CN101157535A - 短纤维增强无机硅铝聚合物复合材料 - Google Patents

短纤维增强无机硅铝聚合物复合材料 Download PDF

Info

Publication number
CN101157535A
CN101157535A CNA2007101314044A CN200710131404A CN101157535A CN 101157535 A CN101157535 A CN 101157535A CN A2007101314044 A CNA2007101314044 A CN A2007101314044A CN 200710131404 A CN200710131404 A CN 200710131404A CN 101157535 A CN101157535 A CN 101157535A
Authority
CN
China
Prior art keywords
percent
composite material
polymer composite
strength
inorganic silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101314044A
Other languages
English (en)
Other versions
CN100551867C (zh
Inventor
张云升
孙伟
李宗津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CNB2007101314044A priority Critical patent/CN100551867C/zh
Publication of CN101157535A publication Critical patent/CN101157535A/zh
Application granted granted Critical
Publication of CN100551867C publication Critical patent/CN100551867C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

短纤维增强无机硅铝聚合物复合材料是一种用于土木工程、航空航天领域的高性能短纤维增强无机硅铝聚合物复合材料,各组分及其质量百分比为:活性铝硅材料10.7~35.7%,粉煤灰1.0~17.9%,矿渣1.0~25%,碱性激发剂2.9~9.6%,砂子42.8~54.7%,短纤维0.02~3.6%。本发明具有原材料来源广泛、制备加工方便、适于大规模生产、成本低廉、环境友好的优点,同时其粘结性能好、力学强度高、收缩率低、耐高温、耐腐蚀。

Description

短纤维增强无机硅铝聚合物复合材料
技术领域
本发明涉及的是一种无机聚合物基复合材料,具体的讲,涉及用于航空座椅、行李承重架,建筑物耐火内墙板,土木工程特殊部位承重结构等,目的是取得纤维增强有机高分子复合材料,以减少由于突发事件引起高分子材料燃烧的危险。主要用于土木工程、航空航天领域。
背景技术
无机硅铝聚合物材料是一种新型无钙基无机聚合物材料,分子构成单元主要为类似陶瓷和水泥的无机SiO4和AlO4四面体,但不含CaO,分子结构为类似于有机高分子聚合物的三维网状结构。因此,无机硅铝聚合物兼有有机高聚物、陶瓷和水泥特性,具有优异的物理、力学及耐久性能,其在土木工程、航空航天、重金属或核废料、抗火耐高温等领域具有广阔的应用前景,它将成为取代硅酸盐水泥、低温陶瓷和有机高分子材料一个强有力的竞争者。
经对现有的文献检索发现,美国Richard E.Lyon,P.N.Balagurru等在《Fire andMaterials》第21卷,1997,P 67-73撰文《Fire-resistant Aluminosilicate Composites》,该文在实验室内研制了一种纤维增强无机无机聚合物复合材料,但此种无机聚合物复合材料使用的主要原材料为纯偏高岭土和价格昂贵的碳化硅纤维或碳纤维,同时为了使产品具有较高的抗拉强度和韧性,纤维体积掺量高达50-55%,合成温度在80-100℃范围,工作压力0.3MPa,致使产品成本非常高。另外,由于纤维掺量很高,不得不采用一些手工操作的特殊成型方法如SIFCON方法,Hatschek方法、Spray suction方法、Vacuum bag方法,工作效率比较低,且产品性能波动较大,质量不易得到保证。这些均给无机硅铝聚合物复合材料的商品化带来极大的困难。因此,研制并生产出低成本、高性能并适于规模化生产的无机硅铝聚合物复合材料,具有重要的现实意义和实际应用价值。
发明内容:
本发明的目的在于针对现有技术中存在的不足和缺陷,利用挤压成型技术,通过引入短纤维和掺加价格低廉的天然或人造活性硅铝材料(如粉煤灰、矿渣、煤矸石、硅灰、稻壳灰等来部分或全部取代价格较贵的偏高岭土)方法,制备高强、高韧的短纤维增强无机硅铝聚合物复合材料。
本发明综合采用纤维增强技术、挤压成型技术和碱激发技术相结合的途径实现高强、高韧、防火和耐高温的特性。短纤维增强无钙硅铝质挤压复合材料由六大组分组成,其比例为:
活性铝硅材料   10.7~35.7%
粉煤灰         1.0~17.9%
矿渣           1.0~25%
碱性激发剂     2.9~9.6%
细集料         42.8~54.7%
短纤维         0.02~3.6%
1、活性铝硅材料:以煅烧高岭土为主要成分的无机材料,主要控制其SiO2和Al2O3含量以及细度。具体控制指标见表1,工艺过程主要包括破碎、煅烧、保温和粉磨,煅烧温度为600-900℃。
组份1的控制指标    表1
成份 SiO2 Al2O3     细度
    ≥45um     ≤2um
含量(%)     ≥40     ≥25     ≤0.3     ≥60
2、粉煤灰:火力发电厂工业副产品。要求所用材料的CaO含量≤15%,Al2O3含量≥20%,烧失量≤10%,比表面积≥300m2/kg。
3、矿渣:炼铁厂工业副产品。要求所用材料的比表面积≥300m2/kg。
4、碱性激发剂:由市售的工业碱性物质和市售的水玻璃组成。市售的工业碱性物质,如LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、CaSO4、Na2SO4、Na2CO3、K2CO3、NaHCO3、KHCO3及它们间的混合物;市售的水玻璃,如钠水玻璃、钾水玻璃及其混合物,要求水玻璃的SiO2:M2O≥1.0(M代表Na或K),固含量≥30%。
5、细集料:如河砂、黄砂、石英砂、陶瓷颗粒等,要求所用材料的细度≤5mm。
6、短纤维:有机、无机或金属短纤维,如钢纤维、玄武岩纤维、陶瓷纤维、碳纤维等金属和非金属耐高温的高强高弹模纤维,要求纤维长度在5-20mm。
有益效果:与国内外同类技术相比,该项成果具有以下特色:掺入纤维为短纤维且掺量较少(体积掺量为0.5%-2%),相比国外相近产品所用的大掺量(体积掺量为30%-60%)长纤维,其生产工艺简单、制备成本可降低10倍以上;制备工艺为挤压成型,操作简单、质量稳定,适于连续大规模工业化生产,并且通过挤压可明显降低基体的孔隙率、提高纤维与基体之间的界面粘结、获得高强度的基体,同时还可使纤维沿挤压方向定向分布,大幅度地提高基体材料在垂直纤维方向的延性、冲击性能;采用铝硅质废渣(如粉煤灰、硅灰、稻壳灰等)部分或全部取代价格昂贵的偏高岭土,并利用碱性激发技术复合激发铝硅质废渣中SiO2和Al2O3的活性,制备出高强无机铝硅聚合物基体;综合运用上述技术制备出高强、高韧的无机铝硅聚合物基纤维挤压复合材料板。国内外尚无此类产品,各项性能指标均达到或超过国外同类产品,技术经济效益明显。
具体实施方式
结合本发明内容提供以下实施例:
高性能短纤维增强无机硅铝聚合物复合材料是由偏高岭土、活性的无钙硅铝质粉状材料、市售工业碱性物质、市售水玻璃、短纤维、细集料和水按一定比例混合均匀而成,根据应用需要,通过调整发明配方,可以获得所需要的性能。
本发明的制备方法是:(1)按配方比例称取所需的偏高岭土、活性的无钙硅铝质粉状材料、短纤维和细集料等粉料物质,干搅1分钟,使它们均匀地混合在一起;(2)然后按配方比例称取碱性物质、水玻璃和水,将其在容器中混合均匀,静置直至碱性溶液达到室温;(3)将配制好的碱性溶液缓慢加入到混合均匀的粉料,在搅拌机中慢搅3分钟,之后采用高剪切模式高速搅拌1分钟,形成面团状物质;(4)将面团状的浆体喂入到挤压机进料仓内,经挤压机进一步搅拌、排除气泡、挤压密实后,浆体从空心挤压模板内腔被挤出;(5)在挤出的无机聚合物复合材料表面盖一层塑料薄膜以阻止水分的蒸发,24h后将其放到温度为22℃、相对湿度为95%的标养室内养护28天,然后用切割机切成规定尺寸的产品。
实施例1:
偏高岭土          35.7%
粉煤灰            1.0%
矿渣              1.0%
碱性激发剂        9.6%
砂子              54.7%
PVA短纤维         0.02%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)32.1MPa,抗折强度(28天)5.1MPa
耐高温性能:在800℃下持续2h,强度损失率为30.5%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为15.2%
实施例2:
偏高岭土      35.7%
粉煤灰        1.0%
矿渣          1.0%
碱性激发剂    9.6%
砂子          54.7%
PVA短纤维     0.045%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)38.5MPa,抗折强度(28天)12.8MPa
耐高温性能:在800℃下持续2h,强度损失率为25.6%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为14.2%
实施例3:
偏高岭土    35.7%
粉煤灰        1.0%
矿渣          1.0%
碱性激发剂    9.6%
砂子          54.6%
PVA短纤维     0.09%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)41.7MPa,抗折强度(28天)11.7MPa
耐高温性能:在800℃下持续2h,强度损失率为20.2%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为13.7%
实施例4:
偏高岭土      32.1%
粉煤灰        3.6%
矿渣          1.0%
碱性激发剂    8.6%
砂子          50.8%
PVA短纤维     0.09%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)46.2MPa,抗折强度(28天)15.0MPa
耐高温性能:在800℃下持续2h,强度损失率为16.4%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为11.1%
实施例5:
偏高岭土      25%
粉煤灰        10.7%
矿渣          1.0%
碱性激发剂    6.7%
砂子      48.6%
PVA短纤维 0.09%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)42.8MPa,抗折强度(28天)10.3MPa
耐高温性能:在800℃下持续2h,强度损失率为22.4%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为12.6%
实施例6:
偏高岭土      17.9%
粉煤灰        17.9%
矿渣          1.0%
碱性激发剂    4.8%
砂子          45.0%
PVA短纤维     0.09%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)38.7MPa,抗折强度(28天)7.3MPa
耐高温性能:在800℃下持续2h,强度损失率为25.6%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为10.4%
实施例7:
偏高岭土        25%
粉煤灰          1.0%
矿渣            10.7%
碱性激发剂      6.7%
砂子            48.6%
PVA短纤维       0.02%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)53.7MPa,抗折强度(28天)7.02MPa;
耐高温性能:在800℃下持续2h,强度损失率为28.6%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为10.6%
实施例8:
偏高岭土      17.9%
粉煤灰        1.0%
矿渣          17.9%
碱性激发剂    4.8%
砂子          45.0%
PVA短纤维     0.02%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)64.1MPa,抗折强度(28天)8.01MPa
耐高温性能:在800℃下持续2h,强度损失率为24.7%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为8.2%
实施例9:
偏高岭土       10.7%
粉煤灰         1.0%
矿渣           25%
碱性激发剂     2.9%
砂子           42.8%
PVA短纤维      0.02%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)60.2MPa,抗折强度(28天)7.81MPa
耐高温性能:在800℃下持续2h,强度损失率为18.9%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为12.8%
实施例10:
偏高岭土      25%
粉煤灰        1.0%
矿渣          10.7%
碱性激发剂    6.7%
砂子          48.6%
短细钢纤维(长度=14-15mm,长径比=60-70)    3.6%
上述组分按前述工艺制备得到高性能无机铝硅聚合物复合材料,测得其性能如下:
抗压强度(28天)53.2MPa,抗折强度(28天)23.9MPa
耐高温性能:在800℃下持续2h,强度损失率为16.4%
耐腐蚀性能:在pH=1的硫酸侵蚀1个月,强度损伤率为9.8%

Claims (4)

1.一种短纤维增强无机硅铝聚合物复合材料,其特征在于,该复合材料各组分的质量百分比为:
活性铝硅材料   10.7~35.7%
粉煤灰         1.0~17.9%
矿渣           1.0~25%
碱性激发剂     2.9~9.6%
细集料         42.8~54.7%
短纤维         0.02~3.6%。
2.权利要求1所述的短纤维增强无机硅铝聚合物复合材料,其特征在于,活性铝硅材料是低钙或无钙型的天然或人造活性铝硅质材料。
3.权利要求1所述的短纤维增强无机硅铝聚合物复合材料,其特征在于,碱性激发剂是阳离子是碱金属或碱土金属离子,阴离子是OH-、SO4 2-、CO3 2-或HCO3 2-的碱性激发剂。
4.权利要求1所述的短纤维增强无机硅铝聚合物复合材料,其特征在于,短纤维是有机、无机或金属纤维。
CNB2007101314044A 2007-08-28 2007-08-28 短纤维增强无机硅铝聚合物复合材料 Expired - Fee Related CN100551867C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101314044A CN100551867C (zh) 2007-08-28 2007-08-28 短纤维增强无机硅铝聚合物复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101314044A CN100551867C (zh) 2007-08-28 2007-08-28 短纤维增强无机硅铝聚合物复合材料

Publications (2)

Publication Number Publication Date
CN101157535A true CN101157535A (zh) 2008-04-09
CN100551867C CN100551867C (zh) 2009-10-21

Family

ID=39305786

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101314044A Expired - Fee Related CN100551867C (zh) 2007-08-28 2007-08-28 短纤维增强无机硅铝聚合物复合材料

Country Status (1)

Country Link
CN (1) CN100551867C (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844911A (zh) * 2010-05-17 2010-09-29 上海富家家新型温棚设计制作有限公司 多元硅铝复合材料及其制备方法
CN101386478B (zh) * 2008-10-21 2011-08-31 武汉理工大学 矿渣硫酸盐水泥
CN105421631A (zh) * 2015-11-02 2016-03-23 卓达新材料科技集团有限公司 一种建筑用矿渣楼承板及其制备方法
CN106517987A (zh) * 2016-11-22 2017-03-22 哈尔滨理工大学 微细钢纤维增强碱矿渣胶凝材料及制备方法
CN106747227A (zh) * 2017-01-17 2017-05-31 哈尔滨理工大学 混杂纤维增强碱矿渣胶凝材料及其制备方法
CN106866075A (zh) * 2017-03-01 2017-06-20 上海理工大学 一种超高韧性的大掺量粉煤灰水泥基复合材料及其制备方法
CN107324711A (zh) * 2017-08-30 2017-11-07 广东清大同科环保技术有限公司 一种人造石材及其制备方法
CN110818332A (zh) * 2019-11-28 2020-02-21 武汉科技大学 一种利用fcc废催化剂与硅灰耦合制备无钙体系地质聚合物的方法
CN111018059A (zh) * 2019-11-26 2020-04-17 西安建筑科技大学 一种碳纤维无机聚合物复合电极的制备方法
CN111647753A (zh) * 2020-05-19 2020-09-11 北京科技大学 一种利用熔融气化炉直接还原回收锌的方法
CN112940783A (zh) * 2021-01-26 2021-06-11 大同碳谷科技孵化器有限公司 一种煤矸石的综合利用系统及方法
CN115594453A (zh) * 2022-11-02 2023-01-13 海南大学(Cn) 一种纤维地聚合物板材及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101386478B (zh) * 2008-10-21 2011-08-31 武汉理工大学 矿渣硫酸盐水泥
CN101844911A (zh) * 2010-05-17 2010-09-29 上海富家家新型温棚设计制作有限公司 多元硅铝复合材料及其制备方法
CN105421631A (zh) * 2015-11-02 2016-03-23 卓达新材料科技集团有限公司 一种建筑用矿渣楼承板及其制备方法
CN106517987A (zh) * 2016-11-22 2017-03-22 哈尔滨理工大学 微细钢纤维增强碱矿渣胶凝材料及制备方法
CN106747227A (zh) * 2017-01-17 2017-05-31 哈尔滨理工大学 混杂纤维增强碱矿渣胶凝材料及其制备方法
CN106866075A (zh) * 2017-03-01 2017-06-20 上海理工大学 一种超高韧性的大掺量粉煤灰水泥基复合材料及其制备方法
CN107324711A (zh) * 2017-08-30 2017-11-07 广东清大同科环保技术有限公司 一种人造石材及其制备方法
CN111018059A (zh) * 2019-11-26 2020-04-17 西安建筑科技大学 一种碳纤维无机聚合物复合电极的制备方法
CN111018059B (zh) * 2019-11-26 2022-05-17 西安建筑科技大学 一种碳纤维无机聚合物复合电极的制备方法
CN110818332A (zh) * 2019-11-28 2020-02-21 武汉科技大学 一种利用fcc废催化剂与硅灰耦合制备无钙体系地质聚合物的方法
CN111647753A (zh) * 2020-05-19 2020-09-11 北京科技大学 一种利用熔融气化炉直接还原回收锌的方法
CN112940783A (zh) * 2021-01-26 2021-06-11 大同碳谷科技孵化器有限公司 一种煤矸石的综合利用系统及方法
CN115594453A (zh) * 2022-11-02 2023-01-13 海南大学(Cn) 一种纤维地聚合物板材及其制备方法
CN115594453B (zh) * 2022-11-02 2023-11-17 海南大学 一种纤维地聚合物板材及其制备方法

Also Published As

Publication number Publication date
CN100551867C (zh) 2009-10-21

Similar Documents

Publication Publication Date Title
CN100551867C (zh) 短纤维增强无机硅铝聚合物复合材料
AU2010284901B2 (en) Geopolymer cement and use thereof
CN103319129B (zh) 一种生态纳米颗粒增强水泥基复合材料及其制备方法
US8337612B2 (en) Environment friendly composite construction materials
CN109942235B (zh) 常温养护高强高抗碳化性能的地聚物混凝土及其制备方法
CN108640547A (zh) 一种铁尾矿\偏高岭土基地质聚合物及其制备方法
CN101318788B (zh) 用于重金属废弃物固封的无机聚合物材料
CN102219415B (zh) 一种免烧轻质砂及其制备方法
CN102718423B (zh) 活化低等粉煤灰复合材料制备方法
CN110759655B (zh) 一种工业废弃物基地质聚合物
CN109776003A (zh) 一种多元复合粉体的钙基地聚合物胶凝材料及其制备方法
WO2016023073A1 (en) Geopolymers and geopolymer aggregates
US8580029B2 (en) Reduction of carbon dioxide in the manufacturing of composite construction materials
CN101289332A (zh) 一种低温陶瓷泡沫材料及其生产方法
CN103613356B (zh) 适用于寒冷地区使用的地质聚合物灌浆料
CN101318801A (zh) 流动性好、强度高的水泥基材料及其制备方法
US9120701B2 (en) Composition for advanced hybrid geopolymeric functional materials and a process for the preparation thereof
CN113956000B (zh) 水泥窑尾气碳化建筑预制品及其制备方法
CN104211436B (zh) 添加氧化镁、氯化镁的粉煤灰加气混凝土砌块
CN112723801B (zh) 一种水泥混凝土路面快速修补材料及其制备方法
CN111253130A (zh) 一种高强耐热自修复混凝土及其制备方法
Mostafa et al. Characterization of low-purity clays for geopolymer binder formulation
CN112960954B (zh) 一种高强低干燥收缩全煤矸石骨料水泥砂浆及其制备方法
CN113603433B (zh) 一种掺页岩的水泥基钢筋连接用套筒灌浆料
Fernando et al. Mix optimization of geopolymer mortar produced with low calcium fly ash in Sri Lanka

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091021

Termination date: 20120828