CN101186507A - Method for synthesizing beta cellulose in aluminum-carbon refractory material - Google Patents

Method for synthesizing beta cellulose in aluminum-carbon refractory material Download PDF

Info

Publication number
CN101186507A
CN101186507A CNA2007101602107A CN200710160210A CN101186507A CN 101186507 A CN101186507 A CN 101186507A CN A2007101602107 A CNA2007101602107 A CN A2007101602107A CN 200710160210 A CN200710160210 A CN 200710160210A CN 101186507 A CN101186507 A CN 101186507A
Authority
CN
China
Prior art keywords
aluminum
carbon refractory
carbon
refractory material
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101602107A
Other languages
Chinese (zh)
Other versions
CN101186507B (en
Inventor
安胜利
郭巍
赵文广
宋希文
赵永旺
郭贵宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Science and Technology
Original Assignee
Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Science and Technology filed Critical Inner Mongolia University of Science and Technology
Priority to CN2007101602107A priority Critical patent/CN101186507B/en
Publication of CN101186507A publication Critical patent/CN101186507A/en
Application granted granted Critical
Publication of CN101186507B publication Critical patent/CN101186507B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a method for synthesis beta sialon within aluminum-carbon refractory, which is characterized in that: nickel nitrate taking up 1 to 3 percent of total weight of material is made into solution with 10 percent of concentration, and fully mixed with alumina used for making aluminum-carbon refractory, then dried for eliminating water; according to the preparation technique of aluminum-carbon refractory, the alumina material mixed with nickel nitrate and the materials metal silicon powder and sic powder for preparation aluminum-carbon refractory and bond phenolic resin are experienced the steps: mixing, calendaring, forming, drying and burying carbon sintering under the temperature less than 1450 DEG C, and then the beta-sialon crystal grows out from the aluminum-carbon refractory. The invention has the advantages that: the nitridation sintering process under high temperature, high pressure and nitrogen atmosphere in the existing beta sialon synthesis technique is avoided; the invention has simple preparation technique, low requirement for equipment, low production cost, easy control for technique parameters, large number of beta sialon synthesized inside the aluminum-carbon refractory and good crystal development in a column shape interleaved inside the aluminum carbon refractory.

Description

A kind of method of in aluminum-carbon refractory material, synthesizing beta cellulose
Technical field
The present invention relates to a kind of method of in aluminum-carbon refractory material, synthesizing beta cellulose.
Background technology
Because the excellent properties of beta cellulose, it is at blast funnace hot blast stove, producer gas generator, position refractory materialss such as electrolytic aluminum groove, chemical industry nitriding furnace apparatus and continuous casting functional element are relative to be under reducing atmosphere and the condition that is not subjected to rapid chemical reaction and to use mutually as the combination of refractory materials, can give full play to the advantage that it improves goods bonding strength, fracture toughness property and resistance to heat shocks; Owing to its excellent high-temperature mechanical property, beta cellulose is also used at other industrial circle and high temperature field simultaneously.The method of at present synthetic beta cellulose mainly contains: the high temperature hot pressed sintering under nitrogen atmosphere with nitride and oxide compound, as not adopting heat pressing process, then must add class additives such as rare earth oxide, complex process, long flow path, cost height; Next is to utilize carbothermic method to prepare the technology of beta cellulose, but also needs high temperature, hot pressing, nitrogenize, and the cost of equipment height, the time is long, quality is low; In refractory materials usually by Pure Silicon Metal, metallic aluminium and oxide compound under nitrogen atmosphere by nitridation sintered direct preparation beta cellulose composite refractory.The above-mentioned various method for preparing beta cellulose all needs to carry out the high-temperature ammonolysis sintering in nitrogen atmosphere, to the requirement height of equipment, complicated process of preparation, condition harshness.
Summary of the invention
The objective of the invention is: a kind of method of synthesizing beta cellulose in aluminum-carbon refractory material is provided, this method is by introducing nitrate in the aluminum-carbon refractory material preparation process, by the nitrogen and the aluminum oxide that prepare aluminum-carbon refractory material of nitrate at pyrolytic decomposition, silicon carbide, the reaction of metallic silicon raw material realizes beta cellulose synthesizing in aluminum-carbon refractory material, can save in the existing beta cellulose synthesis technique at high temperature, nitridation sintered operation under the high pressure nitrogen atmosphere, it is simple to have preparation technology, low for equipment requirements, low cost of manufacture, the characteristics that every processing parameter is easy to control.
Method of the present invention is: add 1~3% nickelous nitrate at the blending process of aluminum-carbon refractory material, under the conventional firing process condition of aluminum-carbon refractory material, utilize the synthetic beta celluloses of material such as aluminum oxide, metallic aluminium, Pure Silicon Metal and silicon carbide in nitrogen that nitrate radical decomposites and the carbon composite refractory.
Concrete preparation process is: the nickelous nitrate that will account for material gross weight 1~3% be mixed with mass percentage concentration be behind 10% aqueous solution with the alumina raw material thorough mixing of preparation aluminum-carbon refractory material, and it is dried to remove moisture wherein; Then with metallic silicon power, carborundum powder and the wedding agent resol of these alumina raw materials that are mixed with nickelous nitrate and preparation aluminum-carbon refractory material according to the preparation technology of aluminum-carbon refractory material prepare burden, mix, moulding, drying, and be not less than bury carbon under 1450 ℃ and burn till after, can in aluminum-carbon refractory material, grow the beta cellulose crystal.
The effect of invention
The present invention is by introducing nitrate in the aluminum-carbon refractory material preparation process, by reaction realization beta cellulose the synthesizing in aluminum-carbon refractory material of nitrate at nitrogen with the aluminum oxide for preparing aluminum-carbon refractory material, silicon carbide, the metallic silicon raw material of pyrolytic decomposition, saved the nitridation sintered operation under high temperature, high pressure nitrogen atmosphere in the existing beta cellulose synthesis technique, it is simple to have preparation technology, low for equipment requirements, low cost of manufacture, the advantage that every processing parameter is easy to control.Synthetic beta cellulose quantity is many in aluminum-carbon refractory material, and crystal development is good, is column and is interwoven in aluminum-carbon refractory material inside.The present invention provides new method and thinking for beta cellulose synthetic.
Description of drawings
Fig. 1 be of the present invention in aluminum-carbon refractory material the stereoscan photograph figure of synthetic beta cellulose;
Fig. 2 be of the present invention in aluminum-carbon refractory material the energy spectrum composition analysis collection of illustrative plates of synthetic beta cellulose.
Embodiment
Embodiment
The physical and chemical index % of table 1 raw material
The name of an article Granularity, mm Fe 2O 3 Al 2O 3 Al SiC Si SiO 2 C
Sintering plate corundum 1.0~0 <0.6 ≥98
<0.5 <0.6 ≥98
<0.043 <0.5 ≥98
α-Al 2O 3 <5μm ≥98
Si <0.074 ≥95
SiC <0.043 ≥96
Graphite <0.18 ≥96
Resin Transparent brown liquid, solids content 85%, density 1.22g/cm 3, free phenol 15%, carbon residue 45 %, moisture is less than 10%
Nickelous nitrate Analytical pure, blue-greenish colour crystal, Ni (NO 3) 2.6H 2O content is no less than 98%, and water-insoluble is not more than 0.005%
The proportioning of the various materials of table 2
The name of an article Granularity Proportioning wt%
Sintering plate corundum 1~0mm 33
<0.043mm 30
α-Al 2O 3 <5um 8
Graphite <0.18mm 24
Silicon carbide <0.043mm 2
Metal Si <0.075mm 3
Nickelous nitrate (adding) / +2
Resol (adding) / +6
Experiment condition / 1450 ℃ * 4h buries carbon and burns till
Embodiment 1
1) chooses sintering plate corundum, α-Al according to physical and chemical index shown in the table 1 2O 3,, crystalline flake graphite, carborundum powder, metal Si powder and resol and nickelous nitrate; Proportioning according to various materials in the table 2 takes by weighing the plate diamond spar 330g that granularity is 1.0~0mm, the plate diamond spar 300g of<0.043mm, α-Al respectively 2O 3Powder 80g, crystalline flake graphite 240g, carborundum powder 20g, metallic silicon power 30g, resol 60g is standby;
2) taking by weighing 10 gram nickelous nitrates adds 90 gram distilled water to be mixed with concentration is 10% solution, then it is joined above-mentioned steps 1) in the granularity of the 300g that takes by weighing be thorough mixing in the plate diamond spar powder of<0.043mm, place loft drier to get rid of to moisture wherein in dry 48 hours down in mixture in 110 ℃, with desciccate place grinding machine for grinding after 30 minutes with 80g α-Al that step 1) is taken by weighing 2O 3Powder, 30g metallic silicon power, 20g carborundum powder mixing for standby use;
3) the 60g resol that takes by weighing in the step 1) is heated 15 minutes in 80 ℃ water-bath after, one joined partly load weighted 330g granularity is in the plate diamond spar of 1.0~0mm in the step 1), in mixing machine, mix and add the good 240g crystalline flake graphite of weighing in the step 1) after 5 minutes, continue to mix after 5 minutes and will add wherein by mixed good fine powder in remaining resol and the step 2, continued to mix after 20 minutes in the plastics bag that mixed material packed into ageing mixture again 5~6 hours;
4) tired good material in the step 3) being pressed into volume density with universal press is 2.7 ± 0.1g/cm 3, be of a size of the adobe of φ 50mm * 50mm, place 180 ℃ loft drier to bury carbon after dry 24 hours adobe and be heated to 1450 ℃, be incubated 4 hours, naturally cool to room temperature and promptly obtain the aluminum-carbon refractory material goods.Goods are placed under the scanning electron microscope observe, can observe well-grown beta cellulose crystal within it.
Embodiment 2
1) chooses sintering plate corundum, α-Al according to physical and chemical index shown in the table 1 2O 3,, crystalline flake graphite, carborundum powder, metal Si powder and resol and nickelous nitrate; Proportioning according to various materials in the table 2 takes by weighing the plate diamond spar 330g that granularity is 1.0~0mm, the plate diamond spar 300g of<0.043mm, α-Al respectively 2O 3Powder 80g, crystalline flake graphite 240g, carborundum powder 20g, metallic silicon power 30g, resol 60g is standby;
2) taking by weighing 20 gram nickelous nitrates adds 180 gram distilled water to be mixed with concentration is 10% solution, then it is joined above-mentioned steps 1) in the 300g granularity that takes by weighing be thorough mixing in the plate diamond spar powder of<0.043mm, place loft drier to get rid of to moisture wherein in dry 48 hours down in mixture in 110 ℃, with desciccate place grinding machine for grinding after 30 minutes with 80g α-Al that step 1) is taken by weighing 2O 3Powder, 30g metallic silicon power, 20g carborundum powder mixing for standby use;
3) the 60g resol that takes by weighing in the step 1) is heated 15 minutes in 80 ℃ water-bath after, one joined partly load weighted 330g granularity is in the plate diamond spar of 1.0~0mm in the step 1), in mixing machine, mix and add the good 240g crystalline flake graphite of weighing in the step 1) after 5 minutes, continue to mix after 5 minutes remaining resol and step 2) in mixed good fine powder add wherein, continued to mix after 20 minutes in the plastics bag that mixed material packed into ageing mixture again 5~6 hours;
4) tired good material in the step 3) being pressed into volume density with universal press is 2.7 ± 0.1g/cm 3, be of a size of the adobe of φ 50mm * 50mm, place 180 ℃ loft drier to bury carbon after dry 24 hours adobe and be heated to 1450 ℃, be incubated 4 hours, naturally cool to room temperature and promptly obtain the aluminum-carbon refractory material goods.Goods are placed under the scanning electron microscope observe, can observe well-grown beta cellulose crystal within it.
Embodiment 3
1) chooses sintering plate corundum, α-Al according to physical and chemical index shown in the table 1 2O 3,, graphite, carborundum powder, metal powder and resol and nickelous nitrate; Proportioning according to various materials in the table 2 takes by weighing the plate diamond spar 330g that granularity is 1.0~0mm, the plate diamond spar 300g of<0.043mm, α-Al respectively 2O 3Powder 80g, crystalline flake graphite 240g, metallic silicon power 30g, carborundum powder 20g, resol 60g are standby;
2) taking by weighing 30 gram nickelous nitrates adds 270 gram distilled water to be mixed with concentration is the granularity that joins the 300g that takes by weighing in the above-mentioned steps behind 10% solution and be thorough mixing in the plate diamond spar of<0.043mm, place loft drier to get rid of to moisture wherein in dry 48 hours down in mixture in 110 ℃, then desciccate is placed grinding machine for grinding after 30 minutes with 80g α-Al that step 1) is taken by weighing 2O 3Powder, the carborundum powder mixing for standby use of 30g metallic silicon power, 20g;
3) the 60g resol that takes by weighing in the step 1) is heated 15 minutes in 80 ℃ water-bath after, one joined partly load weighted 330g granularity is in the plate diamond spar of 1.0~0mm in the step 1), in mixing machine, mix after 5 minutes and add load weighted 240g crystalline flake graphite in the step 1) again, continue to mix after 5 minutes remaining resol and step 2) in mixed good fine powder add wherein, continue to mix the ageing mixture 5~6 hours of packing into after 20 minutes in the plastics bag again;
4) tired good material in the step 3) being pressed into volume density with universal press is 2.7 ± 0.1g/cm 3, be of a size of the adobe of φ 50mm * 50mm, place 180 ℃ loft drier to bury carbon after dry 24 hours adobe and be heated to 1450 ℃, be incubated 4 hours, naturally cool to room temperature and promptly obtain the aluminum-carbon refractory material goods.The aluminum-carbon refractory material goods are placed under the scanning electron microscope observe, can observe many, the well-grown beta cellulose crystal of quantity within it.

Claims (1)

1. the method for a synthetic beta cellulose in aluminum-carbon refractory material, it is characterized in that: the nickelous nitrate that will account for material gross weight 1~3% be mixed with mass percentage concentration be behind 10% aqueous solution with the raw alumina thorough mixing of preparation aluminum-carbon refractory material, and it is dried to remove moisture wherein; Then with feed metal silica flour, carborundum powder and the wedding agent resol of these alumina raw materials that are mixed with nickelous nitrate and preparation aluminum-carbon refractory material according to the preparation technology of aluminum-carbon refractory material prepare burden, mix, moulding, drying, and be not less than bury carbon under 1450 ℃ and burn till after, can in aluminum-carbon refractory material, grow the beta cellulose crystal.
CN2007101602107A 2007-12-14 2007-12-14 Method for synthesizing beta cellulose in aluminum-carbon refractory material Expired - Fee Related CN101186507B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101602107A CN101186507B (en) 2007-12-14 2007-12-14 Method for synthesizing beta cellulose in aluminum-carbon refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101602107A CN101186507B (en) 2007-12-14 2007-12-14 Method for synthesizing beta cellulose in aluminum-carbon refractory material

Publications (2)

Publication Number Publication Date
CN101186507A true CN101186507A (en) 2008-05-28
CN101186507B CN101186507B (en) 2011-02-16

Family

ID=39479166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101602107A Expired - Fee Related CN101186507B (en) 2007-12-14 2007-12-14 Method for synthesizing beta cellulose in aluminum-carbon refractory material

Country Status (1)

Country Link
CN (1) CN101186507B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106431431A (en) * 2016-08-31 2017-02-22 江苏诺明高温材料股份有限公司 In-situ generating method for Si2N2O ceramic bonding phases in aluminum-carbon fireproof material with carbon thermal reduction method
CN109206144A (en) * 2018-10-30 2019-01-15 苏州佳耐材料科技有限公司 A kind of preparation and detection method of Ultra-low carbon aluminum-carbon refractory material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106431431A (en) * 2016-08-31 2017-02-22 江苏诺明高温材料股份有限公司 In-situ generating method for Si2N2O ceramic bonding phases in aluminum-carbon fireproof material with carbon thermal reduction method
CN109206144A (en) * 2018-10-30 2019-01-15 苏州佳耐材料科技有限公司 A kind of preparation and detection method of Ultra-low carbon aluminum-carbon refractory material

Also Published As

Publication number Publication date
CN101186507B (en) 2011-02-16

Similar Documents

Publication Publication Date Title
CN101531533B (en) Low carbon magnesia carbon brick and preparation method thereof
CN108706973B (en) Preparation method of high-strength high-thermal-conductivity graphite material
CN102219536B (en) B4C/SiC whisker/SiC multiphase ceramic matrix composite and preparation method thereof
CN103695685B (en) A kind of microwave sintering reaction prepares the method for WC-Co hard alloy
CN1326801C (en) Method for preparing composite material combined with corundum based on bauxite beta-Sialon
CN111410536A (en) Method for preparing compact (HfZrTaNbTi) C high-entropy ceramic sintered body by normal-pressure sintering
CN101560099A (en) Method for preparing ZrN-Sialon-SiC composite powder
CN109136713A (en) A method of preparing high-intensity and high-tenacity WC-Co hard alloy
CN102584247B (en) Complex-phase silicon nitride ceramic and manufacture method thereof
CN101734920B (en) Titanium nitride porous ceramics and preparation method thereof
CN101798222A (en) Al2O3-Ni-C-B4C composite ceramic and preparation method thereof
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
CN100361895C (en) Method for preparing SiC complex-phase material utilizing iron ore tailings
CN101863668A (en) Method for synthesizing SiC/FexSiy composite material by using iron ore tailings
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
CN101591190A (en) A kind of aluminum electrolytic bath side wall New Si 3N 4-SiC-C refractory brick and preparation method thereof
CN105924177A (en) Hot pressing-reaction sintering method for preparing boron carbide-based multiphase ceramic
CN109160814A (en) A kind of in-situ carbon SiClx-iron silicon composite and preparation method thereof
CN101186507B (en) Method for synthesizing beta cellulose in aluminum-carbon refractory material
CN101186506B (en) Method for preparing boron nitride/sialon ceramic composite material by using boron-rich slag
CN102503431B (en) Silicon carbide ceramic product and preparation method
CN111825461A (en) Graphene modified silicon carbide ceramic material, preparation method thereof and bulletproof armor
CN101941843A (en) Hot-pressing sintering TiB2-TiC-WC ultrahard material and preparation method thereof
CN102432308A (en) ZrN-Sialon complex phase fire-resistant raw material powder and preparation method thereof
US3567808A (en) Production of low density-high strength carbon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110216

Termination date: 20141214

EXPY Termination of patent right or utility model