CN101187660A - Double-groove orifice-type mixing metering device - Google Patents
Double-groove orifice-type mixing metering device Download PDFInfo
- Publication number
- CN101187660A CN101187660A CNA2006100990647A CN200610099064A CN101187660A CN 101187660 A CN101187660 A CN 101187660A CN A2006100990647 A CNA2006100990647 A CN A2006100990647A CN 200610099064 A CN200610099064 A CN 200610099064A CN 101187660 A CN101187660 A CN 101187660A
- Authority
- CN
- China
- Prior art keywords
- pressure
- downstream
- double
- metering device
- upstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 25
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 abstract description 10
- 239000007788 liquid Substances 0.000 abstract description 10
- 238000013528 artificial neural network Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000005070 sampling Methods 0.000 abstract description 2
- 239000003498 natural gas condensate Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000007791 liquid phase Substances 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
本发明涉及一种双槽式孔板型混输计量装置,属于高含气凝析油气的在线计量仪器。计量凝析天然气时,一般多相计量计误差很大。本发明的双槽式孔板型混输计量装置,其由上游连接法兰、测量直管、上游取压装置、稳压直管、下游取压装置、下游直管和下游连接法兰依次连接而成,测量直管上设有压力变送器,上游取压装置与下游取压装置内各设有一片槽式孔板,下游直管上设有温度变送器,各变送器与计算机相连接。基于Murdock计量模型关系式和人工神经网络技术编制的双槽式孔板型混输计量装置流量处理软件,通过软件处理设定采样频率,将采集的压力、压差和温度信号转化为气液流量数据,再利用人工神经网络系统对计算的流量进行修正,得出最终的气液计量值。
The invention relates to a double-groove orifice-plate mixed-transport metering device, which belongs to an online metering instrument for high-gas condensate oil and gas. When measuring natural gas condensate, the error of general multi-phase meter is very large. The double-groove orifice-type mixed-transport metering device of the present invention is sequentially connected by an upstream connecting flange, a measuring straight pipe, an upstream pressure taking device, a stabilizing straight pipe, a downstream pressure taking device, a downstream straight pipe and a downstream connecting flange. The measuring straight pipe is equipped with a pressure transmitter, the upstream pressure taking device and the downstream pressure taking device are each equipped with a grooved orifice plate, and the downstream straight pipe is equipped with a temperature transmitter. connected. The flow processing software of the dual-slot orifice-plate mixed-transport metering device based on the relational expression of the Murdock metering model and artificial neural network technology sets the sampling frequency through software processing and converts the collected pressure, pressure difference and temperature signals into gas-liquid flow Data, and then use the artificial neural network system to correct the calculated flow rate to obtain the final gas-liquid measurement value.
Description
技术领域technical field
本发明涉及一种双槽式孔板型混输计量装置,主要应用于高含气的凝析油气的多相计量,属于石油工业中油气集输管线用的在线计量仪器。The invention relates to a double-groove orifice-plate mixed transportation metering device, which is mainly used for multiphase metering of condensed oil and gas with high gas content, and belongs to the online metering instrument for oil and gas gathering and transportation pipelines in the petroleum industry.
背景技术Background technique
从80年初至今,国内外多相流计量技术取得了重要进展,截止目前,国际公认的达到商品化程度并且在工业现场得到较为广泛试验和应用的多相流量计产品包括:美国Agar公司的Agar-301/401,中国海默公司的MFM2000,挪威Roxor公司的Fluenta 1900VI与RFM流量计、挪威Framo公司的Framo多相流量计、美国Daniel公司的MEGRA流量计、McCrometer公司的V-Cone流量计、英国Solartron公司的DualStream流量计和美国PECO公司的PECO流量计、意大利TEA公司的VEGA流量计等。这些多相流流量计在限定工况下,能够以90%的置信概率达到10%以内的气液相测量精度。但由于使用条件的变化与误差传递等影响,在某些工况下,油水相测量不确定度可能远远超出±10%的限度。现有多相流量计大都针对含液率为10%~90%的油气水三相流进行测量,如果直接用来计量含液率小于10%的凝析天然气,由于液相含率超出其适用范围,误差必然很大。能够直接用于凝析天然气计量的多相流量计目前仅有Dual StreamII、V-Cone、PECO与VEGA四种产品,其中DualStreamII流量计已经应用于生产现场,其余产品尚处于实验室研发与现场试验阶段。From the beginning of the 1980s to the present, multiphase flow metering technology at home and abroad has made important progress. Up to now, internationally recognized multiphase flowmeter products that have reached the level of commercialization and have been widely tested and applied in industrial sites include: Agar of Agar Corporation of the United States -301/401, MFM2000 from Haimo Company in China, Fluenta 1900VI and RFM flowmeter from Roxor Company in Norway, Framo multiphase flowmeter from Framo Company in Norway, MEGRA flowmeter from Daniel Company in the United States, V-Cone flowmeter from McCrometer Company, DualStream flowmeter of British Solartron company, PECO flowmeter of American PECO company, VEGA flowmeter of Italian TEA company, etc. These multiphase flow meters are capable of achieving gas-liquid phase measurement accuracy within 10% with a 90% confidence probability under defined operating conditions. However, due to the influence of changes in service conditions and error transmission, in some working conditions, the uncertainty of oil-water phase measurement may far exceed the limit of ±10%. Most of the existing multiphase flowmeters measure oil-gas-water three-phase flow with a liquid content of 10% to 90%. range, the error is bound to be large. At present, there are only four multiphase flowmeters that can be directly used for the measurement of condensate natural gas: Dual StreamII, V-Cone, PECO and VEGA. Among them, the DualStreamII flowmeter has been used in the production site, and the rest of the products are still in the laboratory development and field test. stage.
发明内容Contents of the invention
本发明的目的在于开发适用于高含气的油气田的多相混输流量装置,实现不分离凝析天然气的在线计量。The purpose of the invention is to develop a multi-phase mixed flow flow device suitable for oil and gas fields with high gas content, so as to realize the on-line metering of non-separated condensed natural gas.
实践中,本着降低成本,提高测量精度的要求,选用了Murdock关系式作为开发新型多相油气计量装置的模型,Murdock关系式是基于孔板流量计的,通过对孔板结构改进和各种仿真实验,及对测量计算结果的修正,开发出价格比较经济的多相计量装置。In practice, in line with the requirements of reducing costs and improving measurement accuracy, the Murdock relational expression was selected as the model for developing a new multiphase oil and gas metering device. The Murdock relational expression is based on the orifice flowmeter. The simulation experiment and the correction of the measurement and calculation results have developed a more economical multi-phase metering device.
本发明的双槽式孔板型混输计量装置选用了槽式孔板作为一次节流传感元件,槽式孔板是由带有槽孔的与管道内壁相切的圆形板构成,圆形板上的槽孔由至少一圈同心且径向均匀分布的槽式小孔组成,圆形板外缘与管道内壁相切。实践中,槽式孔板的槽式小孔围绕圆形板轴心设计为三圈,且径向均匀分布在槽式孔板的圆形板上。The double-groove orifice plate type mixed transportation metering device of the present invention selects a groove-type orifice plate as the primary throttling sensing element. The slotted holes on the plate are composed of at least one circle of concentric and uniformly distributed slotted holes in the radial direction, and the outer edge of the circular plate is tangent to the inner wall of the pipe. In practice, the slot-type small holes of the slot-type orifice plate are designed as three circles around the axis of the circular plate, and are evenly distributed in the radial direction on the circular plate of the slot-type orifice plate.
本发明的双槽式孔板型混输计量装置其采用如下的技术方案,即一种双槽式孔板型混输计量装置由上游连接法兰、测量直管、上游取压装置、稳压直管、下游取压装置、下游直管和下游连接法兰依次连接而成,其特征在于测量直管上设有压力变送器,上游取压装置与下游取压装置内均设有一片槽式孔板,在下游直管上设有温度变送器,各变送器与计算机相连接。The double-groove orifice-type mixed-transport metering device of the present invention adopts the following technical scheme, that is, a double-groove orifice-type mixed-transport metering device consists of an upstream connecting flange, a measuring straight pipe, an upstream pressure taking device, a voltage stabilizing The straight pipe, the downstream pressure taking device, the downstream straight pipe and the downstream connecting flange are connected sequentially. It is characterized in that a pressure transmitter is installed on the measuring straight pipe, and a groove is provided in the upstream pressure taking device and the downstream pressure taking device. Type orifice plate, temperature transmitters are installed on the downstream straight pipe, and each transmitter is connected with the computer.
上游取压装置与下游取压装置结构相同,但上游与下游选用的槽式孔板的孔径比可以相同,也可以不同。The structure of the upstream pressure-taking device is the same as that of the downstream pressure-taking device, but the aperture ratios of the grooved orifice plates selected for the upstream and downstream can be the same or different.
用Aslot表示所有槽孔面积总和、A表示管道截面积,D是管道直径、d是标准孔板孔径,槽式孔板的孔径比定义为:Use A slot to represent the sum of the areas of all slots, A to represent the cross-sectional area of the pipe, D to be the diameter of the pipe, and d to be the aperture of the standard orifice plate. The aperture ratio of the slotted orifice plate is defined as:
取压装置是由取压装置壳体和置于壳体内腔中的槽式孔板和分置于槽式孔板两侧的与取压装置壳体内腔相通的前、后取压支管,及连接在前、后取压支管上的取压法兰和毛细管引压管路与压差变送器连接构成。The pressure-taking device is composed of a pressure-taking device housing, a slotted orifice plate placed in the inner cavity of the housing, and front and rear pressure-taking branch pipes that are placed on both sides of the slotted orifice plate and communicated with the inner cavity of the pressure-taking device housing, and The pressure-taking flange connected to the front and rear pressure-taking branch pipes and the capillary pressure-leading pipeline are connected with the differential pressure transmitter.
在取压法兰和毛细管引压管路连接处设有弹簧膜片。在取压支管的末端装有阀门。A spring diaphragm is arranged at the connection between the pressure-taking flange and the capillary pressure-leading pipeline. A valve is installed at the end of the pressure branch pipe.
双槽式孔板型混输计量装置使用时,水平安装于管路中,在对压降、温度和压力进行测量中,压力检测选用ROSEMOUNT表,差压检测选用差压变送器,温度由温度传感器(温度变送器)实时测量。When the double-slot orifice-type mixed-transport metering device is used, it is installed horizontally in the pipeline. In the measurement of pressure drop, temperature and pressure, a ROSEMOUNT gauge is used for pressure detection, and a differential pressure transmitter is used for differential pressure detection. The temperature is determined by The temperature sensor (temperature transmitter) measures in real time.
为防止管线流体中的杂质堵塞节流的槽式孔板,在双槽式孔板型混输计量装置入口需安装有过滤器。In order to prevent impurities in the pipeline fluid from clogging the throttling trough orifice, a filter must be installed at the inlet of the double trough orifice mixed delivery metering device.
实践中,气液两相流经槽式孔板后,在3倍管道直径长度左右的稳压直管段已经恢复到上游的流动状态,说明前后取压装置,即双槽式孔板组合应用时,中间稳压直管段长度可以适当缩短,取5至6倍管道直径长度,可使得流量计结构紧凑,此外,小孔径比节流元件(槽式孔板)对液相含率的变化更敏感,选用小孔径比节流元件有利于提高低含液率的凝析天然气液相流量测量精度。In practice, after the gas-liquid two-phase flows through the trough-type orifice plate, the pressure-stabilized straight pipe section about 3 times the diameter of the pipe has returned to the upstream flow state, indicating that the front and rear pressure-taking devices, that is, when the double-slot orifice plate is used in combination , the length of the intermediate pressure-stabilizing straight pipe section can be appropriately shortened, and the length of 5 to 6 times the pipe diameter can make the flowmeter compact. In addition, the small aperture is more sensitive to the change of liquid phase holdup than the throttling element (groove orifice plate) , the selection of a small aperture ratio throttling element is conducive to improving the measurement accuracy of the liquid phase flow rate of condensate natural gas with low liquid content.
按照双槽式孔板型混输计量装置的技术方案,其计量原理是利用Murdock计量模型关系式和人工神经网络技术编制了双槽式孔板型混输计量装置流量处理软件——智能化软件系统,通过软件处理设定采样频率,将采集的压力、压差和温度信号转化为气液流量数据,再利用人工神经网络系统对流量进行修正,得出最终的气液计量值。According to the technical plan of the double-slot orifice-plate mixed-transport metering device, the metering principle is to use the Murdock metering model relational expression and artificial neural network technology to compile the flow processing software of the double-slot orifice-plate mixed-transport metering device—intelligent software The system sets the sampling frequency through software processing, converts the collected pressure, pressure difference and temperature signals into gas-liquid flow data, and then uses the artificial neural network system to correct the flow to obtain the final gas-liquid measurement value.
在实践中,利用Murdock关系式的多相天然气流量测量软件,将测得的两个槽式孔板差压ΔP1、ΔP2与入口压力P、出口温度T共4个测量值,通过一定的运算处理后输出气液分相流量、分相累积流量、流体温度、压力等参数,此时计算所得流量值与实际误差在20%以内,再经人工神经网络系统对数据进行修正,可最终使计算结果误差率达到10%以内。In practice, using the multiphase natural gas flow measurement software of the Murdock relation, the four measured values of differential pressure ΔP 1 , ΔP 2 , inlet pressure P, and outlet temperature T of the two trough orifice plates are measured through a certain After calculation and processing, the gas-liquid phase separation flow rate, phase separation cumulative flow rate, fluid temperature, pressure and other parameters are output. At this time, the calculated flow value and the actual error are within 20%, and then the data is corrected by the artificial neural network system, which can finally be used. The calculation result error rate is within 10%.
在实践中,利用上述智能化软件系统测量得到的气液流量值与实际值之间吻合较好,在90%的置信概率下,气液比在200~650Nm3/m3范围内,气体流量测量误差小于±5%,液体小于±10%,达到了计量精度要求。In practice, the gas-liquid flow rate measured by the above-mentioned intelligent software system is in good agreement with the actual value. With a 90% confidence probability, the gas-liquid ratio is in the range of 200-650Nm 3 /m 3 , and the gas flow rate The measurement error is less than ±5%, and the liquid is less than ±10%, which meets the measurement accuracy requirements.
附图说明Description of drawings
图1,双槽式孔板型混输计量装置结构示意图Figure 1, Schematic diagram of the structure of the double-slot orifice-type mixed-transport metering device
图1中,压力变送器1,上游差压变送器2,下游差压变送器3,温度变送器4,上游槽式孔板5,下游槽式孔板6,计算机20。In FIG. 1 , a pressure transmitter 1 , an upstream
图2,双槽式孔板型混输计量装置管线结构及信号测量示意图Figure 2. Schematic diagram of the pipeline structure and signal measurement of the double-slot orifice-type mixed-transport metering device
图2中,压力变送器1,上游差压变送器2,下游差压变送器3,温度变送器4,上游槽式孔板5,下游槽式孔板6,上游连接法兰7,测量直管8,上游取压装置9,稳压直管10,下游取压装置11,下游直管12,前取压支管13,后取压支管14,取压法兰15,弹簧膜片16,毛细管引压管路17,阀门18,下游连接法兰19。In Figure 2, pressure transmitter 1, upstream
具体实施方式Detailed ways
下面结合附图和实施例对本发明的双槽式孔板型混输计量装置进行进一步说明,双槽式孔板型混输计量装置安装在直径D=50mm的水平布置的油气管线上,由上游连接法兰7、测量直管8、上游取压装置9、稳压直管10、下游取压装置11、下游直管12和下游连接法兰19依次连接而成,在测量直管8上设有压力变送器1,上游取压装置9与下游取压装置11内各设有一片槽式孔板,在下游直管12上设有温度变送器4,各变送器与计算机20相连接。The double-groove orifice-type mixed-transport metering device of the present invention will be further described below in conjunction with the accompanying drawings and embodiments. The double-groove orifice-type mixed-transport metering device is installed on a horizontally arranged oil and gas pipeline with a diameter of D=50mm. Connecting
上游取压装置9与下游取压装置11结构相同,上游取压装置选用的槽式孔板孔径比为0.75,下游取压装置选用的槽式孔板孔径比为0.5。其中,上游取压装置9是由取压装置9的壳体和置于壳体内腔中的槽式孔板5和分置于槽式孔板两侧的与取压装置壳体内腔相通的前取压支管13、后取压支管14,及分别连接在前、后取压支管上的取压法兰15和毛细管引压管路17与上游压差变送器2连接构成。在取压法兰15和毛细管引压管路17连接处设有弹簧膜片16。在取压支管13的末端装有阀门18。The upstream
中间稳压直管段长度取为5倍管道直径长度,即250mm。The length of the middle stabilized straight pipe section is taken as 5 times the diameter of the pipe, that is, 250mm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100990647A CN101187660B (en) | 2006-07-18 | 2006-07-18 | Double-slot type porous plate type mixed transportation metering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100990647A CN101187660B (en) | 2006-07-18 | 2006-07-18 | Double-slot type porous plate type mixed transportation metering device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101187660A true CN101187660A (en) | 2008-05-28 |
CN101187660B CN101187660B (en) | 2012-01-11 |
Family
ID=39480139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100990647A Active CN101187660B (en) | 2006-07-18 | 2006-07-18 | Double-slot type porous plate type mixed transportation metering device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101187660B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435249A (en) * | 2011-10-19 | 2012-05-02 | 南京钢铁股份有限公司 | Connection method of pore plate and pipeline |
CN103573249A (en) * | 2012-08-02 | 2014-02-12 | 中国石油天然气股份有限公司 | On-line metering device for gas and liquid yield of natural gas single well |
CN103670368A (en) * | 2012-09-18 | 2014-03-26 | 中国石油天然气股份有限公司 | Gas-liquid two-phase metering device |
CN104568651A (en) * | 2013-10-27 | 2015-04-29 | 中国石油化工集团公司 | On-line double-pressure vibrating tube type drilling fluid density measurement instrument and calculating method |
US9430734B2 (en) | 2010-06-25 | 2016-08-30 | Petroliam Nasional Barhad (Petronas) | Method and system for validating energy measurement in a high pressure gas distribution network |
CN107543587A (en) * | 2017-08-30 | 2018-01-05 | 济南大学 | Flow measuring apparatus is blended in a kind of gas-liquid two-phase |
CN107701925A (en) * | 2017-09-21 | 2018-02-16 | 北京陆海善道科技发展有限公司 | Underground natural gas storage individual well note adopts same pipe bidirectional measuring device and metering method |
CN108301819A (en) * | 2018-03-29 | 2018-07-20 | 北京石油化工学院 | A kind of natural gas wellhead metering throttling integrated apparatus |
CN108931270A (en) * | 2018-09-05 | 2018-12-04 | 河北大学 | Diphasic stream parameter detection method based on porous restriction and acoustic emission |
CN109764924A (en) * | 2019-02-25 | 2019-05-17 | 上海碳索能源环境服务有限公司 | Wide working condition high precision intelligent flow meter based on neural network model |
CN111307227A (en) * | 2020-03-31 | 2020-06-19 | 天津市天大泰和自控仪表技术有限公司 | Crescent pore plate gas-liquid two-phase flow measuring device |
CN111721370A (en) * | 2020-05-19 | 2020-09-29 | 中国石油大学(北京) | A dual nozzle natural gas flow measurement device and system based on differential pressure |
CN114184241A (en) * | 2020-09-14 | 2022-03-15 | 中核核电运行管理有限公司 | Method for improving measurement stability of differential pressure flow of bubble-containing liquid of pressurized water reactor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6345536B1 (en) * | 1998-09-10 | 2002-02-12 | The Texas A&M University System | Multiple-phase flow meter |
US6119710A (en) * | 1999-05-26 | 2000-09-19 | Cyber Instrument Technologies Llc | Method for wide range gas flow system with real time flow measurement and correction |
US6895351B2 (en) * | 1999-06-29 | 2005-05-17 | Fisher Controls International Llc | Regulator flow measurement apparatus |
CN2396379Y (en) * | 1999-11-05 | 2000-09-13 | 左湘宁 | Integrated orificeplate flowmeter |
CN2447729Y (en) * | 2000-09-04 | 2001-09-12 | 天津万通电子仪表有限公司 | Built-in orificeplate flowmeter |
US6564824B2 (en) * | 2001-04-13 | 2003-05-20 | Flowmatrix, Inc. | Mass flow meter systems and methods |
CN2480811Y (en) * | 2001-06-12 | 2002-03-06 | 刘孟禹 | Three-phase flow mixing transfusion measurer |
JP3655569B2 (en) * | 2001-09-06 | 2005-06-02 | 大陽日酸株式会社 | Gas component concentration measuring method and apparatus |
US6651514B2 (en) * | 2001-11-16 | 2003-11-25 | Daniel Industries, Inc. | Dual function flow conditioner and check meter |
JP4204400B2 (en) * | 2003-07-03 | 2009-01-07 | 忠弘 大見 | Differential pressure type flow meter and differential pressure type flow control device |
-
2006
- 2006-07-18 CN CN2006100990647A patent/CN101187660B/en active Active
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9430734B2 (en) | 2010-06-25 | 2016-08-30 | Petroliam Nasional Barhad (Petronas) | Method and system for validating energy measurement in a high pressure gas distribution network |
CN102435249A (en) * | 2011-10-19 | 2012-05-02 | 南京钢铁股份有限公司 | Connection method of pore plate and pipeline |
CN103573249A (en) * | 2012-08-02 | 2014-02-12 | 中国石油天然气股份有限公司 | On-line metering device for gas and liquid yield of natural gas single well |
CN103573249B (en) * | 2012-08-02 | 2016-11-09 | 中国石油天然气股份有限公司 | On-line metering device for gas and liquid yield of natural gas single well |
CN103670368A (en) * | 2012-09-18 | 2014-03-26 | 中国石油天然气股份有限公司 | Gas-liquid two-phase metering device |
CN104568651A (en) * | 2013-10-27 | 2015-04-29 | 中国石油化工集团公司 | On-line double-pressure vibrating tube type drilling fluid density measurement instrument and calculating method |
CN107543587A (en) * | 2017-08-30 | 2018-01-05 | 济南大学 | Flow measuring apparatus is blended in a kind of gas-liquid two-phase |
CN107701925B (en) * | 2017-09-21 | 2023-10-20 | 北京陆海善道科技发展有限公司 | Single-well injection and production same-pipe bidirectional metering device and metering method for natural gas underground gas storage |
CN107701925A (en) * | 2017-09-21 | 2018-02-16 | 北京陆海善道科技发展有限公司 | Underground natural gas storage individual well note adopts same pipe bidirectional measuring device and metering method |
CN108301819A (en) * | 2018-03-29 | 2018-07-20 | 北京石油化工学院 | A kind of natural gas wellhead metering throttling integrated apparatus |
CN108931270A (en) * | 2018-09-05 | 2018-12-04 | 河北大学 | Diphasic stream parameter detection method based on porous restriction and acoustic emission |
CN109764924A (en) * | 2019-02-25 | 2019-05-17 | 上海碳索能源环境服务有限公司 | Wide working condition high precision intelligent flow meter based on neural network model |
CN111307227A (en) * | 2020-03-31 | 2020-06-19 | 天津市天大泰和自控仪表技术有限公司 | Crescent pore plate gas-liquid two-phase flow measuring device |
CN111721370A (en) * | 2020-05-19 | 2020-09-29 | 中国石油大学(北京) | A dual nozzle natural gas flow measurement device and system based on differential pressure |
CN111721370B (en) * | 2020-05-19 | 2022-08-26 | 中国石油大学(北京) | Double-nozzle natural gas flow measuring device and system based on differential pressure |
CN114184241A (en) * | 2020-09-14 | 2022-03-15 | 中核核电运行管理有限公司 | Method for improving measurement stability of differential pressure flow of bubble-containing liquid of pressurized water reactor |
CN114184241B (en) * | 2020-09-14 | 2024-08-09 | 中核核电运行管理有限公司 | Method for improving pressure water reactor bubble-containing liquid differential pressure flow measurement stability |
Also Published As
Publication number | Publication date |
---|---|
CN101187660B (en) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101187660A (en) | Double-groove orifice-type mixing metering device | |
CN101363745B (en) | Multiphase flow quantitative method and multiphase flow mass flowmeter | |
CN100437046C (en) | Measuring method of gas-liquid two-phase flow based on section measuring and apparatus thereof | |
TW386155B (en) | Fluid flow apparatus | |
CN210741584U (en) | Wet gas flow metering device | |
GB2361322A (en) | A measuring device for the gas-liquid flow rate of multiphase fluids | |
CN201837418U (en) | High-precision wide-range integrated throttle device | |
CN101802563A (en) | Two-phase flow meter | |
CN210293314U (en) | Necking type precession vortex flowmeter | |
CN110987097B (en) | Method for measuring gas-liquid multiphase flow by using pressure fluctuation | |
CN200979430Y (en) | A flow measurement device for two-phase and three-media of gas-water-oil | |
CN107246259A (en) | Tubular type oil well gas-liquid two-phase flow meter and its measuring method | |
Ifft et al. | Pipe elbow effects on the V-cone flowmeter | |
CN107843307A (en) | A kind of spliced gas-liquid two-phase flow metering device | |
CN216246558U (en) | Reducing type porous balance flowmeter | |
CN204085644U (en) | A kind of flow calibrating device | |
Li et al. | Mass flowrate measurement of wet steam using combined V-cone and vortex flowmeters | |
CN116295673A (en) | Method for measuring bidirectional flow and orifice plate flowmeter | |
CN211777377U (en) | Accurate metering device for oil field well head liquid production amount and oil production amount | |
CN212482588U (en) | Precession vortex differential pressure type mass flowmeter | |
CN203772325U (en) | Integral pore plate flowmeter | |
CN220118104U (en) | Online measurement system for water content of wellhead production fluid of oil well | |
CN105841756A (en) | Pressure difference flow detection head and application thereof | |
CN205483097U (en) | Differential pressure flow detecting head and contain differential pressure flow detecting device of this detecting head | |
CN217151918U (en) | Oil-gas-water three-phase flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170222 Address after: 100007 Beijing, Dongzhimen, North Street, No. 9, No. Patentee after: China National Petroleum Corporation Patentee after: China Petroleum Pipeline Bureau Engineering Co., Ltd. Patentee after: China University of Petroleum Address before: 100724 Beijing, Xicheng District, shop No. 6 Kang Street, No. six Patentee before: China National Petroleum Corporation Patentee before: China Petroleum and Natural Gas Pipeline Bureau Patentee before: China University of Petroleum |