CN101148692A - Copper/steel composite wire material and anneal manufacturing method thereof - Google Patents
Copper/steel composite wire material and anneal manufacturing method thereof Download PDFInfo
- Publication number
- CN101148692A CN101148692A CNA2007101580466A CN200710158046A CN101148692A CN 101148692 A CN101148692 A CN 101148692A CN A2007101580466 A CNA2007101580466 A CN A2007101580466A CN 200710158046 A CN200710158046 A CN 200710158046A CN 101148692 A CN101148692 A CN 101148692A
- Authority
- CN
- China
- Prior art keywords
- annealing
- wire material
- composite wire
- composite
- cooling liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
The present invention discloses one kind of composite copper/steel wire and its making process. The making process includes coating carbon steel core with copper band to form composite blank and vacuum annealing of the composite blank in a vacuum tank; drawing for several times and continuous annealing during the last drawing; twisting to form stranded wire and on-line annealing in fine pipes; and winding onto a take-up bobbin to obtain final product. The making process can obtain composite copper/steel wire with required specific weight, elongation, conducting performance and tensile strength.
Description
Technical field
The present invention relates to a kind of copper/steel/steel composite wire material and manufacture method thereof.
Background technology
At present, the copper sheathed steel lead is as a kind of compound wire, its objective is the conductivity that has copper concurrently and tensile strength, the unit elongation of steel, although relevant at present introduction is a lot, but real copper sheathed steel lead or the proportion that obtains is excessive, does not reach the purpose of saving copper material, and perhaps tensile strength and unit elongation are undesirable, in a word, do not produce copper sheathed steel fine rule cheap and that conformance with standard requires yet on the market so far.
On the other hand, the method of traditional manufactured copper Baogang composite wire material adopts an anneal usually, adopt this traditional manufacture method, in any case set the anneal condition, the comparatively ideal tensile strength and the unit elongation that all can't obtain to expect, the final product performance that obtain neither be very desirable.
Summary of the invention
The objective of the invention is to overcome the deficiencies in the prior art, all ideal copper/steel/steel composite wire materials comparatively of a kind of material proportion, tensile strength and unit elongation are provided.
On the other hand, the present invention overcomes the technological deficiency that exists in the existing manufacture method, a kind of method that adopts the manufactured copper/steel/steel composite wire material of new anneal is provided, thereby has improved the Application Areas and the space of copper/steel/steel composite wire material greatly.
The technical solution used in the present invention is as follows:
A kind of method of manufactured copper/steel/steel composite wire material, the core body of composite wire material are carbon steel wire rod, and coating layer is a copper strips, and this method adopts the pot type vacuum annealing, burns and stew formula continuous annealing, three kinds of annealing processs of the online annealing of tubular type, and three kinds of annealing processs are finished by following:
A, copper strips is coated on the carbon steel wire rod core body makes composite blank, the composite blank diameter range is 1.5~2.6mm, carries out the pot type vacuum annealing in the vacuum tank of then composite blank being packed into and handles;
B, the composite blank after handling through the pot type vacuum annealing carry out repeatedly drawing, when obtaining the last drawing of diameter range at 0.60~1.50mm composite wire material, composite wire material is under the as-drawn burn by the electrically heated case and stewes formula continuous annealing and handle;
After c, burning are stewed formula continuous annealing processing, again through repeatedly drawing, obtaining diameter range is the moulding silk material of 0.08~0.40mm, the multiply moulding silk material that obtains is fed simultaneously carry out the online anneal of tubular type in a plurality of tubules at last, the end of a thread correspondence is wrapped in obtains the finished product on the take-up reel again.
Wherein, preferred, in a step pot type vacuum annealing treating processes, the annealing temperature in the vacuum tank is 630~700 ℃, and it is 3~7 hours that composite blank places the annealing time in the vacuum tank.
Wherein, a step also comprises: after the pot type vacuum annealing is handled, composite blank is immersed circulating cooling liquid cool off, wherein the temperature of circulating cooling liquid is 10~25 ℃, and be 10~16 hours cooling time.
Preferably, it is 600-830 ℃ that the b step is burnt the annealing temperature of stewing electrically heated case in the formula continuous annealing processing, and wherein the heating current amount of electrically heated case is 25~70A/min.
The b step also comprises: composite wire material by the electrically heated case after, immerse circulating cooling liquid again and cool off, the temperature of circulating cooling liquid is 15~30 ℃.
Composite wire material is 300~600m/min by the take-up speed of electrically heated case and circulating cooling liquid in the b step.
Preferably, a plurality of tubules bottom that the online annealing of the tubular type in the c step is adopted all is provided with electrical heating wire, thereby adopts electrically heated mode that the tubule temperature is raise to electrical heating wire, and wherein the annealing temperature in the tubule is 420~750 ℃.
The c step also comprises: moulding silk material immerses circulating cooling liquid again after by tubule and carries out the refrigerative step, and wherein the temperature of circulating cooling liquid is 20~35 ℃.
Moulding silk material is 50~220m/min by the take-up speed of tubule and circulating cooling liquid in the c step.
On the other hand, technical scheme of the present invention also discloses a kind of copper/steel/steel composite wire material, and the core body of this composite wire material is a carbon steel wire rod, and coating layer is a copper strips, and the tensile strength of composite wire material is 350~380Mpa, and proportion is 8.02~8.15g/cm
3Wherein composite wire material through the pot type vacuum annealing, burn to stew formula continuous annealing, three kinds of annealing processs of the online annealing of tubular type and make, wherein the unit elongation of composite wire material is 13~17% in the pot type vacuum annealing process, burn to stew composite wire material in the formula continuous annealing process unit elongation be 10~17%, the unit elongation of composite wire material is 8~15% in the online annealing process of tubular type.
The manufacture method of copper/steel/steel composite wire material of the present invention, by adopting the processing mode of three kinds of annealing processs, thereby obtained technical new breakthrough, it is the more manufacture method of science of a kind of existing manufacturing process, solved a difficult problem of the prior art, on the other hand, the present invention has obtained all ideal copper/steel/steel composite wire materials comparatively of silk material proportion, extensibility rate, conductivity, tensile strength.
Embodiment
Embodiment 1:
At first, provide the method for a kind of preferred manufactured copper/steel/steel composite wire material of the present invention, but those skilled in the art are easy to know by inference, the correlation values scope of manufacture method of the present invention is not limited to the concrete numerical value of following examples.
At first copper strips is coated on the carbon steel wire rod core body and makes composite blank, the composite blank diameter range is 1.5~2.6mm, carries out the pot type vacuum annealing in the vacuum tank of then composite blank being packed into and handles; Composite blank after handling through the pot type vacuum annealing carries out repeatedly drawing, obtain diameter range in the last drawing of the composite wire material of 0.60~1.50mm, composite wire material is under the as-drawn burn and stewes formula continuous annealing and handle by the electrically heated case; After burning stewed formula continuous annealing processing, again through repeatedly drawing, obtaining diameter range is the moulding silk material of 0.08~0.40mm, the multiply moulding silk material that obtains is fed simultaneously carry out the online anneal of tubular type in a plurality of tubules at last, the end of a thread correspondence is wrapped in obtains the finished product on the take-up reel again.
Wherein, in pot type vacuum annealing treating processes, the annealing temperature in the vacuum tank is 630~700 ℃, and composite blank places the annealing time in the vacuum tank to be 3~7 hours, and preferred, annealing time is 5 hours.After the pot type vacuum annealing is handled, composite blank is immersed circulating cooling liquid cool off, wherein the temperature of circulating cooling liquid is 10~25 ℃, be 10~16 hours cooling time.
And the annealing temperature of electrically heated case is 600-830 ℃ in burning stewed formula continuous annealing processing, and wherein the heating current amount of electrically heated case is 25~70A/min.Composite wire material by the electrically heated case after, immerse circulating cooling liquid again and cool off, the temperature of circulating cooling liquid is 15~30 ℃.Composite wire material is 300~600m/min by the take-up speed of electrically heated case and circulating cooling liquid.
A plurality of tubules bottom of adopting in the online annealing of tubular type is provided with electrical heating wire, and electrical heating wire adopts electrically heated mode that the tubule temperature is raise, and wherein the annealing temperature in the tubule is 420~750 ℃.Moulding silk material immerses circulating cooling liquid again after by tubule and cools off, and wherein the temperature of circulating cooling liquid is 20~35 ℃.Moulding silk material is 50~220m/min by the take-up speed of tubule and circulating cooling liquid.
Step that adopts in three kinds of annealing processs in the foregoing description 1 and relevant numerical range only are comparatively preferred embodiments of the present invention, but manufacture method of the present invention is not limited to the step and the relevant numerical range of the foregoing description 1, to those skilled in the art, fully can be according to content disclosed by the invention, accordingly parameters such as annealing temperature and annealing time are adjusted, as improve annealing temperature or increase the heating current amount, corresponding annealing time or the raising take-up speed of shortening, can realize goal of the invention of the present invention equally fully, be that three kinds of annealing processs that manufacture method of the present invention adopts are not limited to embodiment 1 disclosed numerical value, in addition, although selected circulating cooling liquid to cool off in three kinds of annealing processs to boost productivity, but can adopt other the type of cooling such as the multiple mode of room temperature naturally cooling or the like equally, three kinds of annealing way promptly of the present invention are not limited to the type of cooling that is adopted among the embodiment 1 equally.
On the other hand, technical scheme of the present invention also comprises a kind of copper/steel/steel composite wire material, and the core body of this composite wire material is a carbon steel wire rod, and coating layer is a copper strips, and the tensile strength of composite wire material is 350~380Mpa, and proportion is 8.02~8.15g/cm
3Composite wire material through the pot type vacuum annealing, burn to stew formula continuous annealing, three kinds of annealing processs of the online annealing of tubular type and make, wherein the unit elongation of composite wire material is 13~17% in the pot type vacuum annealing process, burn to stew composite wire material in the formula continuous annealing process unit elongation be 10~17%, the unit elongation of composite wire material is 8~15% in the online annealing process of tubular type.
In sum; the present invention is according to the line footpath of the copper/steel/steel composite wire material of different size; adopt three kinds of different anneal modes; the high-performance of three kinds of annealing processs is organically combined; solved a difficult problem of the prior art; thereby obtained a kind of than better manufacture method of prior art and product; but those skilled in the art are easy to know by inference; related copper/steel/steel composite wire material can also comprise multiple non-circular special-shaped line among the present invention; as oblateness; square; rectangle; flat rhombus or ellipse or the like; and all do not break away from spirit of the present invention to obtain similar copper/steel/steel composite wire material for the manufacture method that has close anneal by conversion, all fall into product protection scope of the present invention.
Claims (10)
1. the method for a manufactured copper/steel/steel composite wire material, wherein the core body of composite wire material is a carbon steel wire rod, coating layer is a copper strips, it is characterized in that this method adopts the pot type vacuum annealing, burns and stew formula continuous annealing, three kinds of annealing processs of the online annealing of tubular type, and three kinds of annealing processs are finished by following:
A, copper strips is coated on the carbon steel wire rod core body makes composite blank, the composite blank diameter range is 1.5~2.6mm, carries out the pot type vacuum annealing in the vacuum tank of then composite blank being packed into and handles;
B, the composite blank after handling through the pot type vacuum annealing carry out repeatedly drawing, when obtaining the last drawing of diameter range at 0.60~1.50mm composite wire material, composite wire material is under the as-drawn burn by the electrically heated case and stewes formula continuous annealing and handle;
After c, burning are stewed formula continuous annealing processing, again through repeatedly drawing, obtaining diameter range is the moulding silk material of 0.08~0.40mm, the multiply moulding silk material that obtains is fed simultaneously carry out the online anneal of tubular type in a plurality of tubules at last, the end of a thread correspondence is wrapped in obtains the finished product on the take-up reel again.
2. the method for claim 1 is characterized in that: in a step pot type vacuum annealing treating processes, the annealing temperature in the vacuum tank is 630~700 ℃, and it is 3~7 hours that composite blank places the annealing time in the vacuum tank.
3. method as claimed in claim 2 is characterized in that: a step also comprises: after the pot type vacuum annealing is handled, composite blank is immersed circulating cooling liquid cool off, wherein the temperature of circulating cooling liquid is 10~25 ℃, and be 10~16 hours cooling time.
4. the method for claim 1 is characterized in that: the b step burn stew formula continuous annealing handle in the annealing temperature of electrically heated case be 600-830 ℃, wherein the heating current amount of electrically heated case is 25~70 A/min.
5. method as claimed in claim 4 is characterized in that: the b step also comprises: composite wire material by the electrically heated case after, immerse circulating cooling liquid again and cool off, the temperature of circulating cooling liquid is 15~30 ℃.
6. as claim 4 or 5 described methods, it is characterized in that: composite wire material is 300~600m/min by the take-up speed of electrically heated case and circulating cooling liquid in the b step.
7. the method for claim 1, it is characterized in that: a plurality of tubules bottom that the online anneal of the tubular type in the c step adopts all is provided with electrical heating wire, thereby adopt electrically heated mode that the tubule temperature is raise to electrical heating wire, wherein the annealing temperature in the tubule is 420~750 ℃.
8. method as claimed in claim 7 is characterized in that: the c step also comprises: moulding silk material immerses circulating cooling liquid again after by tubule and carries out the refrigerative step, and wherein the temperature of circulating cooling liquid is 20~35 ℃.
9. as claim 7 or 8 described methods, it is characterized in that: moulding silk material is 50~220m/min by the take-up speed of tubule and circulating cooling liquid in the c step.
10. copper/steel/steel composite wire material that the method that adopts claim 1-9 is made, the core body of this composite wire material is a carbon steel wire rod, and coating layer is a copper strips, and the tensile strength of composite wire material is 350~380Mpa, and proportion is 8.02~8.15g/cm
3It is characterized in that: composite wire material through the pot type vacuum annealing, burn to stew formula continuous annealing, three kinds of annealing processs of the online annealing of tubular type and make, wherein the unit elongation of composite wire material is 13~17% in the pot type vacuum annealing process, burning the unit elongation of stewing composite wire material in the formula continuous annealing process is 10~17%, and the unit elongation of composite wire material is 8~15% in the online annealing process of tubular type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101580466A CN101148692A (en) | 2007-11-09 | 2007-11-09 | Copper/steel composite wire material and anneal manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101580466A CN101148692A (en) | 2007-11-09 | 2007-11-09 | Copper/steel composite wire material and anneal manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101148692A true CN101148692A (en) | 2008-03-26 |
Family
ID=39249388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101580466A Pending CN101148692A (en) | 2007-11-09 | 2007-11-09 | Copper/steel composite wire material and anneal manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101148692A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104240839A (en) * | 2013-06-18 | 2014-12-24 | 嘉兴嘉合电力设备有限公司 | Method and system for manufacturing copper clad steel wire |
CN107326168A (en) * | 2017-07-14 | 2017-11-07 | 银邦金属复合材料股份有限公司 | The heat treatment system and method for a kind of copper-steel-copper composite material |
CN114082796A (en) * | 2021-11-22 | 2022-02-25 | 国网浙江省电力有限公司电力科学研究院 | Hot-melt continuous casting copper-clad steel material and processing method thereof |
CN114309125A (en) * | 2021-12-29 | 2022-04-12 | 英特派铂业股份有限公司 | Preparation method of platinum-platinum rhodium composite wire |
-
2007
- 2007-11-09 CN CNA2007101580466A patent/CN101148692A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104240839A (en) * | 2013-06-18 | 2014-12-24 | 嘉兴嘉合电力设备有限公司 | Method and system for manufacturing copper clad steel wire |
CN107326168A (en) * | 2017-07-14 | 2017-11-07 | 银邦金属复合材料股份有限公司 | The heat treatment system and method for a kind of copper-steel-copper composite material |
CN114082796A (en) * | 2021-11-22 | 2022-02-25 | 国网浙江省电力有限公司电力科学研究院 | Hot-melt continuous casting copper-clad steel material and processing method thereof |
CN114309125A (en) * | 2021-12-29 | 2022-04-12 | 英特派铂业股份有限公司 | Preparation method of platinum-platinum rhodium composite wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104498780B (en) | A kind of high conductivity high strength copper-clad aluminum alloy | |
CN101148692A (en) | Copper/steel composite wire material and anneal manufacturing method thereof | |
CN105575460B (en) | A kind of insulated aerial aluminium alloy cable and preparation method thereof | |
CN102664086B (en) | Insulation processing method of MgB2 wire strip | |
CN101518872A (en) | Method for preparing Cu-Nb monofilamentary composite wire | |
CN101148694B (en) | Copper/iron alloy composite wire material and anneal manufacturing method thereof | |
CN109449133A (en) | A kind of copper plating pure nickel bonding wire and preparation method thereof | |
CN101148691B (en) | Steel/steel composite wire material and anneal manufacturing method thereof | |
CN101429631A (en) | Copper/aluminum-magnesium alloy composite wire material and its annealing production method | |
CN104616881A (en) | Iron-based amorphous alloy core for distribution transformer and manufacturing method thereof | |
CN101148693A (en) | Copper/aluminum composite wire material and anneal manufacturing method thereof | |
CN107481791A (en) | A kind of lv power cable and its production method | |
CN202205477U (en) | Thin PTFE material belt for cables | |
CN105839434B (en) | A kind of method that instantaneous quenching modification prepares prestress wire | |
CN204298685U (en) | A kind of rope heat setting device | |
CN106448943A (en) | Process for annealing electric cables | |
CN203491041U (en) | Inductor | |
CN106057374A (en) | Bi-2212 superconductive wire rod barrier layer preparation method | |
CN104766680A (en) | Production method of alloy cable | |
CN205595109U (en) | Water -fast cable of separating of resistant radiation | |
CN205508479U (en) | High temperature resistant cable more than 500 DEG C | |
KR20170072695A (en) | Method for the preparation of graphene composite conducting line | |
CN105788697B (en) | A kind of high-strength high conductivity plastic cable and preparation method thereof | |
CN203866348U (en) | Deoxidization device | |
CN205264361U (en) | Varnished cloth pencil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080326 |