR calculator, utilize this information during the signal to noise ratio energy of this calculator relevant base station in calculating effective group of distant station 122.Get back to Fig. 2,, just must adjust the signal-to-noise ratio (SNR) estimation value that this time slot is calculated, with this gate unit in the frame during the consideration no signal energy if time slot does not comprise data.
Fig. 4 is the explanation block diagram of the part of base station 102,104 and 106.The forward link traffic data are offered Walsh expanding element 300, and according to walsh code (W T) covered.Then, the business datum that will add covering offers multiplexer 312.Person of skill in the art will appreciate that the processing that signal offers before the Walsh expanding element 300 belongs in the scope of the present invention.Particularly, expection forward link traffic data can adopt convolution coder, turb0 sign indicating number device or other forward error correction coder well known in the art forward error correction coding in addition partially.In the example embodiment, employing length is 32 walsh sequences covering forward links transmission of 32.Above-mentioned United States Patent (USP) discloses the generation of walsh code and the expansion of carrying out according to this yard for No. 5103459.
The predetermined pilot frequency code element of one group normally complete " 1 " is offered Walsh expanding element 302, and in example embodiment, according to zero walsh code (W 0) covered.Covering with Walsh zero is non-operation instruction, can omit in the operation, but be used for reaching illustrative purposes.Then, the pilot frequency code element that covers is offered multiplexer 312.
Forward direction validity (FAC) position is offered expanding element 304, and according to walsh code 1 (W 1) covered.Reverse link shows that busy position offers Walsh expanding element 306, and with walsh code 17 (W 17) covered.In addition, nearly 29 power control command PC is provided for Walsh expanding element 308a~308n 1~PC 29), and with walsh sequence (W 2~W 16And W 18~W 31) cover these orders.Comprise the Walsh expansion overhead digit that FAC, reverse link show busy position and power control command 310 pairs of adders and ask summation, and its value is offered multiplexer 312.
Multiplexer 312 inserts forward link traffic data and 2 pilot tone sections of bursting in time slot, wherein the 2nd pilot tone Duan Zaiqi both sides of bursting have overhead digit respectively.In the preferred embodiment, the Overhead of the 2nd pilot tone section of bursting both sides copies mutually, have 64 Walsh chips with 32 walsh code expansion duration respectively, thereby each Overhead has 4 kinds of redundancy versions.
The time slot that comprises forward link traffic, the pilot tone section of bursting and overhead digit is provided for PN expander 314, as shown in Figure 2.In the example embodiment, the data that each base station sends with different PN sequence extension.In the preferred embodiment, each base station produces its PN sequence with different phase shifts, and this phase shift utilizes public PN to produce with multinomial and produces, as described in No. 5103459, above United States Patent (USP).In the preferred embodiment, data are sent, wherein use 2 different pseudo noise sequence (PN according to the QPSK modulation IAnd PN Q) expansion homophase and quadrature component.The PN spread signal is offered transmitter (TMTR) 316, signal is carried out up-conversion, amplification and filtering after, by antenna 318 emission.
Fig. 5 illustrates distant station 122 of the present invention, receives forward link signal at antenna 500, and offers receiver (RCVR) 504 by duplexer 502.The signal that receives offers traffic demodulator 506 carry out demodulation after, the forward link traffic data are offered the user of distant station.
After also received signal being offered reverse link and showing that busy demodulator 508 carries out demodulation, an estimated value that provides the reverse link that each base station sends of communicate by letter to show to hurry with distant station 122.Reverse link is shown that busy position offers speed decision unit 510.In the example embodiment, indicate when having arrived this base station backward link capacity limitation any position of hurrying that shows of sending in effective group base station, and speed determines unit 510 to forbid sending reverse link signal.In the alternative embodiment, speed decision unit 510 forbids selectively that according to the weighted sum that shows busy position that effective group of base station from distant station 122 receives reverse link sends.In the 1st alternative embodiment, according to the energy of received signal, to the busy position weighting of showing that receives.In the 2nd alternative embodiment, maximum reverse link data speed is selected according to the busy position that shows that receives in speed decision unit 510.For example, indicate this station to reach the signal of reverse link energy when very weak from the base station, speed decision unit 510 can select the estimated value can be because of excessively do not disturb the non-zero reverse link data rate of this base station to the propagation path difference of base station.To indicate maximum data rate or forbid that the signal of reverse link signal offers transmit control processor 520, decision sends one group of parameter that reverse link signal is used.
In the preferred embodiment, travelling carriage know its effectively speed of group base station send and distribute, wherein each potential reverse link transmission rate has it and effectively is not in successful sending probability under the situation of capacity limitation in group base station.In the preferred embodiment, distant station 122 calculates a kind of tolerance that rated value reduces tolerance (DM) that is called here according to following formula:
Figure S2007103005365D00071
In the formula, SNR IBe the signal-to-noise ratio (SNR) estimation value of i base station, MaxSNR IBe the maximum signal to noise ratio of the effective value base station of distant station i, RLB iBe the value that the reverse link of i base station shows busy position in effectively organizing, get 0 or 1.Utilize formula 1 as seen, the emission reverse link shows that the forward link signal of sending the base station of busy position indication reverse chain-circuit capacity limit situation is strong more, and rated value reduces big more.This rated value reduces measures the value that is made as between 0 and 1, is used to demarcate speed and sends distribution, speed is reduced, to reach given successful sending probability.
Also reverse link signal is offered power of reverse link control demodulator 512.This demodulator 512 carries out demodulation to received signal, will be made up from the multipath component of common base station, to produce the improvement estimated value that each base station in effective group of distant station 122 is sent the power of reverse link control command.In the example embodiment, with each travelling carriage of given base station communication according to its The function of backward power control order of unique walsh code demodulation of distributing to this travelling carriage.Be noted that the power of reverse link of distributing to distant station provides walsh code because of different with the different base station of distant station 122 communications.
The improvement estimated value of each base station power control command is offered power control combination device 514.In the preferred embodiment, only when all base stations sent request distant stations 122 and strengthen the power control command of its emitted energies in effective group of distant station 122, distant station 122 increased its emitted energies, otherwise distant station 122 reduces its emitted energy.In addition, the present invention can be used for the multidigit power control system equally, and wherein desired emitted energy adjustment amount is stipulated in the base station.Among the simplest embodiment of the power control combination device of using in the multidigit power control system, the minimum recruitment or the maximum decrease of the emitted energy that 514 selections of power control combination device are asked.
518 pairs of FAC combiners make up from the FAC position to the forward link signal multipath component of base station altogether, are launched FAC position estimated value so that each base station to be provided, and send the estimated value of FAC position according to this base station, adjust the calculating of each base station signal to noise ratio.Transmit control processor is selected the base station of propagation path the best with each base station signal to noise ratio of calculating, and determines maximum data transfer rate.
The estimated value of showing busy position, The function of backward power control order and forward direction validity bit according to reverse link, send the work value of processing and forward direction validity bit, send the speed that processing controller 520 next reverse link of decision send, adjust its reverse link transmissions energy, and select propagation path the best the base station and can be in the reliable maximum forward link data rate that sends of this propagation path.These parameters offer emission subsystem 522, and this subsystem is according to these parameter generating reverse link signal.Provide the reverse link signal of spontaneous emission subsystem 522 by duplexer 502, with by antenna 500 emissions.
Fig. 6 illustrates each part of traffic demodulator 506, and search engine 600 is sought the potential PN skew of strong forward link signal.Search engine 600 distributes for PN despreader 602 and separates the PN skew of calling.In the preferred embodiment, each PN despreader 602 carries out despreading to received signal according to different PN skews, and the gained result is offered corresponding separator 604.In the example embodiment, PN despreader 602 is according to BPSK being relied on the single PN sequence of expansion usefulness with the received signal despreading.Yet the present invention can be used for adopting 2 different PN sign indicating number sequence (PN equally IAnd PN Q) the compound PN despreader that the QPSK signal carried out compound despreading.To the PN despreading of bpsk signal and the compound PN despreading of QPSK signal, the enforcement of the known PN despreader 602 in this area.
Separator 604 is told the pilot tone section of the bursting part in the received signal, and the pilot frequency code element of demodulation is offered (SYNC) unit 606 synchronously.The frequency of the corresponding Walsh demodulator 608 of lock unit 606 decisions and the adjustment amount of phase place.The index signal of this frequency plot adjustment amount is offered Walsh demodulator 608.
Separator 604 is told the time slot part that carries the forward link traffic data, and these parts are offered Walsh demodulator 608.This demodulator 608 carries out demodulation to received signal according to walsh sequence WT.This area is the enforcement of well known walsh demodulator 608, in No. 5103459, the United States Patent (USP) detailed description is arranged also.
The forward link symbol of demodulation is offered soft combiner 610, and the latter adds up to the multipath component of sending the base station of forward link traffic data for distant station 122.The gained demodulation code element energy that will add up then offers decoder 610, after service-data oriented decoding, decoding gained code element is offered the user of distant station 122.In the example embodiment, decoder 612 is such as keeping than the graticule mesh decoder the decoder, or the turbo decoder.
Fig. 7 illustrates that reverse link shows the part of busy bit decoder 508.As described in the explanation of reference Fig. 6, searcher 600 is searched the potential PN skew of strong forward link signal.Search engine 600 distributes the PN skew for each PN despreader 602.As indicated above, each PN despreader 602 is offset despreading to received signal according to different PN, and the gained result is offered corresponding separator 704.
The pilot tone section of bursting part in 704 fens output time slots of separator offers (SYNC) unit 706 synchronously with pilot frequency code element.The frequency of the corresponding Walsh decoder 708 of lock unit 706 decisions and the adjustment amount of phase place.Frequency plot adjustment amount index signal is offered Walsh decoder 708.It will be understood by those skilled in the art that lock unit 706 and lock unit 606 carry out identical operations, to show and to make different units only in order illustrating.
Separator 704 is told the overhead data part from receiving slot, and these parts are offered Walsh demodulator 708.In the example embodiment, Walsh decoder 708 is according to walsh code W 17Carry out demodulation to received signal.
The forward link symbol of demodulation is offered soft combiner 710, the multipath code element from each base station is added up.Then, the gained code element that will add up energy offers speed decision logic circuit 510, this circuit such work as indicated above.
Fig. 8 illustrates the part of power of reverse link control demodulator 512, and as described in the explanation of reference Fig. 6, search engine 600 is searched the potential PN skew of strong forward link signal.Search engine 600 distributes the PN skew for each PN despreader.
As indicated above, in the example embodiment, each PN despreader is offset despreading to received signal according to different PN, and the gained result is offered corresponding separator 804.
The pilot tone section of bursting part in 804 fens output time slots of separator offers (SYNC) unit 806 synchronously with pilot frequency code element.The frequency of the corresponding Walsh demodulator 808 of lock unit 806 decisions and the adjustment amount of phase place.The index signal of adjusting phase place and Frequency Synchronization is offered Walsh demodulator 808.It will be understood by those skilled in the art that lock unit 808 and lock unit 606 carry out identical operations, to show and to make different unit only in order illustrating.
Separator 804 is told the overhead data part from the time slot that receives, and these parts are offered Walsh demodulator 808.In the example embodiment, Walsh demodulator 808 is according to the walsh code demodulation to received signal for transmission corresponding base station power control signal regulation.For example, base station 12 available walsh codes 5 make its power control command cover distant station 122, and base station 104 then makes its power control command cover distant station 122 with walsh code 13.Therefore, with the forward link multipath component of common walsh code demodulation, so that extract power control command from this base station from the common base station transmission.Otherwise, with the power control command of different walsh code demodulation from different base station.
Each base station power control command of demodulation is offered soft combiner 810, the multipath code element of a corresponding base station in effective group is added up.Then, the gained code element that will add up energy offers power control combination device 514, and the latter is by such work mentioned above.
Fig. 9 illustrates the part of FAC demodulator 516.As described in the explanation of reference Fig. 6, search engine 600 is searched the potential PN skew of strong link signal.Search engine 600 distributes the PN skew for each PN despreader 602.As indicated above, in the example embodiment, each despreader 602 is offset despreading to received signal according to different PN, and the gained result is offered corresponding discrete device.
The pilot tone section of bursting part in 904 fens output time slots of separator offers (SYNC) unit 906 synchronously.The frequency and the phase adjustment of the corresponding Walsh demodulator 908 of lock unit 906 decisions offer Walsh demodulator 908 with frequency and phase adjustment index signal.Those skilled in the art understand lock unit 906 and lock unit 606 carries out identical operations, to show and to make different unit only in order illustrating.
Separator 904 is told the overhead data part from the time slot that receives, and this part is offered Walsh demodulator 908.In the example embodiment, Walsh demodulator 908 is according to walsh code 1 (W 1) demodulation to received signal.Demodulation FAC code element from common base station offers combiner 910.The energy of combiner 910 combination FAC code elements is to provide the improvement estimated value of the FAC position of each base station in effective group of distant station 122.
From the maximum data rate of speed decision unit 510, offer transmit control processor 520 from the forward direction EFFECTIVENESS ESTIMATION value of each base station in the combined power control command of power control combination device 514 and distant station 112 effective group.According to these information, transmit control processor 520 decisions are from the data rate of next reverse link transmission of distant station 122, produce the signal of adjusting anti-phase link signal emitted energy, select to give distant station 122 to send the base station of forward link traffic data, and decision can reliably send the maximum rate of forward link data.
Figure 10 illustrates the part of transmit control processor 520 and emission subsystem 522.In the emission control processor 520, (PC) offers gain adjusting unit 1000 with the combined power control command.In the example embodiment, power control command is the lifting/lowering order of 1 binary digit.Respond this order, gain adjusting unit 1000 produces control signal, by adjusting the gain of the variable gain amplifier (not shown) in the transmitter (TMTR) 1010, the reverse link signal emitted energy is raise or reduction.
The FAC estimated value of each base station is offered corresponding snr computation device 1002.1002 pairs of FAC positions of snr computation device respond, the signal to noise ratio of the forward link signal that effective group of base station of calculating distant station 122 come.Different with those frames that comprise the forward link traffic data, the receiving slot that is provided with the forward link traffic data is enrolled snr computation.If unmatched frame to the link traffic data occurs enough fewly, can get rid of fully and calculate these frames.In one preferred embodiment, before unmatched frame accumulative total to link is gone in the snr computation, measure the ratio of the noise energy of such frame earlier.
To offer data transfer rate control (DRC) processor controls 1004 from the estimated value of the forward link signal of each base station from snr computation device 1002.This processor 1004 is selected the highest base station of signal to noise ratio, and according to selected base station signal to noise ratio decision peak transfer rate.DRC controller 1004 produces the sign of selected base station and the index signal of maximum data rate, offers multiplexer (MUX).
510 decisions of speed decision unit use the method that illustrates with reference to formula (1) to reduce the reverse link data rate of rated value, and offer The function of backward power control device 1006.This controller 1006 sends the speed of its reverse link according to this maximum data rate decision.In the example embodiment, data volume and distant station 122 remaining amount of battery power that The function of backward power control device 1006 wants distant station 122 to send according to maximum data rate, queuing, decision reverse link data.
Selected reverse link data rate is offered message generator 1008.This generator 1008 responds to this, produces the index signal of selected reverse link data rate, and this reverse rate (RRI) message is offered multiplexer 1016.In addition, The function of backward power control device 1006 also offers reverse link traffic processing unit 1018 with the index signal of selected reverse link data rate.
Memory cell 1020 in the reverse link traffic processing unit 1018 responds the reverse link data rate signals, and the transmission data of some are provided.1022 pairs of these data of encoder are encoded.Also select the code rate and the encryption algorithm of encoder 1022 usefulness according to selected reverse link data rate.Symbols encoded is offered interleaver (INT) 1024, code element is resequenced according to the predetermined form that interweaves.The code element that interweaves offers Walsh modulator 1026.
In the example embodiment, adopt the variable-length walsh sequence to carry out the Walsh modulation, wherein walsh sequence length also changes thereby expand gain like this with reverse link transmission rate anti-change.United States Patent (USP) describes the application of variable-length walsh sequence for No. 557176 in detail, this patent exercise question is " system and method (SYSTEM AND NETHOD FOR ORTHOGONALSPREAD SPECTRUM SEQUENCE GENERATION OF VARIABLE DATA RATE STSTEMS) that produces orthogonal spreading sequence in the variable-data-rate system ", be given to the assignee of the present invention, be incorporated herein by list of references.
Walsh is expanded the reverse link traffic data offer compound PN expander 1012.Multiplexer 1016 in addition after the multiple connection, offers Walsh modulator 1014 to the multiple connection data with data rate control message and reverse rate prompt message and pilot frequency code element.This modulator 1014 is expanded the multiple connection data according to zero walsh code, and expanded data is offered compound PN expander.
In the example embodiment, according to two different PN sequence (PN IAnd PN Q) carry out the PN expansion of reverse link signal, so that uniform distribution sends the quadrature component and the in-phase component load of QPSK signal.Disclose the enforcement of compound PN expander 1012 in the above-mentioned United States Patent (USP) sequence application number 08/886604 that awaits the reply jointly.
Compound PN growth data offers transmitter, to compound PN spread signal amplify, filtering and up-conversion so that emission.
Above preferred embodiment explanation is provided, makes any technical staff in this area can both make or use the present invention.These personnel are not difficult to understand that the foregoing description can do various modifications, and need not to utilize and creatively just the General Principle of stipulating can be used for other embodiment here.Therefore, the present invention is not subjected to here that illustrated embodiment limits, but to meet with here the principle that discloses and the consistent maximum magnitude of novel characteristics.

Claims (6)

1. the method for a decision distant station reverse link transmission rate in communication system, each base station of communicating by letter with distant station in this communication system sends reverse link and shows busy position, whether the indication reverse chain-circuit capacity exhausts, and it is characterized in that, said method comprising the steps of:
According to the reverse link busy-flash signal decision reverse link transmission rate of combination, the reverse link busy-flash signal of described combination shows that according to the reverse link that is sent by each described base station busy position produces,
Send reverse link data according to described reverse link transmission rate.
2. the method for claim 1 is characterized in that, and is further comprising the steps of:
The multipath component that reverse link from each described base station is shown busy position carries out soft combination, shows the estimated value of busy position so that the reverse link that is sent by each base station to be provided.
3. the method for claim 1 is characterized in that,
The step of the described reverse link transmission rate of described decision comprises when arbitrary described reverse link shows an indication base station, busy position being in reverse chain-circuit capacity condition following time, forbids sending described reverse link data.
4. the method for claim 1 is characterized in that,
Show the value of busy position and the intensity of the forward link signal that described distant station receives from each base station according to reverse link that each base station sends, carry out the step of the described reverse link transmission rate of described decision.
5. the method for claim 1 is characterized in that,
The step of the described reverse link transmission rate of described decision may further comprise the steps:
Show the value of busy position and the intensity of the forward link signal that described distant station receives from each base station according to reverse link that each base station sends, calculate rated value and reduce tolerance,
Reduce tolerance according to described rated value, the speed of adjusting each potential reverse link transmission rate success sending probability of indication sends and distributes,
Speed according to described adjustment sends distribution, selects described reverse link transmission rate.
6. method as claimed in claim 5 is characterized in that,
Carry out the step that the described rated value of described calculating reduces tolerance (DM) according to following formula:
Figure S2007103005365C00021
In the formula, SNR iBe the signal-to-noise ratio (SNR) estimation value of i base station, MaxSNR iBe the maximum signal to noise ratio of base station in effective group of distant station i, RLB iBe the value that the reverse link of i base station shows busy position in effectively organizing, RLB value 0 or 1.
CN200710300536.5A 1999-07-02 2000-06-30 The method of reverse link transmission rate is determined in wireless communication system Expired - Lifetime CN101188476B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/346,882 1999-07-02
US09/346,882 US6556549B1 (en) 1999-07-02 1999-07-02 Method and apparatus for signal combining in a high data rate communication system
CNB008099863A CN100367694C (en) 1999-07-02 2000-06-30 Method and apparatus for determining a reverse link transmission rate in a wireless communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008099863A Division CN100367694C (en) 1999-07-02 2000-06-30 Method and apparatus for determining a reverse link transmission rate in a wireless communication system

Publications (2)

Publication Number Publication Date
CN101188476A true CN101188476A (en) 2008-05-28
CN101188476B CN101188476B (en) 2015-11-25

Family

ID=23361421

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200710300536.5A Expired - Lifetime CN101188476B (en) 1999-07-02 2000-06-30 The method of reverse link transmission rate is determined in wireless communication system
CNB008099863A Expired - Lifetime CN100367694C (en) 1999-07-02 2000-06-30 Method and apparatus for determining a reverse link transmission rate in a wireless communication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB008099863A Expired - Lifetime CN100367694C (en) 1999-07-02 2000-06-30 Method and apparatus for determining a reverse link transmission rate in a wireless communication system

Country Status (22)

Country Link
US (4) US6556549B1 (en)
EP (3) EP2077638A3 (en)
JP (2) JP4685302B2 (en)
KR (1) KR100753376B1 (en)
CN (2) CN101188476B (en)
AT (2) ATE430420T1 (en)
AU (1) AU5911500A (en)
BR (1) BRPI0011966B1 (en)
CA (1) CA2377060C (en)
CY (1) CY1107056T1 (en)
DE (2) DE60034338T2 (en)
DK (1) DK1192749T3 (en)
ES (2) ES2325182T3 (en)
HK (2) HK1075767A1 (en)
IL (3) IL147019A0 (en)
MX (1) MXPA01012708A (en)
NO (1) NO333454B1 (en)
PT (1) PT1192749E (en)
RU (1) RU2262212C2 (en)
TW (1) TWI226163B (en)
UA (1) UA73737C2 (en)
WO (1) WO2001003357A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023256A1 (en) * 1997-10-30 1999-05-14 Cold Spring Harbor Laboratory Probe arrays and methods of using probe arrays for distinguishing dna
DE19857406A1 (en) * 1998-12-12 2000-06-15 Bosch Gmbh Robert Telecommunication system and data transmission method
US6556549B1 (en) * 1999-07-02 2003-04-29 Qualcomm Incorporated Method and apparatus for signal combining in a high data rate communication system
US6563810B1 (en) * 1999-09-30 2003-05-13 Qualcomm Incorporated Closed loop resource allocation
GB2363689A (en) * 2000-05-08 2002-01-02 Motorola Inc Improving usage of CDMA system capacity
KR100605973B1 (en) * 2000-06-27 2006-07-28 삼성전자주식회사 Method and apparatus for link adaptation in mobile communication system
JP3514217B2 (en) * 2000-06-29 2004-03-31 日本電気株式会社 Turbo decoding method and receiver
KR100370098B1 (en) * 2000-08-10 2003-01-29 엘지전자 주식회사 Method for choosing the base station or sector to demand forwarding data in Mobile Station
GB2367447B (en) * 2000-09-27 2003-11-05 Airspan Networks Inc Transfer of data in a telecommunications system
KR100438447B1 (en) * 2000-10-20 2004-07-03 삼성전자주식회사 Burst pilot transmit apparatus and method in mobile communication system
US7545849B1 (en) * 2003-03-28 2009-06-09 Google Inc. Signal spectrum spreading and combining system and method
US8385470B2 (en) * 2000-12-05 2013-02-26 Google Inc. Coding a signal with a shuffled-Hadamard function
US8374218B2 (en) 2000-12-05 2013-02-12 Google Inc. Combining signals with a shuffled-hadamard function
KR100800884B1 (en) 2001-03-29 2008-02-04 삼성전자주식회사 Transmission controlling method of reverse rink in mobile communication system
US7012886B2 (en) * 2001-05-16 2006-03-14 Lucent Technologies Inc. Walsh code allocation/de-allocation system
KR100391981B1 (en) * 2001-06-16 2003-07-22 삼성전자주식회사 Apparatus for restoring data from signal transmitted by a plurality of antenna
US7221653B2 (en) * 2001-07-30 2007-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Fast flow control methods for communication networks
US7177265B1 (en) * 2002-01-15 2007-02-13 Digi International Inc. Iterative method, and apparatus for acquiring time and frequency synchronization in a DSSS receiver
US8009607B2 (en) * 2002-04-24 2011-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for uplink transmission timing in a mobile communications system
US7411923B2 (en) 2002-11-14 2008-08-12 Qualcomm Incorporated Wireless communication rate shaping
US7411974B2 (en) 2002-11-14 2008-08-12 Qualcomm Incorporated Wireless communication rate shaping
EP1561358B1 (en) * 2002-11-14 2014-12-17 Qualcomm Incorporated Wireless communication rate shaping
US7680052B2 (en) 2002-12-16 2010-03-16 Qualcomm Incorporated Closed loop resource allocation
US7493132B2 (en) * 2003-02-14 2009-02-17 Qualcomm Incorporated System and method for uplink rate selection
EP2603041A1 (en) * 2003-09-04 2013-06-12 Fujitsu Limited Communication System and Handover Communication Method
US9629030B2 (en) * 2003-10-14 2017-04-18 Qualcomm Incorporated Data rate control in soft handoff and during cell-switching
KR100651466B1 (en) 2004-01-27 2006-11-29 삼성전자주식회사 Synchronization system and method for broadcasting a service stream in a mobile communication system
US7693110B2 (en) 2004-09-16 2010-04-06 Motorola, Inc. System and method for downlink signaling for high speed uplink packet access
US20060068831A1 (en) * 2004-09-30 2006-03-30 Stewart Kenneth A Predictive power control in a digital diversity receiver
WO2006054594A1 (en) * 2004-11-17 2006-05-26 Ntt Docomo, Inc. Maximum allowable transmission rate deciding method, mobile station and wireless base station
US8838115B2 (en) * 2005-07-20 2014-09-16 Qualcomm Incorporated Method and apparatus for expanded data rate control indices in a wireless communication system
US8953596B2 (en) 2006-01-06 2015-02-10 Qualcomm Incorporated Conserving network capacity by releasing QoS resources
US8428156B2 (en) 2006-03-20 2013-04-23 Qualcomm Incorporated Rate control for multi-channel communication systems
DE602006001110D1 (en) * 2006-05-12 2008-06-19 Ntt Docomo Inc Methods and apparatus for interference tolerance signaling and power control using a document signal concept
WO2009102739A2 (en) * 2008-02-13 2009-08-20 Bell Helicopter Textron Inc. Rotorcraft with variable incident wing
US20100067435A1 (en) * 2008-09-18 2010-03-18 Krishna Balachandran Architecture to support network-wide multiple-in-multiple-out wireless communication over an uplink
US9042880B2 (en) * 2008-12-12 2015-05-26 Alcatel Lucent Method and apparatus for uploading content over wireless networks
US8456996B2 (en) * 2010-07-30 2013-06-04 Qualcomm Incorporated Method and apparatus for improved MBMS capacity and link management through robust and performance optimal soft combining
US8942750B2 (en) 2011-01-07 2015-01-27 Apple Inc. Power control in a mobile device
FR3033120B1 (en) * 2015-02-19 2018-03-02 Sigfox METHOD AND SYSTEM FOR WIRELESS COMMUNICATION BETWEEN AN ACCESS NETWORK AND A TERMINAL WITH A RANGE OF A PLURALITY OF BASE STATIONS OF SAID NETWORK
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351859A (en) 1964-08-19 1967-11-07 Motorola Inc Communication system employing multipath rejection means
US4112257A (en) 1977-03-24 1978-09-05 Frost Edward G Comprehensive automatic mobile radio telephone system
US4222115A (en) 1978-03-13 1980-09-09 Purdue Research Foundation Spread spectrum apparatus for cellular mobile communication systems
US4291410A (en) 1979-10-24 1981-09-22 Rockwell International Corporation Multipath diversity spread spectrum receiver
US4630283A (en) 1985-07-17 1986-12-16 Rca Corporation Fast acquisition burst mode spread spectrum communications system with pilot carrier
US4672658A (en) 1985-10-16 1987-06-09 At&T Company And At&T Bell Laboratories Spread spectrum wireless PBX
US4752969A (en) 1986-01-16 1988-06-21 Kenneth Rilling Anti-multipath signal processor
US4669091A (en) 1986-02-10 1987-05-26 Rca Corporation Adaptive multipath distortion equalizer
DE3607687A1 (en) 1986-03-08 1987-09-10 Philips Patentverwaltung METHOD AND CIRCUIT ARRANGEMENT FOR SWITCHING A RADIO CONNECTION INTO ANOTHER RADIO CELL OF A DIGITAL RADIO TRANSMISSION SYSTEM
US4694467A (en) 1986-07-03 1987-09-15 Signatron, Inc. Modem for use in multipath communication systems
US5571761A (en) 1986-08-22 1996-11-05 Canon Kabushiki Kaisha Ceramic substrate circuit substrate
US4710944A (en) 1986-10-17 1987-12-01 Rca Corporation Dual transmit-receive space diversity communication system
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4736460A (en) 1986-11-10 1988-04-05 Kenneth Rilling Multipath reduction system
US4797950A (en) 1986-11-10 1989-01-10 Kenneth Rilling Multipath reduction system
JP2854346B2 (en) 1989-09-19 1999-02-03 日本電信電話株式会社 Channel assignment method
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5109390A (en) 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5038399A (en) 1990-05-21 1991-08-06 Motorola, Inc. Method for assigning channel reuse levels in a multi-level cellular system
US5659569A (en) 1990-06-25 1997-08-19 Qualcomm Incorporated Data burst randomizer
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
NZ239283A (en) * 1990-08-23 1994-09-27 Ericsson Telefon Ab L M Mobile cellular radio: handoff between half rate and full rate channels according to estimated received signal quality
US5297192A (en) 1990-09-28 1994-03-22 At&T Bell Laboratories Method and apparatus for remotely programming a mobile data telephone set
ATE162035T1 (en) 1991-06-03 1998-01-15 British Telecomm RADIO SYSTEM
AU7173694A (en) 1993-06-25 1995-01-17 Omniplex, Inc. Determination of location using time-synchronized cell site transmissions
ZA946674B (en) * 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
US5404376A (en) 1993-09-09 1995-04-04 Ericsson-Ge Mobile Communications Inc. Navigation assistance for call handling in mobile telephone systems
US5594720A (en) 1993-11-24 1997-01-14 Lucent Technologies Inc. Multiple access cellular communication with dynamic slot allocation and reduced co-channel interferences
US5533019A (en) * 1994-01-31 1996-07-02 Motorola, Inc. Packet data in an analog cellular radiotelephone system
US5491837A (en) 1994-03-07 1996-02-13 Ericsson Inc. Method and system for channel allocation using power control and mobile-assisted handover measurements
JP3302168B2 (en) 1994-04-05 2002-07-15 株式会社東芝 Mobile radio communication system
US5442625A (en) 1994-05-13 1995-08-15 At&T Ipm Corp Code division multiple access system providing variable data rate access to a user
US5638412A (en) 1994-06-15 1997-06-10 Qualcomm Incorporated Method for providing service and rate negotiation in a mobile communication system
US5621723A (en) * 1994-09-27 1997-04-15 Gte Laboratories Incorporated Power control in a CDMA network
FI96557C (en) 1994-09-27 1996-07-10 Nokia Telecommunications Oy Method for data transmission in a TDMA mobile radio system and a mobile radio system for carrying out the method
US5822359A (en) 1994-10-17 1998-10-13 Motorola, Inc. Coherent random access channel in a spread-spectrum communication system and method
JP2655108B2 (en) 1994-12-12 1997-09-17 日本電気株式会社 CDMA transceiver
JPH08256102A (en) 1995-01-19 1996-10-01 Sony Corp Cellular system
US5515013A (en) * 1995-04-18 1996-05-07 Sierra Wireless Fixed compromise equalization for a dual port FM modulator
FI100575B (en) 1995-05-17 1997-12-31 Nokia Mobile Phones Ltd Method for improving handover and connection reliability and cellular radio system
US6240124B1 (en) * 1995-06-06 2001-05-29 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
MY112320A (en) * 1995-06-19 2001-05-31 Qualcomm Inc Method and appatratus for managing load conditions in a local wireless loop system
US5779071A (en) * 1995-08-04 1998-07-14 New Vent Designs, Inc. Nursing bottle with an air venting structure
US5734646A (en) * 1995-10-05 1998-03-31 Lucent Technologies Inc. Code division multiple access system providing load and interference based demand assignment service to users
JP3078216B2 (en) 1995-12-13 2000-08-21 株式会社エヌ・ティ・ティ・ドコモ Base station selection method
US5774809A (en) 1996-02-12 1998-06-30 Nokia Mobile Phones Limited Simplified mobile assisted handoff of signal between cells
KR100211952B1 (en) * 1996-12-13 1999-08-02 정선종 Method and apparatus for controlling backward link power in cdma system
US5963548A (en) * 1997-01-21 1999-10-05 Nokia Mobile Phones Limited Apparatus and method for configuring a data channel for symmetric/asymmetric data transmission
US5878038A (en) 1997-02-28 1999-03-02 Motorola, Inc. Method in a wireless code division multiple access communication system for delivering a message to a mobile communication unit
KR100206477B1 (en) * 1997-03-13 1999-07-01 윤종용 Method for control changing rate of transmiting power level in cdma system
US5923650A (en) * 1997-04-08 1999-07-13 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US5914950A (en) * 1997-04-08 1999-06-22 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
US6094428A (en) * 1997-04-30 2000-07-25 Motorola, Inc. Method and apparatus for transmission and reception of a transmission rate in a CDMA communication system
ES2286851T3 (en) * 1997-05-14 2007-12-01 Qualcomm Incorporated Subscriber unit with plural data and control sources for CDMA WIRELESS COMMUNICATION SYSTEM.
US6134231A (en) * 1997-08-08 2000-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Uplink channel puncturing for reduced interference within a wireless data communications network
US6035196A (en) * 1997-08-25 2000-03-07 The Whitaker Corporation Automatic cell transfer based on reverse channel characteristics
US6236646B1 (en) * 1997-09-09 2001-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Packet data communications scheduling in a spread spectrum communications system
KR100265585B1 (en) * 1997-10-09 2000-09-15 정태기 The power control device of reverse link control channel in mobile telecommunition
KR100290668B1 (en) * 1997-10-13 2001-07-12 윤종용 Method for controlling forward link power in cdma system
US6574211B2 (en) * 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6009553A (en) * 1997-12-15 1999-12-28 The Whitaker Corporation Adaptive error correction for a communications link
US6147964A (en) * 1998-05-07 2000-11-14 Qualcomm Inc. Method and apparatus for performing rate determination using orthogonal rate-dependent walsh covering codes
GB9808368D0 (en) 1998-04-22 1998-06-17 Roke Manor Research Power control and radio information method for a mobile radio communications system
US6556549B1 (en) * 1999-07-02 2003-04-29 Qualcomm Incorporated Method and apparatus for signal combining in a high data rate communication system

Also Published As

Publication number Publication date
CY1107056T1 (en) 2012-10-24
DE60034338T2 (en) 2008-01-03
US20030112774A1 (en) 2003-06-19
US6556549B1 (en) 2003-04-29
DE60042136D1 (en) 2009-06-10
EP1192749A1 (en) 2002-04-03
US6807161B2 (en) 2004-10-19
CN1630996A (en) 2005-06-22
US6680926B2 (en) 2004-01-20
IL147019A0 (en) 2002-08-14
KR100753376B1 (en) 2007-08-30
JP4685302B2 (en) 2011-05-18
RU2262212C2 (en) 2005-10-10
EP1791286B1 (en) 2009-04-29
EP1192749B1 (en) 2007-04-11
ES2275524T3 (en) 2007-06-16
JP4886065B2 (en) 2012-02-29
EP2077638A2 (en) 2009-07-08
ATE359631T1 (en) 2007-05-15
PT1192749E (en) 2007-05-31
JP2011091816A (en) 2011-05-06
HK1109821A1 (en) 2008-06-20
EP1791286A1 (en) 2007-05-30
JP2003521847A (en) 2003-07-15
US20030072287A1 (en) 2003-04-17
BR0011966A (en) 2002-12-17
BRPI0011966B1 (en) 2016-06-14
MXPA01012708A (en) 2002-07-22
KR20020026482A (en) 2002-04-10
ATE430420T1 (en) 2009-05-15
NO20016409D0 (en) 2001-12-28
NO20016409L (en) 2002-01-24
UA73737C2 (en) 2005-09-15
TWI226163B (en) 2005-01-01
CA2377060C (en) 2010-08-10
IL189208A0 (en) 2008-06-05
WO2001003357A1 (en) 2001-01-11
CN101188476B (en) 2015-11-25
US6804210B2 (en) 2004-10-12
HK1075767A1 (en) 2005-12-23
CN100367694C (en) 2008-02-06
US20030076795A1 (en) 2003-04-24
IL147019A (en) 2008-04-13
AU5911500A (en) 2001-01-22
ES2325182T3 (en) 2009-08-27
NO333454B1 (en) 2013-06-10
CA2377060A1 (en) 2001-01-11
DK1192749T3 (en) 2007-08-20
DE60034338D1 (en) 2007-05-24
EP2077638A3 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN100367694C (en) Method and apparatus for determining a reverse link transmission rate in a wireless communication system
CN1728575B (en) Encoding method and device
JP4897181B2 (en) Beam switching method and apparatus in wireless communication system
CN1188961C (en) Method and apparatus for controlling transmission gated communication system
US6717976B1 (en) Method and apparatus for signal to noise power ratio estimation in a multi sub-channel CDMA receiver
EP1163739B1 (en) Methods and apparatuses for controlling transmission power while in soft handoff
EP1742383A1 (en) Wireless communication system and radio station
EP2045917A2 (en) Adaptive RF amplifier prelimiter
JP2002508137A (en) Subscriber unit and method for use in a wireless communication system
US20040101071A1 (en) Radio base station apparatus, decoding apparatus used therefor which uses TFCI decoding characteristics, and decoding method therefor
JP2003507926A (en) Method and apparatus for coherent demodulation in a communication system using potentially gated pilot signals
WO2000076091A1 (en) Communication device
Qaraqe et al. Performance analysis of joint diversity combining, adaptive modulation, and power control schemes
Ifeagwu et al. Performance Analysis for Optimization of CDMA 20001X Cellular Mobile Radio Network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1117969

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20151125

CX01 Expiry of patent term