CN101149339A - Fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer for standard-free analysis - Google Patents

Fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer for standard-free analysis Download PDF

Info

Publication number
CN101149339A
CN101149339A CNA2007100972215A CN200710097221A CN101149339A CN 101149339 A CN101149339 A CN 101149339A CN A2007100972215 A CNA2007100972215 A CN A2007100972215A CN 200710097221 A CN200710097221 A CN 200710097221A CN 101149339 A CN101149339 A CN 101149339A
Authority
CN
China
Prior art keywords
exp
value
cal
thga
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100972215A
Other languages
Chinese (zh)
Inventor
马怡载
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNA2007100972215A priority Critical patent/CN101149339A/en
Publication of CN101149339A publication Critical patent/CN101149339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The graphite furnace atomic absorption photometer is composed by the tungsten-tantalum graphite pipe used for non-standard analysis. The experiment character m0exp does not change under nitric acid and perchloric acid. It advances the best experiment character m0exp* as the non-standard analysis standard. The different atomic temperature m0cal,m0exp* of 62 elements in HGA and THGA graphite furnace are listed in Table 1. The integral absorption QA is linearized to QA0, Table 2 lists the different reversible value Ar, the QA,0 corresponding to the bending coefficient beta. The offset coefficient k of every instrument is equal to m0exp*/m0exp; the Ar and beta are determined by the standard liquid in Table 4,5,6. the detected element m is used the basal formula 35,36,37.

Description

No standard analysis is with fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer
The patent No. of using the present inventor to propose is ZL96103243X, fixedly patent No. G01N21/31 " fixed metal tungsten or tantalum platform-graphite tube and fixing means thereof " is set up fixed metal tungsten (or tantalum) platform-graphite tube (being called for short WTaPGT) be used to not have standard analysis former to use WTaPGT is basis of the present invention in absorbing spectrophotometer (being called for short GAAS), this is because various organic and inorganic material, biological, geology and environmental sample all need use nitric acid and perchloric acid (to contain silicon sample, need HF acid) prepare, but nitric acid and perchloric acid corrosion tradition steady temperature platform technology (STPF) employed hot Jie's graphite-pipe (PGT) and hot Jie's graphite platform (PGPL) make test feature amount (m 0Exp) constantly descend, use m 50~100 times 0Exp drops to half that have only when beginning and is less than, and in this case, can not use no standard analytical process fully.Has only the WTaPGT of use containing high concentration nitric acid and perchloric acid, at scope in serviceable life, m 0The exp value is protected the constant (m of mark 0Exp is defined as corresponding integration and absorbs Q ABe 0.0044 o'clock corresponding amount of element pg to be measured).So just might use no standard analytical process directly to measure complex fluid and solid sample.Have in the periodic table in addition twenties kinds of elements (particularly Sr, Ba, U, B, 15 rare earth element) can and graphite-pipe give birth to or carbonide, produce serious matrix effect and memory effect, make analyze take place difficult.Use these elements of WTaPGT post analysis the same, can use the various complex samples of similar analysis condition analysis, enlarged the element range of application of GFAAS with other tens elements.
1986 and nineteen ninety B, V.L ' VOV etc. (spectrochimica Acta 41B (10), 1043-1053 (1986) and 45B (7) 633-655 (1990)) propose with theory characteristic amount m 0Cal is a standard, and being used for commodity GFAAS does not have standard analysis.Propose, use formula 1. with the AC magnetic field Zeeman background deduction technology PE Zeeman of PE company 5000 type graphite furnace atomic absorption photometers and HGA 500 type graphite furnaces with steady temperature platform-graphite tube
m 0 ( cal ) ( pg ) = 5.08 × 10 - 13 [ MDΔ v ~ D / H ( α , ω = 0.72 α ) γ , δf ] × [ ( Z ( T ) / [ gexp ( - E / kT ) ] × [ r 2 / l 2 ] ]
Or m 1. 0The characteristic quantity that cal (pg) goes out for Theoretical Calculation, M are atoms of elements amount (g/m to be measured 0L), D is atom coefficient of diffusion (cm in Ar gas 2/ s),
Figure A20071009722100082
Doppler width (cm for ultimate analysis line λ (nm) -1),
Δ v ~ D ( cm - 1 ) = 7.16 λ ( nm ) T ( k ) M ( g / mol )
H (α, ω=0.72 α) is the Voigt integration, and α is the damping constant
α = ln 2 Δ v L / Δ v D .
Δ v LBe analytical line and Lorentg width, can be by measuring.L ' vov obtains α=kT by measuring -1.24. D.V.Posener (Aust.J.phys. 12, 184 (1959)) and H (α, ω=0.72 α) when once tabulation illustrates different α value. testing the α value scope of measuring according to L ' vov with graphite furnace is 0.58-0.93 (62 elements), and corresponding H (α, ω=0.72 α) is abbreviated as 0.53-0.37
Log H=Log(Hα k)-klogα=[log(Hα k)-k Log k α]+1.2klogT⑤
At this moment (H α k) value is 0.361 ± 0.00406 (1.1%), k=0.70
5. this up-to-date style can be reduced to
log H=[log 0.361-0.70 log k α]+0.84 logT⑥
α value scope is 0.40-0.56, and the H scope is 0.636-0.54
At this moment (H α k) value is 0.355 ± 0.0089 (2.5%) k=2/3
5. formula can be reduced to log H=[log 0.355-2/3 log k α]+0.84 logT 7.
When α value scope was 0.26-0.38, the H scope was 0.743-0.65
At this moment (H α k) value is 0.360 ± 0.0094 (2.6%) k=0.57
5. formula can be reduced to log H=[log 0.360-0.57 log k α]+0.684 logT 8.
α value scope is 0.176-0.19, when the H scope is 0.818-0.800,
At this moment (H α k) value is 0.356, k=0.48
5. formula can be reduced to log H=[log 0.356-0.48 log k α]+0.576 logT 9.
The α value is 0.11, and H is 0.87 o'clock,
5. formula can be reduced to log H=[log 0.354-0.4 log k α]+0.492 logT 10.
Many elements are because there is hyperfine structure (hfs) in the analytical line that nuclear spin and isotopic element lamp produce, and this have the analytical line of hfs more many than the analytical line light absorption value decline of no hfs, thereby introduce the correction coefficient γ that has hfs to exist 0' if the hfs that proofreaies and correct has the component of n, strength ratio is b1, b2......bn, Σ 1 n bi = 1 .
γ 0 , = Σ 1 n bi × Σ 1 n bi [ ∫ - ∞ + ∞ H ( α , ω j ) φi ( v ) dv ] / [ H ( α , ω s = 0.72 α ) ] - - - ( 11 )
φ i is (v) defeated wide for emission line Doppler.
ω j = 2 ln 2 ( v - v j + Δ v s ) / Δ v D - - - ( 12 )
Δ V DBeing the defeated exterior feature of the Doppler that absorbs line. can obtain according to formula
γ’(T+ΔT)=γ’(T)+(dγ’/dT)ΔT (13)
If monochromator bandwidth Delta lambda mHave other analytical lines to enter, introduce correction coefficient δ this moment, uses enough little Δ λ m, other analytical lines are entered, therefore, δ=100.f is the oscillator strength of analytical line, can find g by the spectrum handbook iAnd E iBe in the statistical weight and the energy level of low energy line for analytical line.If low-lying level has the n energy level,
Z ( T ) = Σ 1 n g i exp ( - E i / kT )
g iExp (E i/ kT)/Z (T) represents analysis LineThe atomicity of the i energy level in the low-lying level accounts for the ratio of total atom number.This value can be found and be calculated by Moore handbook (Atomic Energy Levels, NBS, Washington, Vol 1,1949, Vol 2,1952, Vol 3,1957 for Ch.E, Moore).
R and l are graphite-pipe inside radius and length, and l=28mm uses hot Jie's coating graphite-pipe when using the HGA500 graphite furnace, and r=2.95mm uses full coating graphite tube r=3.0mm.
1. formula can be reduced to
m 0cal(pg)=K·C(T) (14)
Or K=[0.508 * (r in (14) 2/ l 2)] * [M/ δ f] (15)
Or C (T)=[D Δ V in (14) D/ H (α, ω=0.72 α)]/[γ ' (gexp (E i/ kT)/Z (T))] (16)
((D Δ V D)/H (α, ω=0.72 α))=A * T BBe log ((D Δ V D)/H (α, ω=0.72 α))=logA+BlogT (17)
log A=log K D+log K ΔVD-[log(H α k)-Klogk α] (18)
B=n+0.5-1.2k (19)
1. L ' vov obtains Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Ct, Cs, Cu, Fe according to formula, Ga, Ge, Hg, In, Ki, Mg, Mn, Mo, Na, Ni, P, Pb, Pd, Rb, Sb, Se, Si, Sn, Sr, Te, Ti, Tl, V, Zn, 39 elements m when a certain best atomization temperature 0Cal (pg) value.Obtain in the best of this atomization temperature with pure water solution again and test (pg) characteristic quantity m 0Exp *Compare, W, (document is W.Frech andD.C.Baxter:spectrochimica Acta 3. for Frech etc. 45B(8) 867-886 (1990)) introduce atomization efficiency ε A' ε A'=m 0Cal/m 0Exp *(20)
But the m that obtains 0Cal/m 0Exp *A' be 0.09 to Ba, Er 0.12, and Eu 0.23, and Sr 0.32, and Ti 0.31, Cs0.46, Rb 0.49.Ca 0.46, Li 0.54, and Ge 0.69, and Yb 0.68
The m that 32 elements are arranged 0Cal/m 0Exp mean value is 0.85 ± 0.10, therefore according to L ' vov experimental result, uses m 0It is too big that cal calculated characteristics amount is used to not have the standard analysis error, and can not be used to set up commercialization does not have the graphite furnace atomic absorption photometer that standard analysis is used.
The present invention steps a great step and is to use optimum test feature amount m 0Exp *Replace traditional theory characteristic amount m 0Cal is as the basis of no standard analysis.According to work such as W.Frech and formula (20) to low temperature element ε A' atomization efficiency is m at very wide atomization temperature near 1.00 0Cal=m 0Exp *Centering temperature element is at high-temperature region ε A' near 1.00, even and high temperature element temperature up to 3200K also less than 1.00.Therefore optimum test feature amount is not an arbitrary value, but tight and m 0Cal value hook.Promptly use pure element solution to ask m 0The exp value, under same atomization temperature, centering high temperature element is different with improver with matrix modifier, just can obtain best m 0Erp *Value.Be ε A' good more near 1.00 more.For this to ε AThe high temperature element of '<1.00, also needing is to calculate m 0The cal value is sought best improver and concentration, makes ε A' reach maximal value and could determine accurate m 0Exp *Usually analyze to be used in the commodity graphite furnace.Atomization temperature is selected to be absolutely necessary in usual the analysis.1. different matrix is used different atomization temperatures, is that improver is an improver than without Pd with Pd for example, looks different ashing temperature of element and atomization temperature and improves hundreds of degree.2. improve the favourable raising atomization efficiency of atomization temperature, sensitivity reduces matrix and disturbs and its bulk effect, and this is favourable aspect.3. improve atomization temperature and increase considerably background absorption, background absorption>2.0 o'clock, Zeemam button background can not effectively be deducted, and when background was big, the baseline noise of Zeemam button background increased, and detection limit descends significantly.4. centering high temperature element improves atomizing temperature and increases graphite-pipe thermal radiation baseline noise, and detection limit descends significantly.5. to the high temperature element, improve atomization temperature, graphite-pipe descends serviceable life significantly.Therefore vast experiment makes the user usually select the very big atomization temperature of difference for use to same element in different matrix.L ' vov calculates and measures the m of 39 elements at single atomization temperature 0Cal and m 0Exp *Value is not satisfy far away to make the commercial requirement of no standard analysis.One of emphasis of the present invention is 1. to have calculated 62 elements to (19) according to formula temperature to occur from atomization and add 200~300K, to the 3000K of low temperature element, and middle temperature element 3100K, high temperature element 3200K is every 100K calculating-m 0The cal value, list in table 1. (HGA graphite furnace) accurately measure and be fit to the m that the commodity graphite furnace is used to not have standard analysis 0Exp *Must satisfy following requirement: 1. use pure element solution preparation standard.
2. select for use matrix modifier and concentration to make atomization efficiency ε A' be the bigger the better.
3. use D 2Lamp is buckled the background instrument, more than the wavelength 340nm, uses the single beam instrument.Use Z.PM, during GFAAS, the Q when measuring no magnetic field AValue.
4. m 0The exp value differs greatly with hollow cathode lamp quality difference and lamp current variation, to some hyperfine structures (hfs) difference, and big (the Δ v of component distance Spl) greater than 0.4cm -1Element, big lamp current causes self-priming greatly to influence m 0Exp *Value comprises Cu324.8nm, Bi 306.8nm, and Bi 223.1nm, Co 240.7nm, Hg 253.7nm, In303.9nm, Li 670.8nm, Pb 283.3nm etc. are (spectrochimica Acta such as example B.V.L ' vov with Cu324.8nm 47B(6) 843-854 (1952)) with PE25000 and Z3030, STPF technology T (K)=2400 ℃+200K=2600K, slit 0.70nm is as the criterion with identical Cu standard with equal conditions, and trying to achieve Zeenm instrument feature is m zExp *The poorest PE (1) number commodity lamp (25mA) 13.8pg is preferably Russian commodity lamp LT-1 (10mA) 6.3pg, differs 2.2 times.Select for use in equal lamp-current condition when buying empty cathode modulation, same instrument can obtain lamp energy maximum.A large amount of experiments of present inventor show, using dutycycle is that 1 to 5 the pulse power is obtaining best test feature value m under the experiment condition on an equal basis easily than common power 0Exp *, be example with as above Cu 324.8nm, we are with exchanging Zeeman deduction background instrument WFX-IG2 with non-ferrous metal research institute's lamp (lamp current 2mA) m zExp is improved to 4.4pg, and deduction exchanges Zeeman absorptance (R Z, AM=0.705), getting to the end, test feature is m 0Exp *Value (3.10pg) (240 ℃+200=2600K atomization temperature). obviously be better than L ' vov PE 25000 type continuous current lamp power supplys.This can explain that also L ' vov obtains the m of 32 elements with continuous current lamp power supply 0Cal/m 0Exp mean value 0.85 ± 0.10 present inventor just was extensive use of 1: 5 dutycycle power supply from 1978, with integration absorption measurement method (Q AValue), the WFD-Y3 of patent fixed metal tungsten (or tantalum) platform-graphite tube (WTaPGT) present inventor and Beijing second optical instrument factory's cooperation research and development, WFX-IE D 2Background deduction GFAAS.The ZM-1 of present inventor and optical instrument factory, Suzhou cooperation research and development, the permanent magnetic field Zeeman background deduction GFAAS of ZMII and WFX-Z type.Quote with use Guangdong Province's analytical test exchange Zeeman background deduction GFAAS, the m that obtains with WFX-1G2 with the APZ of second optical instrument factory, Beijing development 0Cal/m 0Exp *More near 1.00, therefore measure the m of 62 elements than L ' vov measured value at table 1 0Exp *Quote the m of present inventor in the exhausted major part of different temperatures value with 1 to 5 dutycycle power supply gained 0Exp *Value.Promptly use dutycycle 1 to 5 lamp power supply, lamp current is selected extremely important, is guaranteeing to obtain best m 0Exp *Use big as far as possible lamp current under the value prerequisite, low to guarantee its noise, make signal to noise ratio (S/N ratio) high analyte detection limit good.
Wavelength is lower than 230.0nm element such as As 193.8nm Se 196.0, and Zn 213.9, P213.6, Sb217.6, Te214.3, Bi223.1 and Cd 228.8nm promptly use the hollow cloudy plate lamp of dutycycle 1 to 5, and the baseline noise is big, signal to noise ratio (S/N ratio) is low, and it is low to analyze detection limit, also has influence on the m that chooses 0Exp can not reach best m 0Exp *, at this moment the present inventor uses patent Lowe type high-intensity lamp just to obtain m easily 0Exp *Value.
6. the slit bandwidth is selected, and to Ni 232.0nm, Co 240.7, and Fe 248.3, and Mn 279.5 elements such as grade use above the 0.2nm bandwidth to cause m 0Exp rises 30% and 60%, unfavorablely obtains best m 0Exp *Value.L ' vov at the 0.2nm of closer 20 elements and 2nm to m 0The exp influence, conclusion is that no standard analysis is selected for use best m 0Exp *, preferably use 0.2nm, have only minority to be lower than the 230nm element, particularly As 193.7 and Se 196.0nm promptly use high strength not have plate discharge lamp (EDL), or the total institute of non-ferrous metal patent high-power lamps obtains best m 0Exp *, at this moment better with 0.7nm.
7. most elements use inventor's patent WTa PGT than the easier m that obtains of graphite platform-graphite tube in the widely used STPF technology of commodity graphite furnace in 62 elements 0Exp *Value, so 62 ms of element under different temperatures in the table 1 0Exp *Exhausted major part is taken from patent graphite-pipe (WTa PGT).Have in the periodic table twenties kinds of elements (B, U waits element for particularly 15 elements and Sr, Ba) can and graphite platform and graphite-pipe generate carbonide, produce serious matrix effect and memory effect, make analyze produce difficult.Use patent WTa PGT analyze these elements can with the various complex samples of other dozens of element similar analysis, enlarged the ultimate analysis scope of no standard analytical process.
8. Os, Ir, Ru, Rh, Pt, Mo, V, Ti, the full coating graphite tube of the most handy internal diameter 6.0mm (TPGT) in the HGA graphite furnace+complete hot Jie's graphite platform.Because ordinary hot Jie stone clarinet (PGT) internal diameter is 5.9mm, 1. by formula
(m 0cal(TPGT)/m 0cal(PGT))=(m 0exp *(TPGT)/m 0exp *(PGT))=1.034
Above-mentioned element needn't be used TPGT with the still available PGT of THGA graphite furnace.
To the Na that has in the air, K, Ca, Mg, element determinations such as Zn need be placed on ultra-clean chamber with the GFAAS instrument and just can obtain correct m 0Exp *, needing permanent improver in addition, 5mg/mlZr+4mg/ml+Ir+10mg/ml tartrate is in 1%v/v HNO 3
By above 9 requirements, in showing 1., list 62 elements at the m of HGA graphite furnace superintendent 28mm inside radius 2.95mm hot Jie's coating graphite-pipe under different temperatures 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *The value, temperature value press L ' vov (formula 1.) T (℃)+200=T (K), low temperature element (adding the Pd improver) temperature (T occurs from atomization Ap)+200 are to 3000K, and middle temperature element gets T Ap+ 200 to 3100K, the high temperature element T Ap+ 100 to 3200K, get a numerical value every 100K.Table is 1. also simultaneously to going out permanent magnetic field Zeeman background deduction absorptance R Z, PmWith alternating magnetic field Zeeman background deduction absorptance R Z, AM, the characteristic quantity m that permanent magnetic field ZeemanGFAAS instrument obtains zExp calculates m by formula (22) 0Exp, i.e. m 0Exp=m zExp.R Z, PM(22) the characteristic quantity m that tries to achieve of alternating magnetic field Zeeman GFAAS instrument zExp calculates m by formula (23) 0Exp, i.e. m 0Exp=m zExp.R Z, AM(23)
Use m in no standard analysis 0Exp *Replace m 0Cal is a revolutionary breakthrough as the standard transmission of quantity value.Make each Tianwan businessman's product graphite furnace instrument in the laboratory utilize the m of table 1 0Exp *Data become the transmission of quantity value instrument that is equivalent to standard substance, break away from miscellaneous standard substance.M in the table one 0Exp *Also can be used as check since produced the STPF technology in 1978, present inventor and nearly 30 years domestic and foreign literatures, the variety of issue that produces at the commodity in use graphite furnace.Use departs from the coefficient of deviation K=(m of best test feature amount 0Exp */ m 0Exp) (24).Obtain following brief conclusion; 1. PE company introduces the STPF technology the earliest under L ' vov helps, and PE company accounts for the world market occupation rate more than 50, delivers document on the document; Use the document of PE company instrument to surpass 2/3rds.No laying a foundation property of the standard law article that L ' vov delivered in 86 and 90 years is 39 element m relatively 0Cal and m 0The exp value is just in time used PEZ 5000, alternating magnetic field Zeeman deduction background instrument.But the twin-beam instruments design thought of PE company is too much used lens, catoptron and semi-permeable mirror, cause hollow cathode light heavy losses, the baseline noise is increased, and signal to noise ratio (S/N ratio) descends, and detection limit descends, to the above element of wavelength 350nm, because graphite-pipe heat radiation noise increases, situation more changes, to the following element of wavelength 230nm, because lens and catoptron, the semi-permeable mirror light energy losses is more serious.Therefore the user is using PE company instrument, in order to improve the hollow cathode lamp energy, reduce noise, improve signal to noise ratio (S/N ratio) and be forced to use high lamp current, high lamp current meets ropy lamp again and must cause lamp emission line self-priming to broaden, it is bimodal self-priming seriously to occur, meet serious analytical element of hfs structure such as Cu 324.8 again, Bi 306.8, and Bi 223.1, Co 240.7, Hg 253.7, and In 303.9, and Li 670.8, Pb 283.3, Tl 276.7, and Mn 279.5, and Os 290.9, elements such as Sn 286.3nm exchange the characteristic quantity m that Zeeman detains the background instrument zExp differs up to 2.2 times (Cu 324.8nm).
Because this fatal shortcoming.The m that delivered with PE company instrument in nearly 30 years 0Exp and the corresponding k value that obtains are much smaller than 1.00, and most data are between 0.5~1.0.This is an adverse factors to using PE company to be used to not have standard analysis.In order to overcome this factor, and L ' vov (B.V.L ' vov, SpectrochimicaActa 54B(11) 1637-1646 (1999)) proposition had once been summed up with Sullivan type high-intensity lamp (the commodity lamp that Australian Patent is arranged at present) or Lowe type high-intensity lamp (Wu Ting being arranged at present according to No. 7698 (on February 12nd, 1988) the total institute of non-ferrous metal commodity high-intensity lamps of patent) and has been made Sullivan type lamp be used for measuring Na, Sr, Ba, Au, Zn, Cu, Ni, Co, As, Sn, Al, Cr, elements such as Se, use these two kinds of high-intensity lamps after, K=1.00, PE company instrument just can be used to not have standard analysis reliably.
Another kind of way is the designed APZ type of Guangdong Province's analytical test and buckles background GFAAS with the WFX-1G2 type alternating magnetic field plug scape of Beijing second optical instrument factory joint production.These two kinds of instruments have only two lens owing to use the single beam instrument, and light energy losses is little.Use 1 to 5 duty cycle pulse power supply to improve empty positive plate lamp energy and be not easy to cause self-priming.Measuring Cd, As, Bi, Ni, Co, Mn, Pb, Cu, Cr, Au, Eu, V, it is m that Mo, Ba, Rb all can obtain K=1.00 0Exp=m 0Exp *The result.If therefore in PE company, the lamp power supply is transformed into the pulse power supply light source of dutycycle 1 to 5, removing unnecessary catoptron, lens and semi-permeable mirror only stay the simplest two lens, as APZ type and WFX-IG2 type, are favourable to no standard analysis.
(2) the Zeeman deduction background of constant magnetic field GFAAS of Hitachi, Ltd's product is to use and is only second to the second largest GFAAS supplier of PE company.The present inventor just made the 170-70 of Hitachi as far back as 1977, use the Z8000 of Hitachi type later on again.The present inventor as far back as 1978 and nineteen eighty-two in ZMI that cyclisation was developed and the permanent magnetic field ZGFAAS of ZMII type, 1984 also and Suzhou 267 factories develop WFX-Z type perseverance magnetic field ZGFAAS jointly.The present inventor early than 1981 with regard to system measurement the permanent magnetic field Zeemcm absorptance R of 62 years elements Z, PmList in table 1.Summing up the m that uses 62 elements that Hitachi, Ltd records on nearly 30 years present inventors and the document 0The exp value is found; 1. to low temperature and middle temperature element, being easy to obtain K=1.00 is m 0Exp=m 0Exp *2. even low high temperature element of centering temperature and high temperature element are with light-operated and 3000 ℃ of absorptance Q that (3200K) obtains A/ A PMuch larger than 1, even to more than 5.The atomization efficiency difference causes K<1.0, to high temperature element even K<0.5.This mainly is that the graphite furnace calandria of Hitachi's instruments design is too huge, and thermal capacity is big, so that the low Q that causes of heating rate A/ A PMuch larger than 1.0 and K much smaller than 1.0.Because it is many near half that middle high temperature element accounts for 62 elements.Therefore when the graphite furnace of existing Hitachi, Ltd was with no standard analysis, analytical element was very limited.In order to make permanent magnetic field ZGFAAS can be suitable for all 62 elements, the present inventor proposes another patented invention, it is too huge that promptly " no standard analysis is laterally heated graphite furnace with permanent magnetic field plug scape atomic absorption photometer " overcome the graphite furnace calandria of Hitachi's instruments design fully, the big shortcoming of thermal capacity.Use laterally heating graphite furnace in addition, avoid analytical element to cause the big and extra graphite-pipe central temperature that increases of needs of memory effect with the elimination memory effect in the cooling of graphite-pipe two water-cooled ends.Also eliminate matrix and be condensate in the absorption of two water-cooled ends increase matrix background, matrix disturbs and matrix effect.
3. Variam company alternating magnetic field ZGFAAS and the D of GBC company 2Lamp is buckled background GFAAS, is to be only second to PE company the third-largest supplier of Hitachi, Ltd.But owing to use the long 28mm graphite-pipe of inside radius 2.5mm than the long 28mm of general HGA graphite-pipe inside radius 2.95mm, the graphite-pipe capacity is little 1.56 times, and promptly sampling volume is little about one times.
The formula of pressing is [m 1. 0Cal (Varian, GBC)/m 0Cal (HGA)]=[m 0Exp *(Varian.GBC)/m 0Exp *(HGA)]=0.901 but from measuring [the m of 30 multielements 0Exp *(Varian.GBC)/m 0Exp *(HGA)]=0.677 times error is less than 10%, therefore table 1. in (m 0Exp *) HGA * 0.677 times, get final product m 0Exp *(Varian, GBC), Varin is similar with Hitachi, Ltd with the major defect of GBC company instrument, owing to use the low little graphite-pipe power supply of volume of power, the high temperature element has Q equally in therefore analyzing A/ A PShortcoming greater than 1.If use high-power depressor instead, power doubles, then Q A/ A PShortcoming greater than 1 can solve.
4. second optical instrument factory, Beijing design with D 2It is main instrument WFD-Y3 that lamp is buckled background, WFX-1B, WFX-1D, WFX-IE, WFX-110,120,130 and with the WFX-IF2B2 of self-priming atomic absorption button background, all D 2Lamp is buckled the WFD-Y3 that background series instrument is the common development of inventor 1973-1975 and north two smooth factories, WFX-IB, and WFX-IE has improved robotization remodeling WFX-110,120,130 recently.Owing to use the single beam system of simple two lens, therefore to the m of 62 elements 0Exp all can reach m 0Exp *Be K=1.00, be mainly derived from the inventor and be close on vicennial data from 1978.Promptly list in the m in the table 1 0Exp *Data, shortcoming are D 2Lamp is buckled background and is used for the big numerous and diverse sample determination of background absorption, and the background deduction reliability is difficult to guarantee.Self-priming absorbs the button background and does not have a versatility, and element over half is difficult to use self-absorption button background, and particularly the above element of wavelength 350mm can not be used D 2Lamp is buckled background, can not be with self-absorption button background.When therefore the commercial apparatus of north two smooth factories production was used to not have standard analysis, greatest problem was not produce Zeeman button background instrument.
5. investigate the m that uses 62 element gained the numerous and diverse sample of STPF technical Analysis on the document in the last thirty years from no standard analysis angle 0The exp value, and investigate the m that the inventor uses 62 element gained in the numerous and diverse sample of STPF technical Analysis in early days 0The exp value is with m in the table 1 0Exp *Compare most of K<1.00, bad situation even K<0.50.Causing K is the non-selected correct matrix modifier and the amount of matrix modifier much smaller than 1.00 reasons, and matrix interference and matrix effect are very serious.But since introducing Pd and Pd+Mg improver, particularly the general improver 0.5/mg/ml Pd+1mg/ml Zr+10mg/ml tartrate of present inventor's proposition is in 1%v/v HNO 3After, it is m that present inventor's discovery 62 elements in the Analysis of Complex environmental sample are easy to reach K=1.00 0Exp=m 0Exp *, every use 5mg Pd+3mg mg is to the low temperature element on the document, and also being easy to reach K=1.00 is m 0Exp=m 0Exp *Nearly ten years extensively also fine with the permanent improver effect of W+Ir, and equally also being easy to reach K=1.00 is m 0Exp=m 0Exp *Therefore want the commodity in use instrument in no standard analysis, general improver and permanent improver use and are absolutely necessary.
Frech in 1993 and L ' vov (Frech W, L ' vov B.V.Spctrochimica Acta 48B, 1371 (1993)) propose graphite-pipe two end band caps (end cap) and laterally heat graphite furnace (THGA) and be used for vertical alternating magnetic field plug deduction GFAAS, the typical case has PE4100ZL, 5100ZL, models such as A Analyst 600,800.Heating two ends do not have water-cooled owing to use laterally, and whole graphite-pipe evenly is heated to identical atomization temperature when therefore heating.Because matrix does not condense to two ends when not having two end water-cooleds, cause background absorption excessive, make the background deduction difficulty, also can reduce base interference and matrix effect that the condensation matrix causes, be used in combination the m of general matrix modifier and permanent matrix modifier 62 elements in the Analysis of Complex element again 0Exp, the easier K=1.00 that makes, m 0Exp=m 0Exp *Satisfy no standard analysis requirement.Centering high-temperature analysis element also is difficult for being condensate in two end water-cooleds partly in addition, causes Q A/ A PIncrease, even cause memory effect.For example analyze Mo with the HGA graphite furnace, V, Ti, Os, even elements such as B up to 3000 ℃ atomization fully still under long 20 seconds atomization conditions, be forced to use complete hot Jie's graphite-pipe, and can not use platform.But (2700K) was equivalent to warm element condition in the HGA graphite-pipe is measured in a large number less than 8 seconds after using THGA stone clarinet, after atomization temperature descends, the advantage of bringing is that noise is little, signal to noise ratio (S/N ratio) improves, thereby improves high temperature element determination detection limit, and bigger advantage is to have improved graphite-pipe serviceable life.At 3000 ℃ of 20s of HGA graphite-pipe, the life-span is less than 100 even 50 times, but can bring up to 200~500 times with 2500 ℃ of 8 second life-spans, improves five to ten times.Because background absorption reduces, disturb minimizing with matrix effect and matrix, extensively directly measure low content and trace element in the complicated solid sample over past ten years with the THGA graphite furnace, exempt time-consuming, loaded down with trivial details molten sample formality, also improved sensitivity for analysis and detection limit, make no standard analysis use more expansion, be all liq, solid sample all can directly enter graphite furnace to carry out accurately and reliably measuring, and this is only the real revolutionary character in the analytical chemistry field and breaks through.
A large amount of ZGFAAS instruments of producing band THGA graphite furnaces are all appts manufacturer main targets, and users are transformed into the ZGFAAS instrument of band THGA graphite furnace with existing GFAAS instrument, make every this instrument all can be by table m 1. 0Exp *Data become the standard metering instrument, become the standard of instruments material effect of transmitting standard value, can also need not molten sample as directly liquid and solid complex sample being entered graphite furnace accurately and reliably, need not separation determination wherein low content and trace element.1. table lists file names with 62 m that element obtains when using the THGA graphite furnace when different temperatures 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value.L ' vov in 1996 (B.V.L ' vov Fresenius J Aual Chem 355, 222-226 (1996)) and point out the m of end capTHGA 0Cal calculates can not be simply with formula 1., and computing formula has research, m 0Exp *Therefore work is carried out very little, also has to be determinedly, and emphasis of the present invention is 62 ms of element under different atomization temperatures when obtaining with end cap THGA 0Cal and m 0Exp *Value.It is internal diameter 5.9mm that HGA graphite furnace and THGA graphite furnace use same internal diameter PGT, but the length difference, and HGA is with the long graphite-pipe of 28mm, and THGA 18mm graphite-pipe is by 1. (m of formula 0Cal (THGA)/(m 0Cal) HGA)=(28 2/ 18 2)=2.42 times
Because L ' vov has proposed formula and 1. not necessarily has been applicable to end cal THGT, therefore whether 2.42 times correctly need indirectly by (m 0Exp *(THGA)/(m 0Exp *) HGA) experiment value determines.When using the HGA graphite furnace from show 1., 62 elements obtain the ε of element in the high-temperature region under different temperatures A'=m 0Cal/m 0Exp *Near 1.00, promptly at the (m that accurately measures under the condition of high-temperature region under the same atomization temperature 0Exp *) the THGA value and and table one in (m under the same atomization temperature 0Exp *) the HGA value compares, and at this moment (m should be arranged 0Exp *(THGA)/(m 0Exp *) HGA)=(m 0Cal (THGA)/(m 0Cal) high-temperature region (m HGA) 0Exp *) the THGA value takes from 62 elements of THGA on THGA data that all documents of 1993-2006 deliver, the 4100ZL of PE company, the 5100ZL instructions, the G.Schlemmer (AtomicSpectroscopy of PE company 17(1) 15-21 (1996) delivers end cap THGA data, comprises Ag, Al, As, Au, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, Ge, In, Ir, Mg, Mn, Ni, Re, Pb, Pd, Pt, Rh, Sb, Se, Si, Sn, Te, Ti, V.30 individual element, curved and the m of ZGFAAS measured in B:V.L ' vov series article with end cap THGA z(by Rz, AM is by being counted as m for the exp value 0Exp *Value), comprise Ni, Pb, Al, Se, Bi, V, Mn, Cu, Cd, Ag, As, Zn, Co, Fe, Sb, Au, Cr, Tl, Sn, Be, Mn21 element, and Edit by k.w.Jackson; Electrothermal Atomization for Atomic AbsorptionSpectrometry, Wiley lists the m of 62 elements of THGA in p184-185 (1999) one books 0The exp value.
Guangxi Inst. of Chemical Engineering's " the vertical AC magnetic field Zeeman AAS of ALZ type instrument " test report (on November 10th, 1991) has been measured the Cd of THGA, Se, As, Ni, Co, Mn, Pb, Mo, Cu, Ag, Ba, Cr12 element.V.Krivan etc. measure with THGA in nearly ten years that harmonic component and trace element comprise Li.Na, K.Cu, Mg, Ca, Zn, Cd, Al, Si, Pb, Cr, Mn, Fe, Co, elements such as Ni in the fixed sample.[(the m of 62 elements 0Exp *) THGA]/[(m 0Exp *) HGA]=2.75 times=[(m 0Cal) THGA]/[(m 0Cal) HGA]
Error is no more than 10%.That therefore lists in the table 1 uses the THGA graphite-pipe at each atomization temperature (m 0Cal) THGA is the (m that obtains with the HGA graphite furnace that lists in the table 1 0Cal) HGA multiply by 2.75 times.
62 m that element obtains at each atomization temperature with the THGA graphite furnace 0Exp *Then take from the 1993-2006 document.When summing up document, find owing to used the Pd+Mg improver to the low temperature element mostly with the THGA graphite furnace later in 1993, middle high temperature element Zr is an improver, or the permanent improver of widely-used W+Zr, when therefore summing up with THGA graphite furnace mensuration complex fluid or solid sample direct injected, be easy to obtain K=1.00, i.e. m 0Exp=m 0Exp *Therefore in the table 1,62 ms of element under different temperatures that obtain with THGA 0Exp *Value is easily, than the m that obtains the HGA graphite furnace 0Exp *Value is easier.
The fundamental formular of no standard analytical process (25) is m=Q A, 0(m 0Exp */ 0.0044) (25)
M is an element quality to be measured, and unit is pg, surpasses 1000pg and then uses ng, Q A, 0Be the integration absorption value Q that measures ATry to achieve Q through linearization process A, 0After having determined sampling Graphite Furnace Atomic temperature T ℃ (T (K)=T ℃+200), just can obtain m from table 1 0Exp *Value.Use when exchanging Zeeman deduction background instrument ZGFAAS, Z, the fundamental formular of AMGFAAS (26) is
m=Q A,0((m 0exp *(AM))/0.0044)=Q A,0(m 0exp */0.0044 R Z,AM) (26)
When using permanent magnetic field to detain background instrument ZGFAAS, Z, the fundamental formular of PMGFAAS (27) is
m=Q A,0((m 0exp *(PM))/0.0044)=Q A,0(m 0exp */0.0044 R Z,PM) (27)
It is crooked not using its typical curve of GFAAS and the analytic curve of Zeeman deduction background technology, Gilmudinov etc. point out that (A.K.Gilmudinov et al:Spectiochimica Acta47B (9) 1075-1095 (1992)) graphite furnace curved is mainly caused by three factors, 1. the radiant light α I of non-atomic absorption line in hyperfine structure of analytical line (hfs) and lamp emission line self-priming and the slit bandwidth 0(I 0Be lamp emission line light intensity) interact.2. garden, graphite-pipe sample holes center xsect skewness up and down.3. graphite-pipe length (28mm) atomic concentration skewness.The result causes the graphite furnace curve at Q AValue is above just beginning bending, when element to be measured is that m is m more than 0.1 or 0.2 0Exp *In the time of 1000-3000 times, curve reaches plateau value Ar (Q AValue).After using the Zeeman deduction background technology, the degree of crook aggravation is when element to be measured is that m is m zExp *In the time of 1000 to 3000 times, platform not only appears in curve, and the atomic absorption peak occurs bimodal, and m continues to increase Q ADescend on the contrary, the curve counter-rotating occurs, Ar (Q AValue) be the curve rollback point.
Usually only at Q AQ is just arranged below the value 0.1 or 0.2 A, 0=Q A, surpass 0.1~0.2 value, if curved is obtained Q without linearization A, 0Value can't be used no standard analysis fundamental formular (25) (26) and (27).But how from the graphite furnace curve of bending, to find from Q AObtain Q through linearization A, 0, but be very difficult.The present inventor is early than being engaged in this work in 1978.Utilize formula (28) α *=(10 Ar+0.01-1) -1(28)
Q when the Ar value obtains the typical curve counter-rotating for permanent magnetic field or alternating magnetic field Zeeman deduction background AValue.To single beam or D 2Lamp is buckled background instrument and single beam instrument α=(10 Ar+0.01-1) -1, α I 0The empty cloudy plate lamp radiant light or the bandwidth that enter for the slit bandwidth enter adjacent threads.And can not simply be classified as α I at plug scape button background instrument 0, therefore the situation complexity uses formula (28) instead.0.01 introduce is to prevent to cause the not property confirmed of calculating easily near the calculating of Ar value the time, but when practical application, Q AAt this moment range of application should also can be simplified and use α less than the 0.9Ar value *=(10 Ar-1) -1(29).If consider above-mentioned Gilmudinov work, curved is not just caused by the Ar value of formula (28) merely.Also to consider atom skewness in graphite-pipe, the bending that spectral line hfs structure and lamp emission line self-priming etc. causes.B.V.L ' vov and (B, V.L ' vov et al; SpectrochimicaB.V.et al; Spectrochimica Acta 51B (6) 609-6 18 (1996) introduces tortuosity factor β, proposition formula (30)
Q A = log 1 + α * 10 - ( 1 + α * ) Q A , 0 ( 1 - β Q A , 0 ) + α * - - - ( 30 )
(1+ α) is normalization coefficient, and purpose makes different α *Value is at Q AValue obtains Q below 0.1-0.2 A=Q A, 0Directly with formula (29), (4) obtain Q through linearization A, 0Be difficult and infeasible.Another emphasis of the present invention is to calculate each Q by formula (29) (30) AAt different A rValue (from 0.8-7.0 interval 0.1) different beta value (0.39 ,-0.27 ,-0.14,0.00,0.10,0.24,0.39 seven value) correspondence obtains Q A.0Value. list in table 2..A rValue is gone into .Q by four houses 5 AValue be 0.1 or 0.2. work as Q A(x) be three figure place (Q A<1.000) or four figures (Q A>1.000), β (y) does not drop on seven β values for one digit number (β (y)<0.10) or two figure places (β (y)>0.10). and available formula (5) (6) (7) is calculated by interpolation method.
Q A.0(x,β(L))=Q A,0(L,β(L))+(Q A(x)-Q A(L))/(Q A(H)-Q A(L))(Q A,0(H,β(L))-
-Q A,0(L,β(L)) (31)
Q A,0(x,β(H))=Q A,0(L,β(H))+(Q A(x)-Q A(L))/(Q A(H)-Q A(L))(Q A,0(H,β(H))-
-Q A,0(L,β(H))) (32)
Q A,0(x,β(y))=Q A,0(x,β(L))+(β(y)-β(L))/(β(H)-β(L))(Q A,0(x,β(H))-Q A,0(x,β(L)))(33)
L represents low value in the formula (31) (32) (33), and H represents high value.
Use table 2 and formula (31), (32), (33), at Ar=0.8-7.0, β=-0.40 is to 0.39, Q AArbitrary Q from 0.1 to 0.9Ar AValue all can be tried to achieve Q through linearization process A, 0Value.Q AAt 0.1 following Q A=Q A, 0Error is below 1%.Q ADuring>0.9Ar, be example with β=-0.40; The Q that try to achieve Ar>1.80, linearization A, 0Compare Q AGo out 5 times greatly, so therefore the corresponding amplification of analytical error limits Q more than 5 times A<0.9Ar is the consideration for actual application value.
The present inventor has obtained the Ar and the β value of present inventor's all 62 element typical curves since 1978 with table 2 and formula (31), (32), (33).Use instrument to comprise the D of PE company 2Lamp, alternating magnetic field Zeeman detains background; Hitachi, Ltd's permanent magnetic field Zeeman button background, Beijing second D of optical instrument factory 2Lamp is buckled the background instrument, and we make permanent magnetic field Zeeman button background instrument by oneself, Suzhou 267 factories permanent magnetic field Zeeman button background instrument, Guangdong Province's analytical test APZ of institute alternating magnetic field button background instrument, Tianjin, island D 2Lamp is buckled the background instrument, GB CD 2Lamp is buckled the background instrument, more than is HGA graphite furnace instrument.Also have in addition PE4100ZLTHGA graphite furnace and Guangxi chemical industry metallurgical the typical curve of homemade THGA graphite furnace.Ar value and β value have also been collected with the typical curve that has calculated the HGA graphite furnace that on the 1978-2006 document, can find and THGA graphite furnace.List in table 3, because the Ar and the β value of each instrument differ greatly, table 3 is only listed possible range when row Ar value, and same β value also differs greatly, and what table 3 was listed is possible range.As can be seen from Table 3:
1. Ar and instrument relation is very big, D 2The Ar value of lamp background deduction is higher 1.2 to 1.5 times than the Ar value of Zeeman background deduction instrument, but for data reliability, we would rather detain the background instrument with the less Zeeman of Ar value.
2. the element such as the Cu324.7 of fine structure and hyperfine structure complexity, Ag328.1, Li670.7, Hg253.7, In303.9, Tl276.7, P213.6, Bi306.7, Bi223.1, Cs852.1, Mn279.5, Rb780.0, Sn286.3 etc. use empty cloudy plate lamp, or lamp is of poor quality, or lamp current is too big, all causes Ar to descend significantly, the Ar of Zeeman button background even less than 0.8, but use electrodeless discharge lamp (EDL), have covered with gold leaf to belong to total institute patent high-intensity lamp (Lowe type), or the dutycycle used of domestic equipment is 1: 5 pulse power supply lamp that Ar value rises to 2-5 and doubly looks and do not have plain difference.
3. serious to self-priming low temperature element such as Li, Na, K, Rb, Cs, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sn, Pb, P, As, Sb, Bi, Se, Te, and warm element partly, when empty cloudy plate lamp current was big, the Ar value declined to a great extent, even Ar<0.8, this partly element preferably use the EDL lamp, or Lowe type high-intensity lamp also can use pulse power supply but dutycycle must not be above 1: 5.The cloudy plate lamp of the comparable sky of Ar value improves 2-5 doubly.
4. to gentle high temperature element among the overwhelming majority, can use empty cloudy plate lamp, the Ar value is about about 1.5, but uses pulse power supply dutycycle 1 to 5, even 1 to 10, the Ar value can improve 3-4 times, Ar>7.0.
5. the Ar value is low more, and the β value is high more, is example with Zn213.9 and Cd 228.8, and using the cloudy plate lamp of common sky β value is+0.10, and uses EDL, or Lowe type high-intensity lamp, or the power supply of 1 to 5 duty cycle pulse, and β drops to-0.27.
6. the β value of each element is relevant very big, and minimum β=-0.40 is Be 234.9, and the highest β=+ 0.39 is Al309.2.
7. the β value of most elements is distributed between-0.10 to+0.10.Because the Ar of each element and β value be with instrument in 62 elements, lamp, lamp current, slot variation is quite big, therefore needs correction often.In addition correction coefficient K=(m 0Exp */ m 0Exp) (34)
Be subjected to the lamp power supply mode, characteristic of a navigation light amount, lamp current, the slit influence is quite big, and for example Cu 324.7, and the K value changes from 0.51 to 1.00 and differs nearly one times, so the K value also needs to proofread and correct.Another emphasis of the present invention is to proofread and correct Ar, β and K value.After introducing correction coefficient K, the basic calculating formula of no standard analytical process changes over (35), (36), (37) promptly: m=Q A, 0(m 0Exp/0.0044)=Q A, 0/ K * (m 0Exp */ 0.0044) (35)
m=Q A,0((m 0exp(AM))/0.0044)=Q A,0/K×(m 0exp */0.0044 R Z,AM) (36)
m=Q A,0((m 0exp(PM))/0.0044)=Q A,0/K×(m 0exp */0.0044 R Z,PM) (37)
In formula (35), (36) and (37), be converted into formula (25), (26) and (27) during as K=1.00.Unfortunately in most cases fundamental formular (35), (36) and (37) should be used in usual analysis in K<1.00 therefore, accurately measure K, β and Ar value need the standard solution of 62 element individual element content of a cover, and the standard solution of identity element must be available from two units, the Q that obtains AValue consistent (being in the error range) could assert that concentration of standard solution is accurately and reliably.Must contain matrix modifier in the standard solution.The most frequently used matrix modifier is 0.5mg/mlPd, and suitable unit have Li, Na, K, Rb, Cs, Cu, Ag, Au, Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, Bi, Te, Cr, Mn, Fe, Co, 35 elements such as Ni.The improver of high temperature element was 1mg/ml Zr during another one was fit to, and preferably convergent improvement agent lmg/ml Zr+0.5mg/ml Pd can be used for removing Pd, Pt, Ru, Rh, all 56 elements beyond the Ir, Os.Matrix modifier also comprises 10mg/ml tartrate+1%v/VHNO in addition 3, its effect is a 1. stabilized matrix improver 0.5mg/ml Pd+1mg/ml Zr solution, stabilized matrix and trivalent and quadrivalent element are also wanted in unlikely generation precipitation or absorption, and unlikely generation precipitation or absorption, concentration content produces change.
Occur bimodal element during 2. to part atomization, behind the adding tartrate, also can disappear, improve and analyze reappearance and reliability bimodal.To a part of element such as Cd, Zn, Cu, Mn, Pb, Ag, Na, K, elements such as Mg use general improver, 0.5mg/ml Pd+1 mg/ml Zr+10mg/ml tartrate+0.10%v/v HNO 3Can not use because the improver empty is too big, should consider to use permanent improver, 5mg/mlZr+4mg/ml Ir+10mg/ml tartrate+0.10%v/v HNO 350 μ l are improver, at 160 ℃ of 40s, and 1300 ℃ of 25s, 2400 ℃ of 10s, atomization under the condition includes Zr 250 μ g+200 μ g Ir and forever stays in the graphite-pipe, plays permanent improver effect, as long as a sample or standard solution can be analyzed.Under 2400 ℃ of (2600K) 10s conditions, permanent improver can keep up to 1300 times.But must point out that permanent improver is not so good as the Pd+Zr improver as the effect of improver.To each root graphite-pipe, different elements, different atomization temperatures, different samples once add permanent improver access times and alter a great deal, and need to use Q A<0.15 pure solution standard monitoring when obtaining the variation of K value greater than error range, needs to add for the second time permanent improver, analyzes reliability with assurance, for example add once for 200 times, or 300 times adds once.Measure Mo, V during Ti,, can not use because memory is remorse serious with fixed metal tungsten (or tantalum) platform-graphite tube, and the most handy coating graphite tube adds full pyrolytic graphite platform.Because B in the graphite platform, Ca, Sr is blank high, and the required atomization temperature of Os atomization is the highest in 62 elements, and B, Ca, Sr, Os also are to use full coating graphite tube+full pyrolytic graphite platform good.Zn, Mg, Na, K content in surrounding air changes high, measures Zn, and Na, K, Mg preferably are placed on the sampling Graphite Furnace Atomic extinction photometer in the ultra-clean chamber and work.
Table 4 and table 5 are listed respectively, the standard solution degree (ng/ml) that permanent magnetic field and alternating magnetic field Zeeman button background HGA graphite furnace use, and table 6 is listed the concentration of standard solution (ng/ml) that alternating magnetic field Zeeman button background THGA graphite furnace uses.Table 4,5,6 is also listed 62 elements and is being demarcated the temperature T of using (K), T (℃)=T (K)-200.When using 10 μ l sample introductions, the 1. corresponding Q of number solution A, 0=0.044 ± 10%, 2. number Q A, 0=0.132 ± 10%, 3. number Q A, 0=0.44 ± 10%, 4. number Q A, 0=1.32 ± 10%, 5. number Q A, 0=4.4 ± 10%, 6. number Q A, 01. number and 2.=13.2 ± 10%, number solution is mainly used in and measures and monitoring K=m 0Exp */ m 0Exp.3. 4. 5. number solution be mainly used in and measure the β value, 5. 6. number be used to measure the Ar value.
Usually Ar value and β variation is very little, because of Ar and β depend primarily on instrument, and lamp and lamp power supply, lamp power supply and slit width needn't often be demarcated.Have only the K value often to need to demarcate; Need when (a) matrix changes to demarcate, demarcate use 1. number and 2. number liquid add 1. number and 2. number liquid of 10 μ l with matrix sample, obtain the K value with standard addition method.(b) graphite-pipe uses the later stage, and the K value changed when promptly graphite-pipe blew soon, and the low temperature element is demarcated once for per 200 times usually, and middle temperature element is demarcated once for 100 times, and the high temperature element is demarcated once for 50 times.
Demarcated K, after Ar and the β value, it is just fairly simple directly to measure in complex fluid or the fixed sample Elements C to be measured with no standard analytical process.1. directly with the complex fluid sample feeding, sample size V In(μ l) or complicated solid sample direct injected, sample size m In(mg) in graphite-pipe.2. configure atomization temperature T (℃), press T (K)=T (℃)+200, utilize table 1 to obtain m 0Exp *Value.3. use table 4 in advance, 5 or 6 1. demarcated K, Ar and β value to 6. number liquid.4. atomization obtains Q AValue is obtained Q with table 2 and formula (31), (32), (33) through linearization A, 05. visual equipment is different tries to achieve element m to be measured (pg) value with formula (35), (36), (37).6. constituent content C presses formula (38) in the complex fluid sample
C=m/V in[(pg/μl)×(ng/ml)×(μg/l] (38)
During the complexity direct solid sample introduction, constituent content C is by formula (39)
C=m/m in[(pg/mg)×(ng/g)×(μg/kg)] (39)
No standard analytical process is directly measured complex fluid or solid sample, break away from often use in the common inorganic analysis time-consuming, the molten sample that difficulty is loaded down with trivial details, separate formality and determination step, also can break away from and separate reagent blank and the purification reagent place that formality and determination step bring at molten sample and need numerous and diverse time-consuming step.Use the m of table 1 0Exp *With demarcation K, β, the Ar method is looked different commercial apparatuss with fundamental formular (35), (36), (37).Each Tianwan businessman's product instrument also is available as the standard metering instrument simultaneously, as balance in the gravimetric method, and various capacity measuring instruments in the volumetric method.Also has the various standard model function of quantity simultaneously, as the standard tool for transmitting.At domain of inorganic chemistry is great revolutionary the breakthrough.
Table 1 is 62 ms of element under different temperatures T (K) 1. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(1) (1) Li 670.8nm R z,PM=0.38 R z,AM=0.88
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.181 0.201 0.221 0.242 0.263 0.286 0.309 0.333
ε A’ 0.35 1.36 2.10 3.21 4.89 7.45 11.2 17.0
m 0exp *,pg 51.7 14.8 10.5 7.53 5.38 3.84 2.76 1.96
THGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.498 0.553 0.608 0.666 0.723 0.787 0.850 0.916
ε A’ 2.10 3.21 4.89 7.45 11.2 17.0 25.7 38.3
m 0exp *,pg 23.7 17.2 12.4 8.91 6.46 4.63 3.31 2.39
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 0.360 0.383 0.409 0.436 0.464 0.492 0.521 0.552
ε A’ 25.7 38.3 45.9 56.0 59.6 63.4 67.1 71.1
m 0exp *,pg 1.400 1.000 0.891 0.779 0.779 0.779 0.779 0.779
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 0.990 1.053 1.125 1.199 1.276 1.352 1.433 1.518
ε A’ 45.9 56.0 59.8 63.8 67.9 72.0 76.2 80.7
m 0exp *,pg 1.92 1.88 1.88 1.88 1.88 1.88 1.88 1.88
(1) (2) Na 589.0 R z,PM=0.46 R z,AM=0.95
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 0.233 0.256 0.280 0.303 0.321 0.355 0.381 0.408
ε A’ 9.9 15.5 29.5 43.6 72.8 80.5 81.0 81.6
m 0exp *,pg 2.35 1.65 0.950 0.695 0.441 0.441 0.470 0.500
THGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 0.641 0.704 0.770 0.835 0.883 0.976 1.048 1.122
ε A’ 20.3 34.5 55.0 68.4 77.5 85.6 91.9 98.4
m 0exp *,pg 3.16 2.04 1.40 1.22 1.14 1.14 1.14 1.14
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 0.426 0.464 0.493 0.522 0.552 0.582 0.613 0.645
ε A’ 85.2 92.8 98.6 100 100 100 100 100
m 0exp *,pg 0.500 0.500 0.500 0.522 0.552 0.580 0.613 0.645
THGA T(K) 2300 2400 2500 2600 2600 2800 2900 3000
m 0cal.pg 1.172 1.276 1.356 1.436 1.436 1.601 1.686 1.774
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 1.172 1.276 1.356 1.436 1.436 1.601 1.686 1.774
Table 1 is 62 ms of element under different temperatures T (K) 2. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(1) (3) K766.5nm R z,PM=0.52 R z,AM=0.91
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 0.411 0.441 0.471 0.502 0.534 0.565 0.597 0.630
ε A’ 7.9 25.1 65.1 88.1 93.8 99.3 100 100
m 0exp *,pg 5.20 1.76 0.723 0.570 0.570 0.570 0.597 0.630
THGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 1.130 1.213 1.295 1.381 1.469 1.554 1.642 1.733
ε A’ 25 65 93.8 100 100 100 100 100
m 0exp *,pg 4.52 1.866 1.381 1.381 1.469 1.554 1.642 1.733
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 0.662 0.695 0.728 0.759 0.796 0.931 0.864 0.899
εA’% 100 100 100 100 100 100 100 100
m 0exp *,pg 0.662 0.695 0.728 0.759 0.796 0.831 0.864 0.899
THGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 1.821 1.911 2.002 2.087 2.189 2.285 2.376 2.472
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 1.821 1.911 2.002 2.087 2.189 2.285 2.376 2.472
(1) (4) Rb 780.0nm R z,PM=0.44 R z,AM=0.90
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 0.81 0.81 0.96 1.03 1.11 1.19 1.28 1.37
ε A’ 5.9 5.9 60.6 79.2 85.4 91.7 98.5 100
m 0exp *,pg 13.7 13.7 1.58 1.30 1.30 1.30 1.30 1.37
THGA T(K) 1500 1500 1700 1800 1900 2000 2100 2200
m 0cal.pg 2.23 2.23 2.64 2.83 3.05 3.27 3.52 3.77
ε A’ 18 18 85 91 98 100 100 100
m 0exp *,pg 12.4 12.4 3.11 3.11 3.11 3.27 3.52 3.77
HGA T(K) 2300 2300 2500 2600 2700 2800 2900 3000
m 0cal.pg 1.46 1.46 1.66 1.76 1.87 1.99 210 2.23
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 1.46 1.46 1.66 1.76 1.87 1.99 210 2.23
THGA T(K) 2300 2300 2500 2600 2700 2800 2900 3000
m 0cal.pg 4.02 4.02 4.57 4.84 5.14 5.47 5.78 6.13
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 4.02 4.02 4.57 4.84 5.14 5.47 5.78 6.13
Table 1 is 62 ms of element under different temperatures T (K) 3. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(1) (5) CS 852.1nm R z,PM=0.40 R z,AM=0.90
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 1.55 1.66 1.78 1.90 2.02 2.14 2.27 2.30
ε A’ 3.0 12.1 34.0 46.7 49.6 52.6 57.8 58.7
m 0exp *,pg 51.7 13.7 5.24 4.07 4.07 4.07 4.07 4.07
THGA T(K) 1500 1600 1700 1800 2000 2000 2100 2200
m 0cal.pg 4.26 4.57 4.90 5.23 5.89 5.89 6.24 6.57
ε A’ 12.1 34.0 45.4 46.7 52.6 52.6 57.8 58.7
m 0exp *,pg 35.2 13.4 10.8 10.8 10.8 10.8 10.8 10.8
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 2.52 2.65 2.79 2.92 3.06 3.20 3.34 34.9
ε A’ 61.9 65.1 98.6 71.7 75.2 78.6 82.1 85.7
m 0exp *,pg 4.07 4.07 4.07 4.07 4.07 4.07 4.07 4.07
THGA T(K) 2300 2400 2500 2600 2700 2700 2900 3000
m 0cal.pg 6.93 7.29 7.67 8.03 8.42 8.42 9.19 9.60
ε A’ 61.9 65.1 68.6 71.7 75.2 75.2 82.1 8.57
m 0exp *,pg 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8
(2) (1) Cu 324.8nm R z,PM=0.355 R z,AM=0.51-0.55
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.952 1.058 1.171 1.288 1.410 1.538 1.669 1.805
ε A’ 0.93 13.0 22.5 37.1 42.9 49.6 53.8 58.2
m 0exp *,pg 102 8.14 5.20 3.47 3.29 3.10 3.10 3.10
THGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 2.62 2.91 3.22 3.54 3.88 4.23 4.59 4.96
ε A’ 2.0 3.0 52 85 100 100 100 100
m 0exp *,pg 93.6 9.70 6.19 4.16 3.88 4.23 4.59 4.96
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 1.951 2.097 2.253 2.416 2.583 2.755 2.932 3.117
ε A’ 62.9 67.6 72.7 77.9 83.3 88.9 94.5 100
m 0exp *,pg 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.117
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 5.37 5.77 6.20 6.64 7.10 7.58 8.06 8.57
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 5.37 5.77 6.20 6.64 7.10 7.58 8.06 8.57
Table 1 is 62 ms of element under different temperatures T (K) 4. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(2) (2) Ag 328.1nm R z,PM=0.40 R z,AM=0.91
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 0.639 0.708 0.781 0.857 0.937 1.018 1.101 1.187
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 0.639 0.708 0.781 0.857 0.937 1.018 1.101 1.187
THGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 1.76 1.95 2.15 2.36 2.58 2.80 3.03 3.26
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 1.76 1.95 2.15 2.36 2.58 2.80 3.03 3.26
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 1.276 1.368 1.463 1.563 1.662 1.764 1.870 1.978
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 1.276 1.368 1.463 1.562 1.662 1.764 1.870 1.978
THGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 00cal.pg 3.51 3.76 4.02 4.30 4.57 4.85 5.14 5.44
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 3.51 3.76 4.02 4.30 4.57 4.85 5.14 5.44
(2) (3) Au 242.8nm R z,PM=0.56 R z,AM=0.804
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 2.92 3.25 3.60 3.98 4.36 4.76 5.18 5.61
ε A’ 49.1 53.6 58.3 63.2 67.9 72.0 76.9 81.7
m 0exp *,pg 5.95 6.06 6.18 6.30 6.42 6.61 6.74 6.87
THGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 8.03 8.94 9.90 11.0 12.0 13.1 14.3 15.4
ε A’ 77.8 84.9 91.6 97.3 100 100 100 100
m 0exp *,pg 10.3 10.5 10.8 11.3 12.0 13.1 14.3 15.4
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 6.06 6.53 6.87 7.54 8.09 8.65 9.01 9.85
ε A’ 86.6 92.9 96.5 100 100 100 100 100
m 0exp *,pg 7.00 7.03 7.36 7.54 8.09 8.65 9.01 9.85
THGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 16.7 18.0 18.9 20.7 22.3 23.8 24.8 27.1
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 16.7 18.0 18.9 20.7 22.3 23.8 24.8 27.1
Table 1 is 62 ms of element under different temperatures T (K) 5. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(3) (1) Be 234.8nm R z,PM=0.62 R z,AM=0.65
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.149 0.166 0.183 0.200 0.219 0.238 0.257 0.278
ε A’ 7.5 16.8 24.3 35.7 44.2 50.3 56.7 63.9
m 0exp *,pg 1.98 0.990 0.754 0.560 0.495 0.473 0.453 0.435
THGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.410 0.457 0.503 0.550 0.602 0.655 0.770 0.765
ε A’ 11 25 36 54 66 75 85 90
m 0exp *,pg 3.737 1.828 1.397 1.019 0.903 0.873 0.831 0.850
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 0.299 0.321 0.343 0.366 0.388 0.413 0.438 0.464
ε A’ 69.5 73.3 79.8 83.5 88.2 92.8 96.7 100
m 0exp *,pg 0.430 0.438 0.430 0.438 0.440 0.445 0.453 0.464
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 0.822 0.883 0.943 1.007 1.067 1.136 1.205 1.276
ε A’ 95.0 98.1 100 100 100 100 100 100
m 0exp *,pg 0.866 0.900 0.943 1.007 1.067 1.136 1.205 1.276
(3) (2) Mg 285.2nm R z,PM=0.81 R z,AM=0.91
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.163 0.178 0.194 0.211 0.227 0.245 0.263 0.281
ε A’ 1.4 4.5 10.1 18.0 29.0 38.9 50.0 69.0
m 0exp *,pg 11.6 3.95 1.92 1.172 0.783 0.630 0.526 0.407
THGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.448 0.490 0.534 0.580 0.624 0.674 0.723 0.773
ε A’ 3.6 11.6 26.0 46.3 74.6 100 100 100
m 0exp *,pg 12.4 4.22 2.054 1.253 0.836 0.674 0.723 0.773
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 0.299 0.318 0.338 0.358 0.378 0.399 0.420 0.441
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 0.299 0.318 0.338 0.358 0.378 0.399 0.420 0.441
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 0.822 0.847 0.930 0.985 1.040 1.097 1.155 1.213
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 0.822 0.847 0.930 0.985 1.040 1.097 1.155 1.213
Table 1 is 62 ms of element under different temperatures T (K) 6. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(3) (3) Ca 422.7nm R z,PM=0.94 R z,AM=0.95
HGA T(K) 1900 2000 2100 2200 2300 2400 2500
m 0cal.pg 0.162 0.174 0.186 0.198 0.212 0.227 0.239
ε A’ 15.7 19.2 25.1 32.4 41.1 44.8 47.9
m 0exp *,pg 1.035 0.905 0.741 0.611 0.516 0.507 0.499
THGA T(K) 1900 2000 2100 2200 2300 2400 2500
m 0cal.pg 0.446 0.479 0.512 0.505 0.583 0.624 0.657
ε A’ 25.0 33.6 41.2 45.6 50.7 56.4 70.0
m 0exp *,pg 1.784 1.447 1.242 1.196 1.150 1.106 0.938
HGA T(K) 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 0.252 0.266 0.281 0.295 0.310 0.325 0.341
ε A’ 50.5 53.3 56.3 59.1 62.1 65.1 68.3
m 0exp *,pg 0.499 0.499 0.499 0.499 0.499 0.499 0.499
THGA T(K) 2700 2700 2800 3000 3000 3100 3200
m 0cal.pg 0.732 0.732 0.773 0.853 0.853 0.894 0.938
ε A’ 78.0 78.0 82.4 90.9 90.9 95.3 100
m 0exp *,pg 0.938 0.938 0.938 0.938 0.938 9.938 0.938
(3) (4) Sr 460.7nm R z,PM=0.98 R z,AM=0.98
HGA T(K) 1900 2000 2100 2200 2300 2400 2800
m 0cal.pg 0.202 0.216 0.231 0.246 0.262 0.271 0.293
ε A’ 10.8 15.4 18.9 22.2 28.6 36.5 41.0
m 0exp *,pg 1.875 1.401 1.224 1.109 0.917 0.742 0.715
THGA T(K) 1900 2000 2100 2200 2300 2400 2500
m 0cal.pg 0.556 0.594 0.635 0.677 0.721 0.745 0.806
ε A’ 14.5 19.6 25.2 2.32 36.8 39.2 44.0
m 0exp *,pg 3.84 3.03 2.52 2.04 1.96 1.90 1.83
HGA T(K) 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 0.309 0.326 0.341 0.360 0.378 0.397 0.417
ε A’ 44.6 48.9 51.1 54.0 56.7 59.5 62.5
m 0exp *,pg 0.693 0.667 0.667 0.667 0.667 0.667 0.667
THGA T(K) 2600 2700 2700 2800 3100 3100 3200
m 0cal.pg 0.850 0.897 0.897 0.938 1.092 1.092 1.147
ε A’ 46.4 48.9 48.9 51.1 59.5 59.5 62.5
m 0exp *,pg 1.83 1.83 1.83 1.83 1.83 1.83 1.83
Table 1 is 62 ms of element under different temperatures T (K) 7. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(3) (5) Ba 553.5nm R z,PM=0.96 R z,AM=0.98
HGA T(K) 2200 2300 2400 2500 2600 2700
m 0cal.pg 0.397 0.420 0.420 0.468 0.494 0.526
ε A’ 4.45 6.75 6.75 11.5 17.3 18.4
m 0exp *,pg 8.92 6.22 6.22 4.07 2.85 2.85
THGA T(K) 2200 2300 2400 2500 2600 2700
m 0cal.pg 1.092 1.155 1.1551.218 1.287 1.359 1.447
ε A’ 8.7 11.6 11.615.5 16.4 17.3 18.4
m 0exp *,pg 12.55 9.92 7.84 7.84 7.84 7.84
HGA T(K) 2800 2900 3000 3100 3200
m 0cal.pg 0.557 0.592 0.628 0.666 0.708
ε A’ 19.5 20.8 22.0 23.4 24.8
m 0exp *,pg 2.82 2.85 2.85 2.85 2.85
THGA T(K) 2800 2900 3000 3100 3200
m 0cal.pg 1.532. 1.628 1.727 1.832 1.947
ε A’ 19.5 20.8 22.0 23.4 24.8
m 0exp *,pg 7.84 7.84 7.84 7.84 7.84
(4) (1) Zn 213.9nm R z,PM=0.84 R z,AM=0.88
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 0.226 0.252 0.281 0.305 0.333 0.363 0.392 0.423 0.454
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 0.226 0.252 0.281 0.305 0.333 0.363 0.392 0.423 0.454
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 0.487 0.543 0.606 0.657 0.718 0.782 0.845 0.912 0.978
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 0.487 0.546 0.606 0.657 0.718 0.782 0.845 0.912 0.978
HGA T(K) 2200 2300 2400 2500 2600 27010 2800 2900 3000
m 0cal.pg 0.486 0.519 0.553 0.587 0.622 0.658 0.695 0.732 0.770
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 0.486 0.519 0.553 0.587 0.622 0.658 0.695 0.732 0.770
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 1.047 1.118 1.192 1.265 1.340 1.418 1.498 1.577 1.659
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 1.047 1.118 1.192 1.265 1.340 1.418 1.498 1.577 1.659
Table 1 is 62 ms of element under different temperatures T (K) 8. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(4) (2) Cd 228.8nm R z,PM=0.789 R z,AM=0.833
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 0.300 0.331 0.363 0.396 0.429 0.464 0.499 0.534 0.570
ε A’ 79.3 89.2 100 100 100 100 100 100 100
m 0exp *,pg 0.378 0.371 0.363 0.396 0.429 0.464 0.499 0.534 0.570
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 0.647 0.713 0.782 0.853 0.924 1.000 1.075 1.151 1.228
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 0.647 0.713 0.782 0.853 0.924 1.000 1.075 1.151 1.228
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 0.607 0.644 0.682 0.720 0.759 0.799 0.839 0.879 0.920
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 0.607 0.644 0.682 0.720 0.729 0.799 0.839 0.879 0.920
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 1.308 1.388 1.470 1.550 1.636 1.722 1.808 1.894 1.953
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 1.308 1.388 1.470 1.550 1.636 1.722 1.808 1.894 1.983
(4) (3) Hg 253.6nm R z,PM=0.70 R z,AM=0.70
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 62 69 77 85 94 103 113 123 134
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 62 69 77 85 94 103 113 123 134
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 134 149 166 184 202 222 243 265 288
ε A’ 100 100 100 100 100 160 100 100 100
m 0exp *,pg 134 149 166 184 202 222 243 265 288
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 145 157 169 182 195 210 225 240 257
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 145 157 169 182 195 210 225 240 257
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 312 338 364 392 421 452 484 518 554
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 312 338 364 392 421 452 484 518 554
Table 1 is 62 ms of element under different temperatures T (K) 9. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(5) (1) Al309.3nm R z,PM=0.75 R z,AM=0.90
HGA T(K) 1800 1900 2000 2100 2200 2300 2400
m 0cal.pg 3.38 3.69 4.01 4.34 4.67 5.03 5.38
ε A’ 1.7 7.0 12.9 21.2 35.0 51.7 73.7
m 0exp *,pg 1.99 52.7 31.1 20.5 13.3 9.72 7.30
THGA T(K) 1800 1900 2000 2100 2200 2300 2400
m 0cal.pg 9.30 10.2 11.0 11.9 12.8 13.8 14.8
ε A’ 7.2 13.2 21.8 36.4 53.5 76.8 82.2
m 0exp *,pg 130 76.7 50.5 32.8 24.8 18.0 18.0
HGA T(K) 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 5.76 6.13 6.51 6.92 7.32 7.74 8.17
ε A’ 78.9 84.0 89.2 94.5 100 100 100
m 0exp *,pg 7.30 7.30 7.31 7.32 7.32 7.74 8.17
THGA T(K) 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 15.8 16.9 18.0 19.0 20.1 21.3 22.5
ε A’ 88.0 93.5 100 100 100 100 100
m 0exp *,pg 18.0 18.0 18.0 19.0 20.1 21.3 22.5
(5) (2) Ga 287.4nm R z,PM=0.70 R z,AM=0.70
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 3.07 3.48 3.93 4.39 4.88 5.52 5.93 6.49 7.07
ε A’ 1.9 5.0 7.6 10.7 15.2 24.3 35.9 49.4 61.4
m 0exp *,pg 162 69.6 21.7 41.0 32.1 22.7 16.5 13.1 11.5
THGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 8.44 9.57 10.8 12.1 13.4 15.2 16.3 17.9 19.4
ε A’ 3.8 6.8 9.6 13.0 19.1 27.8 34.6 44.4 61.4
m 0exp *,pg 222 141 112 92.8 70.3 54.6 47.1 40.2 31.7
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 7.66 8.29 8.95 9.61 10.3 11.0 11.7 12.5
ε A’ 71.6 79.0 86.9 95.1 100 100 100 100
m 0exp *,pg 10.7 10.5 10.3 10.1 10.3 11.0 11.7 12.5
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 21.1 22.8 24.6 26.4 28.3 30.3 32.3 34.4
ε A’ 72.4 78.6 85.9 93.2 100 100 100 100
m 0exp *,pg 29.1 29.0 28.6 28.3 28.3 30.3 32.3 34.4
Table 1 is 62 ms of element under different temperatures T (K) 10. 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(5) (3) In 303.9nm R z,PM=0.82 R z,AM=0.91
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 3.36 3.78 4.22 4.69 5.19 5.70 6.30 6.80 7.40
ε A’ 2.8 6.1 13.4 29.7 5.16 69.6 83.1 88.1 94.2
m 0exp *,pg 1200 62.0 31.5 15.8 10.1 8.19 7.58 7.72 7.82
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 8.24 10.4 11.6 12.9 14.3 15.7 17.3 18.7 20.4
ε A’ 4.9 13.1 29.1 46.3 64.3 73.3 87.5 93.0 100
m 0exp *,pg 189 79.4 39.9 27.9 23.2 21.4 19.8 20.1 20.4
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 8.00 8.70 9.40 10.0 10.8 11.5 12.3 13.0 13.8
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 8.00 8.70 9.40 10.0 10.8 11.5 12.3 13.0 13.8
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 22.0 23.9 25.9 27.5 29.7 31.6 33.8 35.8 38.0
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 22.0 23.9 25.9 27.5 29.7 31.6 33.8 35.8 38.0
(5) (4) Tl276.8nm R z,PM=0.56 R z,AM=0.66
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 6.1 6.7 7.2 7.7 8.3 8.9 9.4 10.0 10.6
ε A’ 56 79 91 100 100 100 100 100 100
m 0exp *,pg 10.9 8.5 7.9 7.7 8.3 8.9 9.4 10.0 10.6
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 16.8 18.4 19.8 21.2 22.8 24.5 25.9 27.5 29.2
ε A’ 68 89 100 100 100 100 100 100 100
m 0exp *,pg 24.7 20.7 19.8 21.2 22.8 24.5 25.9 27.5 29.2
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 11.2 11.8 12.5 13.1 13.8 14.5 15.2 15.8 16.6
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 11.2 11.8 12.5 13.1 13.8 14.5 15.2 15.8 16.6
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 30.8 32.5 34.4 36.0 38.0 39.9 41.8 43.5 45.7
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 30.8 32.5 3.44 34.4 380 39.9 41.8 43.5 45.7
(11) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(6) (1) Ge 265.1nm R z,PM=0.82 R z,AM=0.91
HGA T(K) 2300 2400 2500 2600 2700
m 0cal.pg 8.1 8.6 9.0 9.6 10.1
ε A’ 5.8 18.1 30.1 41.5 59.2
m 0exp *,pg 140 47.5 29.9 23.1 17.1
THGA T(K) 2300 2400 2500 2600 2700
m 0cal.pg 22.3 23.7 24.8 26.4 27.8
ε A’ 17.5 28.3 38.8 53.5 76.4
m 0exp *,pg 127 83.7 63.9 49.3 36.4
HGA T(K) 2800 2900 3000 3100 3200
m 0cal.pg 10.6 11.1 11.6 12.2 12.6
ε A’ 69.3 77.8 87.1 91.7 94.7
m 0exp *,pg 15.3 14.3 13.3 13.3 13.3
THGA T(K) 2800 2900 3000 3100 3200
m 0cal.pg 29.2 30.5 31.9 33.6 34.7
ε A’ 82.5 87.1 91.9 96.8 100
m 0exp *,pg 35.4 35.0 34.7 34.7 34.7
(6) (2) Si 251.6nm R z,PM=0.94 R z,AM=0.98
HGA T(K) 2300 240 2500 2600 2700
m 0cal.pg 9.5 10.2 10.9 11.6 12.3
ε A’ 20.1 34.6 57.1 68.6 82.5
m 0exp *,pg 47.3 29.5 19.1 16.9 14.9
THGA T(K) 2300 2400 2500 2600 2700
m 0cal.pg 261 28.1 30.0 31.9 33.8
ε A’ 28.1 51.6 67.1 74.2 82.5
m 0exp *,pg 92.9 24.5 44.7 43.0 41.0
HGA T(K) 2800 2900 3000 3100 3200
m 0cal.pg 13.0 13.8 14.6 15.4 16.3
ε A’ 86.7 91.4 95.4 100 100
m 0exp *,pg 15.0 15.1 15.3 15.4 16.3
THGA T(K) 2800 2900 3000 3100 3200
m 0cal.pg 35.8 38.0 40.2 42.4 44.8
ε A’ 86.7 91.4 95.4 100 100
m 0exp *,pg 41.3 41.6 42.1 42.4 44.8
(12) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(6) (3) Sn 286.3nm R z,PM=0.97 R z,AM=0.98
HGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 3.01 3.90 4.59 5.36 6.25 7.19 8.22 9.39 10.7
ε A’ 2.3 11.0 21.0 25.5 31.1 35.8 41.3 47.2 53.9
m 0exp *,pg 131 35.5 21.9 21.0 20.2 20.1 19.9 19.9 19.8
THGA T(K) 1500 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 8.3 10.7 12.6 14.7 17.2 19.8 22.6 25.8 29.4
ε A’ 6.0 17.2 25.2 29.4 34.4 39.6 45.2 51.6 58.8
m 0exp *,pg 138 62.2 50.0 50.0 50.0 50.0 50.0 20.0 50.0
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 12.0 13.5 15.2 17.0 18.8 20.8 23.8 26.1
ε A’ 60.7 67.5 74.0 83.0 92.4 100 100 100
m 0exp *,pg 19.8 20.0 20.54 20.5 20.3 20.8 23.8 26.1
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 33.0 37.2 41.7 46.7 51.7 57.1 63.3 68.8
ε A’ 66.0 744.4 83.4 93.4 100 100 100 100
m 0exp *,pg 50.0 50.0 50.0 50.0 51.7 57.1 63.3 68.8
(6) (4) Pb 283.3nm R z,PM=0.90 R z,AM=0.91
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 4.36 4.81 5.28 5.77 6.30 6.80 7.40 7.90 8.60
ε A’ 15.0 42.0 56.8 62.7 38.5 73.9 80.4 85.9 93.5
m 0exp *,pg 29.1 11.4 9.3 9.2 9.2 9.2 9.2 9.2 9.2
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 12.0 13.2 14.5 15.9 17.3 18.7 20.4 21.7 23.7
ε A’ 36.0 52.5 80.0 100 100 100 100 100 100
m 0exp *,pg 33.3 25.1 18.1 15.9 17.3 18.7 20.4 21.7 23.7
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 9.20 9.90 10.6 11.4 12.2 13.1 14.0 15.0 16.0
ε A’ 93.9 93.4 93.8 93.6 93.8 93.5 100 100 100
m 0exp *,pg 9.8 10.6 11.3 12.2 13.0 14.0 14.0 15.0 16.0
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 25.3 27.2 29.2 31.4 33.6 36.0 38.5 41.3 44.0
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 25.3 27.2 29.2 31.4 33.6 36.0 38.5 41.3 44.0
(13) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(7) (1) P 213.6nm R z,PM=0.70 R z,AM=0.70
HGA T(K) 2300 2400 2500 2600 2700 2800
m 0cal.ng 0.63 0.83 1.10 1.44 1.89 2.46
ε A’ 4.0 20.0 35.5 46.5 61.0 79.4
m 0exp *,ng 15.8 4.16 3.10 3.10 3.10 3.10
THGA T(K) 2300 2400 2500 2600 2700 2800
m 0cal.ng 1.73 2.29 3.02 3.96 5.19 6.77
ε A’ 10.0 26.5 35.0 46.0 60.0 78.0
m 0exp *,ng 17.3 8.65 8.62 8.62 8.64 8.74
HGA T(K) 2850 2900 3000 3100 3200
m 0cal.ng 2.81 3.21 4.16 5.41 7.00
ε A’ 90.6 100 100 100 100
m 0exp *,ng 3.10 3.21 4.16 5.41 7.00
THGA T(K) 2850 2900 3000 3100 3200
m 0cal.ng 7.74 8.83 11.45 14.89 19.24
ε A’ 87.9 100 100 100 100
m 0exp *,ng 8.80 8.83 11.45 14.89 19.24
(7) (2) As 193.7nm R z,PM=0.52 R z,AM=0.89
HGA T(K) 1800 1900 2000 2100 2200 2300 2400
m 0cal.pg 4.58 8.835.02 5.47 5.94 6.42 6.92 7.49
ε A’ 12.0 32.5 46.0 54.4 59.1 64.1 71.3
m 0exp *,pg 38.2 15.5 11.9 10.9 10.9 10.8 10.5
THGA T(K) 1800 1900 2000 2100 2200 2300 2400
m 0cal.pg 12.6 13.8 15.0 16.3 17.7 19.0 20.6
ε A’ 31.1 54.8 62.9 70.3 83.5 100 100
m 0exp *,pg 40.5 25.2 24.2 23.2 21.2 19.0 20.6
HGA T(K) 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 7.97 8.52 9.10 9.68 10.3 10.9 11.6
ε A’ 77.4 79.9 85.0 90.0 95.1 100 100
m 0exp *,pg 10.3 10.7 10.7 10.8 10.8 10.9 11.6
THGA T(K) 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 21.9 23.4 25.0 26.6 28.3 30.0 31.8
ε A’ 100 100 100 100 100 100 100
m 0exp *,pg 21.9 23.4 25.0 26.6 28.3 30.0 31.8
(14) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(7) (3) Sb 217.6nm R z,PM=0.54 R z,AM=0.95
HGA T(K) 1400 1500 1600 1700 1800 1900 2000 2100 2200
m 0cal.pg 4.6 5.2 5.7 6.3 7.1 7.7 8.2 8.9 9.7
ε A’ 5.0 15.0 24.7 40.8 67.0 72.5 77.4 84.0 91.9
m 0exp *,pg 92 34.7 23.1 15.4 10.6 10.6 10.6 10.6 10.6
THGA T(K) 1400 1500 1600 1700 1900 1900 2000 2100 2200
m 0cal.pg 12.7 14.3 15.7 17.3 21.2 21.2 22.6 24.5 26.7
ε A’ 15.0 25.2 36.3 56.8 100 100 100 100 100
m 0exp *,pg 84.7 56.7 43.3 30.5 21.2 21.2 22.6 24.5 26.7
HGA T(K) 2300 2400 2500 2600 2800 2800 2900 3000
m 0cal.pg 10.4 11.1 11.9 12.7 14.5 14.5 15.4 16.3
ε A’ 91.3 91.8 92.0 91.6 91.6 91.6 91.8 91.6
m 0exp *,pg 11.4 12.1 12.9 13.9 15.8 15.8 16.8 17.8
THGA T(K) 2300 2400 2500 2600 2800 2800 2900 3000
m 0cal.pg 28.6 30.5 32.7 34.9 39.9 39.9 42.4 44.8
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 28.6 30.5 32.7 34.9 39.9 39.9 42.4 44.8
(7) (4) Bi 306.8nm R z,PM=0.144 R z,AM=0.70
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 9.2 10.2 11.2 12.3 13.4 14.5 15.7 17.0 18.2
ε A’ 5.4 17.0 38.0 58.3 63.2 69.0 74.8 81.0 87.5
m 0exp *,pg 184 61.0 29.5 21.0 21.0 21.0 21.0 21.0 21.0
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 25.3 28.1 30.8 33.8 36.9 39.9 43.2 46.8 50.1
ε A’ 16.0 37.1 61.6 67.6 73.8 79.8 86.4 93.6 100
m 0exp *,pg 158 75.7 50.6 50.0 50.0 50.0 50.0 50.0 50.1
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 19.6 20.9 22.4 23.9 25.5 27.1 28.7 30.4 32.3
ε A’ 93.3 100 100 100 100 100 100 100 100
m 0exp *,pg 21.0 20.9 22.4 23.9 25.5 27.1 28.7 30.9 32.3
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 53.9 57.5 61.6 65.7 70.1 74.5 78.9 83.6 88.8
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 53.9 57.5 61.6 65.7 70.1 74.5 78.9 83.6 88.8
(15) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(8) (1) Se 196.0nm R z,PM=0.52 R z,AM=0.88
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 4.4 4.9 5.5 6.3 7.3 7.3 8.0 8.7
ε A’ 3.1 7.3 26.8 42.0 67.3 67.3 75.5 80.4
m 0exp *,pg 142 67.1 20.5 15.0 10.8 10.8 10.8 10.8
THGA T(K) 1600 1700 1800 1900 2200 2100 2200 2300
m 0cal.pg 12.1 13.5 15.1 17.3 22.0 20.1 22.0 23.9
ε A’ 6.8 23.5 38.1 52.0 82.7 70.5 82.7 89.5
m 0exp *,pg 177 57.5 39.6 33.3 26.6 28.5 26.6 26.6
HGA T(K) 2400 2500 2600 2700 3000 2900 3000
m 0cal.pg 9.4 10.2 10.9 11.8 14.5 13.5 14.5
ε A’ 87.2 94.4 100 100 100 100 100
m 0exp *,pg 10.8 10.8 10.9 11.8 14.5 13.5 14.5
THGA T(K) 2400 2500 2600 2700 3000 2900 3000
m 0cal.pg 25.9 28.1 30.0 32.5 39.9 37.1 39.9
ε A’ 97.3 100 100 100 100 100 100
m 0exp *,pg 26.6 28.1 30.0 32.5 39.9 37.1 39.9
(8) (2) Te 214.3nm R z,PM=0.42 R z,AM=0.93
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2100
m 0cal.pg 3.8 4.3 4.8 5.3 5.9 6.4 7.1 8.3
ε A’ 18 25 35 50 56.2 62.1 67.6 81.4
m 0exp *,pg 21.1 17.2 13.7 10.6 10.4 10.4 10.4 10.4
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2100
m 0cal.pg 10.5 11.8 12.4 14.6 16.2 17.1 19.5 22.8
ε A’ 25.0 39.0 42.9 50.5 56.1 59.2 67.2 79.4
m 0exp *,pg 42.0 30.3 28.9 28.9 28.9 28.9 28.9 28.9
HGA T(K) 2200 2300 2400 2500 2600 2800 2800 3000
m 0cal.pg 8.9 9.8 10.5 11.3 12.1 13.8 13.8 15.6
ε A’ 85.6 94.2 100 100 100 100 100 100
m 0exp *,pg 10.4 10.4 10.5 11.3 12.1 13.8 13.8 15.6
THGA T(K) 2200 2300 2400 2500 2600 2800 2800 3000
m 0cal.pg 24.5 27.0 28.9 31.1 33.3 38.0 38.0 42.9
ε A’ 84.8 93.1 100 100 100 100 100 100
m 0exp *,pg 28.9 28.9 28.9 31.1 33.3 38.0 38.0 42.9
(16) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(9) (1) Cr 357.9nm R z,PM=0.44 R z,AM=0.88
HGA T(K) 1900 2000 2100 2200 2300 2400 2500
m 0cal.pg 0.841 0.922 1.007 1.095 1.186 1.293 1.384
ε A’ 4.2 9.9 13.8 26.6 31.7 38.4 47.9
m 0exp *,pg 19.9 9.35 6.73 4.11 3.74 3.37 2.89
THGA T(K) 1900 2000 2100 2200 2300 2400 2500
m 0cal.pg 2.31 2.54 2.77 3.01 3.26 3.56 3.81
ε A’ 10.4 25.1 3.83 52.1 62.1 100 100
m 0exp *,pg 22.2 10.1 7.23 5.78 2.25 3.56 3.81
HGA T(K) 2600 2700 2800 2900 3000 3100
m 0cal.pg 1.494 1.605 1.723 1.847 1.980 2.11
ε A’ 62.2 76.1 82.1 57.5 94.0 100
m 0eexp *,pg 2.40 2.11 2.11 2.11 2.11 2.11
THGA T(K) 2600 2700 2800 2900 3000 3100
m 0cal.pg 4.11 4.41 4.74 5.08 5.45 5.81
ε A’ 100 100 100 100 100 100
m 0exp *,pg 4.11 4.41 4.74 5.08 5.45 5.81
(9) (2) Mn 279.5nm R z,PM=0.46 R z,AM=0.91
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 0.744 0.813 0.884 0.960 1.034 1.110 1.190 1.267
ε A’ 8.0 13.0 26.0 48.0 67.1 78.7 84.4 89.9
m 0exp *,pg 9.26 6.24 3.40 2.00 1.54 1.41 1.41 1.41
THGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 2.05 2.24 2.43 2.64 2.84 3.05 3.27 3.48
ε A’ 20 33 65 100 100 100 100 100
m 0exp *,pg 10.25 6.79 3.74 2.64 2.84 3.05 3.27 3.48
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 1.348 1.43 1.51 1.59 1.68 1.76 1.85 1.94
ε A’ 95.6 100 100 100 100 100 100 100
m 0exp *,pg 1.41 1.43 1.51 1.59 1.68 1.76 1.85 1.94
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 3.71 3.93 4.15 4.38 4.62 4.85 5.09 5.34
ε A’ 100 100 100 100 100 100 100 100100
m 0exp *,pg 3.71 3.93 4.15 4.38 4.62 4.85 5.09 5.34
(17) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(9) (3) Fe 248.3nm R z,PM=0.68 R z,AM=0.92
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 1.16 1.31 1.48 1.65 1.83 2.01 2.20 2.40
ε A’ 2.24 5.95 9.3 14.1 22.0 28.1 39.0 49.9
m 0exp *,pg 51.8 22.0 16.0 11.7 8.30 7.15 5.64 4.81
THGA T(K) 166 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 3.19 3.60 4.07 4.54 5.03 5.53 6.05 6.60
ε A’ 4.5 11.9 18.6 28.2 44.0 56.2 78.0 100
m 0exp *,pg 70.9 30.2 21.9 16.1 11.4 9.84 7.74 6.60
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 2.61 2.83 3.05 3.28 3.53 3.78 4.05 4.32
ε A’ 74.6 81.8 89.5 95.3 100 100 100 100
m 0exp *,pg 3.50 3.46 3.46 3.44 3.53 3.78 4.05 4.32
THGA T(K) 2400 2600 2600 2700 2800 2900 3000 3100
m 0cal.pg 7.18 8.39 8.39 9.02 9.71 10.4 11.1 11.9
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 7.18 8.39 8.39 9.02 9.71 10.4 11.1 11.9
(9) (4) C 0240.7nm R z,PM=0.91 R z,AM=0.95
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 1.37 1.56 1.77 2.00 2.25 2.52 2.80 3.10
ε A’ 2.02 4.97 7.6 12.5 17.6 24.2 35.0 46.1
m 0exp *,pg 67.7 31.4 23.2 16.0 12.8 10.4 8.00 6.72
THGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 3.77 4.29 4.87 5.50 6.19 6.93 7.70 8.53
ε A’ 3.3 8.4 12.7 20.9 29.4 40.4 58.5 77
m 0exp *,pg 114 51.1 38.3 26.3 21.1 17.2 13.2 11.1
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 3.42 3.75 4.11 4.47 4.67 5.28 5.70 6.16
ε A’ 59.8 69.4 85.6 93.1 97.3 100 100 100
m 0exp *,pg 5.72 5.40 4.80 4.80 4.80 5.28 5.70 6.16
THGA T(K) 2400 2500 2600 2700 280 2900 3000 3100
m 0cal.pg 9.35 10.3 11.3 12.3 12.8 14.5 15.7 16.9
ε A’ 100 100 100 100 100 100 100 100
m 0exp *,pg 9.35 10.3 11.3 12.3 12.8 14.5 15.7 16.9
(18) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(9) (5) Ni 232.0nm R z,PM=0.91 R z,AM=0.91
HGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 2.16 2.43 2.74 3.07 3.42 3.78 4.17 4.58
ε A’ 1.47 4.0 5.9 9.9 14.9 21.8 32.1 42.0
m 0exp *,pg 147 60.7 46.3 30.9 20.9 17.3 13.0 10.9
THGA T(K) 1600 1700 1800 1900 2000 2100 2200 2300
m 0cal.pg 5.9 6.7 7.5 8.4 9.4 10.4 11.5 12.6
ε A’ 3.0 5.3 7.8 13.2 19.8 29.0 42.7 55.9
m 0exp *,pg 197 126 96 63.6 47.5 35.9 26.9 22.5
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 5.05 5.47 5.92 6.41 6.94 7.45 8.02 8.60
ε A’ 54.9 73.0 81.0 89.9 100 100 100 100
m 0exp *,pg 9.2 7.49 7.31 7.13 6.94 7.45 8.02 8.60
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 13.9 15.0 16.3 17.6 19.1 20.5 22.1 23.7
ε A’ 92.0 100 100 100 100 100 100 100
m 0exp *,pg 15.1 15.0 16.3 17.6 19.1 20.5 22.1 23.7
(10) (1) Pd 246.7nm R z,PM=0.91 R z,AM=0.91
HGA T(K) 1800 1900 2000 2100 2200 2300 2400
m 0cal.pg 6.18 6.80 7.50 8.27 9.0 9.9 10.8
ε A’ 3.29 6.83 15.9 36.9 48.9 64.3 71.3
m 0exp *,pg 188 99.5 47.2 22.4 18.5 15.4 15.4
THGA T(K) 1800 1900 2000 2100 2200 2300 2400
m 0cal.pg 17.0 18.7 20.3 24.1 24.9 27.2 29.8
ε A’ 9.2 19.7 47.5 65.8 83.6 91.0 100
m 0exp *,pg 185 94.8 43.4 36.6 29.8 29.8 29.8
HGA T(K) 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 11.8 12.9 14.1 15.4 16.9 18.6 20.2
ε A’ 77.4 84.2 92.0 100 100 100 100
m 0exp *,pg 15.4 15.4 15.4 1.54 16.9 18.6 20.2
THGA T(K) 2500 2600 2700 2800 2900 3000 3100
m 0cal.pg 32.6 35.6 38.8 42.2 46.4 51.1 55.6
ε A’ 100 100 100 100 100 100 100
m 0exp *,pg 32.6 35.6 38.8 42.2 46.4 51.1 55.6
(19) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A'=m 0Cal/m 0Exp *, m 0Exp *Value
(10) (2) Pt 265.9nm R z,PM=0.80 R z,AM=0.80
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 38.1 41.6 45.1 48.1 52.4 57.5 60.5 64.6 68.8 74.2 77.6
ε A’ 5.89 12.3 27.8 59.8 80.6 88.5 91.7 97.9 100 100 100
m 0exp *,pg 647 339 162 81.5 65.0 65.0 66.0 66.0 68.8 74.2 77.6
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 105 114 124 132 144 158 166 178 189 204 213
ε A’ 14.0 31.7 70.5 82.7 100 100 100 100 100 100 100
m 0exp *,pg 751 360 176 160 144 158 166 178 189 189 213
(10) (3) Rh 343.5nm R z,PM=0.54 R z,AM=0.98
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 545 6.01 6.60 7.20 7.84 8.53 9.25 9.99 10.8 11.6 12.5
ε A’ 5.48 11.3 24.6 57.8 78.5 85.8 93.0 100 100 100 100
m 0exp *,pg 99.4 53.2 26.8 12.5 9.99 9.94 9.95 9.99 10.8 11.6 12.5
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 15.0 16.5 18.1 19.8 21.6 23.5 25.4 27.5 29.7 31.9 34.4
ε A’ 13.2 28.5 67.0 91.7 100 100 100 100 100 100 100
m 0exp *,pg 114 57.8 27.0 21.6 21.6 23.5 25.4 27.5 29.7 31.9 34.0
(10) (4) Ru 349.9nm R z,PM=0.85 R z,AM=0.90
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 10.7 11.8 12.9 14.1 15.4 16.7 18.2 19.6 21.2 22.8 24.6
ε A’ 3.07 6.35 13.8 32.6 4.38 47.4 51.7 55.7 60.2 64.8 69.9
m 0exp *,pg 349 186 93.4 43.4 34.0 34.0 34.0 34.0 34.0 34.0 34.0
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 3000 3100 3100 3200
m 0cal.pg 29.4 32.5 35.5 38.8 42.4 45.9 50.1 58.3 62.7 62.7 67.7
ε A’ 7.0 15.5 36.4 50.7 55.4 60.0 65.5 76.2 82.0 82.0 88.5
m 0exp *,pg 420 210 97.4 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5
(10) (5) Ir 264.0nm R z,PM=0.91 R z,AM=0.96
HGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 29.0 31.5 34.2 37.1 40.2 43.2 46.6 50.3 54.3
ε A’ 7.4 15.9 34.2 74.2 85.5 92.3 100 100 100
m 0exp *,pg 392 198 100 50.0 47.0 46.8 46.6 50.3 54.3
THGA T(K) 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 80 87 94 102 111 119 128 138 149
ε A’ 13.8 34.1 73.4 79.7 86.7 93.0 100 100 100
m 0exp *,pg 578 255 128 128 128 128 128 138 149
(20) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A '=m 0Cal/m 0Exp *, m 0Exp *Value
(11) (1) Os 290.9nm R z,PM=0.46 R z,AM=0.87
HGA T(K) 3000 3100 3200
m 0cal.pg 40.0 43.1 46.4
ε A’ 5.9 8.5 13.6
m 0exp *,pg 680 510 340
THGA T(K) 2900 3000 3100 3200
m 0cal.pg 102 110 119 128
ε A’ 6.1 8.8 14.2 22.7
m 0exp *,pg 1670 1250 838 564
(11) (2) B 249.8nm R z,PM=0.57 R z,AM=0.67
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 16.3 17.6 18.9 20.2 21.6 23.0 24.4 25.9
ε A’ 5.6 9.3 15.0 21.0 22.7 24.2 25.7 27.3
m 0exp *,pg 289 190 126 96 95 95 95 95
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 44.8 48.4 52.0 55.6 59.4 63.3 67.1 71.2
ε A’ 11.5 18.1 27.4 29.3 31.3 33.3 35.3 37.5
m 0exp *,pg 390 267 190 190 190 190 190 190
(12) (1) Sc 391.2nm R z,PM=0.88 R z,AM=0.96
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 1.120 1.174 1.228 1.283 1.337 1.391 1.453 1.519
ε A’ 1.3 10.7 18.9 19.7 20.6 21.4 22.4 23.4
m 0exp *,pg 88 11.0 6.50 6.50 6.50 6.50 6.50 6.50
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 3.08 3.23 3.38 3.53 3.68 3.83 4.00 4.18
ε A’ 8.8 18.0 18.9 19.7 20.6 21.4 22.4 23.4
m 0exp *,pg 35.0 17.9 17.9 17.9 17.9 17.9 17.9 17.9
(12) (2) Y 410.2nm R z,PM=0.75 R z,AM=0.88
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 4.60 4.81 5.03 5.23 5.45 5.66 589 6.16
ε A’ 3.03 6.56 14.8 15.3 16.0 16.6 17.3 18.1
m 0exp *,pg 146.7 73.3 33.0 33.0 33.0 33.0 33.0 33.0
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 12.7 13.2 13.8 14.4 15.0 15.6 16.2 16.9
ε A’ 6.3 14.6 14.8 15.3 16.0 16.6 17.3 18.1
m 0exp *,pg 201 90.8 90.8 90.8 90.8 90.8 90.8 90.8
(21) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A '=m 0Cal/m 0Exp *, m 0Exp *Value
(12) (3) La 550.1nm R z,PM=0.94 R z,AM=0.96
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 50.3 54.8 59.7 65.0 70.3 75.9 82.1 88.4
ε A’ 1.14 2.5 15.2 11.8 12.8 13.8 14.9 16.1
m 0exp *,pg 4430 2180 1400 550 550 550 550 550
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 138 151 164 179 193 209 226 243
ε A’ 2.8 5.4 10.8 11.8 12.8 13.8 14.9 16.1
m 0exp *,pg 4900 2800 1513 1513 1513 1513 1513 1513
(12) (4) Le 463.2nm R z,PM=0.65 R z,AM=0.80
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.ng 1.546 1.653 1.77 1.90 2.04 3.19 2.30 2.43
ε A’ 4.2 9.0 17.7 19.0 10.0 2.19 23.0 10.0
m 0exp *,ng 36.7 18.3 10.0 10.0 20.4 10.0 10.0 3200
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 6.68
m 0cal.ng 4.24 4.55 4.88 5.22 5.61 6.01 6.32 24.3
ε A’ 8.1 16.5 17.7 19.0 20.4 21.9 23.0 27.5
m 0exp *,ng 52.0 27.5 27.5 27.5 27.5 27.5 27.5
(12) (5) Pr 495.1nm R z,PM=0.75 R z,AM=0.94
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 51.9 55.5 59.3 63.4 67.5 71.7 75.9 80.2
ε A’ 1.5 3.5 7.4 12.7 13.6 14.3 15.2 16.0
m 0exp *,pg 3385 1600 500 500 500 200 500 500
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 143 153 163 174 186 197 209 221
ε A’ 3.25 6.95 11.9 12.7 13.6 14.3 15.2 16.0
m 0exp *,pg 4400 2200 1375 1375 1375 1375 1375 1375
(12) (6) Nd 463.4 R z,PM=0.80 R z,AM=0.93
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 32.6 35.0 37.5 40.0 42.7 45.4 48.0 51.0
ε A’ 6.15 10.0 13.4 14.3 15.3 16.2 17.1 18.2
m 0exp *,pg 548 350 280 280 280 280 280 280
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 89.7 96.3 103 110 117 125 132 140
ε A’ 9.0 12.5 13.4 14.3 15.3 16.2 17.1 18.2
m 0exp *,pg 1000 770 770 770 770 770 770 770
(22) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A '=m 0Cal/m 0Exp *, m 0Exp *Value
(12) (7) Sm 429.7nm R z,PM=0.84 R z,AM=0.941
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 108 106 104 103 102 101 101 101 101 101
ε A’ 11.7 27.9 51.4 73.4 100 100 100 100 100 100
m 0exp *,pg 917 379 202 140 102 101 101 101 101 101
THGA T(K) 2300 2400 2500 2600 2700 2800 3000 3100 3100 3200
m 0cal.pg 296 290 285 283 281 279 279 278 278 278
ε A’ 27.9 52.7 73.1 100 100 100 100 100 100 100
m 0exp *,pg 1060 550 390 283 281 279 279 278 278 278
(12) (8) Eu 459.4nm R z,PM=0.61 R z,AM=0.96
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 3.70 3.88 4.06 4.25 4.44 4.62 4.84 5.01 5.21 5.41 5.61
εA’% 4.03 9.35 19.7 47.0 71.5 88.9 94.7 100 100 100 100
m 0exp *,pg 94.8 41.5 20.6 9.02 6.21 5.21 5.11 5.01 5.41 5.41 5.0
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3100 3100 3200
m 0cal.pg 10.2 10.7 12.8 11.7 12.2 12.7 13.2 13.8 14.9 14.9 15.4
ε A’ 8.95 19.0 53.1 71.8 82.4 88.9 94.3 100 100 100 100
m 0exp *,pg 114 56.2 24.1 16.3 14.8 14.3 14.0 13.8 14.9 14.9
(12) (9) Gd 407.9nm R z,PM=0.52 R z,AM=0.80
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 142 149 156 163 171 179 186 193
ε A’ 3.86 9.8 19.8 26.8 28.1 29.3 30.5 31.7
m 0exp *,pg 3667 1517 786 610 610 610 610 610
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 389 409 428 449 471 492 512 531
ε A’ 9.26 18.6 25.5 26.8 28.1 29.3 30.5 31.7
m 0exp *,pg 4200 2200 1678 1678 1678 1678 1978 1678
(12) (10) Tb 432.6nm R z,PM=0.82 R z,AM=0.88
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 13.7 14.6 15.5 16.4 17.3 18.3 19.3 20.4
ε A’ 1.81 4.14 9.17 14.9 15.8 16.7 17.6 18.5
m 0exp *,pg 759 352 169 110 110 100 1.0 110
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 37.8 40.1 42.6 45.1 47.7 50.4 53.2 56.0
ε A’ 3.9 8.6 14.1 14.9 15.8 16.7 17.6 18.5
m 0exp *,pg 466 303 303 303 303 303 303
(23) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A '=m 0Cal/m 0Exp *, m 0Exp *Value
(12) (11) Dy 421.2nm R z,PM=0.72 R z,AM=0.89
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 2.78 2.92 3.09 3.26 3.42 3.61 3.79 3.97 4.17 4.36
ε A’ 2.93 6.74 17.6 18.5 19.5 20.5 21.5 22.6 23.7 24.8
m 0exp *,pg 91.7 41.9 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0
THGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 7.65 8.03 8.50 8.97 9.43 9.93 10.4 10.9 11.5 12.0
ε A’ 8.7 22.6 23.9 25.2 26.5 27.9 29.3 30.7 32.2 33.7
m 0exp *,pg 87.7 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 55.6
(12) (12) Ho 410.4nm R z,PM=0.94 R z,AM=0.96
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 3.05 3.22 3.39 3.58 3.76 3.94 4.14 45.3 4.74 4.96
ε A’ 2.93 7.08 18.2 19.2 20.2 21.2 22.3 24.4 25.5 26.7
m 0exp *,pg 101 440 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
THGA T(K) 2300 2400 2500 2600 2800 2800 2900 2900 3100 3200
m 0cal.pg 8.39 8.86 9.32 9.85 10.8 10.8 11.4 11.4 13.0 13.6
ε A’ 9.2 23.6 24.9 26.3 28.9 28.9 30.4 30.4 34.8 36.4
m 0exp *,pg 91.6 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5
(12) (13) Er 400.8nm R z,PM=0.91 R z,AM=0.96
HGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 2.44 2.58 2.72 2.86 3.01 3.16 3.32 3.49 3.66 3.83
ε A’ 2.27 5.75 15.5 16.3 17.1 18.0 18.9 19.8 20.8 21.8
m 0exp *,pg 111 46.4 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6
THGA T(K) 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 6.71 7.10 7.48 7.87 8.44 8.69 9.13 9.60 10.1 10.5
ε A’ 6.45 18.0 19.0 20.0 21.4 22.1 23.2 24.4 25.6 26.7
m 0exp *,pg 104 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4
(12) (14) Tm 371.8nm R z,PM=0.91 R z,AM=0.96
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 2.10 2.24 2.39 2.53 2.68 2.84 3.00 3.16 3.33 3.50 3.68
ε A’ 6.7 22.9 60.5 81.6 86.5 91.6 96.8 100 100 100 100
m 0exp *,pg 31.4 9.78 3.95 3.10 3.10 3.10 3.10 3.16 3.33 3.50 3.68
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 5.78 6.16 6.57 6.96 7.37 7.81 8.25 8.69 9.16 9.63 10.1
ε A’ 18.1 56.7 77.0 81.6 86.5 91.6 9.55 100 100 100 100
m 0exp *,pg 32.0 10.9 8.53 8.53 8.53 8.53 8.64 8.69 9.16 9.63 10.1
(24) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A '=m 0Cal/m 0Exp *, m 0Exp *Value
(12) (15) Yb 398.8nm R z,PM=0.94 R z,AM=0.96
HGA T(K) 2000 2100 2200 2300 2400 2500 2600
m 0cal.pg 0.717 0.753 0.789 0.825 0.861 0.897 0.34
ε A’ 2.6 9.6 38.3 75.0 80.8 83.8 89.5
m 0exp *,pg 27.5 7.86 2.056 1.100 1.065 1.070 1.043
THGA T(K) 2000 2100 2200 2300 2400 2500 2600
m 0cal.pg 19.7 2.07 2.17 2.27 2.37 2.47 2.57
ε A’ 34.1 71.9 75.3 78.8 82.2 85.7 89.2
m 0exp *,pg 5.78 2.88 2.88 2.88 2.88 2.88 2.88
HGA T(K) 2700 2800 2900 3000 3100 3200
m 0cal.pg 0.970 1.007 1.043 1.079 1.115 1.151
ε A’ 93.0 96.5 100 100 100 100
m 0exp *,pg 1.043 1.078 1.043 1.079 1.115 1.151
THGA T(K) 2700 2800 2900 3000 3100 3200
m 0cal.pg 2.67 2.77 2.87 2.97 3.07 3.17
ε A’ 92.6 96.1 100 100 100 100
m 0exp *,pg 2.88 2.88 2.87 2.97 3.07 3.17
(12) (16) Lu 336.0nm R z,PM=0.94 R z,AM=0.96
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 90.6 92.3 93.5 95.3 97.1 98.9 101 101
ε A’ 5.35 11.5 25.5 38.1 50.1 51.0 52.1 53.0
m 0exp *,pg 1692 800 367 250 194 194 194 194
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 249 254 257 262 267 272 278 283
ε A’ 12.3 25.1 37.4 49.1 50.1 51.0 52.1 53.0
m 0exp *,pg 2030 1010 688 534 534 534 534 534
(12) (17) U 358.5nm R z,PM=0.49 R z,AM=0.92
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 612 657 704 754 809 860 912 967
ε A’ 8.35 21.2 50.9 76.8 91.9 100 100 100
m 0exp *,pg 7333 3100 1384 982 880 860 912 967
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 1683 1807 1936 2074 2225 2365 2508 2659
ε A’ 23.4 54.4 78.2 93.0 100 100 100 100
m 0exp *,pg 7192 3322 2476 2230 2225 2365 2508 2659
(25) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A '=m 0Cal/m 0Exp *, m 0Exp *Value
(13) (1) i365.35nm R z,PM=0.96 R z,AM=0.96
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 19.5 20.9 22.5 24.2 25.8 27.7 29.6 31.7
ε A’ 7.77 17.8 42.5 67.0 81.4 92.3 98.7 100
m 0exp *,pg 251 117 51.2 36.1 31.7 30.0 30.0 31.7
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 53.6 57.5 61.9 66.6 71.0 76.2 81.4 87.2
ε A’ 79.8 85.6 92.1 100 100 100 100 100
m 0exp *,pg 67.2 67.2 67.2 66.6 71.0 76.2 81.4 87.2
(13) (2) V 318.5nm R z,PM=0.70 R z,AM=0.92
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 11.5 12.4 13.3 14.2 15.2 16.3 17.4 18.5
ε A’ 8.4 18.0 38.6 53.8 67.6 93.7 100 100
m 0exp *,pg 137 68.9 34.4 26.4 22.5 17.4 17.4 18.5
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 31.6 34.1 36.6 39.1 41.8 44.8 47.8 50.9
ε A’ 92.7 100 100 100 100 100 100 100
m 0exp *,pg 34.1 34.1 36.6 39.1 41.8 44.8 47.8 50.9
(12) (3) Mo 313.3nm R z,PM=0.42 R z,AM=0.98
HGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 3.35 3.59 3.84 4.09 4.36 4.63 4.91 5.19
ε A’ 5.93 14.4 42.5 70.6 78.1 83.0 88.0 93.0
m 0exp *,pg 56.5 25.0 9.04 5.79 5.40 5.40 5.40 5.40
THGA T(K) 2500 2600 2700 2800 2900 3000 3100 3200
m 0cal.pg 9.21 9.87 10.6 11.2 12.0 12.7 13.5 14.3
ε A’ 76.8 82.3 88.3 93.3 100 100 100 100
m 0exp *,pg 12.0 12.0 12.0 12.0 12.0 12.7 13.5 14.3
(26) 62 ms of element under different temperatures T (K) of table 1 0Cal, ε A '=m 0Cal/m 0Exp *, m 0Exp *Value
(7) (4) Bi 223.1nm R z,PM=0.275 R z,AM=0.60
HGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 29.7 3.30 3.62 3.98 4.34 4.69 5.08 5.50 5.89
ε A’ 5.4 17.0 38.0 49.6 63.2 69.0 74.8 81.0 87.5
m 0exp *,pg 59.5 19.4 9.55 8.03 6.80 6.80 6.80 6.80 6.80
THGA T(K) 1300 1400 1500 1600 1700 1800 1900 2000 2100
m 0cal.pg 8.19 9.09 9.97 10.9 11.9 12.9 14.0 15.1 16.2
ε A’ 16.0 37.1 61.6 67.6 73.8 79.8 86.4 93.6 100
m 0exp *,pg 51.1 24.5 16.2 16.2 16.2 16.2 16.2 16.2 16.2
HGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 6.34 6.80 7.25 7.73 8.25 8.77 9.29 9.84 10.5
ε A’ 93.3 100 100 100 100 100 100 100 100
m 0exp *,pg 6.80 6.80 7.25 7.73 8.25 8.77 9.29 9.84 10.5
THGA T(K) 2200 2300 2400 2500 2600 2700 2800 2900 3000
m 0cal.pg 17.4 18.6 19.9 21.3 22.7 24.1 25.5 27.1 28.7
ε A’ 100 100 100 100 100 100 100 100 100
m 0exp *,pg 17.4 18.6 19.9 21.3 22.7 24.1 25.5 27.1 28.7
(9) (1) Cr 359.3nm R z,PM=0.61 R z,AM=0.95
HGA T(K) 1900 2000 2100 2200 2300 2400 2500
m 0cal.pg 0.841 0.922 1.007 1.095 1.186 1.293 1.384
ε A’ 4.2 9.9 13.8 26.6 31.7 38.4 47.9
m 0exp *,pg 19.9 9.35 6.73 4.11 3.74 3.37 2.89
THGA T(K) 190 2000 2100 2200 2300 2400 2500
m 0cal.pg 2.31 2.54 2.77 3.01 3.26 3.56 3.81
ε A’ 10.4 25.1 38.3 52.1 62.1 100 100
m 0exp *,pg 22.2 10.1 7.23 5.78 5.25 3.56 3.81
HGA T(K) 2600 2700 2800 2900 3000 3100
m 0cal.pg 1.494 1.605 1.723 1.847 1.980 2.11
ε A’ 62.2 76.1 82.7 87.5 94.0 100
m 0exp *,pg 2.40 2.11 2.11 2.11 2.11 2.11
THGA T(K) 2600 2700 2800 2900 3000 3100
m 0cal.pg 4.11 4.41 4.74 5.08 5.45 5.81
ε A’ 100 100 100 100 100 100
m 0exp *,pg 4.11 4.41 4.74 5.08 5.45 5.81
Table 2 (1); From recording Q AValue obtains Q through linearization process A,0
A r βQ A 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300
0.8 -0.40 -0.27 -0.14 0.00 0.10 0.24 0.39 0.107 0.105 0.104 0.102 0.101 0.100 0.098 0.231 0.224 0.218 0.210 0.206 0.201 0.195 0.377 0.360 0.345 0.325 0.317 0.303 0.293 0.558 0.522 0.490 0.446 0.430 0.410 0.383 0.800 0.744 0.669 0.591 0.568 0.530 0.491 1.215 1.015 0.902 0.798 0.728 0.663 0.604 1.846 1.520 1.301 1.081 0.943 0.839 0.752 2.372 2.006 1.655 1.355 1.078 1.002 0.860
0.9 -0.40 -0.27 -0.14 0.00 0.10 0.24 0.39 0.106 0.105 0.103 0.102 0.101 0.099 0.098 0.227 0.220 0.215 0.208 0.203 0.198 0.192 0.366 0.350 0.336 0.321 0.309 0.299 0.288 0.527 0.496 0.471 0.443 0.419 0.403 0.382 0.765 0.711 0.641 0.577 0.542 0.515 0.474 1.070 0.944 0.856 0.767 0.703 3.647 0.551 1.587 1.352 1.126 0.930 0.888 0.809 0.649 2.146 1.860 1.550 1.235 1.026 0.950 0.822
1.0 -0.40 -0.27 -0.14 0.00 0.10 0.24 0.139 0.106 0.104 0.103 0.101 0.100 0.099 0.098 0.225 0.217 0.213 0.206 0.202 0.197 0.191 0.362 0.346 0.331 0.315 0.295 0.296 0.288 0.519 0.496 0.470 0.436 0.419 0.396 0.388 0.729 0.669 0.614 0.577 0.543 0.499 0.488 0.925 0.871 0.810 0.734 0.678 0.630 0.589 1.397 1.184 1.057 0.955 0.838 0.779 0.693 1.918 1.703 1.443 1.215 0.974 0.897 0.784 2.648 2.114 1.683 1.366 1.194 1.029 0.938
1.1 -0.40 -0.27 -0.14 0.00 0.10 0.24 0.39 0.105 0.104 0.103 0.101 0.100 0.099 0.097 0.223 0.217 0.211 0.205 0.201 0.195 0.189 0.357 0.341 0.327 01311 0.302 0.291 0.277 0.510 0.479 0.451 0.424 0.406 0.389 0.361 0.692 0.648 0.587 0.537 0.513 0.483 0.444 0.902 0.817 0.740 0.670 0.624 0.578 0.529 1.260 1.040 0.915 0.811 0.751 0.683 0.618 1.704 1.309 1.131 0.977 0.922 0.845 0.746 2.246 1.735 1.535 1.251 1.104 0.965 0.883 3.758 2.499 1.919 1.599 1.308 1.091 0.947
1.2 -0.40 -0.27 -0.14 0.00 0.10 0.24 0.39 0.105 0.104 0.102 0.101 0.100 0.098 0.097 0.223 0.216 0.210 0.204 0.200 0.194 0.188 0.354 0.338 0.324 0.309 0.300 0.288 0.274 0.503 0.473 0.445 0.418 0.402 0.383 0.356 0.678 0.626 0.576 0.533 0.506 0.468 0.436 0.880 0.795 0.720 0.678 0.612 0.565 0.515 1.143 0.993 0.881 0.785 0.738 0.656 0.603 1.492 1.117 1.021 0.893 0.869 0.793 0.710 1.961 1.565 1.381 1.140 0.010 0.900 0.828 3.017 1.230 1.606 1.318 1.161 1.019 0.883 4.361 3.067 2.477 1.624 1.319 1.092 0.916
1.3 -0.40 -0.27 -0.14 0.00 0.10 0.24 0.39 0.105 0.103 0.102 0.101 0.100 0.098 0.096 0.221 0.215 0.208 0.203 0.199 0.194 0.187 0.351 0.336 0.321 0.309 0.298 0.284 0.270 0.496 0.467 0.440 0.413 0.397 0.377 0.356 0.664 0.611 0.566 0.525 0.498 0.453 0.435 0.860 0.774 0.702 0.640 0.600 0.555 0.512 1.095 0.959 0.853 0.762 0.707 0.643 0.587 1.389 1.177 1.021 0.893 0.817 0.744 0.673 1.779 1.476 1.216 1.040 0.934 0.835 0.763 2.344 1.794 1.458 11309 1.079 0.941 0.823 3.361 2.316 1.777 1.521 1.251 1,066 0.916 5.667 3.368 2.431 1.745 1.493 1.242 1.041
1.4 -0.40 -0.27 -0.14 0.00 0.10 0.24 0,39 0.105 0.103 0.102 0.101 0.100 0.098 0.096 0.221 0.214 0.208 0.202 0.198 0.193 0.187 0.349 0.334 0.32a 0.306 0.296 0.284 0.271 0.492 0.463 0.437 0.411 0.394 0.374 0.354 0.658 0.604 0.561 0.514 0.494 0.457 0.431 0.845 0.756 0.692 0.632 0.591 0.551 0.506 1.092 0.939 0/836 0.759 0.697 0.637 0.578 1349 1142 0.984 0.872 0.805 0.721 0.651 1.685 1.407 1.165 1.006 0.913 0.811 0.723 2200 1.680 1.377 1.155 1.028 0.907 0.796 2846 2.093 1.632 1.332 1.164 1.039 0.875 3988 2.672 1.973 1.547 1.335 1.142 0.966 6219 3.672 2.507 1.842 1.560 1.284 1.079
Table 2 (2); From recording Q AValue obtains Q through linearization process A,0
A r βQ A 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.700
1.5 -0.40-0.27-0.14 0.00 0.10 0.24 0.39 0.220 0.212 0.208 0.201 0.197 0.193 0.187 0.348 0.332 0.317 0.305 0.295 0.283 0.271 0.489 0.460 0.434 0.408 0.393 0.372 0.352 0.649 0.598 0.555 0.515 0.489 0.462 0.428 0.831 0.747 0.683 0.624 0.587 0.546 0.498 1.044 0.920 0.821 0/736 0.686 0.627 0.571 1.294 1.117 0.958 0.854 0.787 0.709 0.637 1.606 1.339 1.133 0.978 0.891 0.800 0.708 2.001 1.589 1.320 1.112 1.000 0.889 0.776 2.547 1.914 1.534 1.264 1.157 0.982 0.845 3.422 2.347 1.793 1.436 1.259 1.082 0.919 4.889 2.979 2.151 1.656 1.420 1.193 1.004 8.203 4.238 2.682 1.954 1.644 1.341 1.119
1.6 -0.40-0.27-0.14 0.00 0.10 0.24 0.39 0.220 0.212 0.207 0.201 0.197 0.192 0.186 0.346 0.331 0.317 0.303 0.294 0.282 0.271 0.487 0.458 0.432 0.407 0.391 0.371 0.350 0.644 0.594 0.551 0.511 0.487 0.457 0.426 0.823 0.742 0.678 0.618 0.583 0.541 0.498 1.029 0.908 0.815 0.729 0.679 0.628 0.567 1.273 1.092 0.950 0.843 0.777 0.707 0.634 1.563 1.313 1.113 0.961 0.878 0.790 0.699 1.925 1.547 1.294 1.087 0.977 0.874 0.763 2.397 1.826 1.510 1.225 1.090 0.961 0.828 3.174 2.183 1.728 1.375 1.206 1.041 0.899 4.032 2.680 1.987 1.553 1.346 1.172 0.967 5.927 3455 2.363 1.773 1.512 1.314 1.050
1.7 -0.40-0.27-0.14 0.00 0.10 0.24 0.39 0.217 0.213 0.207 0.201 0.197 0.192 0.185 0.339 0.327 0.315 0.303 0.294 0281 0.268 0.484 0.448 0.427 0.405 0.389 0.367 0.347 0.640 0.590 0.547 0.509 0.482 0.454 0.424 0.815 0.737 0.674 0.614 0.578 0.536 0.495 1.015 0.897 0.799 0.722 0.673 0.616 0.563 1.249 1.075 0.942 0.833 0.768 0.695 0.628 1.524 1.273 1.090 0.946 0.865 0.722 0.691 1.857 1.497 1.253 1.065 0.963 0.857 0.752 2.276 1.756 1.466 1.190 1.066 0.929 0.807 3.022 2.067 1.695 1.329 1.174 1.010 0.874 3.498 2.548 1.923 1.493 1.297 1.102 0.940 3.973 3.029 2.151 1.656 1.420 1.193 1.005 7.324 3.983 2.544 1.878 1.579 1.299 1.084
1.8 -0.40-0.27-0.14 0.00 0.10 0,24 0.39 0.217 0.212 0.207 0.201 0.197 0.192 0.185 0.345 0.326 0.315 0.302 0.293 0.282 0.267 0.483 0.447 0.427 0.403 0.388 0.366 0.348 0.637 0.586 0.543 0.507 0.482 0.448 0.423 0.809 0.733 0.661 0.611 0.576 0.533 0.494 1.007 0.890 0.802 0.715 0.668 0.611 0.560 1.236 1.065 0.934 0.823 0.761 0.690 0.624 1.503 1.257 1,079 0.933 0.855 0.766 0.685 1.818 1.473 1,236 1.047 0.944 0.841 0.744 2 284 1.518 1.405 1.163 1.052 0.917 0.803 2.790 2.003 1.648 1.283 1.154 0.994 0.885 3.575 2.405 1.849 1.441 1.264 1.077 0.934 4.359 2.807 2.049 1.598 1.374 1.159 0.982 6.443 3.552 2.205 1.796 1.670 1.264 1.066 11.26 5.402 2.766 2.363 1.836 1.491 1.227
1.9 -0.40-0.27-0.14 0.00 0.10 0.24 0.39 0.216 0.211 0.206 0.200 0.196 0.191 0.185 0.339 0.326 0.314 0.302 0.293 0.281 0.267 0.481 0.446 0.426 0.403 0.388 0.366 0.348 0.635 0.585 0.552 0.506 0.479 0.466 0.422 0.804 0.729 0.659 0.609 0.574 0.530 0.492 1.000 0.883 0.780 0.712 0.664 0.607 0.557 1.223 1.068 0.920 0.818 0.755 0.683 0.620 1.482 1.241 1.069 0.925 0.846 0.759 0.680 1.795 1.450 1.219 1.038 0.933 0.832 0.738 2.210 1.701 1.402 1.153 1.034 0.906 0.793 2.636 1.951 1.585 1.267 1.135 0.980 0.848 3.311 2.321 1.767 1.390 1.240 1.056 0.905 3.986 2.690 1.948 1.512 1.345 1.132 0.962 5.621 3.261 2.250 1.646 1.465 1.216 1.023 9.581 4.816 2.989 2.107 1.743 1.416 1.158
A r βQ A 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.200 1.400 1.600 1.800 2.000
2.0 -0.40-0.27-0.14 0.00 0.10 0.24 0.39 0.337 0.326 0.314 0.301 0.292 0.280 0.266 0.480 0.446 0.425 0.402 0.387 0.364 0.340 0.632 0.583 0.540 0.504 0.480 0.445 0.421 0.799 0.724 0.657 0.607 0.571 0.528 0.490 0.993 0.876 0.776 0.708 0.660 0.604 0.554 1.211 1.047 0.918 0.812 0.750 0.691 0.616 1.463 1.284 1.059 0.917 0.837 0.753 0.674 1.754 1.428 1.204 1.028 0.932 0.823 0.731 2.529 1.904 1.527 1.251 1.117 0.966 0.837 3.981 2.530 1.906 1.561 1.309 1.110 0.938 6.362 3.537 2.399 1.793 1.537 1.263 1.056 10.62 5.400 3.155 2.192 1.798 1.455 1.184
Table 2 3., from recording Q AValue gets Q through linearization process A, 0
Figure A20071009722100531
Table 2 4., from recording Q AValue gets Q through linearization process A, 0
Figure A20071009722100541
Table 2 5., from recording Q AValue gets Q through linearization process A, 0
Figure A20071009722100551
Table 2 6., from recording Q AValue gets Q through linearization process A, 0
Ar BQ A 0.800 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60
3.8 -0.40 1.198 1.670 2.314 3.236 4.479 6.564 11.33
-0.27 1.020 1.366 1.769 2.181 2.833 2.535 4.474 5.662 7.323 9.549 12.48
-0.14 0.901 1.161 1.436 1.726 2.018 2.335 2.815 3.234 3.694 3.242 4.808 5.458 6.388 7.350
0.00 0.801 1.001 1.201 1.402 1.603 1.809 2.016 2.224 2.440 2.668 2.892 3.136 3.594 3.923
0.10 0.734 0.905 1.068 1.223 1.374 1.494 1.655 1.786 1.920 2.098 2.236 2.340 2.545 2.992
0.24 0.670 0.808 0.931 1.049 1.159 1.262 1.355 1.450 1.534 1.635 1.727 1.810 1.910 2.088
0.39 0.609 0.719 0.817 0.907 0.986 1.059 1.137 1.194 1.244 1.312 1.358 1.411 1.484 1.573
3.9 -0.4 1.177 1.669 2.312 3.216 4.468 6.524 11.22
-0.27 1.019 1.355 1.767 2.178 2.832 3.523 4.424 5.572 7.224 9.269 12.24
-0.14 0.900 1.160 1.435 1.724 2.017 2.330 2.807 3.217 3.669 3.189 4.749 5.389 6.221 2.159
0.00 0.800 1.001 1.201 1.401 1.602 1.808 2.009 2.219 2.430 2.647 2.878 3.089 3.516 3.722
0.10 0.734 0.905 1.068 1.222 1.373 1.492 1.652 1.779 1.909 2.080 2.216 2.310 2.486 2.795
0.24 0.670 0.808 0.930 1.048 1.158 1.261 1.352 1.447 1.530 1.629 1.716 1.794 1.886 2.014
0.39 0.609 0.719 0.817 0.906 0.985 1.058 1.134 1.192 1.241 1.306 1.353 1.401 1.471 1.550
4.0 to 7.0 -0.4 1.177 1.669 2.310 3.196 4.457 6.494 11.11
-0.27 1.019 1.365 1.765 2.176 2.831 3.513 4.374 5.483 6.913 8.993 11.96
-0.14 0.900 1.160 1.434 1.722 2.016 2.325 2.793 3.200 3.645 4.137 4.689 5.182 6.005 6.549 7.348
0.00 0.800 1.000 1.200 1.401 1.601 1.807 2.008 2.209 2.410 2.612 2.814 3.016 3.218 3.420 3.628
0.10 0.734 0.905 1.068 1.222 0.372 1.490 1.649 1.772 1.898 2.028 2.159 2.280 2.431 2.537 2.641
0.24 0.670 0.808 0.930 1.048 1.158 1.260 1.351 1.444 1.526 1.611 1.696 1.762 1.827 1.879 1.949
0.39 0.609 0.719 0.817 0.900 0.985 1.058 1.131 1.188 1.232 1.276 1.320 1.364 1.408 1.452 1.489
β/ 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60
-0.4
-0.27
-0.14 8.265 9.349 10.67 12.37 14.41 16.46
0.00 3.835 4.056 4.326 4.596 4.866 5.100 5.300 5.500 5.700 5.900 6.100 6.300 6.500 6.700 6.900
0.10 2.746 2.851 2.961 3.053 3.146 3.236 3.328 3.420 3.511 3.600 3.689 3.778 3.863 3.955 4.044
0.24 1.990 2.033 2.076 2.119 2.162 2.205 2.248 2.291 2.334 2.377 2.420 2.463 2.506 2.549 2.592
0.39 1.526 1.560 1.594 1.617 1.640 1.663 1.686 1.709 1.732 1.755 1.778 1.801 1.824 1.849 1.870
Table 3,1., 62 elements are with reference to Ar value and β value
Wavelength The Ar value The β value
nm HGA(D 2) HGA(Z) THGA(Z) HGA(D 2) HGA(Z) THGA(Z)
Li 670.8 2.0-4.0 1.5-3.0 1.5-3.0 -0.2-0.0 -0.20-0.0 -0.20-0.0
Na 589.0 2.0-4.0 1.5-3.0 1.5-3.0 -0.14-0.0 0.14-0.0 0.14-0.0
K 766.5 2.0-40 1.5-3.0 1.5-3.0 -0.07-0.0 -0.07-0.0 -0.07-0.0
Rb 780.0 2.0-4.0 1.5-3.0 1.5-3.0 -0.07-0.0 -0.07-0.0 -0.07-0.0
Cs 852.1 2.0-4.0 1.5-3.0 1.5-3.0 -0.07-0.0 -0.07-0.0 -0.07-0.0
Cu 324.7 1.7-3.5 0.8-3.2 0.8-3.2 -0.07-0.0 -0.07-0.0 -0.07-0.12
Ag 328.1 1.7-4.0 1.0-2.5 1.6-2.5 -0.40-0.27 -0.27-0.0 -0.27-+0.05
Au 242.7 1.7-4.0 1.0-2.5 1.6-2.5 -0.14-0.0 -0.27-0.0 -0.27-+0.05
Be 234.8 1.2-3.0 0.8-2.5 0.8-2.5 -0.14-0.0 -0.40--0.27 -0.40--0.27
Mg 285.2 2.5-5.0 1.5-4.0 1.5-4.0 -0.14-0.0 -0.14-0.0 -0.14-0.0
Ca 422.7 2.5-5.0 1.5-4.0 1.5-4.0 -0.14-0.0 -0.14-0.0 -0.14-0.0
Sr 460.7 2.5-5.0 1.5-4.0 1.5-4.0 -0.14-+0.00 -0.14-0.0 -0.14-0.0
Ba 553.5 2.5-5.0 1.5-4.0 1.5-4.0 -0.14-+0.00 -0.14-0.0 -0.14-0.0
Zn 213.9 2.5-3.0 0.8-2.5 0.8-2.5 -0.14-0.10 -0.27--0.07 -0.14-+0.10
Cd 228.8 2.5-3.0 0.8-2.5 0.8-2.5 -0.14-0.10 -0.27--0.07 -0.14-+0.10
Hg 253.7 1.3-2.0 0.5-1.7 0.5-1.7 -0.27-0.0 -0.27--0.0 -0.27--0.0
Al 309.2 1.5-2.5 0.8-2.0 0.8-2.0 0.18-0.39 +0.18-+0.39 +0.18-+0.39
Ga 287.4 1.5-3.0 1.0-2.5 1.0-2.5 -0.07-0.05 -0.07-+0.05 -0.07-+0.05
In 303.9 1.0-2.5 0.8-2.0 0.8-2.0 -0.14-0.05 -0.14-+0.05 -0.14-+0.05
Tl 276.7 1.0-2.5 0.8-2.0 0.8-2.0 0.0-0.8 0.0-+0.08 0.0-+0.08
Ge 265.1 2.0-3.5 1.5-3.0 1.5-3.0 -0.07-+0.08 -0.07-+0.08 -0.07-+0.08
Si 251.6 2.0-3.5 1.5-3.0 1.5-3.0 -0.07-+0.08 -0.07-+0.08 -0.07-+0.08
Sn 286.3 2.0-4.0 1.7-3.5 1.7-3.5 -0.14--0.27 -0.14--0.27 -0.14--0.27
Pb 283.3 2.0-4.0 1.7-3.5 1.7-3.5 0.0-+0.18 -0.27-+0.18 -0.27-+0.15
P 213.6 ** 1.0-2.5 0.8-2.0 0.8-2.0 -0.27-0.0 -0.27-0.0 -0.27-0.0
As 193.7 2.0-3.5 1.5-3.0 1.5-3.0 -0.27-+0.09 -0.27-+0.09 -0.27-+0.09
Sb 217.6 1.5-2.5 1.0-2.0 1.0-2.0 0.0-+0.08 0.0-+0.08 0.0-+0.08
Bi 223.1 2.0-3.5 1.5-3.0 1.5-3.0 -0.05-+0.15 -0.05-+0.15 -0.05-+0.15
Bi 306.8 2.0-3.5 1.5-3.0 1.5-3.0 -0.05-+0.15 -0.05-+0.15 -0.05-+0.15
Se 196.0 1.5-2.5 1.0-2.0 1.0-2.0 0.0-+0.18 -0.14-+0.18 -0.14-+0.18
Te 214.3 2.0-3.0 1.5-2.5 1.5-2.5 -0.14-+0.05 -0.14-+0.05 -0.14-+0.05
Cr 357.9 2.5-5.0 1.5-4.0 1.5-4.0 -0.07-+0.05 -0.07-+0.05 -0.07-+0.05
Mn 279.5 2.5-5.0 1.5-4.0 1.5-4.0 -0.20-+0.05 -0.20-+0.15 -0.20-+0.15
Fe 248.3 1.5-3.0 1.0-2.5 1.0-2.5 -0.20-0.0 0.27-0.0 -0.27-+0.06
Co 240.7 1.5-3.0 1.0-2.5 1.0-2.5 -0.20-0.0 -0.27-0.0 -0.27-+0.08
Ni 232.0 1.0-2.5 0.8-2.0 0.8-2.0 -0.27-0.0 -0.27-0.0 -0.27-+0.17
Table 3,2., 62 elements are with reference to Ar value and β value
Wavelength The Ar value The β value
nm HGA(D 2) HGA(Z) THGA(Z) HGA(D 2) HGA(Z) THGA(Z)
Pd 247.6 1.2-3.0 0.8-2.5 0.8-2.5 -0.05-+0.08 -0.05-+0.08 -0.05-+0.08
Pt 265.9 1.2-3.0 0.8-2.5 0.8-2.5 -0.05-+0.08 -0.05-+0.08 -0.05-+0.08
Rt 265.9 1.2-3.0 0.8-2.5 0.8-2.5 -0.05-+0.08 -0.05-+0.08 -0.05-+0.08
Ru 349.9 1.2-3.0 0.8-2.5 0.8-2.5 -0.05-+0.08 -0.05-+0.08 -0.05-+0.08
Ir 264.0 1.2-3.0 0.8-2.5 0.8-2.5 -0.05-+0.08 -0.05-+0.08 -0.05-+0.08
Ds 290.9 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
B 249.8 1.0-2.0 0.8-1.5 0.8-1.8 0.0-0.20 0.0--0.20 0.0--0.20
Sc 391.2 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Y 410.2 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Ca 550.1 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Ce 463.2 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Pr 495.1 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Nd 463.4 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Sm 429.7 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Eu 459.4 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Gd 407.9 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Tb 432.6 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Dy 421.2 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Ho 410.4 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Er 400.8 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Tm 371.8 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Yb 398.8 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Lu 336.0 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
U 358.5 2.0-5.0 2.0-4.0 2.0-4.0 0.0-0.20 0.0--0.20 0.0--0.20
Ti 365.4 2.5-5.0 2.0-5.0 2.0-5.0 -0.05-0.0 -0.05-+0.08 -0.05-+0.08
V 318.5 2.5-5.0 2.0-5.0 2.0-5.0 -0.05-0.0 -0.05-+0.15 -0.05-+0.15
Mo 313.3 2.5-5.0 2.0-5.0 2.0-5.0 -0.05-0.0 -0.05-+0.08 -0.05-+0.08
Table 4,1., the volumetric solution concentration ng/ml that permanent magnetic field Zeeman button background HGA graphite furnace uses
Wavelength Temperature m 0cal m 0exp * R Z,PM m zexp * Solution concentration ng/ml ( **μg/ml)
nm T(K) pg pg pg
Li 670.8 2700 0.360 1.40 0.38 3.68 3.70 111 37.0 111 370 1110
Na 589.0 2200 0.400 0.500 0.46 1.09 1.10 3.30 11.0 33.0 100 330
K 766.5 2100 0.597 0.597 0.52 1.15 1.20 3.60 12.0 36.0 120 360
Rb 780.0 2100 1.28 1.30 0.44 2.95 3.00 9.00 30.0 90.0 300 900
Cs 852.1 2200 2.30 4.07 0.40 10.2 10.0 30.0 100 300 1000 3000
Cu 324.7 2400 1.95 3.10 0.353 8.8 9.0 27.0 90 270 900 2700
Ag 328.1 2000 1.018 1.018 0.40 2.55 2.60 7.80 26.0 78.0 260 780
Au 242.7 2400 6.53 7.03 0.56 12.6 13.0 39.0 130 390 1300 3900
Be 234.8 2700 0.366 0.438 0.62 0.71 0.70 2.10 7.00 21.0 70.0 210
Mg 285.2 2500 0.318 0.318 0.81 0.393 0.40 1.20 4.00 12.0 10.0 120
Ca 422.7 2800 0.499 0.499 0.94 0.53 0.50 1.50 5.00 15.0 50.0 150
Sr 460.7 2800 0.667 0.667 0.98 0.68 0.70 2.10 7.00 210 70.0 210
Ba 553.5 2900 2.85 2.85 0.96 2.97 3.00 9.00 30.0 93.0 300 900
Zn 213.9 2000 0.423 0.423 0.84 0.504 0.50 1.50 5.00 15.0 50.0 150
Cd 228.8 1800 0.464 0.464 0.789 0.588 0.60 1.80 6.00 18.0 60.0 180
Hg 253.7 ** 1400 69 69 0.70 98.6 0.10 0.30 1.00 3.00 10.0 30.0
Al 309.2 2600 7.30 7.30 0.75 9.73 10.0 30.0 100 300 1000 3000
Ga 287.4 2700 10.33 10.33 0.71 14.5 15.0 45.0 150 450 1500 4500
In 303.9 2300 8.70 8.70 0.82 10.6 10.0 30.0 100 300 1000 3000
Tl 276.7 2000 10.0 10.0 0.56 17.9 18.0 54.0 180 540 1800 5400
Ge 265.1 2800 15.4 15.4 0.82 18.8 19.0 57.0 190 570 1900 5700
Si 251.6 2700 14.9 14.9 0.94 15.9 16.0 18.0 160 480 1600 4800
Sn 286.3 2500 20.2 20.2 0.97 20.8 20.0 60.0 200 600 2000 6000
Pb 283.3 2100 9.2 9.2 0.90 10.2 10.0 30.0 100 300 100 3000
P 213.6 ** 2850 3190 3190 0.70 4560 46.0 13.8 46 138 460 1380
As 193.7 2500 10.6 10.6 0.52 20.4 20.0 60.0 200 600 2000 6000
Sb 217.6 2600 13.9 13.9 0.54 25.7 25.0 75.0 250 750 2500 7500
Bi 223.1 2100 6.80 6.80 0.275 24.7 25.0 75.0 250 750 2500 7500
Se 196.0 2400 10.8 10.8 0.52 20.8 20.0 60.0 200 600 2000 6000
Te 214.3 2300 10.4 10.4 0.42 24.8 25.0 75.0 250 750 2500 7500
Cr 357.9 2700 2.11 2.11 0.44 4.8 5.00 15.0 50.0 150 500 1500
Mn 279.5 2500 1.43 1.43 0.46 3.11 3.00 9.0 30.0 90.0 300 900
Fe 248.3 2600 3.46 3.46 0.68 5.09 5.00 15.0 50.0 150 500 1500
Co 240.7 2600 5.40 5.40 0.91 5.93 6.00 18.0 60.0 180 600 1800
Ni 232.0 2600 7.31 7.31 0.91 8.03 8.00 24.0 80 240 800 2400
Table 4,2., the volumetric solution concentration ng/ml that permanent magnetic field Zeeman button background HGA graphite furnace uses
Wavelength Temperature m 0cal m 0exp * R Z,PM m zexp * Solution concentration ag/ml ( **μg/ml)
nm T(K) pg pg pg
Pd 247.6 2800 15.4 15.4 0.91 16.9 17.0 51.0 170 510 1700 5100
Pt 265.9 2900 64.6 66.0 0.80 82.5 80.0 240 800 2400 8000 24000
Rh 343.5 2900 9.99 9.99 0.54 18.5 19.0 57.0 190 570 1900 5700
Ru 349.9 2900 19.6 34.0 0.85 40.0 40.0 120 400 1200 4000 12000
Ir 264.0 2900 43.2 46.8 0.91 51.4 50.0 150 500 1500 5000 15000
Os 290.9 ** 3200 46.4 340 0.46 739 0.70 2.1 7.00 31.0 70.0 210
B 249.8 ** 3000 23.0 95.0 0.57 167 0.17 0.51 1.70 5.10 17.0 51.0
Sc 391.2 3000 1.391 6.50 0.88 7.4 7.5 22.5 75.0 225 750 2250
Y 410.2 3000 5.66 33.0 0.85 44 44.0 132 440 1320 4400 13200
La 550.1 ** 3000 75.9 550 0.44 1250 1.30 3.90 13.0 39.0 130 390
Ce 463.2 ** 3000 3190 10000 0.45 22000 22.0 66.0 220 660 220 6600
Pr 495.1 ** 3000 71.7 500 0.62 806 0.80 2.40 8.00 24.0 80.0 240
Nd 463.2 ** 3000 45.4 280 0.80 350 0.35 1.05 3.50 10.5 35.0 105
Sm 429.7 ** 3000 101 101 0.84 120 0.12 0.36 1.20 3.60 12.0 36.0
Eu 459.4 2800 4.84 5.21 0.61 8.54 9.0 27.0 90 270 900 2700
Gd 407.9 ** 3000 179 610 0.52 1170 1.20 3.60 12.0 36.0 120 360
Tb 432.6 ** 3000 18.3 1.0 0.82 134 0.13 0.39 1.30 3.90 13.0 39.0
Dy 421.2 ** 3000 3.97 17.0 0.72 23.6 24.0 72.0 240 720 2400 7200
Ho 521.2 3000 4.53 18.0 0.94 19.1 20.0 60.0 200 600 2000 6000
Er 400.8 3000 3.49 17.6 0.91 19.3 20.0 60.0 200 600 2000 6000
Tm 371.8 2800 3.00 3.14 0.91 3.45 3.50 10.5 35.0 105 350 1050
Yb 398.8 2700 0.970 1.043 0.94 1.12 1.10 3.30 11.0 33.0 110 330
Lu 336.0 ** 3000 98.9 194 0.94 206 0.20 0.60 2.00 6.00 20.0 60.0
U 358.5 ** 3000 860 860 0.49 1760 1.80 5.40 18.0 54.0 180 540
Ti 365.4 3000 27.7 31.7 0.96 33.0 33.0 99.0 330 990 3300 9900
V 318.5 3000 16.3 18.0 0.70 25.7 26.0 78.0 260 780 2600 7800
Mo 313.3 3000 4.63 5.40 0.42 12.9 13.0 39.0 130 390 1300 3900
Table 5,1., the volumetric solution concentration ng/ml that alternating magnetic field Zeeman button background HGA graphite furnace uses
Wavelength Temperature m 0cal m 0exp * m zexp * Solution concentration ng/ml ( **μg/ml)
nm T(K) pg pg R Z,PM pg
Li 670.8 2700 0.360 1.40 0.88 1.59 1.50 4.50 15.0 45.0 150 450
Na 589.0 2200 0.400 0.500 0.95 5.3 5.00 15.0 50.0 150 500 1500
K 766.5 2100 0.597 0.597 0.91 0.656 0.60 1.80 6.00 18.0 60.0 1800
Rb 780.0 2100 1.28 1.30 0.96 1.35 1.30 3.90 13.0 39.0 130 390
Cs 852.1 2200 2.30 4.07 0.90 4.5 4.50 13.5 45.0 135 450 1350
Cu 324.7 2400 1.95 3.10 0.53 5.85 6.00 18.0 60.0 180 600 1800
Ag 328.1 2000 1.018 1.018 0.91 1.12 1.10 3.30 11.0 33.0 110 330
Au 242.7 2400 6.53 7.03 0.804 8.74 9.00 27.0 90.0 270 90.0 2700
Be 234.8 2700 0.366 0.438 0.65 0.674 0.70 2.10 7.00 21.0 70.0 210
Mg 285.2 2500 0.318 0.318 0.91 0.35 0.35 1.05 3.50 10.5 35.0 105
Ca 422.7 2800 0.281 0.499 0.95 0.525 0.50 1.50 5.00 15.0 50.0 150
Sr 460.7 2800 0.341 0.667 098 0.68 0.70 2.10 7.00 21.0 70.0 210
Ba 553.5 2900 0.592 2.85 0.98 2.91 3.00 9.00 30.0 90.0 300 900
Zn 213.9 2000 0.423 0.423 0.88 0.481 0.50 1.50 5.00 15.0 50.0 150
Cd 228.8 1800 0.454 0.464 0.833 0.557 0.55 1.65 5.50 16.5 55.0 165
Hg 253.7 ** 1400 69 69 0.70 101 0.100 0.300 1.00 3.00 10.0 30.0
Al 309.2 2600 6.13 7.30 0.90 8.1 8.00 24.0 80.0 240 800 2400
Ga 287.4 2700 9.61 10.33 0.79 13.1 13.0 39.0 130 390 1300 3900
In 303.9 2300 8.70 8.70 0.96 9.1 9.00 27.0 90.0 270 900 2700
Tl 276.7 2000 10.0 10.0 0.66 15.1 15.0 45.0 150 450 1500 4500
Ge 265.1 2800 10.6 15.4 0.91 16.9 17.0 51.0 170 510 1700 5100
Si 251.6 2700 12.3 14.9 0.98 15.2 15.0 45.0 150 450 1500 4500
Sn 286.3 2500 13.5 20.2 0.98 20.6 20.0 60.0 200 600 2000 6000
Pb 283.3 2100 8.6 9.2 0.91 10.1 10.0 30.0 100 300 1000 3000
P 213.6 ** 2850 2810 3190 0.70 4560 4.5 13.5 45.0 135 450 1350
As 193.7 2500 7.97 10.6 0.89 11.9 12.0 36.0 120 360 1200 3600
Sb 217.6 2600 12.7 13.9 0.95 14.6 15.0 45.0 150 450 1500 4500
Bi 223.1 2100 5.89 6.80 0.60 11.3 11.0 33.0 110 330 1100 3300
Bi 306.8 2100 18.2 21.0 0.70 30 30.0 90.0 300 900 3000 9000
Se 196.0 2400 9.4 10.8 0.88 12.3 12.0 36.0 120 360 1200 3600
Te 214.3 2300 9.8 10.4 0.93 11.2 11.0 33.0 110 330 1100 3300
Cr 357.9 2700 1.605 2.11 0.88 2.4 2.50 7.50 25.0 75.0 2500 750
Mn 279.5 2500 1.43 1.43 0.91 1.57 1.50 4.50 15.0 45.0 1500 450
Fe 248.3 2600 3.05 3.46 0.92 3.76 3.70 11.10 37.0 111 370 1110
Co 240.7 2600 4.11 5.40 0.95 5.68 6.00 18.0 60.0 180 600 1800
Ni 232.0 2600 5.92 7.31 0.91 8.03 8.00 24.0 80.0 240 800 2400
Table 5,2., the volumetric solution concentration ng/ml that alternating magnetic field Zeeman button background HGA graphite furnace uses
Wavelength Temperature m 0cal m 0exp * R Z,PM m zexp * Solution concentration ng/ml ( **μg/ml)
nm T(K) pg pg pg
Pd 247.6 2800 15.4 15.4 0.91 16.9 17.0 5.10 170 510 1700
Pt 265.9 2900 64.6 66.0 0.80 82.5 80.0 240 800 2400 8000 24000
Rh 343.5 2900 9.99 9.99 0.98 10.2 10.0 30.0 100 300 1000 3000
Ru 349.9 2900 19.6 34.0 0.90 37.8 38.0 114 380 1140 3800 11400
Ir 264.0 2900 43.2 46.8 0.96 48.8 50.0 150 500 1500 5000 15000
Os 290.9 ** 3200 46.4 340 0.87 390 0.40 1.20 4.00 12.0 40.0 120
B 249.8 ** 3000 23.0 95.0 0.61 156 0.15 0.45 1.50 4.50 15.0 45.0
Sc 391.2 3000 1.391 6.50 0.96 6.8 7.00 21.0 70.0 210 700 2100
Y 410.2 3000 5.66 33.0 0.88 37.5 37.0 1.1 370 1110 3700 11100
La 550.1 ** 3000 75.9 550 0.96 573 0.60 1.80 6.00 18.0 60.0 180
Ce 463.2 ** 3000 2190 10000 0.80 12500 13.0 39.0 130 390 1300 3900
Pr 495.1 ** 3000 71.7 500 0.94 532 0.50 1.50 5.00 15.0 50.0 150
Nd 463.4 ** 3000 45.4 280 0.93 301 0.30 0.90 3.00 9.00 30.0 90.0
Sm 429.7 ** 3000 101 101 0.94 107 0.10 0.30 1.00 3.00 10.0 30.0
Eu 459.4 2800 4.84 5.21 0.96 5.43 5.50 16.5 55.0 165 550 1650
Gd 407.9 ** 3000 179 610 0.80 763 0.80 2.40 8.00 24.0 80.0 240
Tb 432.6 ** 3000 18.3 110 0.88 125 0.12 0.36 1.20 3.60 12.0 36.0
Dy 421.2 3000 3.97 17.0 0.89 19.1 20.0 60.0 200 600 2000 6000
Ho 410.4 3000 4.53 18.0 0.96 18.8 19.0 57.0 190 570 1900 5700
Er 400.8 3000 3.49 17.6 0.96 18.3 18.0 54.0 180 540 1800 5400
Tm 371.8 2800 3.00 3.14 0.96 3.27 3.30 9.90 33.0 99.0 330 990
Y 6398.8 2700 0.970 10.043 0.96 1.09 1.10 3.30 11.0 33.0 110 330
Lu 336.0 ** 3000 98.9 194 0.96 202 0.20 0.60 2.00 6.00 20.0 60.0
U 358.5 ** 3000 860 860 0.92 935 1.00 3.00 10.0 30.0 100 300
Ti 365.4 3000 27.7 31.7 0.96 33 33.0 99.0 330 990 3300 9900
V 318.5 3000 16.3 18.0 0.92 19.6 20.0 60.0 200 600 2000 6000
Mo 313.3 3000 4.63 5.40 0.98 5.5 5.50 16.5 55.0 165 550 1650
Table 6,1., the volumetric solution concentration ng/ml that alternating magnetic field Zeeman button background THGA graphite furnace uses
Wavelength Temperature m 0cal m 0exp * R Z,PM m zexp * Solution concentration ng/ml ( **μg/ml)
nm T(K) pg pg pg
Li 670.8 2400 1.20 1.88 0.88 2.14 2.00 6.00 20.0 60.0 200 600
Na 589.0 1900 0.883 1.14 0.95 1.20 1.20 3.60 12.0 36.0 120 360
K 766.5 1800 1.38 1.38 0.91 1.52 1.50 4.50 15.0 45.0 150 450
Rb 780.0 1800 2.83 3.11 0.96 3.24 3.00 9.00 30.0 90.0 300 900
Cs 852.1 1900 5.56 10.8 0.90 12.0 12.00 36.0 120 360 1200 3600
Cu 324.7 2200 4.59 4.59 0.53 8.66 9.00 27.0 90.0 270 900 2700
Ag 328.1 1900 2.58 2.58 0.911 2.84 3.00 9.00 30.0 90.0 300 900
Au 242.7 2200 15.4 15.4 0.804 19.2 20.0 60.0 200 600 2000 6000
Be 234.8 2500 0.883 0.900 0.65 1.38 1.40 4.20 14.0 42.0 140 420
Mg 285.2 2300 0.773 0.773 0.91 0.85 0.90 2.70 9.0 27.0 90 270
Ca 422.7 2600 0.693 0.938 0.95 1.01 1.00 3.00 10.0 30.0 100 300
Sr 460.7 2600 0.850 1.83 0.98 1.87 2.00 6.00 20.0 60.0 200 600
Ba 553.5 2600 1.359 7.84 0.98 8.00 8.00 24.0 80.0 24.0 800 2400
Zn 213.9 1900 0.845 0.845 0.88 0.96 1.00 3.00 10.0 30.0 100 300
Cd 228.8 1600 0.853 0.853 0.833 1.02 1.00 3.00 10.0 30.0 100 300
Hg 253.7 ** 1300 134 134 0.70 191 0.20 0.60 2.00 6.00 20.0 60.0
Al 309.2 2500 15.8 18.0 0.90 20.0 20.0 60.0 200 600 2000 6000
Ga 287.4 2500 22.8 29.0 0.79 36.7 37.0 111 370 1110 3700 11100
In 303.9 2200 22.0 22.0 0.96 22.9 23.0 69.0 230 690 2300 6900
Tl 276.7 1900 25.9 25.9 0.66 39.2 40.0 120 400 1200 4000 12000
Ge 265.2 2600 26.4 49.3 0.91 54.2 54.0 162 540 1620 5400 16200
Si 251.6 2600 31.9 43.0 0.98 43.8 44.0 132 440 1320 4400 13200
Sn 286.3 2400 33.0 50.0 0.98 51.0 50.0 150 500 1500 5000 15000
Pb 283.3 1900 20.4 20.4 0.91 22.4 22.0 66.0 220 660 2200 6600
P 213.6 ** 2600 3960 8620 0.70 12310 12.0 36.0 120 360 1200 3600
As 193.7 2400 20.6 23.2 0.89 26.1 25.0 75.0 250 750 2500 7500
Sb 217.6 2400 30.5 30.5 0.95 32.1 32.0 96.0 320 960 3200 9600
Bi 223.1 2000 15.1 16.2 0.60 27.0 27.0 81.0 270 810 2700 8100
Bi 306.8 2000 46.8 50.0 0.70 71.4 70.0 210 700 2100 7000 21000
Se 196.0 2200 22.0 26.6 0.88 30.2 30.0 90.0 300 900 3000 9000
Te 214.3 2200 24.5 28.9 0.93 31.1 30.0 90.0 300 900 3000 9000
Cr 357.9 2500 3.81 4.11 0.88 4.67 4.7 14.1 47.0 141 470 1410
Mn 279.5 2300 3.48 3.48 0.91 3.82 4.00 12.0 40.0 120 400 1200
Fe 248.3 2500 7.78 7.78 0.92 8.46 8.00 24.0 80.0 240 800 2400
Co 240.7 2500 10.3 10.3 0.95 10.8 11.0 33.0 110 330 1100 3300
Ni 232.0 2600 15.0 15.0 0.91 16.5 16.0 48.0 160 480 1600 4800
Table 6,2., the volumetric solution concentration ng/ml that alternating magnetic field Zeeman button background THGA graphite furnace uses
Wavelength Temperature m 0cal m 0exp * R Z,PM m zexp * Solution concentration ng/ml ( **μg/ml)
nm T(K) pg pg pg
Pd 247.6 2500 35.6 35.6 0.91 39.1 40.0 120 400 1200 4000 12000
Pt 265.9 ** 2600 144 144 0.80 180 0.18 0.54 1.80 5.40 18.00 54.0
Rh 343.5 2600 21.6 21.6 0.98 22.0 22.0 66.0 220 660 2200 6600
Ru 349.9 ** 2600 42.4 76.5 0.90 85.0 0.090 0.27 0.90 2.70 9.0 27.0
Ir 264.0 ** 2600 94 128 0.96 133 0.13 0.39 1.30 3.90 13.0 39.0
Os 290.9 ** 3100 119 838 0.87 963 1.00 3.00 10.0 30.0 100 300
B 249.8 ** 2700 52.0 190 0.61 311 0.30 0.90 3.00 9.00 30.0 90.0
Sc 391.2 2700 3.38 17.9 0.96 18.6 20.0 60.0 200 600 2000 6000
Y 410.2 2700 13.8 90.8 0.88 103 0.10 0.30 1.00 3.00 10.0 30.0
La 550.1 ** 2700 164 1513 0.96 1576 1.60 4.80 16.0 48.0 160 480
Ce 463.2 ** 2700 4880 27500 0.80 34400 35.0 105 350 1050 3500 10500
Pr 495.1 ** 2700 163 1375 0.94 1463 1.50 4.50 15.0 45.0 150 450
Nd 463.4 ** 2700 103 770 0.93 828 0.80 2.40 8.00 240 80.0 240
Sm 429.7 ** 2700 281 281 0.96 299 0.30 0.90 3.00 9.00 30.0 90.0
Eu 459.4 2600 12.2 14.3 0.80 14.9 15.0 45.0 15.0 450 1500 4500
Gd 407.9 ** 2700 428 1678 0.88 2098 2.00 6.00 20.0 60.0 200 600
Tb 432.6 ** 2700 42.6 303 0.89 344 0.35 1.05 3.50 10.5 35.0 105
Dy 421.2 2700 9.43 35.6 0.96 40.0 40 120 400 1200 4000 12000
Ho 410.4 2700 10.3 37.5 0.96 39.1 40 120 400 1200 4000 12000
Er 400.8 2700 8.44 39.4 0.96 41.0 40 120 400 1200 4000 12000
Tm 371.8 2600 7.37 8.53 0.96 8.89 9.0 27.00 90 270 900 2700
Y 6398.8 2500 2.47 2.88 0.96 3.00 3.00 9.00 30.0 90.0 300 900
Lu 336.0 ** 2700 257 688 0.96 717 0.70 2.10 7.00 21.0 70.0 210
U 358.5 ** 2700 1940 2700 0.92 2935 3.0 9.0 30.0 90.0 300 900
Ti 365.4 2700 61.9 67.2 0.96 70.0 70.0 210 700 2100 7000 21000
V 318.5 2700 36.6 36.6 0.92 39.8 40.0 120 400 1200 4000 12000
Mo 313.3 2700 10.6 12.0 0.98 12.2 12.0 36.0 120 360 1200 36000

Claims (6)

1. the patent No. of using the present inventor to propose is ZL96103243X, because of deciding Patent classificating number G01N21/31, and " " establishment is used to not have fixed metal tungsten tungsten (or tantalum) platform-graphite tube (the being called for short WTaPGT) atomic absorption spectrophotometer (AAS) of standard analysis because of deciding tungsten tungsten (or tantalum) platform madreporic canal pipe and fixing means thereof.1986 and nineteen ninety L ' vov propose with theory characteristic amount m oCal is a standard, and being used for commodity graphite-pipe atomic absorption spectrophotometry degree meter (being called for short GTAAS) does not have standard analysis, uses the behaviour's integration that proposed in 1978 to absorb (Q AValue) and steady temperature platform stone is Manifold technology (STPF) and two end water-cooleds vertically heat graphite furnace (HGA type).But when analyzing actual sample with commodity GFAAS, the actual experiment amount of the levying m that most of elements obtain under most atomization temperature condition 0The exp value greater than, even much larger than m 0Ca1 value, i.e. atomization efficiency e A'=m 0Ca1/m 0Exp ∠ 1 or ∠ 1 far away.Therefore can not use m 0Ca1 does not have the standard of standard analysis as the commodity graphite furnace.
Characteristics of the present invention propose with best test feature amount m 0Exp does not have the standard of standard analytical process as the commodity graphite furnace.m 0Exp *Definition is near m 0The m that the ca1 value records 0Exp, i.e. e A'=1 or near 1.62 ms of element under different atomization temperatures 0Exp *Value is to have used Q by the present inventor since 1978 AMeasure and the STPF technology, patent WTaPGT, general matrix modifier, non-ferrous metal research institute patent LOWE type high-intensity lamp, develop the WFD-Y3 of (1975) jointly with present inventor and Beijing second optics, instrument plant, WFX-1E waits 1: 5 pulse power supply hollow cathode lamp of the employed dutycycle of commodity GFAAS (accounting for 62 element overwhelming majority).With reference to commodity in use GFAAS on the 1978-2006 document, STPF technology and Q AMeasuring data determines.The m that we determine oExp *Value can be from e with regard to property A' near or equal 1.00 and judge.To the low temperature element at relative broad range e AGentle high temperature element only just can have e at higher temperature in '=1.00 A'=1.00.To some high temperature elements even T ℃=T (K)-200 up to 3000 ℃ (3200K) e still A' ∠ 1.00 even much smaller than 1.00.This is because HGA graphite furnace two ends are cold, causes analytical element and matrix condensation in the water-cooled two ends, causes e A' when ∠ 1.00 is serious even very strong memory effect arranged.Frech in 1993 or L ' vov propose graphite-pipe two end band caps (end cap) and laterally heat graphite furnace (THGA) and be used for vertical alternating magnetic field Zeeman deduction background GFAAS and measure high temperature elements Mo, V.T, Os, elements such as B can be measured under the condition less than 8 seconds at 2500 ℃ (2700K) with hot Jie's coating graphite-pipe (PGT)+hot Jie's graphite platform (PL).And still have memory effect up to 3000 ℃ (3200k) 20 seconds conditions in the use of HGA graphite-pipe.Because matrix can not be condensate in two ends in the HGA graphite furnace, background absorption is too high when causing mensuration high concentration salts solution and solid sample, Zeeman deduction GFAAS still can not deduct to apply, matrix is condensate in the HGA two ends and causes matrix effect and matrix interference increasing in addition, even still can't overcome with matrix modifier.But after using the THGA graphite furnace, solid sample may be measured directly and background absorption still can the deduction scope at Zeeman GFAAS instrument.Matrix effect and matrix disturb and can solve with general improver.Therefore a large amount of the appearance saved time-consuming, loaded down with trivial details molten sample step with the direct analysing solid sample of end cap THGA graphite furnace since 1993.But determine that 62 elements are at the m of different atomization temperatures at the THGA graphite furnace oCal and m oExp *It is very difficult that value makes it to be used to not have standard analysis.1986 and nineteen ninety L ' vov point out to calculate the m of HGA graphite furnace oCal formula and obtain the m of 39 elements at a certain best atomization temperature oCal value and m oExp *Value.But L ' vov pointed out to calculate HGA graphite furnace m in 1996 oThe cal formula not necessarily is suitable for end cap THGA.M as for end cap THGA oExp *Work, that also carries out is insufficient, determines that difficulty is bigger.Therefore another emphasis of the present invention is to obtain the m of end cap THGA at the different atomization temperatures of 62 elements oCal and m oExp *Value.It is internal diameter 5.9mm that HGA graphite furnace and THGA graphite furnace use same internal diameter PGT, but the different HGA of length are with the long graphite-pipe of 28mm, and THGA 18mm graphite-pipe is pressed HGA graphite furnace m oThe cal computing formula then has [(m oCal) THGA/ (m oCal) HGA]=(28 2/ 18 2)=2.42 times.We utilize the interval m of the higher atomization temperature of above-mentioned HGA graphite furnace oCal/m oExp *=1.00, under this temperature, m is arranged too with the THGA graphite furnace oCal/m oExp=1.00.Summing up 62 element m that all end cap THGA graphite furnaces of 1993-2006 are delivered oExp *Value is found [(m oExp *) THGA/ (m oExp *) HGA]=2.75 times, error is no more than 10%, therefore [(m oCal) THGA/ (m oCal) HGA]=[(m oExp *) THGA/ (m oExp *) HGA]=2.75 times, prove that L ' vov prophesy HGA graphite furnace calculates m oIt is correct that the cal formula can not be used for end cap THGA.The present invention (m oCal) THGA=2.75 (m oCal) the HGA formula obtains 62 ms of element under different atomization temperatures of end cap THGA graphite furnace oThe cal value.The m that end cap THGA has been arranged oThe cal value is as benchmark, because THGA is to low temperature, and middle temperature, all easier m that obtains of high temperature element oCal/m oExp *=1.00 or near 1.00.Than HGA graphite furnace, easier from summing up all m that use end cap THGA graphite furnace to obtain that 1993-2006 delivers oThe exp value is determined the m at 62 elements of end cap THGA graphite furnace oExp *Value.
No standard analytical process fundamental formular is that 1. formula is
m=(Q A,0/K)×(m oexp */0.0044) ①
When using alternating magnetic field (AM) Zeeman deduction background instrument ZGFAAS, Z, AM, 2. the fundamental formular of GFAAS is
m=(Q A,0/K)×(m oexp */0.0044R Z,AM) ②
Use permanent magnetic field (PM) Rochon prism rotatory polarization light to buckle background instrument Z, PM, the fundamental formular of GFAAS is 3.
m=(Q A,0/K)×(m oexp */0.0044R Z,PM) ③
Formula 1. 2. and 3. in m be the content of element to be measured, unit is pg.
R Z, AMBe permanent magnetic field ZGFAAS absorptance, i.e. R Z, AM=m oExp/m zExp (AM).
R Z, PMBe permanent magnetic field ZGFAAS absorptance, i.e. R Z, PM=m oExp/m zExp (PM).
Because the m that most of commercial apparatuss obtain oExp departs from best test feature amount m oExp *, therefore introduce coefficient of deviation K=m oExp */ m 0Exp proofreaies and correct.For example account for PE company instrument over half in commodity graphite furnace instrument market, owing to use the twin-beam apparatus structure, too much use the reflection from lens mirror, semi-permeable mirror, cause the hollow cathode lamp energy loss serious, the user often uses big lamp current so that the baseline noise that obtains is low, instrument is made an uproar than height, detection limit is good, but lamp current increases and causes that lamp emission line self-priming broadens, and the atomic absorption line is had complicated fine structure (hfs) element, influences bigger, Cu 324.7nm for example, different characteristic of a navigation light amounts cause m with different lamp currents oExp, and m zIt is K ∠ 0.5 that exp (to the Z.AM.GFAAS instrument) changes greater than 1 times.To accounting for deputy Hitachi, Ltd instrument in the commodity graphite furnace instrument market, because that the graphite furnace body structure is pressed is big, thermal capacity is big, and graphite-pipe heats up slow, so the centering temperature K ∠ 1 that obtains of high temperature element especially, even much smaller than 1.It is necessary introducing coefficient of deviation K in no standard analysis for this reason, otherwise directly uses m oExp *Do not have standard analysis in commodity graphite furnace instrument, error is too big, does not have actual application value.
Formula 1. 2. 3. in, Q A, 0Be the Q that measures AObtain after the value process linearization process.Gilmudinov pointed out in 1992: the analytic curve peaceful coexistence working curve that all graphite furnace instruments obtain all is crooked, bending causes 1. analytical line hfs structure by three factors, lamp emission line self-priming, and the radiant light aI of non-atomic absorption line in the slit bandwidth 0(I 0Be the lamp emitted luminescence intensity) interact.2. cross section, garden, graphite sample holes center atomic concentration skewness.3. graphite-pipe 28mm length atomic concentration skewness.How from Q AObtain Q through linearization process A, 0Be very difficult work.It also is another emphasis of the present invention.The present inventor is early than being engaged in this work and derivation formula in 1978 4.
a *=(10 Ar+0.01-1)-1 ④
The Q of Ar value during for the typical curve counter-rotating that obtains for permanent magnetic field or changeable magnetic field Zeeman deduction background GFAAS AValue.To single beam or D 2Lamp is buckled background instrument a=(10 Ar+0.01-1) -15. aI 0Be empty anode radiant light or the adjacent threads that the slit bandwidth enters, this moment do not occur the curve counter-rotating, and curve platform Ar value occurs.0.01 introduce is to prevent to cause easily and calculate uncertainty near the calculating of Ar value the time, but when practical application, Q AAt this moment range of application should also can be reduced to less than the 0.9Ar value
a *=(10 Ar-1) -1
But curved does not singly just enter the lamp radiant light in the slit bandwidth and adjacent threads causes, also has Gilmudinov to propose three and causes crooked factors.L ' vov in 1996 introduces tortuosity factor β and derives formula 7.
Q A = log 1 + α * 10 - ( 1 + α * ) Q A , 0 ( 1 - β Q A , 0 ) + α *
(1+a *) be normalization coefficient, purpose makes different a *Value is at Q ACan obtain Q below the value 0.1 or 0.2 A=Q A, 0, promptly normalizing becomes same Q A, 0Value.Vast analytical work person directly with formula 6. with 7. with Q AObtain Q through propertyization A, 0Being very difficult, also is infeasible.6. and 7. the present invention calculates each Q by formula AValue is at different A rThe process linearization process that value (from 0.8 to 7.0) and different beta value (from 0.39 to-0.40) correspondence obtain obtains Q A, 0Value.List in table 2.Limited by length, the Ar value is only listed 0.8 to 7.0 value interval 0.10 or 0.20.Ar value from 4.0 to 7.0, Q ABe converted into Q A, 0Error is less than 1%.Because the Ar value error obtained of typical curve is bigger, tests and record Ar value round off principle and get nearby Ar value.Q AThe value value all adopts 0.100 at interval from Ar=0.80 to 2.10, just begins to adopt interval 0.100 and 0.200 and deposit from Ar=2.2 to 7.00.Limited by length, it is the most frequently used-0.40 ,-0.27 ,-0.14 ,-0.07,0.00,0.10 that the β value is fixed as, 0.24 and 0.39 seven β value.Therefore work as Q A(x) value is three figure place (Q A<1.000) or four figures (Q A>1.000) time, β (y) value does not drop on seven fixing Beta values for one digit number (| β (y)<0.10) or two figure places (| β (y)>0.10).8., 9. and 10. available formula is calculated by interpolation method.
Q A,0(x,β(L))=Q A,0(L,β(L))+【Q A(x)-Q A(L)/Q A(H)-Q A(L)】[Q A,0(H,β(L))-Q A,0(L,β(L))] ⑧
Q A,0(x,β(H))=Q A,0(L,β(H))+【Q A(x)-Q A(L)/Q A(H)-Q A(L)】[Q A,0(H,β(H))-Q A,0(L,β(H))] ⑨
Q A,0(x,β(y))=Q A,0(x,β(L))+【β(y)-β(L)/β(H)-β(L)】[Q A,0(x,β(H))-Q A,0(x,β(L))] ⑩
The 8. 9. 10. middle L of formula represents low value, and H represents high value.
Table 3 is listed the present inventor and 8. 9. and is 10. calculated from 1978-2006 invention with table 2 and formula and obtain looking for typical curve and diplomatic typical curve in person, and data are listed in table 3.62 element D 2Lamp is buckled background or single beam instrument (HGA (D 2)) be with the ZGFAAS (HGA (z)) of HGA graphite furnace and be with Ar value and the β of the ZGFAAS (THGA (z)) of THGA graphite furnace all to list in table 3.From table 3 data, find out, the Ar=0.80-7.0 that table 2 is listed, β from-0.40 to+0.39 scope is suitable.Ar is different with instrument with the β value, uses the difference of lamp, and the Ar of identity element and β value change quite greatly, therefore at Q ATry to achieve Q through linearization process A, 0Essential Ar value and the β value of accurately demarcating during value.
Another emphasis of the present invention is accurately to demarcate K, β and Ar value.Accurately measure K, β and Ar value need the standard solution of 62 element individual element content of a cover, and the standard solution of identity element must be available from different two units, the Q that obtains AThe value unanimity can think that just standard solution is reliable.
Use general improver, its composition is that 1mg/mlZr+0.5mg/mlPd+10mg/ml tartrate is in 1%v/vHNO 3To some at high element such as the Cd of general improver empty value, Zn, Cu, Mn, Pb, Ag, Na, K, elements such as Mg should be used permanent improver instead, 5mg/mlZr+4mg/mlIr+10mg/ml tartrate is in 1%v/vHNO 3At 160 ℃ of 40s, 1300 ℃ of 25s, atomization under 2400 ℃ of 10s conditions.Graphite-pipe includes Zr250mg+Ir200mg.At this moment include Cd, Zn, Cu, Mn, Pb, Ag, Na, K, the whole atomization of the blank value of elements such as Mg are removed, and can directly measure complex fluid or complicated solid sample.
Table 4 and table 5 are listed the concentration of standard solution (ng/ml) of permanent magnetic field and the use of alternating magnetic field Zeeman button background HGA graphite furnace respectively, and table 6 is listed the concentration of standard solution (ng/ml) that the black stove of alternating magnetic field Zeeman button background THGA stone uses.Table 4,5,6 is also listed 62 elements and is used atomization temperature T (k)=T ℃+200 in standard.When using the 10ml sample introduction,
1. the corresponding Q of number solution A, 0=0.044 ± 10%, 2. number solution correspondence 0.132 ± 10%, 9. number solution correspondence 0.44 ± 10%, 4. number solution correspondence 1.32 ± 10%, 5. number solution correspondence 4.4 ± 10%, 6. number solution correspondence 13.2 ± 10%, 1. number and 2. number solution is mainly used in and measures monitoring k value.3. 4. 5. solution be mainly used in and measure the β value.5. and 6. number solution is used to measure the Ar value.
Demarcated k, after Ar and the β value, it is just fairly simple directly to measure in complex fluid or the fixed sample concentration of element C to be measured with no standard analytical process.
1. directly with complex fluid sample feeding amount V In(ml) or complicated solid sample sample size m In(mg) enter graphite-pipe.2. utilize table 1 to obtain m by T (k)=T ℃+200 0Exp *Value.
3. in advance with table 4,5 or 6 1. arrive the 6. K of number standardization of solution, Ar and β value.
4. the Q that obtains of atomization AValue with table 2 and formula 8., 9., 10. obtain Q through linearization A, 0
5. 1., 2., 3. to try to achieve element to be measured with formula be m (pg) value to the visual equipment difference.6. constituent content C presses formula (11) in the complex fluid
C=[m/V In] ([pg/ μ l] [ng/ml] or [mg/l])
Constituent content is by formula (12) in the complicated solid sample
C=[m/m In] ([pg/mg] [ng/g] or [μ g/kg])
2. described by claim 1:
Using present inventor's patent WTaPGT is basis of the present invention, and this is that biology, geology and environmental sample all use nitric acid and perchloric acid (contain silicon sample and need HF acid) to carry out molten sample because of various organic and inorganic material, but nitric acid and perchloric acid corrosion PGT+PL make m 0The exp value constantly descends, and uses 50~100 times m 0Exp drops to half that have only when beginning and is less than, and in this case, can not use no standard analytical process fully.Have only the WTaPGT of use containing high concentration nitric acid and perchloric acid, in serviceable life, promptly the low temperature element is 500~2000 times, middle temperature 200~500 times, 100~300 m of high temperature 0The exp value remains unchanged.So just may use no standard analytical process directly to measure complex fluid and solid sample.Have in the periodic table in addition twenties kinds of elements (particularly Sr, Ba, U, B and 15 rare earth element) can and graphite-pipe generate carbonide, produce serious matrix effect and memory effect, make analyze take place difficult.These elements of use WTaPGT post analysis are the same with other tens elements to use similar analysis condition to analyze various complex samples, has enlarged the ultimate analysis scope of GFAAS.
3. described by claim 1:
The general improver that the use present inventor invents out in no standard analysis is at Analysis of Complex liquid and solid sample and correction K, and B is absolutely necessary during Ar.It consists of 0.5mg/ml Pd+1mg/mlZr+10mg/ml tartrate 1%v/vHNO 3Partly at higher element such as the Cd of the blank content of general improver, Zn, Mn, Pb, Ag, Na, K, elements such as Mg, blank is too high can not be used, and should use permanent improver 5mg/mlZr+4mg/mlIr+10mg/ml tartrate 1%v/vHNO instead 3Sample introduction 50 μ l, at 160 ℃ of 40s, 1300 ℃ of 25s, atomization under 2400 ℃ of 10s conditions, at this moment the whole atomization of blank element are removed, and have only Zr250mg+Ir200mg forever to stay in the graphite-pipe, and complex fluid or solid sample can directly enter graphite-pipe analysis.
4. described by claim 1:
In no standard analysis, to keep K=1.00 or use the non-ferrous metal tungsten patent Lowe of total institute type high strength commodity lamp, the Sullivan type commodity high-intensity lamp of PE company commodity electrodeless discharge lamp (EDL lamp) and the production of 1980 Australian Photron companies by nearly 1.00 needs.The present inventor thinks simpler and is common to use dutycycle pulse control in 1: the 5 electric pulse hollow cathode lamp of all common hollow cathode lamps.This is that the coact commodity WFD-Y3 of development of present inventor and second optical instrument factory, Beijing at first uses (1973), the WFX that northern subsequently two photoproduction are produced, and 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1E2,1E3,1F2B2,100,120,130 types continue to use.
5. described by claim 1:
62 elements are at HGA graphite furnace and the end cap THGA graphite furnace m at different temperatures T (K) oCal, e ' A=m oExp *Value is listed in table 1.Listing in table is to also have 62 element R Z, PMAnd R Z, AMValue.
6. the described atomic absorption spectrophotometer (AAS) be used to not have standard analysis of setting up with patent WTa ' PGT of claim 1-5, need not to set up typical curve directly assay determination complex fluid or solid constituent content to be measured and concentration, break away from usefulness that common no sample analysis often uses not the time, the molten sample that difficulty is loaded down with trivial details, separate formality and determination step, also can break away from molten sample, separate the loaded down with trivial details step not time of the need of reagent blank that formality and determination step bring into and purification reagent.Use the m of table 1 oExp *With demarcate K, β, Ar method and fundamental formular 1. 2. with 3. look different commercial apparatuss.
Each Tianwan businessman's product instrument also can be simultaneously with being the standard metering instrument, as balance in the gravimetric method, and various capacity measuring instruments in the volumetric method.The function that the numerous and diverse standard model of similar quantity kind is also arranged simultaneously is as the standard tool for transmitting.
CNA2007100972215A 2007-04-29 2007-04-29 Fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer for standard-free analysis Pending CN101149339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100972215A CN101149339A (en) 2007-04-29 2007-04-29 Fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer for standard-free analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100972215A CN101149339A (en) 2007-04-29 2007-04-29 Fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer for standard-free analysis

Publications (1)

Publication Number Publication Date
CN101149339A true CN101149339A (en) 2008-03-26

Family

ID=39249970

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100972215A Pending CN101149339A (en) 2007-04-29 2007-04-29 Fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer for standard-free analysis

Country Status (1)

Country Link
CN (1) CN101149339A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393363A (en) * 2011-08-15 2012-03-28 中国热带农业科学院分析测试中心 Method for rapidly measuring lead content of soil by performing atomic absorption with broad width linear graphite furnace
CN101550572B (en) * 2008-08-04 2012-06-27 马怡载 Method for producing metal tungsten or tantalum platform graphite tube with permanent matrix modifier
CN101692040B (en) * 2009-04-02 2012-07-04 马怡载 Multi-element measurement atomic fluorescence photometer of continuous light source of energy-saving low-price tungsten wire ring furnace
CN101692039B (en) * 2009-04-02 2013-03-27 马怡载 Energy-efficient and low-cost tungsten wire coil furnace atomic absorption photometer for measuring multiple elements forming hollow cathode lamp
CN104931442A (en) * 2015-06-19 2015-09-23 贵州出入境检验检疫局检验检疫综合技术中心 Method for measuring contents of thallium in agricultural products by aid of graphite furnace atomic absorption spectrometry
CN106483185A (en) * 2016-08-18 2017-03-08 中国地质调查局西安地质调查中心 The method that HG ICP MS measures rare and scatter element germanium and tellurium in geology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550572B (en) * 2008-08-04 2012-06-27 马怡载 Method for producing metal tungsten or tantalum platform graphite tube with permanent matrix modifier
CN101692040B (en) * 2009-04-02 2012-07-04 马怡载 Multi-element measurement atomic fluorescence photometer of continuous light source of energy-saving low-price tungsten wire ring furnace
CN101692039B (en) * 2009-04-02 2013-03-27 马怡载 Energy-efficient and low-cost tungsten wire coil furnace atomic absorption photometer for measuring multiple elements forming hollow cathode lamp
CN102393363A (en) * 2011-08-15 2012-03-28 中国热带农业科学院分析测试中心 Method for rapidly measuring lead content of soil by performing atomic absorption with broad width linear graphite furnace
CN102393363B (en) * 2011-08-15 2013-06-05 中国热带农业科学院分析测试中心 Method for rapidly measuring lead content of soil by performing atomic absorption with broad width linear graphite furnace
CN104931442A (en) * 2015-06-19 2015-09-23 贵州出入境检验检疫局检验检疫综合技术中心 Method for measuring contents of thallium in agricultural products by aid of graphite furnace atomic absorption spectrometry
CN106483185A (en) * 2016-08-18 2017-03-08 中国地质调查局西安地质调查中心 The method that HG ICP MS measures rare and scatter element germanium and tellurium in geology

Similar Documents

Publication Publication Date Title
CN101149339A (en) Fixed metal tungsten or tantalum platform graphite furnace atomic absorption photometer for standard-free analysis
Whitty-Léveillé et al. A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices
Slavin et al. The possibility of standardless furnace atomic absorption spectroscopy
Sturman Development of a continuous-flow hydride and mercury vapor generation accessory for atomic absorption spectrophotometry
CN103645165B (en) Measure the method for Se content in molybdenum and molybdenum product
CN100491979C (en) A method for determining proton exchange film fuel cell film electrode platinum loading
CN102565029A (en) Method for measuring impurities in pure silver by electrical inductance-coupled plasma emission spectrometer
CN102207463A (en) Method for measuring contents of phosphorus and copper in ferrotitanium
Karwowska et al. Atomisation characteristics of lead determined in alumina matrices by slurry-electrothermal atomisation atomic absorption spectrometry
CN101294895A (en) Transverse heating graphite furnace constant magnetic field Zeeman atomic absorption photometer for non-standard analysis
Burylin et al. Development of electrothermal atomic absorption spectrometry in 2005–2016
Jones Determination of platinum and palladium in blood and urine by flameless atomic absorption spectrometry
CN1831521B (en) Combined analytical method for 8-element in aluminium alloy
CN109557081A (en) The detection method of yttrium in a kind of nickel-base alloy
Buchanan et al. Inductively coupled plasma spectrometric determination of minor elements in concentrated brines following precipitation
CN101692041B (en) Tungsten or tantalum platform-graphite tube atomic absorption photometer for measuring multiple elements
CN101692039B (en) Energy-efficient and low-cost tungsten wire coil furnace atomic absorption photometer for measuring multiple elements forming hollow cathode lamp
Merson et al. A high accuracy reference method for the determination of minor elements in steel by ICP-OES
Suzuki et al. Improved sensitivity using a microcomputer for electrothermal atomic absorption spectrometry with a metal microtube
Si et al. Color reaction of 2-(2-quinolylazo)-5-dimethylaminoaniline with palladium and its application
De-qiang et al. In-situ concentration and determination of mercury by graphite furnace atomic absorption spectrometry with Pd-Rh as the chemical modifier
CN111157515A (en) Method for rapidly detecting content of chemical elements in high-speed tool steel
CN104880454A (en) Method for measuring metal element content in polycarbonate
CN101319992A (en) Software for non-standard analysis of Zeeman background graphite furnace atomic absorption photometer
CN109991210A (en) Test methods of sulphur contents in coal ash

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20080326