CN101163121B - Communication system and character code selection method thereof - Google Patents

Communication system and character code selection method thereof Download PDF

Info

Publication number
CN101163121B
CN101163121B CN2006101317989A CN200610131798A CN101163121B CN 101163121 B CN101163121 B CN 101163121B CN 2006101317989 A CN2006101317989 A CN 2006101317989A CN 200610131798 A CN200610131798 A CN 200610131798A CN 101163121 B CN101163121 B CN 101163121B
Authority
CN
China
Prior art keywords
code
word
antennas
detection
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101317989A
Other languages
Chinese (zh)
Other versions
CN101163121A (en
Inventor
何从廉
李大嵩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CN2006101317989A priority Critical patent/CN101163121B/en
Publication of CN101163121A publication Critical patent/CN101163121A/en
Application granted granted Critical
Publication of CN101163121B publication Critical patent/CN101163121B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

本发明提供一种字码选择方法。此字码选择方法适用于多输入多输出通讯系统。此方法包括下列步骤。首先,发射器提供复数字码形式。接着,接收器接收所述字码形式,并依据一译码方式,计算或查表得到每一所述字码形式的一对应的位错误率(BER)。其次,接收器选出一具有最小位错误率的群组字码格式,并回传给发射器。最后,发射器根据具有最小位错误率的字码形式,决定用以进行数据传输的群组字码。

The present invention provides a codeword selection method. The codeword selection method is applicable to a multi-input multi-output communication system. The method comprises the following steps. First, a transmitter provides a complex code form. Then, a receiver receives the codeword form and calculates or looks up a table to obtain a corresponding bit error rate (BER) for each codeword form according to a decoding method. Next, the receiver selects a group codeword format with a minimum bit error rate and transmits it back to the transmitter. Finally, the transmitter determines the group codeword used for data transmission based on the codeword form with the minimum bit error rate.

Description

通讯系统及其字码选择方法 Communication system and character code selection method thereof

技术领域technical field

本发明涉及一种多输入多输出通讯系统以及其空-时字码(space-time(ST)codeword)选择方法,特别是涉及一种使用群组式空-时区块码(groupedspace-time block code,G-STBC)编码方式设计,并在有限回传信息下的群组空-时字码(group-wise ST codeword)选择方法及相关系统。The present invention relates to a kind of multi-input multi-output communication system and its space-time word code (space-time (ST) codeword) selection method, particularly relate to a kind of use group type space-time block code (grouped space-time block code) , G-STBC) encoding method design, and the group-wise ST codeword (group-wise ST codeword) selection method and related systems under limited return information.

背景技术Background technique

无线通讯系统需要越来越大量的数据流通,因此如何做有效率的编码、调制和讯号处理以改善无线通讯的品质与效能,都是研究上极欲解决的课题。为了有效提升数据传输率及通讯链接品质,愈来愈多的无线通讯系统采用多输入多输出(MIMO)的多重天线系统设计方式,亦即,在传送端及接收端使用多根天线,以实现下世代无线通讯系统强大的服务品质需求。多重天线系统的编码,一般采用空-时码(space-time code,STC)。这种编码是一种横跨于时间与空间的传输设计,利用传输天线与传送时间的关系来达到最大多样性(full diversity),甚至可以提供编码增益(coding gain)。空-时码主要的运作模式可分为空间多样(spatial diversity,SD)及空间多任务(spatialmultiplexing,SM)。高链接品质可经由空间多样方式在不同的传送天线上传送冗余(redundant)的讯号来获取,例如空-时区块编码(space-time block code,STBC)及空-时格状编码(ST trellis code,STTC)。高频谱效益则可以经由空间多任务方式在不同的传送天线上同时传送不同的数据来获取,例如多层次空-时码(layered STC,LSTC)或熟知的Bell Labs layered ST(BLAST)技术。Wireless communication systems require more and more data flow, so how to do efficient coding, modulation and signal processing to improve the quality and performance of wireless communication is a topic that is eager to be solved in research. In order to effectively improve the data transmission rate and communication link quality, more and more wireless communication systems adopt multiple-input multiple-output (MIMO) multi-antenna system design, that is, multiple antennas are used at the transmitting end and receiving end to realize Strong quality of service requirements for next-generation wireless communication systems. The coding of the multi-antenna system generally adopts space-time code (space-time code, STC). This coding is a transmission design across time and space, using the relationship between the transmission antenna and the transmission time to achieve the maximum diversity (full diversity), and even provide coding gain (coding gain). The main operation modes of space-time code can be divided into spatial diversity (spatial diversity, SD) and spatial multitasking (spatial multiplexing, SM). High link quality can be achieved by transmitting redundant signals on different transmit antennas in a spatially diverse manner, such as space-time block code (space-time block code, STBC) and space-time trellis code (ST trellis code, STTC). High spectral efficiency can be obtained by simultaneously transmitting different data on different transmitting antennas through spatial multitasking, such as multi-level space-time code (layered STC, LSTC) or the well-known Bell Labs layered ST (BLAST) technology.

图1为一现有的空-时区块编码的系统示意图,很明显的,传送的两个码元横跨了空间与时间(空-时码)。图2显示另一结合Q=2Alamouti’s空-时码于传送端的现有编码技术,此称为双空-时传送分集(double ST transmitdiversity,DSTTD)技术。其空-时字码为FIG. 1 is a schematic diagram of a conventional space-time block coding system. Obviously, two transmitted symbols span space and time (space-time code). FIG. 2 shows another existing coding technique combining Q=2Alamouti's space-time code at the transmitting end, which is called double space-time transmit diversity (DSTTD) technique. Its space-time character code is

Xx :: == [[ SS 1,11,1 -- SS 1,21,2 ** SS 1,21,2 SS 1,11,1 ** SS 2,12,1 SS 2,22,2 ** SS 2,22,2 SS 2,12,1 ** ]]

此时的编码率为R=2,且可得到多样性增益为2。然而,此一编码技术的编码方式虽较简单,但其译码方式较STBC复杂,且字码结构遭受许多限制,使得编码设计较不具弹性,因此效能较差。At this time, the coding rate is R=2, and the diversity gain of 2 can be obtained. However, although the coding method of this coding technology is relatively simple, its decoding method is more complex than STBC, and the character code structure suffers from many restrictions, making the coding design less flexible, and thus the performance is poor.

然而,空间多样虽能改善通讯链接品质但其频谱使用效益低;相反,空间多任务虽能提升数据传输率,但其对抗通道衰落能力较差。因此,为了要获取最大的效益,必须要在空间多样与空间多任务之间取得一个最佳的损益点。However, although spatial diversity can improve the quality of communication links, its spectrum utilization efficiency is low; on the contrary, although spatial multitasking can improve data transmission rate, its ability to resist channel fading is poor. Therefore, in order to obtain the maximum benefits, it is necessary to obtain an optimal profit and loss point between spatial diversity and spatial multitasking.

此外,接收器的运算必须愈简单愈好,以达到快速的译码,也可简化接收器的设计。相对于传送端的空时码,接收器也必须具有空-时码的解码能力,同时需作干扰消除与讯号检测。一种接收器常用的最佳译码方法采用联合最大似然(maximum likelihood,ML)检测法,其采用机率统计的方式对接收到的讯号进行译码。然而,联合最大似然估测法虽然具有较佳的性能,但所需的运算复杂度确也较高。另一种译码方式采用排序渐进式干扰消除(ordered successive interference cancellation,以下简称OSIC)检测,是利用排序方式以及利用前一次的迭代运算结果,一一对接收到的讯号进行干扰的消除及讯号的检测。举例来说,假设接收器接到来自行动用户1以及行动用户2的讯号,则OSIC检测法将可先针对行动用户1进行讯号检测,再扣掉(消除)行动用户1的干扰,而得到行动用户2的讯号。OSIC检测法为一种比联合ML法运算量较低但效能却相当的技术,然而,却没有进一步利用空-时码的正交特性简化讯号检测器。In addition, the calculation of the receiver must be as simple as possible to achieve fast decoding and also simplify the design of the receiver. Compared with the space-time code at the transmitting end, the receiver must also have the ability to decode the space-time code, and at the same time need to perform interference cancellation and signal detection. An optimal decoding method commonly used by receivers adopts a joint maximum likelihood (ML) detection method, which decodes received signals in a probabilistic and statistical manner. However, although the joint maximum likelihood estimation method has better performance, the required computational complexity is indeed higher. Another decoding method uses ordered successive interference cancellation (OSIC) detection, which uses the sorting method and the results of the previous iterative operation to cancel the interference and signal to the received signal one by one. detection. For example, assuming that the receiver receives signals from mobile user 1 and mobile user 2, the OSIC detection method will first perform signal detection on mobile user 1, and then deduct (eliminate) the interference of mobile user 1 to obtain mobile User 2's signal. The OSIC detection method is a less computationally intensive but comparable performance technique than the joint ML method. However, it does not further simplify the signal detector by utilizing the orthogonality property of the space-time code.

此外,无线通讯环境是一个时变响应,传送与接收端需要适当地可适性传输机制,以处理讯号的失真,达到最佳的服务品质。因此,对于MIMO系统也需要好的可适性传输机制调整方案。In addition, the wireless communication environment is a time-varying response, and the transmitting and receiving ends need appropriate adaptive transmission mechanisms to deal with signal distortion and achieve the best service quality. Therefore, a good adaptive transmission mechanism adjustment scheme is also required for the MIMO system.

发明内容Contents of the invention

本发明提供一种MIMO通讯系统及其字码选择方法,可以利用正交式空-时区块码(orthogonal STBC,以下称O-STBC)的代数特性,进行G-STBC编码设计,并在有限回传信息下,基于最小位错误率(bit error rate,以下称BER)的条件,选择一用以传输的最佳字码结构。The present invention provides a MIMO communication system and a code selection method thereof, which can utilize the algebraic characteristics of an orthogonal space-time block code (orthogonal STBC, hereinafter referred to as O-STBC) to carry out G-STBC code design, and in a limited loop Under the transmission of information, based on the minimum bit error rate (bit error rate, hereinafter referred to as BER) condition, select an optimal word code structure for transmission.

本发明提供一种字码(codeword)选择方法。此群组字码选择方法适用于具有多重传送天线与多重接收天线的通讯系统。此方法包括下列步骤。首先,发射器提供复数字码形式。接着,接收器接收所述字码形式,并依据一译码方式,计算或查表得到每一所述字码的一对应的位错误率(BER)。其次,接收器选出一具有最小位错误率的字码形式,并回传给发射器。最后,发射器根据具有最小位错误率的字码形式,决定用以进行数据传输的空-时字码。The invention provides a codeword selection method. The group code selection method is suitable for a communication system with multiple transmitting antennas and multiple receiving antennas. This method includes the following steps. First, the transmitter provides the complex digital form. Next, the receiver receives the word code form, and according to a decoding method, calculates or looks up a table to obtain a corresponding bit error rate (BER) of each of the word codes. Next, the receiver selects a word form with the lowest bit error rate and sends it back to the transmitter. Finally, the transmitter determines the space-time word for data transmission based on the word form with the lowest bit error rate.

本发明也提供一种MIMO通讯系统。发射器首先提供复数字码形式。接收器接收字码形式,并依据一译码方式,计算或查表得到每一字码形式的一对应的位错误率。其中,接收器选出一具有最小位错误率的字码形式,并回传给发射器,发射器再根据具有最小位错误率的字码形式,决定用以进行数据传输的空-时字码。The invention also provides a MIMO communication system. The transmitter first provides the complex digital form. The receiver receives the code words, and according to a decoding method, calculates or looks up a table to obtain a corresponding bit error rate of each code word. Among them, the receiver selects a word code form with the minimum bit error rate, and sends it back to the transmitter, and the transmitter determines the space-time word code for data transmission according to the word code form with the minimum bit error rate .

为使本发明的上述和其它目的、特征、和优点能更明显易懂,下文特举出较佳实施例,并结合附图详细说明如下。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, preferred embodiments are enumerated below, which are described in detail with reference to the accompanying drawings.

附图说明Description of drawings

图1示出了一现有的空-时区块编码系统示意图。FIG. 1 shows a schematic diagram of an existing space-time block coding system.

图2示出了另一现有的空-时区块编码系统示意图。Fig. 2 shows a schematic diagram of another existing space-time block coding system.

图3显示一依据本发明实施例的通讯系统示意图。FIG. 3 shows a schematic diagram of a communication system according to an embodiment of the present invention.

图4示出了一依据本发明实施例的字码选择流程图。Fig. 4 shows a flow chart of character code selection according to an embodiment of the present invention.

图5以及图6,分别显示依据图4的字码选择方法于传送端以及接收端的流程示意图。FIG. 5 and FIG. 6 respectively show the flowcharts of the code selection method in FIG. 4 at the transmitting end and the receiving end.

图7显示一依据本发明实施例的匹配滤波通道矩阵(MFCM)示意图。FIG. 7 shows a schematic diagram of a matched filter channel matrix (MFCM) according to an embodiment of the present invention.

图8a-8e,分别显示依据本发明实施例在总传送天线数为10时的5种可能的群组式空-时字码示意图。8a-8e respectively show schematic diagrams of five possible group space-time codes when the total number of transmitting antennas is 10 according to the embodiment of the present invention.

附图符号说明Description of reference symbols

300~通讯系统;300~communication system;

310~发射器;310~transmitter;

312~解多任务模块;312~solve the multitasking module;

314~调制模块;314~modulation module;

316~G-STBC编码器;316~G-STBC encoder;

318~控制器;318~controller;

320~接收器;320~receiver;

322~空-时码匹配滤波器;322~space-time code matched filter;

324~群组式OSIC检测器;324~group type OSIC detector;

326~多任务器;326~Multi-tasker;

328~选择讯号;328~select signal;

T1-TN~传送天线;T1-TN~transmitting antenna;

R1-RM~接收天线;R1-RM~receiving antenna;

S410-S460~步骤;S410-S460~steps;

S510-S550~步骤;S510-S550~steps;

S610-S650~步骤;S610-S650~steps;

(K)~正交矩阵;(K)~orthogonal matrix;

N~总传送天线数;N~total number of transmit antennas;

K~码元时间。K ~ symbol time.

具体实施方式Detailed ways

图3显示一个依据本发明实施例的通讯系统示意图。通讯系统300中包含了至少一个发射器310与一个接收器320。请注意,本发明的通讯系统即为一包含接收器以及发射器设计的收发机架构,可用于MIMO系统。发射器310中包含了一个解多任务模块312、一个调制模块314、一个群组式空-时区块码(group-wise STBC,G-STBC)编码器316、一个控制器318以及N根传送天线T1~TN。其中,N根传送天线T1~TN分成Q个天线群组,且每一天线群组由2~4根天线所组成。接收器320中则包含了一个空-时码通道匹配滤波器(matched filter,MF)322、一个群组式OSIC检测器324、一个多任务器326以及M根接收天线R1~RN,且M≥Q。FIG. 3 shows a schematic diagram of a communication system according to an embodiment of the present invention. The communication system 300 includes at least one transmitter 310 and one receiver 320 . Please note that the communication system of the present invention is a transceiver architecture including a receiver and a transmitter design, which can be used in a MIMO system. The transmitter 310 includes a demultiplexing module 312, a modulation module 314, a group-wise space-time block code (group-wise STBC, G-STBC) encoder 316, a controller 318 and N transmission antennas T1~TN. Wherein, the N transmitting antennas T1-TN are divided into Q antenna groups, and each antenna group is composed of 2-4 antennas. The receiver 320 includes a space-time code channel matched filter (matched filter, MF) 322, a group type OSIC detector 324, a multiplexer 326 and M receiving antennas R1~RN, and M≥ Q.

首先,于传送端,输入数据串经解多任务模块312产生数个子数据串,经由调制器314调制成数据码元(symbol),再经由群组式空-时区块码编码器316依据选定的字码结构进行空-时编码,最后由天线T1~TN传送至接收器328。其中,于此实施例中,字码结构包括使用的天线数目以及所需的传送码元时间。First, at the transmitting end, the input data string is generated by the demultiplexing module 312 into several sub-data strings, modulated into data symbols by the modulator 314, and then passed through the group space-time block code encoder 316 according to the selected The character code structure is space-time coded, and finally transmitted to the receiver 328 by the antennas T1-TN. Wherein, in this embodiment, the code word structure includes the number of antennas used and the required transmission symbol time.

于是,于接收端,接收器320接收此传送的讯号,经由空-时信道匹配滤波器322进行讯号解调。其中,空-时通道匹配滤波器322为一个匹配滤波通道矩阵MFCM,空-时码通道匹配滤波器322可据此MFCM降低接收讯号的空间维度,以供后续的群组式OSIC检测器324进行进一步的译码。关于匹配滤波信道矩阵MFCM的译码原理以及形式,将详细说明如下。接着,群组式OSIC检测器324接收经空-时码通道匹配滤波器322后的讯号,再根据OSIC检测法则,对其进行干扰消除以及讯号检测。上述检测方式对应至传送端所用的调制方式,举例来说,当传送端使用BPSK调制时,接收端的检测方式便为针对BPSK的检测,当传送端使用QPSK调制时,接收端的检测方式便为针对QPSK检测。换言之,不同的调制方式,将对应不同的检测方法。由于,BPSK与QPSK的译码分别属于实数与复数码元的检测,因此以下也将分别针对实数与复数码元的检测方式进行讨论。举例来说,对于实数码元的检测,可以直接使用天线群组式OSIC检测法进行检测,亦即每次迭代运算中可同时检测出某一天线群组的全部码元数据。对于复数码元的检测,则必须配合天线群组式检测法则、二阶段式检测法则以及递归(recursive)方式进行检测。这是因为对于复数码元的检测而言,只有由2Lq个实数码元为单位区块的一半码元(i.e.,Lq个)能在OSIC的某一次迭代处理中能同时被检测出,而这些码元若不是属于某一天线群组中的复数码元的实数部分(Re)就是其虚数部分(Im)。对于复数码元的天线群组式检测法则,是指将同一天线群组的实数部分(Re)与虚数部分(Im)的结果进行平均,产生类似实数码元的矩阵结构,便可利用上述天线群组式OSIC检测法进行检测。二阶段式检测法则作法为先检测具有较高链接能力的天线群组(Nq=4或Nq=3),再检测具有较低链接能力的天线群组(Nq=2),以降低其运算复杂度。递归方式则是结合二阶段式检测法则,利用前一次的运算结果得到下一阶段的检测码元,可有效降低其运算复杂度。结合上述的译码方式,将使接收器的运算复杂度降低,也简化的接收器的设计复杂度。Therefore, at the receiving end, the receiver 320 receives the transmitted signal, and performs signal demodulation through the space-time channel matched filter 322 . Wherein, the space-time channel matched filter 322 is a matched filter channel matrix MFCM, and the space-time code channel matched filter 322 can reduce the spatial dimension of the received signal according to the MFCM for subsequent group OSIC detector 324 to perform further decoding. The decoding principle and form of the matched filter channel matrix MFCM will be described in detail as follows. Next, the group OSIC detector 324 receives the signal after the space-time code channel matched filter 322, and performs interference elimination and signal detection on it according to the OSIC detection rule. The above detection method corresponds to the modulation method used by the transmitting end. For example, when the transmitting end uses BPSK modulation, the detection method of the receiving end is for BPSK detection; when the transmitting end uses QPSK modulation, the detection method for the receiving end is for QPSK detection. In other words, different modulation modes will correspond to different detection methods. Since the decoding of BPSK and QPSK belongs to the detection of real numbers and complex symbols respectively, the following will also discuss the detection methods of real numbers and complex symbols respectively. For example, for the detection of real code elements, the antenna group type OSIC detection method can be directly used for detection, that is, all the symbol data of a certain antenna group can be detected simultaneously in each iterative operation. For the detection of complex code elements, it must cooperate with the antenna group detection method, the two-stage detection method and the recursive method for detection. This is because for the detection of complex code elements, only half of the code elements (ie, L q pieces) of 2L q real code elements as the unit block can be detected simultaneously in a certain iterative process of OSIC, If these symbols are not the real part (Re) of the complex symbols belonging to a certain antenna group, they are also the imaginary part (Im). The antenna group detection method for complex code elements refers to averaging the results of the real part (Re) and imaginary part (Im) of the same antenna group to generate a matrix structure similar to real code elements, and the above-mentioned antenna can be used Group OSIC detection method for detection. The method of the two-stage detection rule is to first detect the antenna group with higher link capability (N q =4 or N q =3), and then detect the antenna group with lower link capability (N q =2) to reduce its operational complexity. The recursive method combines the two-stage detection rule, and uses the previous operation result to obtain the next-stage detection symbol, which can effectively reduce its operation complexity. Combining with the above-mentioned decoding method, the computational complexity of the receiver will be reduced, and the design complexity of the receiver will also be simplified.

此外,于此实施例中,群组式OSIC检测器324将依据给定的环境参数,一一计算或查表得到每一个天线群组所对应的位错误率(BER)。群组式OSIC检测器324于计算后找到所有BER中具有最小BER的那一个天线群组,并将此信息利用选择讯号328回传给发射器310。In addition, in this embodiment, the group OSIC detector 324 calculates or looks up a table one by one according to given environmental parameters to obtain the bit error rate (BER) corresponding to each antenna group. The group OSIC detector 324 finds the antenna group with the smallest BER among all the BERs after calculation, and sends this information back to the transmitter 310 using the selection signal 328 .

基于上述的低复杂度的群组式OSIC检测架构,本发明将发展一套无总传送天线数目限制的群组式空-时编码。在要求的传送功率及数据传输率限制下,根据最小BER的判断条件,提供空-时字码选择准则以适当地选择出最佳的字码。Based on the above-mentioned low-complexity group-based OSIC detection framework, the present invention will develop a set of group-based space-time coding without limitation of the total number of transmitting antennas. Under the limitation of the required transmission power and data transmission rate, according to the judging condition of the minimum BER, a space-time code word selection criterion is provided to properly select the best code word.

值得注意的是,本发明中用以传输的最佳空-时字码结构取决于接收器的回传信息。因此,初始时,可由发射器先发送带有字码形式的训练码元(training symbol)至接收器,待接收器计算出最小BER的字码后,发射器与接收器再以此最小BER对应的字码结构进行实际的数据传输。此外,由于传送端具有不同的字码结构以供传输的选择,因此设计上也可设计成可于传输的效能较低或环境改变时,由传送端发出一个重选讯号,以要求接收器选择另一组具有较小的BER值的字码结构来进行传输。因此,本发明可以提供可适性的传输调整机制。It should be noted that the optimal space-time code structure for transmission in the present invention depends on the feedback information from the receiver. Therefore, at the beginning, the transmitter can first send a training symbol (training symbol) in the form of a code to the receiver. After the receiver calculates the code with the minimum BER, the transmitter and the receiver then correspond to the minimum BER. The word code structure for actual data transmission. In addition, since the transmitter has different word structures for transmission selection, the design can also be designed so that when the transmission performance is low or the environment changes, the transmitter sends a reselection signal to request the receiver to select Another group of word structures with smaller BER values is used for transmission. Therefore, the present invention can provide an adaptive transmission adjustment mechanism.

图4显示一个依据本发明实施例的字码选择流程图。首先,发射器310根据传送天线数目N,分割成Q个天线群组,提供可能的空-时字码形式(步骤S410)。其中,由于本发明中讯号采用O-STBC编码,为符合正交的特性,每个天线群组内天线数只可以是2根、3根或4根。此字码形式选择中包含了不同的天线配置方式。举例来说,假设总传送天线数N为10,则其中一种字码形式所指定的天线配置方式可能为2根天线为一组,因此,共可分为5组的天线群组,以∑1=(2,2,2,2,2)表示。同样地,假设另一字码形式以3根、4根为一群组的天线配置方式,可以∑2=(3,3,4)表示。假设共有T1~T10根天线,依据∑1的字码格式,T1与T2将为一组同时用来传送数据,T3与T4将为一组同时用来传送数据;若依据∑2的字码格式,则T1、T2与T3将为一组同时用来传送数据。接着,将此Q个天线群组形式传送给接收器320。接收器320接收这字码(天线群组形式)(步骤S420),并计算或查表得到每一空-时字码对应的BER值(步骤S430)。上述的计算或查表的方式,将详细说明如下。接着,接收器320找到具有最小BER的字码,将包含此信息的选择讯号回传给发射器310(步骤S440)。于是,发射器310便根据此选择讯号中所指定的字码结构,决定传输用的字码结构(步骤S450)。最后,发射器与接收器便利用此字码结构进行数据的传输(步骤S460)。Fig. 4 shows a flow chart of character code selection according to an embodiment of the present invention. First, the transmitter 310 is divided into Q antenna groups according to the number N of transmitting antennas to provide possible space-time code forms (step S410). Wherein, since the signal in the present invention is coded by O-STBC, the number of antennas in each antenna group can only be 2, 3 or 4 in order to conform to the characteristics of orthogonality. The selection of this code form includes different antenna configuration methods. For example, assuming that the total number of transmitting antennas N is 10, the antenna configuration specified by one of the code forms may be 2 antennas as a group. Therefore, a total of 5 antenna groups can be divided into ∑ 1 = (2, 2, 2, 2, 2) means. Similarly, assuming that another codeword form uses 3 antennas and 4 antennas as a group, it can be represented by Σ 2 =(3, 3, 4). Assuming that there are T1~T10 antennas in total, according to the code format of ∑ 1 , T1 and T2 will be used as a group to transmit data at the same time, and T3 and T4 will be used as a group to transmit data at the same time; if according to the code format of ∑ 2 , then T1, T2 and T3 will be a group used to transmit data at the same time. Then, the Q antenna group form is transmitted to the receiver 320 . The receiver 320 receives the code (in the form of an antenna group) (step S420), and calculates or looks up a table to obtain the BER value corresponding to each space-time code (step S430). The above calculation or table look-up method will be described in detail as follows. Next, the receiver 320 finds the word code with the smallest BER, and returns a selection signal including this information to the transmitter 310 (step S440). Then, the transmitter 310 determines the word structure for transmission according to the word structure specified in the selection signal (step S450). Finally, the transmitter and receiver use the word structure to transmit data (step S460).

请参见图5以及图6,分别显示依据图4的字码选择方法于传送端以及接收端的流程示意图。如图5所示,发射器310根据总传送天线数N,分割成Q个天线群组,产生可能的候选字码(步骤S510)。空-时字码的特性,包含编码率、多样增益及接收器运算复杂度,将受天线群组结构(亦即字码结构)的影响。对于N个总传送天线数,既使在具有相同的天线群组数目下,不同的天线群组结构可提供不同的编码率。再者,不同的天线群组结构可提供不同的多样增益,导致不同的通讯链接性能。此外,基于群组式OSIC检测法则,不同的天线群组结构也将导致不同的接收器运算复杂度。因此,最佳的空-时字码的选择应同时考虑上述三个特性。表三列出从总天线数N=2至N=16的所有可能的空时字码选择LN则表示以及对应的编码率RN。表三中,JN表示在总天线数N时的可能字码数,SN表示每个字码的天线配置方式,LN则表示OSIC检测所需要的迭代运算次数。因此,不同的总传送天线数N将具有不同的可能字码结构。Please refer to FIG. 5 and FIG. 6 , which respectively show the flowcharts of the character selection method in FIG. 4 at the transmitting end and the receiving end. As shown in FIG. 5 , the transmitter 310 is divided into Q antenna groups according to the total number of transmitting antennas N to generate possible candidate codes (step S510 ). The properties of the space-time code, including coding rate, diversity gain, and receiver computational complexity, will be affected by the structure of the antenna group (ie, the code structure). For the total number of N transmit antennas, even with the same number of antenna groups, different antenna group structures can provide different coding rates. Furthermore, different antenna group structures can provide different diverse gains, resulting in different communication link performances. In addition, based on the group-type OSIC detection rule, different antenna group structures will also lead to different operational complexity of the receiver. Therefore, the selection of the best space-time code should consider the above three characteristics at the same time. Table 3 lists all possible space-time code selection L N from the total number of antennas N=2 to N=16 and the corresponding coding rate R N . In Table 3, J N represents the number of possible code words when the total number of antennas is N, S N represents the antenna configuration mode of each code word, and L N represents the number of iterative operations required for OSIC detection. Therefore, different total transmit antenna numbers N will have different possible word structures.

  NN   JN J N 可能的天線群組組合,SN Possible antenna group combinations, S N   编碼率code rate  最大疊代次数Maximum number of iterations   2 2   1 1 (2)(2)   1 1  1 1   33   1 1 (3)(3)   0.50.5  1 1   44   2 2 (4),(2,2)(4), (2, 2)   0.5,20.5, 2  1,21, 2   55   1 1 (2,3)(2,3)   1.51.5  44   66   33 (3,3),(2,4),(2,2,2)(3,3), (2,4), (2,2,2)   1,1.5,31, 1.5, 3  2,4,32, 4, 3   77   2 2 (3,4),(2,2,3)(3,4), (2,2,3)   1,2.51, 2.5  2,62,6   8 8   44 (4,4),(2,3,3),(2,2,4),(2,2,2,2)(4, 4), (2, 3, 3), (2, 2, 4), (2, 2, 2, 2)   1,2,2.5,41, 2, 2.5, 4  2,6,6,42, 6, 6, 4   9 9   33 (3,3,3),(2,3,4),(2,2,2,3)(3,3,3), (2,3,4), (2,2,2,3)   1.5,2,3.51.5, 2, 3.5  6,3,86, 3, 8   1010   55 (3,3,4),(2,4,4),(2,2,3,3),(2,2,2,4),(2,2,2,2,2)(3, 3, 4), (2, 4, 4), (2, 2, 3, 3), (2, 2, 2, 4), (2, 2, 2, 2, 2)   1.5,2,3,3.5,51.5, 2, 3, 3.5, 5  3,6,8,8.53, 6, 8, 8.5   1111   44 (3,4,4),(2,3,3,3),(2,2,3,4),(2,2,2,2,4)(3, 4, 4), (2, 3, 3, 3), (2, 2, 3, 4), (2, 2, 2, 2, 4)   1.5,2.5,3,4.51.5, 2.5, 3, 4.5  3,8,8,103, 8, 8, 10 1212 77 (4,4,4),(3,3,3),(2,3,3,4),(2,2,4,4),(2,2,2,3,3),(2,2,2,2,4),(2,2,2,2,2,2)(4, 4, 4), (3, 3, 3), (2, 3, 3, 4), (2, 2, 4, 4), (2, 2, 2, 3, 3), (2 , 2, 2, 2, 4), (2, 2, 2, 2, 2, 2)   1.5,2,2.5,3,4,4.5,61.5, 2, 2.5, 3, 4, 4.5, 6  3,4,8,8,1010,63, 4, 8, 8, 1010, 6   1313   55 (3,3,3,4),(2,3,4,4),(2,2,3,3,3),(2,2,2,3,4),(2,2,2,2,2,3)(3, 3, 3, 4), (2, 3, 4, 4), (2, 2, 3, 3, 3), (2, 2, 2, 3, 4), (2, 2, 2 , 2, 2, 3)   2,2.5,3.5,4,5.52, 2.5, 3.5, 4, 5.5  4,8,10,10,124, 8, 10, 10, 12   1414   8 8 (3,3,3,4),(2,4,4,4),(2,3,3,3,3),(2,2,3,3,4),(2,2,2,4,4),(2,2,2,2,3,3),(2,2,2,2,2,4),(2,2,2,2,2,2,2)(3, 3, 3, 4), (2, 4, 4, 4), (2, 3, 3, 3, 3), (2, 2, 3, 3, 4), (2, 2, 2 , 4, 4), (2, 2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 4), (2, 2, 2, 2, 2, 2, 2)   2,2.5,3,3.5,4,5,5.5,72, 2.5, 3, 3.5, 4, 5, 5.5, 7  4,8,10,10,1012,12,74, 8, 10, 10, 1012, 12, 7   1515   77 (3,4,4,4),(3,3,3,3,3),(2,3,3,3,4),(2,2,3,4,4),(2,2,2,3,3,3),(2,2,2,2,3,4),(2,2,2,2,2,2,3)(3, 4, 4, 4), (3, 3, 3, 3, 3), (2, 3, 3, 3, 4), (2, 2, 3, 4, 4), (2, 2 , 2, 3, 3, 3), (2, 2, 2, 2, 3, 4), (2, 2, 2, 2, 2, 2, 3)   2,2.5,3,3.5,4.5,5,6.52, 2.5, 3, 3.5, 4.5, 5, 6.5  4,5,10,10,1212,144, 5, 10, 10, 1212, 14

1616 1010 (4,4,4,4),(3,3,3,3,4),(2,3,3,4,4),(2,2,4,4,4),(2,2,3,3,3,3),(2,2,2,3,3,4),(2,2,2,2,4,4),(2,2,2,2,2,3,3),(2,2,2,2,2,2,4)(2,2,2,2,2,2,2,2)(4, 4, 4, 4), (3, 3, 3, 3, 4), (2, 3, 3, 4, 4), (2, 2, 4, 4, 4), (2, 2 , 3, 3, 3, 3), (2, 2, 2, 3, 3, 4), (2, 2, 2, 2, 4, 4), (2, 2, 2, 2, 2, 3 , 3), (2, 2, 2, 2, 2, 2, 4) (2, 2, 2, 2, 2, 2, 2, 2) 2,2.5,3,3.5,4,4.5,5,6,6.5,82, 2.5, 3, 3.5, 4, 4.5, 5, 6, 6.5, 8 4,5,10,10,1212,12,14,14,84, 5, 10, 10, 1212, 12, 14, 14, 8

表三Table three

图8a-8e分别为依据本发明实施例在总传送天线数为10时的5种可能的字码(3,3,4)、(2,4,4)、(2,2,3,3)、(2,2,2,4)以及(2,2,2,2,2)的示意图。举例来说,以第8c图为例,表示在总传送天线数N=10、分割为Q=4个天线群组以及字码(天线群组结构)结构为(2,2,3,3)时的G-STBC字码结构示意图,其中,2根天线的部分为使用2×2的STBC,3根天线的部分则使用3×8的STBC,并且每个群组内所使用的STBC为正交式STBC(O-STBC),此字码结构以码元时间长度N=8为单位。由第8a-8e图可知,在每个群组内的空-时码必须为正交的条件下,决定天线群组结构,也将决定字码结构。Figures 8a-8e are 5 possible character codes (3, 3, 4), (2, 4, 4), (2, 2, 3, 3) when the total number of transmitting antennas is 10 according to the embodiment of the present invention respectively. ), (2,2,2,4) and (2,2,2,2,2). For example, taking Figure 8c as an example, it shows that the total number of transmitting antennas N=10, divided into Q=4 antenna groups, and the code (antenna group structure) structure is (2, 2, 3, 3) Schematic diagram of the G-STBC character code structure, in which, the part with 2 antennas uses 2×2 STBC, the part with 3 antennas uses 3×8 STBC, and the STBC used in each group is positive Interleaved STBC (O-STBC), the code word structure takes the symbol time length N=8 as the unit. It can be seen from Figures 8a-8e that, under the condition that the space-time codes in each group must be orthogonal, the antenna group structure will also determine the code word structure.

接着,传送这些可能的空-时字码形式到接收器320(步骤S520)。接着,等待接收器320回传一信息。于是,判断接收器320是否已回传信息(步骤S530)。若接收器320尚未回传信息(步骤S530的否),则返回步骤S530,继续判断。若接收器320已经回传信息(步骤S530的是),则发射器310根据此回传信息中所具有的最佳字码,决定以此最佳字码为传输用的空-时字码(步骤S540)。最后,再以此最佳空-时字码将数据编码后传给接收端,进行数据的传输(步骤S550)。Next, transmit these possible space-time code forms to the receiver 320 (step S520). Next, wait for the receiver 320 to return a message. Then, it is determined whether the receiver 320 has returned information (step S530). If the receiver 320 has not returned any information (No in step S530), return to step S530 and continue to judge. If the receiver 320 has sent back the information (Yes in step S530), the transmitter 310 determines the best word as the space-time word for transmission according to the best word in the returned information ( Step S540). Finally, the best space-time word code is used to encode the data and transmit it to the receiving end for data transmission (step S550).

于接收端,如图6所示,接收器320接收发射器310送出的空-时字码形式(步骤S610)。此字码格式中包含了不同的天线配置方式。举例来说,假设总传送天线数N为10,则由表三可知,其包含了5种可能的字码结构。接着,根据译码方式,计算(查表)得到每一种空-时字码对应的一个BER值(步骤S620)。参考表三可知,于总传送天线数N为10时,执行步骤S620后将得到5个BER值BER1~BER5,以上例而言,字码∑1(2,2,2,2,2)将有一对应的BER值BER1,字码∑2(3,3,4)有一对应的BER值BER2,以此类推。接着,找到具有最小BER值的字码格式(步骤S630)。对一系统需求的频谱效益h(Mj N),若给定位传输率Rb(即调制形式),则将定义其所对应的空-时字码。因此,在给定的总传送功率PT以及所需求的数据传输率Rb的限制下,若选择第j个字码,则需满足At the receiving end, as shown in FIG. 6 , the receiver 320 receives the space-time code form sent by the transmitter 310 (step S610 ). This code format contains different antenna configuration methods. For example, assuming that the total number of transmitting antennas N is 10, it can be known from Table 3 that it includes 5 possible word structures. Next, according to the decoding method, calculate (look up a table) to obtain a BER value corresponding to each space-time code (step S620). With reference to Table 3, it can be seen that when the total number of transmitting antennas N is 10, five BER values BER1- BER5 will be obtained after step S620 is executed. There is a corresponding BER value BER1, the character code Σ 2 (3, 3, 4) has a corresponding BER value BER2, and so on. Next, find the word format with the minimum BER value (step S630). For the spectrum efficiency h(M j N ) required by a system, if the bit transmission rate R b (ie modulation form) is given, then the corresponding space-time code will be defined. Therefore, under the constraints of the given total transmission power PT and the required data transmission rate R b , if the jth word code is selected, it needs to satisfy

jj == argarg minmin ∀∀ jj PP ee (( SS jj NN || {{ PP TT ,, RR bb }} )) ..

其中Pe表示第j个字码的整体BER值,其可计算如下:Among them, P e represents the overall BER value of the jth character code, which can be calculated as follows:

PP ee (( jj )) == 11 ηη (( Mm jj NN )) ΣΣ qq == 11 QQ (( RR qq NN (( jj )) RR bb ,, qq (( jj )) )) PP ee ,, qq (( jj )) == 11 RR NN (( jj )) ΣΣ qq == 11 QQ RR qq NN (( jj )) PP ee ,, qq (( jj ))

上式中,Pe,q(j)为第j个模式(mode)下的第q个天线群组的BER,而模式定义为一特定的空-时字码与其所使用的调制形式的组合。假设在OSIC的迭代运算过程中忽略其错误传播效应(error propagation effect),Pe,q(j)可近似为检测后的讯号对干扰及噪声比(signal-to-interference-plus-noise ratio,SINR)γq及传输数据率Rb,q的函数In the above formula, P e, q (j) is the BER of the qth antenna group under the jth mode (mode), and the mode is defined as a combination of a specific space-time code and its modulation form . Assuming that the error propagation effect (error propagation effect) is ignored during the iterative operation of OSIC, P e, q (j) can be approximated as the signal-to-interference-plus-noise ratio (signal-to-interference-plus-noise ratio, SINR)γ q and transmission data rate R b, function of q

PP ee ,, qq ≈≈ gg γγ ,, RR bb (( γγ qq ,, RR bb ,, qq )) ,,

其中in

Figure G061D1798920061020D000092
Figure G061D1798920061020D000092

and

σσ vv ,, qq 22 (( jj )) == σσ vv 22 22 ee qq ii TT [[ Hh cc ,, qq ii TT (( jj )) Hh cc ,, qq ii (( jj )) ]] -- 11 ee qq ii

ϵϵ qq (( jj )) == ee qq ii TT [[ 22 σσ vv 22 Hh cc ,, qq ii TT (( jj )) Hh cc ,, qq ii (( jj )) ++ II ]] -- 11 ee qq ii

各为第q个天线群组的检测后的噪声功率及码元均方误差。其中

Figure G061D1798920061020D000095
定义如Hc,i(Hc,i将于后面介绍),el则是在
Figure G061D1798920061020D000096
中第l个单位标准向量(unit standardvector)。本发明假设使用M-ary QAM调制,则第q个天线群组的BER可近似如下Each is the detected noise power and symbol mean square error of the qth antenna group. in
Figure G061D1798920061020D000095
Defined as H c, i (H c, i will be introduced later), e l is in
Figure G061D1798920061020D000096
The lth unit standard vector in (unit standardvector). The present invention assumes the use of M-ary QAM modulation, then the BER of the qth antenna group can be approximated as follows

gg γγ ,, RR bb (( γγ qq ,, RR bb )) ≈≈ 22 RR bb ,, qq (( 11 -- 11 22 RR bb ,, qq )) erfcerfc (( 1.51.5 γγ qq 22 RR bb ,, qq -- 11 ))

其中, 2 R b , q = M ‾ , erfc()为一互补误差函数(complementary errorfunction)。in, 2 R b , q = m ‾ , erfc() is a complementary error function.

由上式可知,在要求的传送功率PT及数据传输率Rb限制下,根据BER性能,可选择出具有最小BER性能所对应的字码。假设在所有计算出的BER值中,BER2为最小BER值。此具有最小BER值所对应的字码格式将被视为最佳空-时字码格式,因此最佳字码格式即为其所对应的字码格式∑2,亦即,(3,3,4)将为最佳的字码格式。于是,接收器320产生选择讯号,此讯号中包含了最佳字码格式为∑2的信息,将此选择讯号回传给发射器310(步骤S640)。最后,发射器310会根据此最佳字码格式(∑2)进行编码,然后与接收器进行数据的传输(步骤S650)。It can be known from the above formula that, under the limitation of the required transmission power PT and data transmission rate R b , according to the BER performance, the word code corresponding to the minimum BER performance can be selected. Assume that BER2 is the minimum BER value among all calculated BER values. This code format corresponding to the minimum BER value will be regarded as the best space-time code format, so the best code format is its corresponding code format ∑ 2 , that is, (3, 3, 4) will be the best character code format. Therefore, the receiver 320 generates a selection signal, which includes the information of the optimal code format of Σ2 , and sends the selection signal back to the transmitter 310 (step S640). Finally, the transmitter 310 performs encoding according to the optimal code format (∑ 2 ), and then transmits data with the receiver (step S650).

综上述可知,依据本发明的传输系统及其传输方法可改善链接品质与增加数据率,并且也可使两者之间有较好的平衡点。此外,因为传送端使用O-STBC编码方式,可有效降低接收器的运算复杂度。In summary, the transmission system and transmission method according to the present invention can improve the link quality and increase the data rate, and can also achieve a better balance between the two. In addition, since the transmitting end uses the O-STBC encoding method, the computational complexity of the receiver can be effectively reduced.

为了说明上述天线群组的决定方式以及各种相关运算之间的关系与影响,以下将以数学公式进行说明。请注意,以下引用本发明同一发明人的博士论文“Space-time signal processing for MIMO wireless communications:Space-time signaling and interference suppression”(以下简称文献一)部分结果,详细的推导过程可参考发明人的论文,以下仅摘录其部分结果,并加以改良以辅助说明。In order to illustrate the determination method of the above-mentioned antenna group and the relationship and influence among various correlation operations, mathematical formulas will be used for description below. Please note that the following quotes part of the results of the doctoral thesis "Space-time signal processing for MIMO wireless communications: Space-time signaling and interference suppression" (hereinafter referred to as document 1) of the same inventor of the present invention. For the detailed derivation process, please refer to the inventor's Paper, the following is only an excerpt of some of its results, and it has been improved to assist in the explanation.

首先定义数据的格式,考虑在Rayleigh flat-fading环境下的G-STBC系统,如图3所示,其中传送端放置N个天线,接收端放置M个天线。N个传送天线将分成Q个天线群组(N1,...,NQ),每个天线群组则使用2~4根天线,使得N1+...+NQ=N。对于第q个群组,将连续Bq个数据码元以O-STBC编码方式进行编码,并在Kq个码元时间内由Nq个天线传送出去。First define the format of the data, consider the G-STBC system in the Rayleigh flat-fading environment, as shown in Figure 3, where N antennas are placed at the transmitting end, and M antennas are placed at the receiving end. N transmit antennas are divided into Q antenna groups (N 1 , . . . , N Q ), and each antenna group uses 2-4 antennas, so that N 1 + . . . +N Q =N. For the qth group, the continuous B q data symbols are coded by O-STBC code, and transmitted by N q antennas within K q symbol time.

若定义K=max{K1,...,KQ},则K=kqKq,其中kq=K/Kq。在K个码元时间内每个天线群组将可传送出Lq=kqBq个独立码元,因此,在K个码元时间内由Q个天线群组传送共If K=max{K 1 , . . . , K Q } is defined, then K=k q K q , where k q =K/K q . Each antenna group will be able to transmit L q = k q B q independent symbols in K symbol time, therefore, Q antenna groups transmit a total of

LL TT :: == ΣΣ qq == 11 QQ LL qq == KK ΣΣ qq == 11 QQ BB qq KK qq

个数据码元。每一个天线群组的字码,称为群组字码(group code),可以由Nq×K的空-时字码矩阵(codeword matrix)Xq完全描述。将第q个群组数据码元sq(k)划分成数据串区块如data symbols. The codeword of each antenna group, called the group code, can be completely described by the space-time codeword matrix X q of N q ×K. Divide the qth group data symbol s q (k) into data string blocks such as

sthe s qq ,, ll (( kk )) == sthe s qq (( LL qq kk ++ ll ~~ 11 )) ,, ll == 11 ,, .. .. .. ,, LL qq

则第q个群组的空-时字码可写为Then the space-time character code of the qth group can be written as

Xx qq (( kk )) :: == ΣΣ ll == 11 22 LL qq AA qq ,, ll sthe s ~~ qq ,, ll (( kk )) -- -- -- (( 11 ))

其中Aq,l为空-时调制矩阵(modulation matrix)。为了后续分析方便,以下定义 s ~ q , l ( k ) = Re { s q , l ( k ) } , l = 1 , . . . , L q , s ~ q , l ( k ) = Im { s q , l - L q ( k ) } , 1 = L q + 1 , . . . , 2 L q . Wherein A q, l is a space-time modulation matrix (modulation matrix). For the convenience of subsequent analysis, the following definition the s ~ q , l ( k ) = Re { the s q , l ( k ) } , l = 1 , . . . , L q , and the s ~ q , l ( k ) = Im { the s q , l - L q ( k ) } , 1 = L q + 1 , . . . , 2 L q .

假设在接收端使用M(≥Q)个天线,则在K个码元时间内M个天线上所收到的讯号为Assuming that M(≥Q) antennas are used at the receiving end, the signals received on M antennas within K symbol time are

YY (( kk )) :: == [[ ythe y (( kk )) ,, ythe y (( kk ++ 11 )) ,, .. .. .. ,, ythe y (( kk ++ KK -- 11 )) ]] == ΣΣ qq == 11 QQ PP qq NN Hh qq Xx qq (( kk )) ++ VV (( kk )) -- -- -- (( 22 ))

其中 H q = P q C q , Pq为第q个群组的传送功率,并满足P1+...+PQ=PT,而PT为总传送功率;另外,Cq为第q个群组到接收器的MIMO通道矩阵,最后V(k)∈CM×K为噪声矩阵。以下的假设将在后面的讨论中使用:in h q = P q C q , P q is the transmission power of the qth group, and it satisfies P 1 +...+P Q = PT , and P T is the total transmission power; in addition, C q is the MIMO from the qth group to the receiver Channel matrix, and finally V(k)∈C M×K is the noise matrix. The following assumptions will be used in the discussion that follows:

(a1)数据码元sq(k),q=1,...,Q,为i.i.d.,其平均值为0(zero-mean),变异数为1(unit-variance),且采用相同的调制技术。(a1) data symbol s q (k), q=1, ..., Q, is iid, its average value is 0 (zero-mean), and the variation number is 1 (unit-variance), and adopts the same modulation technique.

(a2)每一个天线群组传送相同的功率,即P1=...=PQ=PT/Q。(a2) Each antenna group transmits the same power, that is, P 1 =...=P Q =P T /Q.

(a3)Cq,q=1,...,Q,矩阵中的每一个元素为i.i.d.复数高斯随机变量且其平均值为0,变异数为1,并假设在K个码元时间内保持不变。(a3) C q , q=1,..., Q, each element in the matrix is an iid complex Gaussian random variable with an average value of 0 and a variation of 1, and it is assumed that the constant.

(a4)V(k)为空-时白色噪声,且其平均值为0,而变异数为sv 2(a4) V(k) is space-time white noise with an average value of 0 and a variance of s v 2 .

(a5)根据O-STBC,当使用实数码元且2≤Nq≤4,或使用复数码元且Nq=2情况下,采用编码率为1(unit-rate)的正交空-时区块码;而当使用复数码元且3≤Nq≤4情况下,采用编码率为1/2(half-rate)的正交空-时区块码。(a5) According to O-STBC, when using real code elements and 2≤N q ≤4, or using complex code elements and N q =2, use an orthogonal space-time zone with a coding rate of 1 (unit-rate) block code; and when complex symbols are used and 3≤N q ≤4, an orthogonal space-time block code with a coding rate of 1/2 (half-rate) is used.

实数向量模型Real Vector Model

为了分析方便,将(2)改写成下列2KM×1线性向量模型For the convenience of analysis, (2) is rewritten as the following 2KM×1 linear vector model

ythe y cc (( kk )) :: == [[ ythe y ~~ TT (( kk )) ,, ythe y ~~ TT (( kk ++ 11 )) ,, .. .. .. ,, ythe y ~~ TT (( kk ++ KK -- 11 )) ]] TT == Hh cc sthe s cc (( kk )) ++ vv cc (( kk ))

                   (3)(3)

其中in

ythe y ~~ (( kk )) :: == [[ ReRe {{ ythe y TT (( kk )) }} ImIm {{ ythe y TT (( kk )) }} ]] TT ∈∈ RR 22 Mm

sthe s ~~ qq (( kk )) :: == [[ ReRe {{ sthe s qq TT (( kk )) }} ImIm {{ sthe s qq TT (( kk )) }} ]] TT ∈∈ RR 22 LL qq

sthe s qq (( kk )) :: == [[ sthe s qq ,, 11 (( kk )) ,, sthe s qq ,, 22 (( kk )) ,, .. .. .. ,, sthe s qq ,, LL qq (( kk )) ]] TT

Hc∈R2KM×2LT H c ∈ R 2KM×2LT

为等效通道矩阵,且is the equivalent channel matrix, and

sthe s cc (( kk )) :: == [[ sthe s ~~ 11 TT (( kk )) ,, sthe s ~~ 22 TT (( kk )) ,, .. .. .. sthe s ~~ QQ TT (( kk )) ]] TT ∈∈ RR 22 LL TT ,,

vc(k)∈R2KM为噪声向量。将yc(k)等式左右各乘上Hc将产生匹配滤波(matched-filtered,MF)数据向量v c (k) ∈ R2KM is a noise vector. Multiplying the left and right sides of the y c (k) equation by H c will generate a matched-filtered (MF) data vector

zz (( kk )) :: == Hh cc TT ythe y cc (( kk )) == Ff sthe s cc (( kk )) ++ vv (( kk )) -- -- -- (( 44 ))

其中 F : = H c T H c ∈ R 2 L T × 2 L T 为匹配滤波通道矩阵(matched-filtered channelmatrix,MFCM), v ( k ) : = H c T v c ( k ) . 以下将基于模型(4)来检测讯号。in f : = h c T h c ∈ R 2 L T × 2 L T For the matched filter channel matrix (matched-filtered channelmatrix, MFCM), v ( k ) : = h c T v c ( k ) . The signal will be detected based on model (4) below.

使用实数码元下的OSIC检测法OSIC detection using real code elements

以下采用文献一所提出的算法检测传送讯号。藉由利用匹配滤波通道矩阵F所具有的特殊结构,OSIC检测器可在每一次迭代运算中同时检测出某一个天线群组的全部Lq=K个码元数据,称之为『天线群组OSIC检测』法。In the following, the algorithm proposed in Document 1 is used to detect the transmitted signal. By using the special structure of the matched filter channel matrix F, the OSIC detector can simultaneously detect all L q =K symbol data of a certain antenna group in each iteration operation, which is called "antenna group OSIC detection method.

A.匹配滤波通道矩阵A. Matched filter channel matrix

为了要使OSIC法则能有效检测出传送讯号,必须对F的结构进行分析。由于其检测法则已由文献一中提出并有完整分析,可适用于此实数码元情况,因此此处只陈述其结果。In order to make the OSIC law detect the transmission signal effectively, the structure of F must be analyzed. Since the detection rule has been proposed and analyzed completely in Document 1, it can be applied to the case of real code elements, so only the results are presented here.

定义O(K)为一组所有具K个独立变量的K×K的实数正交矩阵的集合;(K,L)为一组所有具L个独立变量的K×K的实数正交矩阵的集合。Define O(K) as a set of all K×K real orthogonal matrices with K independent variables; (K, L) is a set of all K×K real orthogonal matrices with L independent variables gather.

结果II.1:考虑实数码元,且2≤Np,Nq≤4。根据O-STBC,可知K∈{2,4}。定义Fp,q为F的第(p,q)个K×K区块矩阵,其中F定义于(4)。则可得知Fq,q=αqIK且Fp,q∈(K),若p≠q。,Result II.1: Consider real code elements, and 2≤N p , N q ≤4. According to O-STBC, it can be known that K∈{2, 4}. Define F p, q as the (p, q)th K×K block matrix of F, where F is defined in (4). Then it can be known that F q,qq I K and F p,q ∈(K), if p≠q. ,

将结果II.1的结果整理于表一,其中,Fp,q (s,t)为Fq,q的第(s,t)个区块矩阵。F的结构图则显示于图7。The results of Result II.1 are summarized in Table 1, where F p,q (s,t) is the (s,t)th block matrix of F q,q . The structure diagram of F is shown in Fig. 7 .

Figure G061D1798920061020D000121
Figure G061D1798920061020D000121

表一Table I

B.群组式OSIC检测算法B. Group OSIC detection algorithm

接下来将发现F-1,以粗略来说,将具有与F相同的结构。首先定义ΦKL(L)为一组所有可反逆(invertible)的KL×KL的实数对称(symmetric)矩阵的集合,使得对于X∈ΦKL(L)而言,其中Xk,l为X的第(k,l)个K×K的子矩阵,可得Xl,l=βqIK且Xk,l∈O(K)当k≠l。Next it will be found that F -1 will, roughly speaking, have the same structure as F. Firstly, Φ KL (L) is defined as a set of all invertible KL×KL real symmetric matrices, so that for X∈Φ KL (L), where X k, l is the For the (k, l)th K×K sub-matrix, X l, l = β q I K and X k, l ∈ O(K) when k≠l.

事实II.1:若F∈ΦKL(L),则F-1亦有相同结果(可参见文献一)。,Fact II.1: If F ∈ Φ KL (L), then F -1 also has the same result (see Document 1). ,

根据事实II.1,可得到以下的结果II.2:From fact II.1, the following result II.2 can be obtained:

结果II.2:考虑实数码元,且2≤Np,Nq≤4,可知K∈{2,4}。F∈RLT×LT定义于(4)。则每一个F-1的K×K的区块对角(diagonal)子矩阵是一个常数单位矩阵;每一个F-1的非对角(off-diagonal)K×K区块子矩阵属于O(K)。由此可知F-1的所有KL个对角在线的元素具有L=Q个不同层级(level)β l,l=1,...,L,亦即Result II.2: Considering real code elements, and 2≤N p , N q ≤4, we know that K∈{2, 4}. F ∈ R LT × LT is defined in (4). Then each F - 1 K×K block diagonal (diagonal) sub-matrix is a constant identity matrix; each F -1 off-diagonal (off-diagonal) K×K block sub-matrix belongs to O( K). It can be seen that all KL diagonal elements of F -1 have L=Q different levels (level) β l , l=1,...,L, that is

diag(F-1)={β1,...,β1,β2,...,β2,...,βL,...,βL}(5),diag(F -1 )={β 1 ,...,β 12 ,...,β 2 ,...,β L ,...,β L }(5),

其中,(5)中每个层级β l的个数皆有K个。由(5)可知,基于零强制(zero-forcing,ZF)准则(或最小均方误差(minimum mean square error,MMSE)准则),OSIC检测器可在初始迭代运算中同时检测出K个码元。Among them, there are K number of each level β l in (5). It can be seen from (5) that based on the zero-forcing (ZF) criterion (or the minimum mean square error (MMSE) criterion), the OSIC detector can simultaneously detect K symbols in the initial iterative operation .

基于OSIC的检测-扣除程序,可得知在OSIC的第i次迭代运算中,i=1,...,L-1,噪声协方差(covariance)矩阵为Fi -1,其中Based on the detection-subtraction program of OSIC, it can be known that in the i-th iterative operation of OSIC, i=1,...,L-1, the noise covariance (covariance) matrix is F i -1 , where

Ff ii == Hh cc ,, ii TT Hh cc ,, ii -- -- -- (( 66 ))

为OSIC第i次迭代运算中的匹配滤波通道矩阵,可藉由从Hc中删除由K个行(columns)为单位的i个区块(亦即Hc,i)(对应于前一次迭代运算中检测出的讯号)。由此可知Fi∈F(L-i)。is the matched filter channel matrix in the iterative operation of OSIC, which can be deleted by deleting i blocks (that is, H c, i ) with units of K rows (columns) from H c (corresponding to the previous iteration signal detected during operation). It can be known that F i ∈ F(Li).

结果II.3:根据事实II.1,可知

Figure G061D1798920061020D000132
且Result II.3: From Fact II.1, it follows that
Figure G061D1798920061020D000132
and

diagdiag (( Ff ii -- 11 )) == {{ ββ 11 ,, .. .. .. ,, ββ 11 ,, ββ 22 ,, .. .. .. ,, ββ 22 ,, .. .. .. ,, ββ LL ,, .. .. .. ,, ββ LL }} -- -- -- (( 77 ))

其中β i,l为分布于Fi -1对角在线第1不同的层级,每个β l各有K个。,Among them, β i, l are the first different levels distributed on the F i -1 diagonal line, and each β l has K pieces. ,

由以上分析可知,上述算法可执行天线群组OSIC检测。It can be seen from the above analysis that the above algorithm can perform antenna group OSIC detection.

使用复数码元下的OSIC检测法OSIC detection using complex symbols

虽然在使用实数码元下,可进行天线群组式OSIC检测。然而,在复数码元使用下,将无法进行天线群组式OSIC检测。只有由2Lq个实数码元为单位区块的一半码元(i.e.,Lq个)能在OSIC的某一次迭代处理中能同时被检测出,而这些码元若不是属于某一天线群组中的复数码元的实数部分就是其虚数部分。Although the antenna group type OSIC detection can be performed under the use of real code elements. However, under the use of complex symbols, the antenna group OSIC detection will not be possible. Only half of the code elements (ie, L q ) of the unit block consisting of 2L q real code elements can be detected simultaneously in a certain iterative process of OSIC, and if these symbols do not belong to a certain antenna group The real part of the complex code element in is its imaginary part.

A.匹配滤波通道矩阵A. Matched filter channel matrix

在复数码元下,有下列不同于结果II.1的结果。Under complex symbols, there are the following results that differ from Result II.1.

结果III.1:考虑复数码元,且2≤Np,Nq≤4。根据O-STBC,可知K∈{2,8}。定义Fp,q为F的第(p,q)个2Lq×2Lq区块矩阵,其中F定义于(4)。则可获得如表二的结果。Result III.1: Consider complex symbols, and 2≤N p , N q ≤4. According to O-STBC, it can be known that K∈{2, 8}. Define F p,q as the (p,q)th 2L q ×2L q block matrix of F, where F is defined in (4). Then the results shown in Table 2 can be obtained.

Figure G061D1798920061020D000141
Figure G061D1798920061020D000141

表二Table II

B.群组式OSIC检测算法B. Group OSIC detection algorithm

根据结果III.1,可推测Fi -1将不再具有类似Fi的结构。在分析Fi -1的结构的前,需要定义下列参数。首先定义在OSIC的第i次迭代运算中,针对某一天线群组的一半的实数码元为一个决策群组(decision group)Γi,g,g=1,...,Gi,其中,Gi为第i次迭代运算中的总决策群组数目。因此,每一个天线群组将具有二个决策群组,而每一个决策群组具有Lq个实数码元。进一步定义Ii,1及Ii,1/2分别为第i次迭代运算中编码率为1及编码率为1/2的空-时码的决策群组标号(index)的集合,因此Gi,1=|Ii,1|及Gi,2=|Ii,2|,为各集合中所包含的参数数目。最后定义Ii:=Ii,1∪Ii,1/2为第i次迭代运算中的总决策群组标号的集合,因此Gi=|Ii|。根据上述定义,可知From result III.1, it can be speculated that F i -1 will no longer have a structure similar to F i . Before analyzing the structure of F i -1 , the following parameters need to be defined. Firstly, it is defined that in the iterative operation of OSIC, half of the real code elements for a certain antenna group are a decision group (decision group) Γ i, g , g=1,..., G i , where , G i is the total number of decision-making groups in the iterative operation. Therefore, each antenna group will have two decision groups, and each decision group has Lq real symbols. Further define I i, 1 and I i, 1/2 to be the set of decision group labels (index) of space-time codes with coding rate 1 and coding rate 1/2 in iterative operation respectively, so G i,1 =|I i,1 | and G i,2 =|I i,2 | are the number of parameters included in each set. Finally, I i is defined: =I i, 1∪I i, 1/2 is the set of the total decision group labels in the iterative operation, so G i =|I i |. According to the above definition, it can be seen that

Figure G061D1798920061020D000142
Figure G061D1798920061020D000142

(8)(8)

此外,若将Fi的对角在线的元素分割成Gi个决策群组,而每一个决策群组具有相同非零的数值,亦即In addition, if the elements on the diagonal of F i are divided into G i decision groups, and each decision group has the same non-zero value, that is

Figure G061D1798920061020D000143
Figure G061D1798920061020D000143

假设{ai,g}g=1 Gi具有Di(Gi)个不同的层级,则可得知

Figure G061D1798920061020D000151
Suppose {a i, g } g=1 Gi has D i (G i ) different levels, then we can know
Figure G061D1798920061020D000151

接下来定义

Figure G061D1798920061020D000152
为一组所有可反逆的J×J的实数对称矩阵的集合,使得对于
Figure G061D1798920061020D000153
而言,可得:(1)X的每一个区块对角子矩阵为一个常数单位矩阵
Figure G061D1798920061020D000154
,g=1,...,G,其中Mg ∈{2,4,8}。(2){ag}g=1 G具有D个不同的层级,其中
Figure G061D1798920061020D000155
(3)对于i,j=1,...,G,i≠j,X的Mi×Mj区块非对角子矩阵中的每一个4×4区块子矩阵属于(4)或是零矩阵。其中,当D=G,则
Figure G061D1798920061020D000156
将改写为
Figure G061D1798920061020D000157
Next define
Figure G061D1798920061020D000152
is a set of all reversible J×J real symmetric matrices, such that for
Figure G061D1798920061020D000153
In terms of, it can be obtained: (1) Each block diagonal sub-matrix of X is a constant identity matrix
Figure G061D1798920061020D000154
, g=1, . . . , G, where M g ∈ {2, 4, 8}. (2){a g } g=1 G has D different levels, where
Figure G061D1798920061020D000155
(3) For i, j=1,..., G, i≠j, each 4×4 block sub-matrix in the M i ×M j block off-diagonal sub-matrix of X belongs to (4) or zero matrix. Among them, when D=G, then
Figure G061D1798920061020D000156
will be rewritten as
Figure G061D1798920061020D000157

结果III.2:考虑复数码元。假设编码率为1及编码率为1/2的空-时码同时存在于OSIC的i次迭代运算中,亦即

Figure G061D1798920061020D000159
定义i(g),g=1,...,Gi,为i中第g的元素,而Fi∈RJi×Ji为OSIC第i次迭代运算中的匹配滤波通道矩阵,其中Result III.2: Consider complex code elements. Assume that space-time codes with a coding rate of 1 and a coding rate of 1/2 exist in the iterative operation of OSIC at the same time, that is and
Figure G061D1798920061020D000159
Define i(g), g=1,..., G i is the gth element in i, and F i ∈ R Ji×Ji is the matched filter channel matrix in the iterative operation of OSIC, where

Figure G061D1798920061020D0001510
Figure G061D1798920061020D0001510

而Lg∈{2,4,8}。,And L g ∈ {2, 4, 8}. ,

因此,若由结果III.2可知Fi -1具有Gi(≥Di)个不同的层级{βi,g}g=1 Gi(其中Fi只有Di个不同的层级),亦即Therefore, if but From the result III.2, we know that F i -1 has G i (≥D i ) different levels {β i, g } g=1 Gi (wherein F i only has D i different levels), that is

Figure G061D1798920061020D0001514
Figure G061D1798920061020D0001514

由(11)可知,只有以2Lq个实数码元为单位区块的一半码元(i.e.,Lq个)能在OSIC的某一次迭代处理中同时被检测出,而这些码元若不是属于某一天线群组中的复数码元的实数部分就是其虚数部分。因此,如此的一个检测特性将会造成运算负担。为解决上述的问题,随后将开发一些降低运算复杂度的技术。It can be seen from (11) that only half of the code elements (ie, L q ) of the block with 2L q real code elements as the unit can be detected simultaneously in a certain iterative process of OSIC, and if these code elements do not belong to The real part of the complex code element in a certain antenna group is its imaginary part. Therefore, such a detection feature will cause a computational burden. In order to solve the above-mentioned problems, some techniques for reducing the computational complexity will be developed later.

在使用复数码元情况下的群组式OSIC检测技术的实现议题Implementation Issues of Group-based OSIC Detection Techniques Using Complex Code Elements

此处,将讨论一些群组式OSIC检测的实现议题,包含天线群组式检测法则、二阶段式(two-stage)检测法则及递归(recursive)实现。由于在使用实数码元情况下的群组式OSIC检测的实现,可由文献一所提出的方法完成,因此,以下只探讨如何实现在使用复数码元下的群组式OSIC检测技术。Here, some implementation issues of group-based OSIC detection will be discussed, including antenna group-based detection algorithm, two-stage detection algorithm and recursive implementation. Since the implementation of the group OSIC detection using real code elements can be accomplished by the method proposed in Document 1, the following only discusses how to implement the group OSIC detection technology using complex code elements.

A.天线群组式检测方法A. Antenna group detection method

如结果III.2所述,分布于Fi -1对角在线的某一天线群组中共

Figure G061D1798920061020D000161
个元素将具有二个不同的层级
Figure G061D1798920061020D000162
Figure G061D1798920061020D000163
。为实现天线群组式检测,一种最简单的方法即是直接搜寻Fi -1对角在线决策群组的标号,检查其哪一个标号所对应的层级最小。此一方法虽简单但性能也较差。因此,将对应于某一天线群组的二层级
Figure G061D1798920061020D000165
进行平均As stated in Result III.2, a group of antennas distributed on the F i -1 diagonal line share
Figure G061D1798920061020D000161
elements will have two different levels
Figure G061D1798920061020D000162
and
Figure G061D1798920061020D000163
. In order to realize antenna group detection, one of the simplest methods is to directly search for labels of the F i -1 diagonal online decision group, and check which label corresponds to the smallest level. Although this method is simple, its performance is also poor. Therefore, the second level corresponding to a certain antenna group and
Figure G061D1798920061020D000165
average

ββ ii ,, qq == ββ qq ii ,, 11 ++ ββ qq ii ,, 22 22 -- -- -- (( 1212 ))

并将Fi -1x的对角在线共

Figure G061D1798920061020D000167
个元素改写为and the diagonal of F i -1x on the total line
Figure G061D1798920061020D000167
elements rewritten as

Figure G061D1798920061020D000168
Figure G061D1798920061020D000168

可根据βi,1,βi,2,...,βi,Q-i,搜寻其标号,检查其哪一个标号所对应的层级最小。此一搜寻标号的方法并非是最佳的方法,因此其性能也会有所衰减,但计算机仿真中显示此一性能衰减并不严重。According to β i, 1 , β i, 2 , . This method of searching for labels is not optimal, so its performance will be degraded, but computer simulations show that the degraded performance is not serious.

B.二阶段式检测方法B. Two-stage detection method

理论上,对于具有较高多样增益的天线群组(亦即具有较多的天线数目或较低的编码率)对抗信道衰落较为强健,性能也较优异。有鉴于此,本发明提出一种二阶段式的检测法则。其作法为先检测具有较低编码率的天线群组(Nq=4或Nq=3)再检测具有较高编码率的天线群组(Nq=2),以降低其运算复杂度。相同地,此一搜寻标号的方法并非是最佳的方法,因此其性能也会有所衰减,但计算机仿真中显示此一性能衰减并不严重。Theoretically, antenna groups with higher diversity gain (that is, with more antenna numbers or lower coding rates) are more robust against channel fading and have better performance. In view of this, the present invention proposes a two-stage detection rule. The method is to first detect the antenna group with a lower coding rate (N q =4 or N q =3) and then detect the antenna group with a higher coding rate (N q =2), so as to reduce its computational complexity. Likewise, this method of searching for labels is not optimal, so there is some degradation in performance, but computer simulations show that the performance degradation is not severe.

C.递归形式实现C. Recursive Form Implementation

为了要进一步减缓接收器计算量,采用类似文献一所提出的递归法则实现群组式OSIC检测器。但文献一所提出的方法无法直接并完全地适用在此发明中,需做一些修改才能予以使用。In order to further reduce the amount of computation in the receiver, a group-type OSIC detector is implemented using a recursive rule similar to that proposed in Document 1. However, the method proposed in Document 1 cannot be directly and completely applied to this invention, and some modifications are required before it can be used.

由结果III.2可知,在

Figure G061D1798920061020D000169
中能够形成正交矩阵的最小维度为4×4,其中,为Fi -1的第(p,q)个子矩阵。因为此一基于递归法则的实现,一次只能处理一个区块正交矩阵,因此当Fi的维度很大时,直接对其群组式OSIC检测器以递归方式实现将需要较多的递归次数,造成较大的计算量。但幸运地,若结合二阶段式检测法则,将可辅助降低其运算量。假设在Fi -1对角在线属于某一天线群组的元素具有二个不同的层级。若Fi为第i个迭代运算中的匹配滤波通道矩阵。则Fi1 -可分割如下From the result III.2, we can see that in
Figure G061D1798920061020D000169
The minimum dimension that can form an orthogonal matrix in is 4×4, where, is the (p, q)th sub-matrix of F i -1 . Because this implementation based on the recursive rule can only process one block-orthogonal matrix at a time, when the dimension of F i is large, it will require more recursive times to directly implement the group OSIC detector in a recursive manner , resulting in a large amount of computation. But fortunately, if it is combined with the two-stage detection algorithm, it will help to reduce its calculation load. It is assumed that the elements belonging to a certain antenna group on the F i -1 diagonal line have two different levels. If F i is the matched filter channel matrix in the iterative operation. Then F i1 - can be divisible as follows

Figure G061D1798920061020D000171
Figure G061D1798920061020D000171

(13)(13)

其中 B i - 1 ∈ R 2 ( L T - Σ j = 1 i - 1 L q j ) × 2 L q i - 1 , D i - 1 = d i - 1 I 2 L q i - 1 , 而di-1为常数。进一步,若假设 2 ( L T - Σ j = 1 i - 1 L q j ) × 2 ( L T - Σ j = 1 i - 1 L q j ) 维度的Fi-1为Fi-1 -1的principle子矩阵,且 F 0 - 1 = F - 1 . 由(13)并利用inversion lemma for block matrix,Fi-1可表示如下in B i - 1 ∈ R 2 ( L T - Σ j = 1 i - 1 L q j ) × 2 L q i - 1 , D. i - 1 = d i - 1 I 2 L q i - 1 , And d i-1 is a constant. Further, if suppose 2 ( L T - Σ j = 1 i - 1 L q j ) × 2 ( L T - Σ j = 1 i - 1 L q j ) Dimension F i-1 is the principle submatrix of F i-1 -1 , and f 0 - 1 = f - 1 . From (13) and using the inversion lemma for block matrix, F i-1 can be expressed as follows

Ff ‾‾ ii -- 11 == (( Ff ii -- BB ii -- 11 DD. ii -- 11 -- 11 BB ii -- 11 TT )) -- 11 -- -- -- (( 1414 ))

由(14)可得知It can be known from (14)

Ff ii == Ff ‾‾ ii -- 11 -- 11 ++ BB ii -- 11 DD. ii -- 11 -- 11 BB ii -- 11 TT -- -- -- (( 1515 ))

利用matrix inversion lemma,并经推导可获得Using matrix inversion lemma, and derivation can be obtained

Ff ii -- 11 == Ff ‾‾ ii -- 11 -- EE. ii -- 11 CC ii -- 11 -- 11 EE. ii -- 11 TT -- -- -- (( 1616 ))

其中, E i - 1 : = F ‾ i - 1 B i - 1 in, E. i - 1 : = f ‾ i - 1 B i - 1 and

CC ii -- 11 == BB ii -- 11 TT Ff ‾‾ ii -- 11 BB ii -- 11 ++ DD. ii -- 11 == cc 11 ,, ii -- 11 II LL qq ii -- 11 00 LL qq ii -- 11 00 LL qq ii -- 11 cc 22 ,, ii -- 11 II LL qq ii -- 11

其中, c j , i - 1 , j = 1,2 , 为常数。in, c j , i - 1 , j = 1,2 , is a constant.

上述的推导利用Fi-1及Fi-1 -1的信息下,提供了一个简单的递归公式以计算出Fi -1,而不具有任何直接反矩阵运算,因此可有效地降低其运算复杂度。Using the information of F i-1 and F i-1 -1 , the above derivation provides a simple recursive formula to calculate F i -1 without any direct inverse matrix operation, thus effectively reducing its operation the complexity.

上述说明提供数种不同实施例或应用本发明的不同特性的实施例。实例中的特定装置以及方法用以帮助阐释本发明的主要精神及目的,当然本发明不限于此。The above description provides several different embodiments or embodiments applying different features of the invention. The specific devices and methods in the examples are used to help explain the main spirit and purpose of the present invention, but of course the present invention is not limited thereto.

因此,虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围的前提下可做若干更动与润饰,因此本发明的保护范围以本发明的权利要求为准。Therefore, although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the invention shall be determined by the claims of the present invention.

Claims (20)

1.一种字码选择方法,适用于一多输入多输出通讯系统,该通讯系统具有多重传送天线与多重接收天线,该方法包括:1. A character code selection method is applicable to a multi-input multi-output communication system, the communication system has multiple transmitting antennas and multiple receiving antennas, the method comprising: 一发射器提供复数字码形式;a transmitter providing complex digital form; 一接收器接收所述字码形式,并依据一译码方式,计算或查表得到每一所述字码形式的一对应的位错误率;A receiver receives the codeword form, and according to a decoding method, calculates or looks up a table to obtain a corresponding bit error rate of each said codeword form; 该接收器选出一具有最小位错误率的字码形式,并回传给该发射器;以及the receiver selects a word form with the lowest bit error rate and sends it back to the transmitter; and 该发射器根据该具有最小位错误率的字码形式,决定用以进行数据传输的字码,The transmitter determines the word code for data transmission according to the word code form with the minimum bit error rate, 其中每一所述字码内皆采用正交式空-时码编码,且该译码方式为一排序渐进式干扰消除检测方法且其中在复数码元下,该接收器还采用将一匹配滤波通道矩阵的反矩阵的对角线上属于一天线群组的元素所具有的不同层级进行平均,以进行该排序渐进式干扰消除检测。Wherein each of said word codes adopts orthogonal space-time code encoding, and the decoding method is a sorting progressive interference cancellation detection method, and wherein under complex symbols, the receiver also adopts a matched filter The different levels of the elements belonging to an antenna group on the diagonal of the inverse matrix of the channel matrix are averaged for the sorted progressive interference cancellation detection. 2.如权利要求1所述的字码选择方法,其中该发射器执行下列步骤:2. The word code selection method as claimed in claim 1, wherein the transmitter performs the following steps: 依据所述传送天线的数目,产生所述字码形式;generating the codeword form according to the number of the transmitting antennas; 接收该接收器的一字码形式;以及receives the one-word form of the receiver; and 依据接收的该字码形式,决定用以传输的字码,并用该决定的字码进行传输。According to the received character code form, determine the character code for transmission, and use the determined character code for transmission. 3.如权利要求1所述的字码选择方法,其中该接收器执行下列步骤:3. The word code selection method as claimed in claim 1, wherein the receiver performs the following steps: 接收该发射器的所述字码形式;receiving said codeword form from the transmitter; 根据该译码方式,计算出每一所述字码形式的该对应的位错误率;以及Calculate the corresponding bit error rate of each said codeword form according to the decoding method; and 传送一选择讯号至该发射器,用以决定该发射器传输用的字码,sending a selection signal to the transmitter for determining the character code for transmission by the transmitter, 其中该选择讯号中包括具有最小位错误率的该字码的信息。Wherein the selection signal includes the information of the word code with the minimum bit error rate. 4.如权利要求1所述的字码选择方法,其中该字码选择为一空-时字码选择。4. The method for character selection as claimed in claim 1, wherein the character selection is a space-time character selection. 5.如权利要求1所述的字码选择方法,其中所述每一所述字码内包含Nq根天线,且Nq为2、3或4。5. The code word selection method according to claim 1, wherein each of said code words includes N q antennas, and N q is 2, 3 or 4. 6.如权利要求5所述的字码选择方法,其中每一所述字码内的天线数目Nq不同。6. The code word selection method according to claim 5, wherein the number N q of antennas in each said code word is different. 7.如权利要求1所述的字码选择方法,其中该排序渐进式干扰消除检测方法还配合使用两阶段式检测法进行检测。7. The code word selection method according to claim 1, wherein the sorting and progressive interference elimination detection method is also combined with a two-stage detection method for detection. 8.如权利要求7所述的字码选择方法,其中该两阶段式检测法包括先检测具有3或4根天线的字码群组,再检测具有2根天线的字码群组。8. The code word selection method as claimed in claim 7, wherein the two-stage detection method comprises first detecting a code word group with 3 or 4 antennas, and then detecting a code word group with 2 antennas. 9.如权利要求8所述的字码选择方法,其中该两阶段式检测法包括利用递归检测方式进行两阶段式检测。9. The character code selection method as claimed in claim 8, wherein the two-stage detection method comprises two-stage detection using a recursive detection method. 10.如权利要求1所述的字码选择方法,其中在实数码元的检测下,接收器利用该排序渐进式干扰消除法进行天线群组式检测。10. The code word selection method as claimed in claim 1, wherein under the detection of real code elements, the receiver uses the sorting progressive interference cancellation method to perform antenna group detection. 11.一种通讯系统,其具有多重传送天线与多重接收天线,至少包括:11. A communication system having multiple transmit antennas and multiple receive antennas, comprising at least: 一发射器,用以提供复数字码形式;以及a transmitter for providing complex digital form; and 一接收器,接收所述字码形式,并依据一译码方式,计算或查表得到每一所述字码形式的一对应的位错误率,A receiver receives the code word form, and calculates or looks up a table to obtain a corresponding bit error rate of each code word form according to a decoding method, 其中该接收器选出一具有最小位错误率的字码形式,并回传给该发射器,该发射器根据该具有最小位错误率的字码形式,决定用以进行数据传输的字码,Wherein the receiver selects a word code form with the minimum bit error rate, and sends it back to the transmitter, and the transmitter determines the word code for data transmission according to the word code form with the minimum bit error rate, 其中每一所述字码内皆采用正交式空-时码编码,且该译码方式为排序渐进式干扰消除检测方法且其中在复数码元下,该接收器还采用将一匹配滤波通道矩阵的反矩阵的对角线上属于一天线群组的元素所具有的不同层级进行平均,以进行该排序渐进式干扰消除检测。Wherein each of said word codes adopts an orthogonal space-time code encoding, and the decoding method is a sorting progressive interference cancellation detection method and wherein under complex symbols, the receiver also adopts a matched filter channel The different levels of the elements belonging to an antenna group on the diagonal of the inverse matrix of the matrix are averaged for the sorted progressive interference cancellation detection. 12.如权利要求11所述的通讯系统,其中该发射器还包括:12. The communication system as claimed in claim 11, wherein the transmitter further comprises: 一解多任务模块,用以将输入数据产生多重子数据串;A multitasking module for generating multiple sub-data strings from the input data; 一调制模块,用以将所述子数据串调制为复数调制码元;A modulation module, used to modulate the sub-data strings into complex modulation symbols; 一群组式空-时区块码编码器,用以将调制后的所述调制码元进行群组式空-时区块编码;以及a group space-time block code encoder, for performing group space-time block coding on the modulated modulation symbols; and 一控制器,用以提供所述字码形式,并依据该接收器回传的该具有最小位错误率的字码形式,决定用以进行数据传输的字码。A controller is used to provide the word code form, and determine the word code for data transmission according to the word code form with the minimum bit error rate returned by the receiver. 13.如权利要求12所述的通讯系统,其中该接收器还包括:13. The communication system as claimed in claim 12, wherein the receiver further comprises: 一空时码通道匹配滤波器,用以降低该发射器传送的编码讯号空间维度;A space-time code channel matched filter for reducing the spatial dimension of the coded signal transmitted by the transmitter; 一检测器,用以检测该编码讯号;以及a detector for detecting the encoded signal; and 一多任务器,用以将检测后的该讯号还原成原来数据。A multiplexer is used to restore the detected signal to the original data. 14.如权利要求13所述的通讯系统,其中每一所述字码内包含Nq根天线,且Nq为2、3或4。14. The communication system as claimed in claim 13, wherein each of the word codes includes N q antennas, and N q is 2, 3 or 4. 15.如权利要求14所述的通讯系统,其中每一所述字码内的天线数目Nq系不同。15. The communication system as claimed in claim 14, wherein the number Nq of antennas in each of said code words is different. 16.如权利要求11所述的通讯系统,其中该排序渐进式干扰消除检测方法还配合使用两阶段式检测法进行检测。16. The communication system as claimed in claim 11, wherein the sequential and progressive interference cancellation detection method is combined with a two-stage detection method for detection. 17.如权利要求16所述的通讯系统,其中该两阶段式检测法包括先解码具有3或4根天线的字码群组,再译码具有2根天线的字码群组。17. The communication system as claimed in claim 16, wherein the two-stage detection method comprises first decoding a code group with 3 or 4 antennas, and then decoding a code group with 2 antennas. 18.如权利要求17所述的通讯系统,其中该两阶段式检测法包括利用递归检测方式进行检测。18. The communication system as claimed in claim 17, wherein the two-stage detection method comprises a recursive detection method for detection. 19.如权利要求13所述的通讯系统,其中在实数码元的译码下,该检测器为一执行排序渐进式干扰消除进行天线群组式检测的检测器。19. The communication system as claimed in claim 13, wherein the detector is a detector performing sequential progressive interference cancellation for antenna group detection under the decoding of real symbols. 20.如权利要求13所述的通讯系统,其中在复数码元下,该检测器为一执行将每一所述字码的一实数部分与一虚数部分的信号进行平均,以进行天线群组式检测的检测器。20. The communication system as claimed in claim 13 , wherein under complex symbols, the detector performs an average of a signal of a real part and an imaginary part of each said code word for antenna grouping type detection detector.
CN2006101317989A 2006-10-12 2006-10-12 Communication system and character code selection method thereof Active CN101163121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006101317989A CN101163121B (en) 2006-10-12 2006-10-12 Communication system and character code selection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006101317989A CN101163121B (en) 2006-10-12 2006-10-12 Communication system and character code selection method thereof

Publications (2)

Publication Number Publication Date
CN101163121A CN101163121A (en) 2008-04-16
CN101163121B true CN101163121B (en) 2011-06-01

Family

ID=39297949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101317989A Active CN101163121B (en) 2006-10-12 2006-10-12 Communication system and character code selection method thereof

Country Status (1)

Country Link
CN (1) CN101163121B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764682B (en) * 2008-12-25 2013-01-02 普天信息技术研究院有限公司 Method and device for selecting modulation code configuration
CN101465718B (en) * 2009-01-21 2013-11-06 中兴通讯股份有限公司 Method and apparatus for mapping codeword current to layer in multi-input multi-output system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501595A (en) * 2002-10-10 2004-06-02 三星电子株式会社 Transmitting and receiving apparatus supporting transmit antenna diversity using space-time block codes
EP1523121A1 (en) * 2003-10-09 2005-04-13 Rohde & Schwarz GmbH & Co. KG Method for testing the error ratio BER of a device according to confidence level, test time and selectivity
WO2006049443A1 (en) * 2004-11-04 2006-05-11 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
WO2006052058A2 (en) * 2004-11-12 2006-05-18 Electronics And Telecommunications Research Institute Multi-input multi-output system for enhancing transmission performance
CN1833373A (en) * 2003-04-03 2006-09-13 基奥赛拉无线公司 Antenna Diversity System for Mobile Phones

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501595A (en) * 2002-10-10 2004-06-02 三星电子株式会社 Transmitting and receiving apparatus supporting transmit antenna diversity using space-time block codes
CN1833373A (en) * 2003-04-03 2006-09-13 基奥赛拉无线公司 Antenna Diversity System for Mobile Phones
EP1523121A1 (en) * 2003-10-09 2005-04-13 Rohde & Schwarz GmbH & Co. KG Method for testing the error ratio BER of a device according to confidence level, test time and selectivity
WO2006049443A1 (en) * 2004-11-04 2006-05-11 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
WO2006052058A2 (en) * 2004-11-12 2006-05-18 Electronics And Telecommunications Research Institute Multi-input multi-output system for enhancing transmission performance

Also Published As

Publication number Publication date
CN101163121A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
Zhao et al. Detection schemes for space-time block code and spatial multiplexing combined system
CN101212281B (en) Multi-input/multi-output system based communication method and device
CN101771509B (en) Orthogonal network space-time coding method and relay transmission system
JP5414967B2 (en) Overlay training for communication using multiple antennas
CN100349387C (en) Detecting method and device for vertical-bell laboratory layered space-time code
CN102158311A (en) Iteration detection method for optimizing serial interference elimination sequence
CN101009509A (en) The method for antenna selection scheme and signal detection in the multi-antenna communication system
US7764745B2 (en) Communication system and method for selecting codeword thereof
KR100922957B1 (en) Signal Detection Device and Method of Multi-input / Output Communication System
CN102098142A (en) Data transmission method, device and system
CN107682058B (en) A MIMO-based LoRa signal transmission method
CN101163121B (en) Communication system and character code selection method thereof
CN100578963C (en) A method and system for transmitting signals in multi-antenna communication
US8094757B2 (en) Apparatus, and associated method, for detecting values of a space-time block code using selective decision-feedback detection
US20040071235A1 (en) Low complexity high performance decoder and method of decoding for communications systems using multidimensional signaling
KR101244303B1 (en) Apparatus and method for receving transmitted signal in multiple antenna system
CN101931506A (en) Signal detection method and device based on probability data association
Hosseini et al. Fast-decodable MIMO HARQ systems
CN101594207B (en) Method and device for transmitting data by space-time coding operation
Yang et al. An adaptive MIMO system based on unified belief propagation detection
EP1816760B1 (en) Method and system for transmitting/receiving data in a communication system
CN101170337B (en) Multi-antenna multi-rate transmitter with optimized throughput and transmission method thereof
Mu et al. Spatial-Time MIMO Autoencoder for Physical Layer
Lee et al. Joint antenna subset selection for spatial multiplexing systems based on statistical and instantaneous selection criteria
Ke Layered Space-Time Coding

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant