CN101157937A - 一种用于有机废水厌氧发酵提高沼气产量的方法 - Google Patents

一种用于有机废水厌氧发酵提高沼气产量的方法 Download PDF

Info

Publication number
CN101157937A
CN101157937A CNA2007101319902A CN200710131990A CN101157937A CN 101157937 A CN101157937 A CN 101157937A CN A2007101319902 A CNA2007101319902 A CN A2007101319902A CN 200710131990 A CN200710131990 A CN 200710131990A CN 101157937 A CN101157937 A CN 101157937A
Authority
CN
China
Prior art keywords
methanogen
micro
metal ion
cobalt
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101319902A
Other languages
English (en)
Other versions
CN101157937B (zh
Inventor
陈坚
李秀芬
赵阳
堵国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN2007101319902A priority Critical patent/CN101157937B/zh
Publication of CN101157937A publication Critical patent/CN101157937A/zh
Application granted granted Critical
Publication of CN101157937B publication Critical patent/CN101157937B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种用于有机废水厌氧发酵提高沼气产量的方法,属于废水生物处理技术领域。本发明采用模拟有机废水或实际化工废水为处理对象,通过在厌氧反应器中添加微量金属元素钴和金属离子螯合剂,改善产甲烷菌必需的微量金属元素的生物有效度,促进产甲烷菌的生长及其活性,从而提高系统的甲烷产量和污染物质的转化率。由于微量金属元素钴及金属离子螯合剂的添加量极其微量,因此,本发明方法不仅操作简便和高效,而且成本低,可望在工程实践中得到广泛运用。

Description

一种用于有机废水厌氧发酵提高沼气产量的方法
技术领域
一种用于有机废水尤其是化工废水厌氧发酵提高沼气产量的方法,涉及一种通过在厌氧反应器中添加产甲烷菌必需的微量金属元素钴和金属离子螯合剂促进有机废水中的有机物最大限度转化为甲烷的新方法,属于废水生物处理技术领域。
背景技术
甲烷(methane)是当今世上公认的清洁燃料,也是一种优质的化工原料。在环境污染日益严重,化石能源日趋短缺的今天,利用厌氧生物法产甲烷具有降解废弃物和制取能源的双重作用,越来越受到人们的关注。
在厌氧生物处理系统中,产甲烷菌是其中最关键的一种细菌,因为产甲烷菌本身的世代周期很长,生长缓慢,对环境条件的微小变化很敏感,而且在整个厌氧系统中,产甲烷菌处于整个食物链的末端,如果产甲烷细菌生长不好,其活性得不到充分的发挥,就会导致整个厌氧消化过程无法进行。
报道认为,产甲烷菌的主要营养物质有氮、磷、钾和硫,生长所必需的少量元素有钙、镁、铁,微量金属元素有镍、钴、钼、锌、锰、铜等。其中,微量元素钴与酶的活性密切相关,或者是作为酶的活性基成分,或者是作为酶的激活剂,钴的存在不仅有利于产甲烷微生物细胞的合成,还可促进酶的合成或激活在生化反应中起催化作用的酶,相反,钴元素的缺乏不仅对产甲烷菌的生长不利,而且会影响细菌的活力,并影响整个厌氧反应器的运行效果和稳定性。
然而,厌氧反应器中的钴易以碳酸盐、磷酸盐和硫化物沉淀的形式存在,而沉淀形式的钴无法被产甲烷菌所利用,因此在厌氧反应器中维持一定量的生物可用的微量金属元素钴是十分重要的。
发明内容
本发明的目的是提供一种用于有机废水尤其是化工废水厌氧发酵提高沼气产量的方法,通过改善反应器中产甲烷菌必需的微量金属元素钴的生物有效度,促使废水及废弃物中的生物质能最大限度的以甲烷的形式回收,进而消除其对水体环境的污染。
本发明的技术方案:改善厌氧反应器中产甲烷菌必需的微量金属元素钴的生物有效度是促进甲烷产量的关键。本发明是在厌氧反应器中,添加必需的微量金属元素钴及适宜的金属离子螯合剂,最大限度地提高微量金属元素钴的生物有效度,从而促进厌氧产甲烷过程。在处理有机废水的厌氧反应器中,调整运行条件,为厌氧微生物创造适宜的碳氮比和微量元素等营养条件以及污泥停留时间、水力停留时间、pH值等环境条件。通过添加微量金属元素钴和金属离子螯合剂改善厌氧反应器中的微量元素的生物有效度,促进产甲烷菌的生长及其活性,从而提高系统的甲烷产量,以模拟有机废水或实际化工废水为反应器进水,具体水质如下:COD浓度大于1000mg/L,COD∶N∶P为200∶5∶1,pH值为6.8-8.0;
所述添加的微量金属元素和金属离子螯合剂分别为钴和丝氨酸,添加量均为2-10μmol/L;
或所述添加的微量金属元素和金属离子螯合剂分别为钴和赖氨酸,添加量均为2-10μmol/L。
本发明的有益效果:本发明通过添加产甲烷菌必需的微量金属元素钴及螯合剂,提高反应器中微量金属元素的生物有效度,可以大大提高厌氧发酵的甲烷产量。本发明的关键点是通过添加产甲烷菌必需的微量金属元素钴及金属离子螯合剂促进厌氧产甲烷,理论依据充分,大大改善了废水中有机物的转化率,消减了污染物的排放量。与未添加微量金属元素钴和螯合剂的普通厌氧产甲烷过程对照实验相比,甲烷产量提高75-84%。
具体实施方式
对照实例
处理同类废水的普通厌氧发酵的产甲烷量为82mL。
实施例1
厌氧反应器进水为模拟有机废水,水质如下:COD浓度为3000mg/L,COD∶N∶P为200∶5∶1,pH值为7.0,钴和丝氨酸螯合剂的添加量均为2μmol/L。在相同的实验条件下,采用碱液吸收法测得最大甲烷产量比对照样提高了84%,为151mL。
实施例2
厌氧反应器进水为模拟有机废水,水质如下:COD浓度为5000mg/L,COD∶N∶P为200∶5∶1,pH值为8.0,钴和丝氨酸螯合剂的添加量均为10μmol/L。在相同的实验条件下,采用碱液吸收法测得最大甲烷产量比对照样提高了75%,为144mL。
实施例3
厌氧反应器进水为模拟有机废水,水质如下:COD浓度为5000mg/L,COD∶N∶P为200∶5∶1,pH值为6.8,钴和赖氨酸螯合剂的添加量均为2μmol/L。在相同的实验条件下,采用碱液吸收法测得最大甲烷产量比对照样提高了81%,为148mL。

Claims (1)

1.一种用于有机废水厌氧发酵提高沼气产量的方法,其特征是通过添加微量金属元素钴和金属离子螯合剂改善厌氧反应器中的微量元素的生物有效度,促进产甲烷菌的生长及其活性,从而提高系统的甲烷产量,以模拟有机废水或实际化工废水为反应器进水,具体水质如下:COD浓度大于1000mg/L,COD∶N∶P为200∶5∶1,pH值为6.8-8.0;
所述添加的微量金属元素和金属离子螯合剂分别为钴和丝氨酸,添加量均为2-10μmol/L;
或所述添加的微量金属元素和金属离子螯合剂分别为钴和赖氨酸,添加量均为2-10μmol/L。
CN2007101319902A 2007-09-11 2007-09-11 一种用于有机废水厌氧发酵提高沼气产量的方法 Expired - Fee Related CN101157937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101319902A CN101157937B (zh) 2007-09-11 2007-09-11 一种用于有机废水厌氧发酵提高沼气产量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101319902A CN101157937B (zh) 2007-09-11 2007-09-11 一种用于有机废水厌氧发酵提高沼气产量的方法

Publications (2)

Publication Number Publication Date
CN101157937A true CN101157937A (zh) 2008-04-09
CN101157937B CN101157937B (zh) 2010-04-14

Family

ID=39306173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101319902A Expired - Fee Related CN101157937B (zh) 2007-09-11 2007-09-11 一种用于有机废水厌氧发酵提高沼气产量的方法

Country Status (1)

Country Link
CN (1) CN101157937B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103642846A (zh) * 2013-12-24 2014-03-19 齐鲁工业大学 一种提高甲烷菌产甲烷比例的促进剂
CN104093671A (zh) * 2012-03-02 2014-10-08 G-Meta咨询服务及投资有限公司 利用有机废物生物消化生产高含量甲烷沼气的厌氧工艺
CN104512989A (zh) * 2013-09-27 2015-04-15 南京宏博环保实业有限公司 一种可提高沼气产气量的工艺
CN105819605A (zh) * 2016-04-22 2016-08-03 武汉玻尔科技股份有限公司 一种提高能源化效率的污水处理方法
CN108503023A (zh) * 2018-04-12 2018-09-07 江南大学 一种促进高碳氮比废水深度处理效果的方法
US10590439B2 (en) 2012-01-12 2020-03-17 Blaygow Limited Anaerobic process
US11193143B2 (en) 2012-11-16 2021-12-07 Blaygow Limited Grain processing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177015B1 (en) * 1999-10-18 2001-01-23 Inco Limited Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
CN1796535A (zh) * 2004-12-23 2006-07-05 林涛 一种微生物营养增强剂

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590439B2 (en) 2012-01-12 2020-03-17 Blaygow Limited Anaerobic process
CN104093671A (zh) * 2012-03-02 2014-10-08 G-Meta咨询服务及投资有限公司 利用有机废物生物消化生产高含量甲烷沼气的厌氧工艺
US11193143B2 (en) 2012-11-16 2021-12-07 Blaygow Limited Grain processing
CN104512989A (zh) * 2013-09-27 2015-04-15 南京宏博环保实业有限公司 一种可提高沼气产气量的工艺
CN103642846A (zh) * 2013-12-24 2014-03-19 齐鲁工业大学 一种提高甲烷菌产甲烷比例的促进剂
CN103642846B (zh) * 2013-12-24 2016-01-20 齐鲁工业大学 一种提高甲烷菌产甲烷比例的促进剂
CN105819605A (zh) * 2016-04-22 2016-08-03 武汉玻尔科技股份有限公司 一种提高能源化效率的污水处理方法
CN108503023A (zh) * 2018-04-12 2018-09-07 江南大学 一种促进高碳氮比废水深度处理效果的方法

Also Published As

Publication number Publication date
CN101157937B (zh) 2010-04-14

Similar Documents

Publication Publication Date Title
Chen et al. Review on microaeration-based anaerobic digestion: State of the art, challenges, and prospectives
Zhao et al. Recent progress towards in-situ biogas upgrading technologies
Xie et al. Current status and perspectives on anaerobic co-digestion and associated downstream processes
Angelidaki et al. Biomethanation and its potential
Kiely et al. Physical and mathematical modelling of anaerobic digestion of organic wastes
Takashima et al. Mineral requirements for methane fermentation
CN101157937B (zh) 一种用于有机废水厌氧发酵提高沼气产量的方法
Induchoodan et al. Factors affecting anaerobic digestion for biogas production: A review
Javad Asgari et al. Landfill biogas production process
CN101319230A (zh) 一种促进有机废水或有机废弃物厌氧发酵产沼气的方法
EP3800274A1 (en) Method for producing biomass or derivatives thereof
Zhao et al. Evaluation of biochar addition and circulation control strengthening measures on efficiency and microecology of food waste treatment in anaerobic reactor
Ali et al. Generation of green renewable energy through anaerobic digestion technology (ADT): Technical insights review
Sivagurunathan et al. Biohydrogen production from wastewaters
Zou et al. pH regulated potassium ferrate oxidation promotes acetic acid yield and phosphorous recovery rate from waste activated sludge
Jacob et al. Bottlenecks in biomethane production from agro-industrial wastes through anaerobic digestion
CN101157938B (zh) 一种解除硫酸盐还原对厌氧消化产沼气过程抑制的方法
Pandey et al. Bacterial production of organic acids and subsequent metabolism
Baweja et al. Parametric Evaluation of Bio-Digestion Process-A Review
Kalia Microbial treatment of domestic and industrial wastes for bioenergy production
CN107555747B (zh) 一种利用微生物制剂进行城市污水污泥的环保处理方法
CN107601802B (zh) 一种污泥厌氧发酵的微生物处理剂
Gohain et al. Biogas Production through Anaerobic Digestion of Agricultural Wastes: State of Benefits and its Future Trend
US20220089467A1 (en) Biogas production with select macro algae and nanoparticles added to anaerobic digester feedstock
Jadhav et al. Treatment and disposal of distillery spentwash.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100414

Termination date: 20120911