CN101147868A - Fluid bed catalyst for acrylonitrile production - Google Patents
Fluid bed catalyst for acrylonitrile production Download PDFInfo
- Publication number
- CN101147868A CN101147868A CNA2006101162259A CN200610116225A CN101147868A CN 101147868 A CN101147868 A CN 101147868A CN A2006101162259 A CNA2006101162259 A CN A2006101162259A CN 200610116225 A CN200610116225 A CN 200610116225A CN 101147868 A CN101147868 A CN 101147868A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- span
- acrylonitrile
- described production
- propylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
The present invention relates to a fluidized bed catalyst for producing acrylonitrile. It is characterized by that said catalyst uses silicone dioxide as carrier, and contains the following active components: A, B, C, K, Mg, Mn, I, Fe, Bi and Mo, in which A is at least one kind selected from Li, Na, Rb, Cs or Tl, B is at least one kind selected from La, Ce, Nd, Pr or Eu and C is at least one kind selected from Cr or W. Said catalyst can be used in industrial production of acrylonitrile under the condition of high reaction pressure and high propene load.
Description
Technical field
The present invention relates to a kind of fluid catalyst of producing acrylonitrile, particularly about a kind of fluid catalyst of preparing acrylonitrile by allylamine oxidation.
Background technology
Acrylonitrile is important Organic Chemicals, and it is produced by the ammoxidation of propylene reaction.For obtaining the fluid catalyst of high activity, high selectivity, people have carried out a series of improvement through constantly exploring.These improve and mostly relate to the catalyst activity composition, pay attention to the collocation between the catalyst activity component, and improve activity of such catalysts and selectivity, thereby reach the raising of acrylonitrile once through yield, and the raising of producing load.
Ammonia oxidation is produced acrylonitrile through 40 years of development, and the production capacity of factory and the market demand are near balance.The main development trend of acrylonitrile process is built the technological transformation that new equipment turns to original factory by emphasis, further to cut down the consumption of raw materials and to increase production capacity at present.By transformation to original factory, change the bottleneck in effective catalyst and the elimination production technology, the production capacity of acrylonitrile might improve 50~80%, and required investment only is 20~30% of a new device, economic benefit is very huge.
Can produce two problems during factory transforms: 1. the reaction pressure of fluidized-bed reactor will rise; 2. the useful load of catalyst can not be too many.The catalyst that for this reason requires to use instead should have higher propylene load and can bear higher reaction pressure, and keeps higher acrylonitrile yield.
The WWH that improves catalyst in theory should increase the adsorption activation ability of catalyst to propylene, but at present still in the catalyst-free certain element can improve report to propylene adsorption activation ability.The catalyst of following composition has been proposed in document CN1021638C:
A
aB
bC
cNi
dCo
eNa
fFe
gBi
hM
iMo
jO
x
Wherein A is potassium, rubidium, caesium, samarium, thallium; B is manganese, magnesium, strontium, calcium, barium, lanthanum, rare earth element; C is phosphorus, arsenic, boron, antimony, chromium; M is tungsten, vanadium.
Above-mentioned catalyst can obtain higher acrylonitrile yield, but the propylene of catalyst load is lower, and acrylonitrile yield descends bigger under higher reaction pressure.Once in stipulating in CN1021638C in addition that above-mentioned catalyst was formed, the summation of i and j is 12, is a constant.Cancel this regulation in the present invention,, can influence the single receipts of acrylonitrile because molybdenum component will reduce when increasing by this regulation M component.
Introduced the catalyst that a kind of catalyst that uses molybdenum, bismuth, iron, nickel, magnesium, potassium and caesium system carries out preparing acrylonitrile by allylamine oxidation among document US 5093299 and the US5212137.Introduce in this patent, its catalyst can be operated under lower slightly usually reaction temperature, and it has advantages of high catalytic activity and advantages of excellent oxidation-reduction stability, thereby compares conditional operation applicable to lower air/propylene.But it should be noted that the investigation condition of above-mentioned patent working example is a fixed bed, 430 ℃ of reaction temperatures are not mentioned reaction pressure concrete in the experimental implementation and operational load situation data.This fixed bed investigation condition is difficult to reflect the situation of fluidized bed process.
Introduced a kind of manufacture method of acrylonitrile among the flat 8-27089 of document, it adopts the catalyst of molybdenum, bismuth, iron, magnesium and tungsten system to carry out the ammoxidation of propylene reaction, and the investigation condition among the document embodiment is a normal pressure.
With regard to the acrylonitrile yield of initial reaction stage, disclosed catalyst has had bigger improvement in the above-mentioned patent document.But all do not relate to catalyst acrylonitrile yield data under higher propylene load and higher reaction pressure in above-mentioned all patents.
A kind of catalyst that contains preparing acrylonitrile by allylamine oxidation at least a at least a in molybdenum, bismuth, cerium, iron, nickel, magnesium or the zinc, potassium or caesium or the rubidium is disclosed among document JP 9401312 and the CN1121321A.Introduce in this patent, its catalyst can prevent effectively under the situation in reaction time that acrylonitrile yield from reducing prolonging, but its evaluating catalyst is to carry out under quite low reaction pressure and low operational load condition.
The objective of the invention is to overcome the catalyst that exists in the above-mentioned document and do not relate to the higher propylene load and the problem of higher reaction pressure, a kind of fluid catalyst of new production acrylonitrile is provided, this catalyst is not only operated under higher propylene load and higher reaction pressure, and has higher acrylonitrile yield.
Summary of the invention
Technical problem to be solved by this invention be existing in technology have the low and lower problem of reaction pressure of acrylonitrile load, a kind of fluid catalyst of new production acrylonitrile is provided.This catalyst has the characteristics of higher acrylonitrile yield under higher propylene load and higher reaction pressure.
For solving the problems of the technologies described above, the technical solution used in the present invention is as follows: a kind of fluid catalyst of producing acrylonitrile, contain with the following composition of atomic ratio measuring chemical formula:
A
aB
bC
cK
dMg
eMn
fNi
gFe
hBi
iMo
12O
x
A is selected from least a among Li, Na, Rb, Cs or the Tl in the formula;
B is selected from least a among La, Ce, Nd, Pr or the Eu;
Cr or W's was at least a during C was selected from;
The span of a is 0.005~1.0;
The span of b is 0~2.0;
The span of c is 0~2.0;
The span of d is 0.01~3.5;
The span of e is 0.1~12.0;
The span of f is 0~2.0;
The span of g is 0.1~12 0;
The span of h is 0.1~7.0;
The span of i is 0.01~3.0;
X satisfies the required oxygen atom sum of each element valence in the catalyst;
Wherein catalyst carrier is selected from silica, aluminium oxide or its mixture, and its consumption is 30~70% of catalyst weight by weight percentage.
The value preferable range of a is 0.1~0.8 in the technique scheme, the value preferable range of b is 0.1~1.0, the value preferable range of c is 0.05~1.5, the value preferable range of d is 0.1~2.0, the value preferable range of e is 0.5~8.0, and the value preferable range of f is 0.01~1.5, and the value preferable range of g is 0.1~10, the value preferable range of h is 0.5~5, and the span of i is 0.1~2.5.The preferred silica of catalyst carrier, its consumption preferable range are 40~60% of catalyst weight by weight percentage.
The manufacture method of catalyst of the present invention there is no specific (special) requirements, can be undertaken by well-established law.At first the catalyst each component is made solution, be mixed and made into slurry with carrier again, the spray-dried microspheroidal that is shaped to, catalyst is made in last roasting.The preparation of slurry is preferably undertaken by the CN1005248C method.
The raw material of making catalyst of the present invention is:
Molybdenum component in the catalyst is with molybdenum oxide or ammonium molybdate.
The most handy corresponding acids of phosphorus in the catalyst, arsenic and boron or its ammonium salt; Germanium can be used germanium oxide; The most handy corresponding oxide of tungsten and antimony or its ammonium salt; The most handy nitrate of niobium, hydroxide and oxide; The most handy chromium trioxide of chromium, chromic nitrate or the mixture of the two; The most handy its nitrate of all the other components, hydroxide maybe can be decomposed into the salt of oxide.
Raw material available silicon colloidal sol, silicon gel or both mixtures as carrier silica.If use Ludox, its quality will meet the requirement of CN1005248C.
It is 47~55% back spray-dryings that the prepared slurry heating is concentrated to solid content.Spray dryer available pressure formula, two streamings or centrifugal turntable formula, but, can guarantee that the catalyst of making has good size distribution with centrifugal better.
The roasting of catalyst can be divided into two stages and carry out: each element decomposition of salts and high-temperature roasting in the catalyst.The catabolic phase temperature is preferably 200~300 ℃, and the time is 0.5~2 hour.Sintering temperature is 500~800 ℃, is preferably 550~700 ℃; Roasting time is 20 minutes to 2 hours.Above-mentioned decomposition and roasting are carried out respectively in two roasters, also can be divided into two zones in a stove, also can finish simultaneously in the continous way rotary roasting furnace and decompose and roasting.In catalyst decomposes and roasting process, to feed an amount of air,, and prevent that catalyst is by over reduction with generation catalytic activity phase.
Adopt the specification of catalyst manufacturing acrylonitrile of the present invention required propylene, ammonia and molecular oxygen identical with other ammoxidation catalyst of use.Though the low molecule saturated hydrocarbon content in the raw material propylene to the reaction did not influence, considers that from economic point of view density of propylene is more preferably greater than 85% (mole).Ammonia can be used fertilizer grade liquefied ammonia.Reaction desired molecule oxygen can be used pure oxygen from technical standpoint, oxygen enrichment and air, but from economy and the most handy air of security consideration.
Entering the ammonia of fluidized-bed reactor and the mol ratio of propylene is between 0.8~1.5, is preferably 1.0~1.3.The mol ratio of air and propylene is 8~10.5, is preferably 8.8~9.8.If owing to some operational reason must with higher air than the time, can increase to 11, reaction is not had significant impact.But from security consideration, the excess of oxygen in the reacting gas can not preferably be not more than 4% greater than 7% (volume).
When catalyst of the present invention was used for fluidized-bed reactor, reaction temperature was 410~470 ℃, was preferably 420~450 ℃.Catalyst of the present invention is a kind of usually lower slightly reaction temperature that is applicable to, high pressure, high load capacity catalyst, and therefore reaction pressure can be more than 0.08MPa in process units, for example, 0.08~0.18MPa.Also do not have any adverse effect if reaction pressure is lower than 0.08MPa, acrylonitrile yield can further improve.
The propylene load (WWH) of catalyst of the present invention is 0.06~0.15 hour
-1, be preferably 0.08~0.13 hour
-1Loading to hang down not only wastes catalyst, and carbon dioxide production is increased, and selectivity descends, and is disadvantageous.Loading does not too highly have practical significance, because the catalyst addition is very few, the heat transfer area that can make cooling water pipe in the catalyst layer causes reaction temperature uncontrollable less than removing the required area of reaction heat.
The product of making acrylonitrile with catalyst of the present invention reclaims process for refining, and available existing production technology need not done any transformation.The eluting gas that is fluidized-bed reactor is removed unreacted ammonia through neutralizing tower, with water at low temperature whole organic products is absorbed again.Absorption liquid gets high-purity propylene nitrile product through extractive distillation after dehydrogenation cyanic acid and the processed.
Brought into play good synergism between each component of catalyst of the present invention, it is right to have introduced combined oxidation-reduction in the catalyst simultaneously, quicken gas phase oxygen and entered caltalyst phase and the body diffusion of oxygen mutually, make the oxidation rapidly of reacted catalyst, again recover active, thereby help improving activity of such catalysts and stability.Using the catalyst among the present invention is 0.11 hour at 440 ℃, 0.14MPa and propylene load (WWH)
-1Condition under carry out ammoxidation of propylene reaction, the yield of acrylonitrile reaches 80.9%, has obtained better technical effect.
Activity of such catalysts of the present invention examination is to carry out in internal diameter is 38 millimeters fluidized-bed reactor.Loaded catalyst 400 grams, 440 ℃ of reaction temperatures, reaction pressure 0.14MPa, raw material proportioning (mole) is a propylene: ammonia: air=1: 1.2: 9.8, the propylene load (WWH) of catalyst is 0.11 hour
-1
Propylene conversion, acrylonitrile selectivity and once through yield are defined as follows in the present invention:
The invention will be further elaborated below by embodiment.
The specific embodiment
[embodiment 1]
7.7 gram cesium nitrate, 4.56 gram rubidium nitrates and 2.69 gram potassium hydroxide add water 20 grams and the dissolving of heating back, obtain material (A); 53.6 gram ammonium tungstates and 841.5 gram ammonium molybdates are dissolved in 60~90 ℃ of hot water of 690 grams, get material (B); 289.0 gram bismuth nitrates, 254.6 gram magnesium nitrates, 525.1 gram nickel nitrates, 486.4 gram ferric nitrates and 11.6 gram lanthanum nitrates are mixed, add water 280 grams, after the heating for dissolving as material (C), taking by weighing 40.3 gram chromium trioxides is dissolved in the 50 gram water, get material (D), take by weighing 17.2 gram cerous nitrates and be dissolved in the 20 gram water and heating for dissolving, get material (E).
With material (A) and 2475 gram weight concentration is that 40% Ludox mixes, under agitation add material (B), (C), (D) and (E) successively, the manganese nitrate solution that adds 140.7 grams 50% then, after fully stirring, get slurry, according to well-established law the slurry of making is carried out the framboid moulding in spray dryer, be 89 millimeters at internal diameter at last, length be in the rotary roasting furnace of 1700 millimeters (89 * 1700 millimeters of φ) in 600 ℃ of roastings 2.0 hours, make and consist of:
50%Mo
12Bi
1.5Fe
3.0Ni
4.5Cr
1.0Mg
2.5W
0.5Mn
1.0Ce
0.1La
0.1Cs
0.1Rb
0.1K
0.1O
x+50%SiO
2。
[embodiment 2~6 and comparative example 1~4]
Adopt method preparation substantially the same manner as Example 1 to have the catalyst that different activities is formed in the following table, and under following reaction condition, carry out the reaction that ammoxidation of propylene generates acrylonitrile, the results are shown in Table 1 with prepared catalyst.
The reaction condition of the foregoing description and comparative example is:
38 millimeters fluidized-bed reactors of φ
440 ℃ of reaction temperatures
Reaction pressure 0.14MPa
Loaded catalyst 400 grams
Catalyst propylene load (WWH) 0.11 hour
-1
Raw material proportioning (mole) C
3 =/ NH
3/ air=1/1.2/9.8
Table 1
Embodiment | Catalyst is formed | Acrylonitrile yield % | Acrylonitrile selectivity % | Propylene conversion % |
Embodiment 1 | Mo 12Bi 1.5Fe 3.0Ni 4.5Cr 1.0Mg 2.5W 0.5Mn 1.0Ce 0.1La 0.1Cs 0.1Rb 0.1K 0.1O x | 80.5 | 81.6 | 98.5 |
Embodiment 2 | Mo 12Bi 2.0Fe 3.5Ni 2.0Mn 0.7Mg 1.4K 0.2Nd 0.2Pr 0.25W 1.2Na 0.10Cs 0.15O x | 80.5 | 81.4 | 98.8 |
Embodiment 3 | Mo 12Bi 0.8Fe 1.5Ni 3.5Mn 1.0Mg 2.5K 0.7Nd 0.1La 0.5Cr 1.0Na 0.25O x | 80.1 | 81.2 | 98.6 |
Embodiment 4 | Mo 12Bi 2.2Fe 2.0Ni 4.0Mn 1.3 yearMg 4.0K 0.1Nd 0.15Ce 0.8W 0.5Cs 0.2O x | 80.0 | 81.2 | 98.5 |
Embodiment 5 | Mo 12Bi 0.3Fe 4.5Ni 0.9Mn 1.0Mg 5.0K 0.5Nd 0.25Ce 0.5La 0.2Cr 1.0Cs 0.15O x | 80.9 | 82.4 | 98.3 |
Embodiment 6 | Mo 12Bi 0.5Fe 0.5Ni 6.0Mn 0.8Mg 6.0K 0.1La 1.0Ce 0.25Pr 0.5W 1.5Li 0.1Rb 0.1O x | 80.5 | 82.1 | 98.1 |
Comparative example 1 | Mo 12Bi 2.5Fe 2.5Ni 5.0Mn 1.0Mg 3.5La 0.5Na 0.1Cs 0.1Cr 0.5O x | 78.1 | ||
Comparative example 2 | Mo 12Bi 1.2Fe 4.4Ni 4.8Mn 1.5K 0.4Mg 2.6La 0.8Rb 0.3K 0.5O x | 79.2 | ||
Comparative example 3 | Mo 12Bi 1.0Fe 5.0Ni 2.0Mn 0.5Mg 4.5K 0.15Na 0.1W 1.0Tl 0.1O x | 78.0 | ||
Comparative example 4 | Mo 12Bi 0.5Fe 1.0Ni 6.0Mn 1.8Mg 6.5K 0.2La 0.25Cr 0.5W 4.0O x | 78.7 |
Claims (10)
1. fluid catalyst of producing acrylonitrile, contain with the following composition of atomic ratio measuring chemical formula:
A
aB
bC
cK
dMg
eMn
fNi
gFe
hBi
iMo
12O
x
A is selected from least a among Li, Na, Rb, Cs or the Tl in the formula;
B is selected from least a among La, Ce, Nd, Pr or the Eu;
Cr or W's was at least a during C was selected from;
The span of a is 0.005~1.0;
The span of b is 0~2.0;
The span of c is 0~2.0;
The span of d is 0.01~3.5;
The span of e is 0.1~12.0;
The span of f is 0~2.0;
The span of g is 0.1~12.0;
The span of h is 0.1~7.0;
The span of i is 0.01~3.0;
X satisfies the required oxygen atom sum of each element valence in the catalyst;
Wherein catalyst carrier is selected from silica, aluminium oxide or its mixture, and its consumption is 30~70% of catalyst weight by weight percentage.
2. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that a is 0.1~0.7.
3. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that b is 0.1~1.0.
4. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that c is 0.05~1.5.
5. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that d is 0.1~2.0.
6. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that e is 0.5~8.0.
7. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that f is 0.01~1.5.
8. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that g is 0.1~10.
9. according to the fluid catalyst of the described production acrylonitrile of claim 1, the span that it is characterized in that h is 0.5~5, and the span of i is 0.1~2.5.
10. according to the fluid catalyst of the described production acrylonitrile of claim 1, it is characterized in that catalyst carrier is a silica, its consumption is 40~60% by weight percentage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101162259A CN101147868A (en) | 2006-09-20 | 2006-09-20 | Fluid bed catalyst for acrylonitrile production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006101162259A CN101147868A (en) | 2006-09-20 | 2006-09-20 | Fluid bed catalyst for acrylonitrile production |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101147868A true CN101147868A (en) | 2008-03-26 |
Family
ID=39248635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006101162259A Pending CN101147868A (en) | 2006-09-20 | 2006-09-20 | Fluid bed catalyst for acrylonitrile production |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101147868A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103418403A (en) * | 2012-05-16 | 2013-12-04 | 中国石油化工股份有限公司 | Low-temperature high-load catalyst for olefin ammoxidation reaction |
CN103418406A (en) * | 2012-05-16 | 2013-12-04 | 中国石油化工股份有限公司 | Low-temperature high-load catalyst for olefin ammoxidation reaction |
CN103691447A (en) * | 2013-11-23 | 2014-04-02 | 中国石油集团东北炼化工程有限公司吉林设计院 | Catalyst for production of acrylonitrile and preparation method of catalyst |
CN103894203A (en) * | 2012-12-27 | 2014-07-02 | 中国石油化工股份有限公司 | High-load catalyst for olefin ammoxidation reactions |
CN106423190A (en) * | 2015-08-12 | 2017-02-22 | 中国石油化工股份有限公司 | Propylene ammoxidation catalyst for rich production of acetonitrile and hydrocyanic acid |
CN106582695A (en) * | 2015-10-14 | 2017-04-26 | 中国石油化工股份有限公司 | Catalyst used in preparation of acrylonitrile through propylene ammoxidation and capable of realizing high hydrocyanic acid yield |
CN106582696A (en) * | 2015-10-14 | 2017-04-26 | 中国石油化工股份有限公司 | High selectivity catalyst for production of acrylonitrile by propylene ammoxidation |
-
2006
- 2006-09-20 CN CNA2006101162259A patent/CN101147868A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103418403A (en) * | 2012-05-16 | 2013-12-04 | 中国石油化工股份有限公司 | Low-temperature high-load catalyst for olefin ammoxidation reaction |
CN103418406A (en) * | 2012-05-16 | 2013-12-04 | 中国石油化工股份有限公司 | Low-temperature high-load catalyst for olefin ammoxidation reaction |
CN103894203A (en) * | 2012-12-27 | 2014-07-02 | 中国石油化工股份有限公司 | High-load catalyst for olefin ammoxidation reactions |
CN103894203B (en) * | 2012-12-27 | 2017-02-08 | 中国石油化工股份有限公司 | High-load catalyst for olefin ammoxidation reactions |
CN103691447A (en) * | 2013-11-23 | 2014-04-02 | 中国石油集团东北炼化工程有限公司吉林设计院 | Catalyst for production of acrylonitrile and preparation method of catalyst |
CN106423190A (en) * | 2015-08-12 | 2017-02-22 | 中国石油化工股份有限公司 | Propylene ammoxidation catalyst for rich production of acetonitrile and hydrocyanic acid |
CN106582695A (en) * | 2015-10-14 | 2017-04-26 | 中国石油化工股份有限公司 | Catalyst used in preparation of acrylonitrile through propylene ammoxidation and capable of realizing high hydrocyanic acid yield |
CN106582696A (en) * | 2015-10-14 | 2017-04-26 | 中国石油化工股份有限公司 | High selectivity catalyst for production of acrylonitrile by propylene ammoxidation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102188981A (en) | Preparation method of acrylonitrile fluidized bed catalyst | |
CN101147868A (en) | Fluid bed catalyst for acrylonitrile production | |
CN103418405B (en) | Replenishment catalyst for maintaining stabilization production of acrylonitrile device | |
CN101147867B (en) | Fluidized bed catalyst for oxidation of propene ammonia | |
CN103418406A (en) | Low-temperature high-load catalyst for olefin ammoxidation reaction | |
CN100506377C (en) | Fluidized bed catalyst for ammoxidating propylene to produce acrylonitrile | |
CN100384531C (en) | Fluid-bed catalyst for ammoxidation to prepare acrylonitrile | |
CN1136980C (en) | Fluidized bed catalyst for ammoxidating propylene to produce acrylonitrile | |
CN100408172C (en) | Acrylonitrile fluid bed catalyst | |
CN101767014B (en) | Fluidized bed catalyst for producing acrylonitrile by propylene ammoxidation | |
CN100566828C (en) | The fluid catalyst of preparation acrylonitrile | |
CN101306372B (en) | Fluid bed catalyst for acrylonitrile production | |
CN100381203C (en) | Acrylonitrile catalyst in high yield | |
CN103418403A (en) | Low-temperature high-load catalyst for olefin ammoxidation reaction | |
CN100391602C (en) | Fluid-bed catalyst for ammoxidation to prepare acrylonitrile | |
CN101733117B (en) | High-stability fluid catalyst for producing acrylonitrile | |
CN100358630C (en) | Fluid-bed catalyst for propylene ammoxidation to prepare acrylonitrile | |
CN100398204C (en) | Catalyst for producing acrylonitrile from ammoxidation of propylene | |
CN100408173C (en) | Acrylonitrile catalyst of containing calcium | |
CN100368082C (en) | Fluidized bed catalyst for prodn. of acrylonitrile | |
CN101279265B (en) | Fluidized bed catalyst for preparing acrylonitrile | |
CN1107541C (en) | Fluid bed catalyst for acrylonitrile production | |
CN100384530C (en) | Fluid bed catalyst for producing acrylonitrile | |
CN100384533C (en) | Catalyst of ammoxidation for propylene | |
CN1099316C (en) | Catalyst for acrylonitrile fluid bed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20080326 |