CN101141064A - A method for completing distributed power flow analysis by exchanging boundary node status and network loss information - Google Patents

A method for completing distributed power flow analysis by exchanging boundary node status and network loss information Download PDF

Info

Publication number
CN101141064A
CN101141064A CNA2007101217928A CN200710121792A CN101141064A CN 101141064 A CN101141064 A CN 101141064A CN A2007101217928 A CNA2007101217928 A CN A2007101217928A CN 200710121792 A CN200710121792 A CN 200710121792A CN 101141064 A CN101141064 A CN 101141064A
Authority
CN
China
Prior art keywords
power flow
boundary
regional
node
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101217928A
Other languages
Chinese (zh)
Other versions
CN101141064B (en
Inventor
陈颖
沈沉
何光宇
黄少伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN2007101217928A priority Critical patent/CN101141064B/en
Publication of CN101141064A publication Critical patent/CN101141064A/en
Application granted granted Critical
Publication of CN101141064B publication Critical patent/CN101141064B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y04S10/54

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种通过交换边界节点状态和网损信息完成分布式潮流分析的方法,包括:根据电力系统实际调度管理方式构建分布式潮流分析系统;从电力系统拓扑连接关系出发,根据实际系统的运行状况,采用带有边界区域的切分方法对互联电网进行划分,明确潮流计算服务器和协调计算服务器的计算对象和数据来源;区域潮流计算服务器和上级协调计算服务器计算用数据和参数初始化,协调计算服务器调用区域潮流计算服务器共同完成全网一体化潮流分解协调求解过程;服务器间调用流程,区域电网潮流计算服务器将计算结果反馈给协调计算服务器,以使协调计算服务器获得收敛的全网一体化潮流计算结果。

Figure 200710121792

The invention discloses a method for completing distributed power flow analysis by exchanging boundary node states and network loss information, including: constructing a distributed power flow analysis system according to the actual dispatching management mode of the power system; The operating status of the grid is divided by the segmentation method with boundary areas, and the calculation objects and data sources of the power flow calculation server and the coordination calculation server are clarified; the calculation data and parameters of the regional power flow calculation server and the upper-level coordination calculation server are initialized, The coordination calculation server calls the regional power flow calculation server to jointly complete the whole network integration power flow decomposition coordination solution process; the process is called between servers, and the regional grid power flow calculation server feeds back the calculation results to the coordination calculation server, so that the coordination calculation server can obtain a converged network-wide integration Calculation results of power flow.

Figure 200710121792

Description

通过交换边界节点状态和网损信息完成分布式潮流分析的方法 A method for completing distributed power flow analysis by exchanging boundary node status and network loss information

技术领域technical field

本发明涉及一种完成分布式潮流分析的方法,特别涉及一种通过交换边界节点状态和网损信息完成分布式潮流分析的方法,属于电力系统分布式仿真技术领域。The invention relates to a method for completing distributed power flow analysis, in particular to a method for completing distributed power flow analysis by exchanging boundary node states and network loss information, and belongs to the technical field of power system distributed simulation.

背景技术Background technique

随着电力系统互联不断加强,电网构成更加复杂,运行难度大大增加。发生局部故障时,如果处理不当,就会发展为危及整个系统的重大事故。为了提高互联电力系统的安全稳定性,对整个电网进行无简化的一体化仿真分析显得越来越有必要的。As the interconnection of the power system continues to strengthen, the composition of the power grid becomes more complex, and the difficulty of operation increases greatly. When a local failure occurs, if it is not handled properly, it will develop into a major accident that endangers the entire system. In order to improve the safety and stability of the interconnected power system, it is more and more necessary to conduct unsimplified integrated simulation analysis of the entire power grid.

我国电网由多级调度中心协调管理和控制,采用“分级管理,分层控制,分布处理”的管理体系。如图1所示,级别较低的区域电网调度中心,如省调、地调等,只负责维持所辖区域内的功率平衡,管理和维护系统运行状态和参数;而级别较高的调度中心,如网调、国调等,则要负责区域间功率交换控制,协调区域电网调度活动。由于我国电力系统具有广域分布、参数海量、模型复杂的特点,高级别调度中心无法直接获取所辖电网状态和参数,需要由低级别的调度中心层层转发或上报所需数据。这使得全国电网参数和实时状态的采集、同步、整合所需时间较长,且维护难度较大。同时,随着电力市场化进程的不断深入,在市场竞争中,各调度机构更加重视对自身数据和信息的保护,加厚了各个调度机构的信息壁垒,进一步阻碍了系统内数据和信息的共享。因此,传统的集中式的全网一体化仿真计算难以在线实现。my country's power grid is coordinated, managed and controlled by a multi-level dispatching center, adopting a management system of "hierarchical management, hierarchical control, and distributed processing". As shown in Figure 1, lower-level regional power grid dispatching centers, such as provincial dispatching and local dispatching, are only responsible for maintaining power balance in the area under their jurisdiction, and managing and maintaining system operation status and parameters; while higher-ranking dispatching centers , such as network dispatching, national dispatching, etc., are responsible for inter-regional power exchange control and coordination of regional power grid dispatching activities. Due to the wide-area distribution, massive parameters, and complex models of my country's power system, the high-level dispatch center cannot directly obtain the status and parameters of the power grid under its jurisdiction, and the low-level dispatch center needs to forward or report the required data layer by layer. This makes the collection, synchronization, and integration of national power grid parameters and real-time status take a long time and difficult to maintain. At the same time, with the continuous deepening of the power marketization process, in the market competition, each dispatching organization pays more attention to the protection of its own data and information, thickens the information barriers of each dispatching organization, and further hinders the sharing of data and information in the system . Therefore, the traditional centralized network-wide integrated simulation calculation is difficult to realize online.

采用分布式计算技术的电网分析计算方法可以在保持参与计算的各方自身数据和计算资源的独立性的同时获得全网一体化仿真分析结果,具有快速高效、信息安全、应用灵活和易于扩展的特点。分布式潮流计算的重要功能是可以在保留各调度中心计算独立性的同时获得全网统一的仿真结果,因而该技术有望成为解决大规模互联系统一体化仿真的有效手段。目前,国内外对互联电网分布式潮流及其相关领域的研究,主要集中在以下几个方面:The power grid analysis and calculation method using distributed computing technology can obtain the integrated simulation analysis results of the whole network while maintaining the independence of the data and computing resources of all parties involved in the calculation. features. The important function of distributed power flow calculation is to obtain unified simulation results of the entire network while retaining the independence of each dispatching center's calculations. Therefore, this technology is expected to become an effective means to solve the integrated simulation of large-scale interconnected systems. At present, domestic and foreign research on the distributed power flow of interconnected grids and related fields mainly focuses on the following aspects:

1.合理的电力网络切分方法;1. Reasonable power network segmentation method;

2.并行潮流求解算法向分布式环境中的移植和测试;2. Transplantation and testing of parallel power flow algorithm to distributed environment;

3.潮流分解协调求解过程的等值网络计算和系统不平衡功率分配;3. Equivalent network calculation and unbalanced power distribution of the system in the coordination solution process of power flow decomposition;

可以看出,现有的互联电网一体化潮流分解协调计算方法的研究,主要集中在如何根据实际电力系统区域情况进行潮流计算的分解和对已有并行潮流算法改进方面。这些研究大多缺少对广域网络环境中的分布式计算环境所具有的高通信延时、数据和计算资源异构等特性的考虑,也没有建立能够统一处理全网潮流平衡和不平衡功率分配的分解协调计算模型,因而在实际电力系统中应用能力不足。It can be seen that the existing research on the integrated power flow decomposition and coordination calculation method of the interconnected grid mainly focuses on how to decompose the power flow calculation according to the actual power system regional conditions and improve the existing parallel power flow algorithm. Most of these studies lack the consideration of the characteristics of high communication delay, heterogeneous data and computing resources in the distributed computing environment in the wide area network environment, and have not established a decomposition that can uniformly handle the power flow balance and unbalanced power distribution of the entire network. Coordination calculation model, so the ability to apply in the actual power system is insufficient.

发明内容Contents of the invention

本发明的目的在于,提供一种通过交换边界节点状态和网损信息完成分布式潮流分析的方法,以联络线电流为协调变量,计算过程中只需要传递少量边界信息,可以灵活的处理全网不平衡功率分配的问题。The purpose of the present invention is to provide a method for completing distributed power flow analysis by exchanging boundary node status and network loss information, using the tie line current as the coordinating variable, only a small amount of boundary information needs to be transmitted during the calculation process, and the entire network can be processed flexibly The problem of unbalanced power distribution.

本发明是采用以下技术手段实现的:The present invention is realized by adopting the following technical means:

一种通过交换边界节点状态和网损信息完成分布式潮流分析的方法,包括:A method for completing distributed power flow analysis by exchanging boundary node status and network loss information, including:

步骤1;根据电力系统实际调度管理方式构建分布式潮流分析系统;所述的电力系统由区域调度中心和上级调度中心协调一致、信息互联;所述的分布式潮流计算系统由区域调度中心内的潮流计算服务器和上级调度中心内的协调计算服务器通过网络连接构成;其中;潮流计算服务器,负责其所辖电网的潮流计算;而上级调度中心内的协调计算服务器,负责协调各区域电网潮流计算过程;Step 1: Construct a distributed power flow analysis system according to the actual dispatch management mode of the power system; the power system is coordinated and interconnected by the regional dispatch center and the superior dispatch center; the distributed power flow calculation system is controlled by the regional dispatch center The power flow calculation server and the coordination calculation server in the superior dispatching center are connected through a network; among them, the power flow calculation server is responsible for the power flow calculation of the power grid under its jurisdiction; and the coordination calculation server in the superior dispatching center is responsible for coordinating the power flow calculation process of each regional power grid ;

步骤2;从电力系统拓扑连接关系出发,根据实际系统的运行状况,采用带有边界区域的切分方法对系统进行切分,按照实际网络连接情况,对互联电网进行划分,明确潮流计算服务器和协调计算服务器的计算对象和数据来源;Step 2: Starting from the topological connection relationship of the power system, according to the actual system operating conditions, the system is segmented using the segmentation method with boundary areas, and the interconnected grid is divided according to the actual network connection conditions, and the power flow calculation server and Coordinate computing objects and data sources of computing servers;

所述的系统定义为(S0);包括两个区域系统(S1)和(S2),通过联络线l相互连接;其中(B1)(B2)分别代表(S1)(S2)区域的边界节点,(Sln 1)(Sln 2)分别为(S1)(S2)中除了边界节点外其他节点组成的网络;将边界节点B1和B2分别分裂,虚拟出边界节点

Figure A20071012179200081
Figure A20071012179200082
并将联络线l与其两端的虚拟边界节点
Figure A20071012179200084
单独看作一个SB,则区域起到连接其他所有区域作用,定义为边界区域;Said system is defined as (S 0 ); it includes two regional systems (S 1 ) and (S 2 ), connected to each other by tie line l; where (B 1 )(B 2 ) represent (S 1 )(S 2 ) The border nodes of the region, (S ln 1 )(S ln 2 ) are the network composed of other nodes in (S 1 )(S 2 ) except the border nodes; split the border nodes B 1 and B 2 respectively, virtual outbound node
Figure A20071012179200081
and
Figure A20071012179200082
and connect the contact line l with the virtual boundary nodes at its two ends and
Figure A20071012179200084
Viewed as a single S B , the area plays the role of connecting all other areas, which is defined as the boundary area;

所述区域S1和S2属于区域电网调度中心管辖范围,区域SB属于上级调度中心管辖范围;在这种切分方式下,全网潮流的收敛条件为:区域S1和S2中潮流计算达到收敛,它们内部节点功率均达到平衡,且边界节点状态满足The areas S 1 and S 2 belong to the jurisdiction of the regional power grid dispatching center, and the area S B belongs to the jurisdiction of the superior dispatching center; in this segmentation mode, the convergence condition of the power flow in the whole network is: the power flow in the areas S 1 and S 2 The calculation reaches convergence, the power of their internal nodes reaches balance, and the state of the boundary nodes satisfies

uu BB == uu BB ~~ ,, θθ BB == θθ BB ~~ ii →&Right Arrow; BB ++ ii →&Right Arrow; BB ~~ == 00 -- -- -- (( 11 ))

其中uB和θB是区域电网内潮流计算收敛结果中边界节点B1和B2的电压幅值和相角向量;

Figure A20071012179200086
是边界区域SB内潮流计算收敛时边界节点B1和B2的电压幅值和相角向量;
Figure A20071012179200091
是区域电网潮流计算收敛结果中边界节点B1和B2上来自联络线的注入电流相量组成的向量,以流入为正方向;
Figure A20071012179200092
是边界区域SB中潮流计算收敛时从边界节点B1和B2向联络线上注入的电流相量组成的向量,以流出为正方向。where u B and θ B are the voltage amplitude and phase angle vectors of boundary nodes B 1 and B 2 in the convergence results of power flow calculation in the regional power grid;
Figure A20071012179200086
and is the voltage amplitude and phase angle vector of boundary nodes B 1 and B 2 when the power flow calculation in the boundary area S B converges;
Figure A20071012179200091
is the vector composed of the injected current phasor from the tie line on the boundary nodes B 1 and B 2 in the convergence result of the regional grid power flow calculation, with the inflow as the positive direction;
Figure A20071012179200092
is the vector composed of the current phasor injected from the boundary nodes B 1 and B 2 to the tie line when the power flow calculation converges in the boundary area S B , with the outflow as the positive direction.

步骤3;区域潮流计算服务器和上级协调计算服务器计算用数据和参数初始化,包括以下步骤:Step 3: Data and parameter initialization for regional power flow calculation server and superior coordination calculation server calculation, including the following steps:

步骤3.1:区域电网调度中心内的潮流计算服务器初始化所辖电网的网络参数,包括所有参与潮流计算的网络节点的类型、负荷和发电机出力设定值、发电机机端节点电压幅值以及松弛节点相角等;Step 3.1: The power flow calculation server in the regional power grid dispatching center initializes the network parameters of the power grid under its jurisdiction, including the types of all network nodes participating in the power flow calculation, load and generator output settings, generator terminal node voltage amplitude and slack Node phase angle, etc.;

步骤3.2:区域电网调度中心内的潮流计算服务器初始化边界条件信息,包括边界节点的编号、名称等、边界条件的组成,即边界节点的注入电流相量组成的向量和区域电网松弛节点相角;Step 3.2: The power flow calculation server in the regional power grid dispatching center initializes the boundary condition information, including the number and name of the boundary nodes, the composition of the boundary conditions, that is, the vector composed of the injected current phasors of the boundary nodes and the phase angle of the regional power grid relaxation nodes;

步骤3.3:区域电网调度中心内的潮流计算服务器初始化潮流计算的参数,包括所使用的迭代求解方法、最大迭代次数、节点电压上下限、用以判断潮流收敛的最小功率偏差;Step 3.3: The power flow calculation server in the regional power grid dispatching center initializes the parameters of power flow calculation, including the iterative solution method used, the maximum number of iterations, the upper and lower limits of node voltage, and the minimum power deviation for judging the convergence of the power flow;

步骤3.4:上级调度中心内的协调计算服务器初始化边界区域网络参数,包括边界节点的名称、联络线阻抗;Step 3.4: The coordination calculation server in the upper-level dispatch center initializes the network parameters of the border area, including the name of the border node and the impedance of the tie line;

步骤3.5:上级调度中心内的协调计算服务器设定全网一体化潮流协调求解控制参数;最大迭代次数、各区域负担全网有功网损的比例系数,以及边界节点功率平衡精度要求,即判定边界节点功率平衡所需的边界节点上不平衡的电流向量最大幅值。Step 3.5: The coordination computing server in the upper-level dispatching center sets the control parameters of the integrated power flow coordination solution of the entire network; the maximum number of iterations, the proportional coefficient of each area’s burden on the active network loss of the entire network, and the power balance accuracy requirements of boundary nodes, that is, the decision boundary Maximum magnitude of unbalanced current vectors on boundary nodes required for node power balance.

步骤4:协调计算服务器调用区域潮流计算服务器共同完成全网一体化潮流分解协调求解过程;服务器间调用流程所示,包括以下基本步骤:Step 4: The coordination calculation server calls the regional power flow calculation server to jointly complete the whole-network integrated power flow decomposition coordination solution process; as shown in the calling process between servers, it includes the following basic steps:

步骤4.1:上级调度中心内的协调计算服务器按照步骤3.4、3.5初始化本地基础网络数据和计算参数,区域调度中心内区域潮流计算服务器按照步骤3.1~3.3初始化本地基础网络数据和计算参数;Step 4.1: The coordination calculation server in the superior dispatch center initializes the local basic network data and calculation parameters according to steps 3.4 and 3.5, and the regional power flow calculation server in the regional dispatch center initializes the local basic network data and calculation parameters according to steps 3.1 to 3.3;

步骤4.2:协调计算服务器设定初始边界条件,即区域电网边界节点上来自联络线的注入电流相量组成的向量IB及各区域电网松弛节点相角设定值组成的向量Θ,并按照步骤2中网络化分关系,将相应的注入电流和相角设定值发送给区域电网潮流计算服务器;Step 4.2: The coordination calculation server sets the initial boundary conditions, that is, the vector I B composed of the injected current phasor from the tie line on the boundary nodes of the regional power grid and the vector Θ composed of the phase angle setting values of the relaxed nodes of each regional power grid, and follow the steps 2. The network sub-relationship, and the corresponding injection current and phase angle setting value are sent to the power flow calculation server of the regional power grid;

步骤4.3:区域电网潮流计算服务器启动本区域潮流计算过程,根据所得到的边界条件和内部节点参数求解区域潮流方程,从收敛的潮流结果中得到偏差边界节点的电压VB i和区域网损信息Ploss i,i=1,2,并将信息发送给协调计算服务器;Step 4.3: The regional grid power flow calculation server starts the regional power flow calculation process, solves the regional power flow equation according to the obtained boundary conditions and internal node parameters, and obtains the voltage V B i of the deviation boundary node and the regional network loss information from the converged power flow results P loss i , i=1, 2, and send the information to the coordination calculation server;

步骤4.4:协调计算服务器根据得到的区域潮流计算结果信息以及初始化过程中设定的参数,计算边界节点的电流不平衡量ΔI,和区域电网负担全网有功网损的不平衡量ΔP;Step 4.4: The coordination calculation server calculates the current unbalance ΔI of the boundary node and the unbalance ΔP of the active power loss of the whole network borne by the regional power grid according to the obtained regional power flow calculation result information and the parameters set in the initialization process;

步骤4.5;若‖[ΔI,ΔP]T2≤ξ则判断全网潮流收敛,计算过程结束,其中‖·‖2表示向量的二范数,ξ为小的正常数;否则根据[ΔI,ΔP]T计算边界条件修正量[ΔIB,ΔΘ]T后更新边界条件设定值,返回步骤4.2;Step 4.5; if ‖[ΔI, ΔP] T2 ≤ ξ, it is judged that the power flow of the whole network is converged, and the calculation process ends, where ‖·‖ 2 represents the two-norm of the vector, and ξ is a small normal number; otherwise, according to [ΔI, ΔP] T Calculate the boundary condition correction amount [ΔI B , ΔΘ] T and update the boundary condition setting value, return to step 4.2;

步骤5:区域电网潮流计算服务器将计算结果反馈给协调计算服务器,以使协调计算服务器获得收敛的全网一体化潮流计算结果。Step 5: The power flow calculation server of the regional power grid feeds back the calculation results to the coordination calculation server, so that the coordination calculation server can obtain the convergent network-wide integrated power flow calculation results.

前述的根据计算边界节点的电流不平衡量和区域电网有功网损的不平衡量,判断全网一体化潮流是否一致收敛;需要同时满足以下基本条件:Based on the calculation of the current unbalance of the boundary nodes and the unbalance of the active network loss of the regional power grid as mentioned above, it is judged whether the integrated power flow of the whole network is consistent and convergent; the following basic conditions must be met at the same time:

A:边界节点功率达到平衡,即满足方程;A: The power of the boundary nodes is balanced, that is, the equation is satisfied;

uu BB == uu BB ~~ ,, θθ BB == θθ BB ~~ ii →&Right Arrow; BB ++ ii →&Right Arrow; BB ~~ == 00 -- -- -- (( 11 ))

B:全网有功网损在各区域电网间合理分配,满足以下方程,B: The active network loss of the whole network is reasonably distributed among the regional power grids, satisfying the following equations,

Δ P loss i = P loss i - P loss all η i = 0 , i=1,2(2) Δ P loss i = P loss i - P loss all η i = 0 , i=1,2(2)

其中∏={ηj}是区域电网S1和S2负担全网有功网损的比例向量,i=1,2, Σ i = 1 2 η i = 1 ; Pi loss是从区域电网潮流计算结果中统计出的有功网损; P loss all = Σ i 2 P loss i 是由各区域电网有功网损相加得到的全网有功网损;ΔPloss i是区域电网负担全网有功网损的不平衡量,定义为区域电网有功网损不平衡量。Where ∏={η j } is the proportional vector of regional power grid S 1 and S 2 burdening the active network loss of the whole network, i=1, 2, Σ i = 1 2 η i = 1 ; P i loss is the active network loss calculated from the calculation results of regional grid power flow; P loss all = Σ i 2 P loss i It is the active network loss of the whole network obtained by adding the active network losses of each regional power grid;

前述的边界条件包括:区域电网的边界母线上来自联络线的注入电流相量组成的向量IB以及区域电网松弛节点相角设定值Θ。The aforementioned boundary conditions include: the vector I B composed of the injected current phasor from the tie line on the boundary bus of the regional power grid and the set value of the phase angle Θ of the regional power grid's slack nodes.

前述的区域潮流计算服务器根据给定的边界条件计算区域潮流;其中所述的区域电网S1The aforementioned regional power flow calculation server calculates the regional power flow according to the given boundary conditions; wherein the regional power grid S 1 :

设电网由n个节点和若干条支路组成,潮流计算模型可表述为非线性方程组形式,即Assuming that the power grid is composed of n nodes and several branches, the power flow calculation model can be expressed in the form of nonlinear equations, namely

gg (( vv →&Right Arrow; 11 ,, vv →&Right Arrow; 22 ,, ·&Center Dot; ·· ·&Center Dot; vv →&Right Arrow; nno )) == PP ii SPSP -- uu ii ΣΣ jj ∈∈ ii uu jj (( GG ijij coscos θθ ijij ++ BB ijij sinsin θθ ijij )) == 00 QQ ii SPSP -- uu ii ΣΣ jj ∈∈ ii uu jj (( GG ijij sinsin θθ ijij -- BB ijij coscos θθ ijij )) == 00 -- -- -- (( 33 ))

其中 v → i = u i ∠ θ i , i=1,2,...,n为节点电压相量,g为节点功率平衡方程,Pi SP和Qi SP是节点i的给定有功和无功功率,Gij+jBij是节点i和节点j之间的导纳,j∈i表示与i节点相联的所有节点,包括i节点自身。in v &Right Arrow; i = u i ∠ θ i , i=1, 2,..., n is the node voltage phasor, g is the node power balance equation, P i SP and Q i SP are the given active and reactive power of node i, G ij + jB ij is the node The admittance between i and node j, j ∈ i represents all nodes connected to node i, including node i itself.

前述的S1区域所有节点由内部节点Sln 1和边界节点B1两部分,对应的以 V ln 1 = { v → i } | i ∈ S 1 ln 代表内部节点的电压相量组成的向量,以 V B 1 = { v → i } | i ∈ B 1 代表边界节点电压相量组成的向量;对应地,可将方程(2)描述的节点功率平衡方程组也可以划分为两类,内部节点Sln 1的功率平衡方程组gln 1和边界节点的功率平衡方程组gB 1;如区域电网计算潮流时不选择边界节点作为松弛节点,在完成给定内部节点的中发电机节点的有功出力、节点电压幅值,负荷节点的有功和无功负荷,以及松弛节点的电压幅值和相角情况下,内部节点功率平衡方程gln 1与内部节点和边界节点电压相关,边界节点功率平衡方程gB 1与内部节点电压、边界节点电压及其来自联络线的注入电流相量相关,其表述为如下形式,All nodes in the aforementioned S 1 area are composed of two parts: the internal node S ln 1 and the boundary node B 1 , corresponding to V ln 1 = { v &Right Arrow; i } | i ∈ S 1 ln A vector consisting of voltage phasors representing internal nodes, with V B 1 = { v &Right Arrow; i } | i ∈ B 1 Represents the vector composed of the boundary node voltage phasors; correspondingly, the node power balance equations described by equation (2) can also be divided into two types, the power balance equations g ln 1 of the internal node S ln 1 and the boundary node Power balance equation group g B 1 ; if the regional power grid does not choose the boundary node as a slack node when calculating the power flow, the active output of the generator node, the voltage amplitude of the node, and the active and reactive loads of the load node in the completion of a given internal node , and the voltage amplitude and phase angle of the relaxed node, the internal node power balance equation g ln 1 is related to the internal node and boundary node voltages, the boundary node power balance equation g B 1 is related to the internal node voltage, boundary node voltage and its source The phasor correlation of the injected current of the tie line is expressed as the following form,

gg 11 == gg lnln 11 (( VV BB 11 ,, VV lnln 11 )) == PP ii SPSP -- uu ii ΣΣ jj ∈∈ ii uu jj (( GG ijij coscos θθ ijij ++ BB ijij sinsin θθ ijij )) == 00 ,, ii ∈∈ SS lnln 11 QQ ii SPSP -- uu ii ΣΣ jj ∈∈ ii uu jj (( GG ijij sinsin θθ ijij -- BB ijij coscos θθ ijij )) == 00 ,, ii ∈∈ SS lnln 11 gg BB 11 (( VV BB 11 ,, VV lnln 11 ,, II BB 11 )) == uu kk ∠∠ θθ kk ** ii →&Right Arrow; ^^ kk -- uu kk ΣΣ jj ∈∈ kk uu jj (( GG ijij coscos θθ ijij ++ BB ijij sinsin θθ ijij )) -- jj uu kk ΣΣ jj ∈∈ kk uu jj (( GG ijij sinsin θθ ijij -- BB ijij coscos θθ ijij )) == 00 ,, kk ∈∈ SS BB 11 -- -- (( 44 ))

其中 I B 1 = { i → B 1 } 是由边界节点B1上来自联络线的注入电流相量组成的向量,表示节点k上来自联络线的注入电流相量的共轭,其他变量意义同式(3)。in I B 1 = { i &Right Arrow; B 1 } is the vector consisting of the injected current phasor from the tie line at the boundary node B1 , Represents the conjugate of the injected current phasor from the tie line on node k, and the meanings of other variables are the same as formula (3).

前述的完成步骤3.1中的基础数据初始化过程后,再给定IB 1和区域电网S1内松弛节点电压相角设定值θref 1即可采用普通的Newton-Raphson方法求解方程(4)式,得到区域电网S1内的潮流。After completing the basic data initialization process in step 3.1 above, and given the set value θ ref 1 of the voltage phase angle of the relaxed nodes in I B 1 and regional power grid S 1 , the ordinary Newton-Raphson method can be used to solve equation (4) Formula to get the power flow in the regional power grid S1 .

前述的步骤4.3中协调计算服务器需要根据边界条件、联络线参数和区域电网潮流计算结果来计算边界节点的电流不平衡量ΔI,和区域电网负担全网有功网损的不平衡量ΔP,即[ΔI,ΔP]T。具体计算流程如图6所示,包括以下步骤:In the aforementioned step 4.3, the coordination calculation server needs to calculate the current unbalance ΔI of the boundary node and the unbalance ΔP of the active power loss of the whole network borne by the regional grid according to the boundary conditions, tie line parameters and regional grid power flow calculation results, namely [ΔI, ΔP] T . The specific calculation process is shown in Figure 6, including the following steps:

a:协调计算服务器设定边界条件IB和Θ,发送至区域潮流计算服务器;a: The coordination calculation server sets the boundary conditions I B and Θ, and sends them to the regional power flow calculation server;

b:区域潮流计算服务器按照步骤(4)式计算本区域电网潮流,从潮流结果中提取VB和Ploss信息,其中VB是边界节点电压相量组成的向量,Ploss是区域电网有功网损信息,并将这些信息发送到协调计算服务器;b: The regional power flow calculation server calculates the power flow of the regional power grid according to step (4), and extracts V B and P loss information from the power flow results, where V B is a vector composed of voltage phasors at boundary nodes, and P loss is the active network of the regional power grid loss information, and send these information to the coordinating computing server;

c:协调计算服务器根据边界节点的电压VB,按照(5)式计算边界节点来自联络线的注入电流理论值 I ~ B = { i → B ~ i } , 以流出边界节点为正方向,c: The coordination calculation server calculates the theoretical value of the injection current of the boundary node from the tie line according to the formula (5) according to the voltage V B of the boundary node I ~ B = { i &Right Arrow; B ~ i } , Taking the outflow boundary node as the positive direction,

ii →&Right Arrow; BB ~~ ii == (( uu BB ~~ ii ∠∠ θθ BB ~~ ii -- uu BB ~~ jj ∠∠ θθ BB ~~ jj )) (( gg ll ++ jj bb ll )) -- -- -- (( 55 ))

a中设定的边界条件电流IB和注入电流理论值

Figure A20071012179200118
之和即为边界节点电流不平衡量ΔI,即Boundary condition current I B and theoretical value of injection current set in a
Figure A20071012179200118
The sum is the boundary node current imbalance ΔI, namely

ΔIΔI == II BB ++ II ~~ BB -- -- -- (( 66 ))

d协调计算服务器根据设定的区域电网负担全网有功网损的比例向量∏和各区域电网潮流结果中统计出的有功网损信息Ploss,根据(2)式计算区域电网有功网损不平衡量组成的向量 ΔP = { Δ P loss i } . d The coordination calculation server calculates the unbalanced active network loss of the regional power grid according to the formula (2) according to the set proportional vector Π of the regional power grid's burden of the active network loss of the whole network and the statistics of the active power loss information P loss in the power flow results of each regional power grid Composed of vectors ΔP = { Δ P loss i } .

前述的协调计算服务器采用改进的Jacobian-free Newton-GMRES(m)方法计算边界条件的修正量,并迭代直至‖[ΔI,ΔP]T2≤ξ,具体步骤如下:The aforementioned coordination calculation server uses the improved Jacobian-free Newton-GMRES(m) method to calculate the correction amount of boundary conditions, and iterates until ‖[ΔI, ΔP] T2 ≤ ξ, the specific steps are as follows:

a.令k=-1,令xB=[Re(IB),Im(IB),Θ]T为边界条件组成的向量,其中Re(IB)和Im(IB)分别表示边界节点来自联络线的注入电流相量实部和虚部组成的向量;给定初始边界条件xB 0,选择任意非奇异矩阵M0为预处理矩阵;a. Let k=-1, let x B =[Re(I B ), Im(I B ), Θ] T is a vector composed of boundary conditions, where Re(I B ) and Im(I B ) represent the boundary respectively A vector composed of the real and imaginary parts of the injected current phasor from the tie line; given the initial boundary condition x B 0 , choose any non-singular matrix M 0 as the preprocessing matrix;

b.k=k+1,重复步骤a~i,直至‖[ΔI,ΔP]T2≤ξ满足或是k>max NIter,max NIter为Newton迭代次数限制,结束;bk=k+1, repeat steps a~i until ‖[∆I, ∆P] T2 ≤ ξ is satisfied or k>max NIter, max NIter is the Newton iteration limit, end;

c.令 G ( x B k ) = [ Re ( ΔI ) , Im ( ΔI ) , ΔP ] T 为边界条件为xB k时通过步骤a~e计算得到的边界节点电流不平衡量和区域有功网损不平衡量,为了计算需要将ΔI的实部和虚部分开;c. order G ( x B k ) = [ Re ( ΔI ) , Im ( ΔI ) , ΔP ] T is the boundary node current unbalance and regional active network loss unbalance calculated through steps a to e when the boundary condition is x B k , and the real part and imaginary part of ΔI need to be separated for calculation;

d. r 0 = - G ( x B k ) , l=1,ρ=β=‖r02,v1=r0,errtolG=ε‖r0‖‖2>0,1>ε>0;d. r 0 = - G ( x B k ) , l=1, ρ=β=‖r 02 , v 1 =r 0 , errtol G =ε‖r 0 ‖‖ 2 >0, 1>ε>0;

e.若ρ>errtolG并且l<maxGIter,maxGIter是GMRES迭代次数限制,则l=l+1,zl=Mkvl &Delta; G l = G ( x B k + w z l ) - G ( x B k ) , &Delta; x B l = w z l , vl+1=ΔGl/w,w为一个小的正常数,一般取10-5>w>0;e. If ρ>errtol G and l<maxGIter, maxGIter is the GMRES iteration limit, then l=l+1, z l =M k v l , &Delta; G l = G ( x B k + w z l ) - G ( x B k ) , &Delta; x B l = w z l , v l+1 =ΔG l /w, w is a small normal number, generally 10 -5 >w>0;

f.修正预处理矩阵 M k = M k + ( &Delta; x B l - M k &Delta; G l ) ( &Delta; x B l ) T M k ( &Delta; x B l ) T M k &Delta; G l ; f. Modified preprocessing matrix m k = m k + ( &Delta; x B l - m k &Delta; G l ) ( &Delta; x B l ) T m k ( &Delta; x B l ) T m k &Delta; G l ;

g.正交化Vl+1=[v1,v2,...,vl+1]得到Hessenberg阵

Figure A20071012179200128
求-解 &rho; = min y &Element; R k | | &beta; e 1 - H &OverBar; l y | | 得到ρ和y1,若ρ<errtolG,则得到 &Delta; x B k = M k V l y l , 否则返回步骤e;g. Orthogonalize V l+1 = [v 1 , v 2 , ..., v l+1 ] to get the Hessenberg matrix
Figure A20071012179200128
seek-solution &rho; = min the y &Element; R k | | &beta; e 1 - h &OverBar; l the y | | Get ρ and y 1 , if ρ<errtol G , then get &Delta; x B k = m k V l the y l , Otherwise return to step e;

h. x B k + 1 = x B k + 1 + &Delta; x B k , &Delta; G k = G ( x B k + 1 ) - G ( x B k ) ; h. x B k + 1 = x B k + 1 + &Delta; x B k , &Delta; G k = G ( x B k + 1 ) - G ( x B k ) ;

i.修正预处理矩阵 M k + 1 = M k + ( &Delta; x B k - M k &Delta; G k ) ( &Delta; x B k ) T M k ( &Delta; x B k ) T M k &Delta; G k , 返回步骤b;i. Correct the preprocessing matrix m k + 1 = m k + ( &Delta; x B k - m k &Delta; G k ) ( &Delta; x B k ) T m k ( &Delta; x B k ) T m k &Delta; G k , Return to step b;

前述的步骤f和i为内层和外层预处理矩阵修正。The aforementioned steps f and i are for inner layer and outer layer preprocessing matrix correction.

本发明与现有技术相比,具有以下明显的优势和有益效果:Compared with the prior art, the present invention has the following obvious advantages and beneficial effects:

本发明通过交换边界节点状态和网损信息完成分布式潮流分析的方法,针对我国电力系统的分布式监控技术及电网互联的现状,提出了通过交换边界节点状态和网损信息完成分布式潮流分析的方法,该方法以联络线电流为协调变量,计算过程中只需要传递少量边界信息,可以灵活的处理全网不平衡功率分配的问题,计算过程中各区域电网可以使用独立的相角参考节点,具有模型通用,数据接口简化、收敛性能高、协调求解过程所需通信次数较少等优点,适合在广域网络中的异构计算环境中应用。The present invention completes the method of distributed power flow analysis by exchanging boundary node status and network loss information. Aiming at the current situation of distributed monitoring technology and power grid interconnection in China's power system, it proposes to complete distributed power flow analysis by exchanging boundary node status and network loss information. This method takes tie-line current as the coordinating variable, only needs to transfer a small amount of boundary information in the calculation process, and can flexibly deal with the problem of unbalanced power distribution in the whole network. In the calculation process, each regional power grid can use an independent phase angle reference node , has the advantages of general model, simplified data interface, high convergence performance, and less communication required for the coordinated solution process, and is suitable for application in heterogeneous computing environments in wide-area networks.

附图说明Description of drawings

图1为现有技术多级调度中心连接示意图;Fig. 1 is the connection schematic diagram of prior art multi-level dispatching center;

图2为分布式一体化潮流分析基本流程示意图;Figure 2 is a schematic diagram of the basic process of distributed integrated power flow analysis;

图3为电力系统分布式潮流分析系统示意图;Fig. 3 is a schematic diagram of a distributed power flow analysis system of a power system;

图4为带边界区域的系统切分方式示意图;Fig. 4 is a schematic diagram of a system segmentation method with a border area;

图5为全网一体化潮流分解协调求解过程示意图;Figure 5 is a schematic diagram of the whole network integrated power flow decomposition coordination solution process;

图6为协调计算服务器计算[ΔI,ΔP]T过程示意图;Fig. 6 is a schematic diagram of the process of calculating [ΔI, ΔP] T by the coordination computing server;

图7为二个区域互联协调示意图;FIG. 7 is a schematic diagram of two regional interconnection coordination;

图8为带边界区域的系统切分方式示意图;FIG. 8 is a schematic diagram of a system segmentation method with a border area;

图9为IEEE39系统的切分示意图。FIG. 9 is a schematic diagram of segmentation of the IEEE39 system.

具体实施方式Detailed ways

下面结合附图对本发明的具体实施例加以说明:Specific embodiments of the present invention are described below in conjunction with accompanying drawing:

请参阅图2所示,为分布式一体化潮流分析基本流程的示意图;Please refer to Figure 2, which is a schematic diagram of the basic process of distributed integrated power flow analysis;

为一种借助Jaobian-free Newton GMRES(m)迭代算法,在保留各个调度中心计算独立性的前提下,只需要通过交换边界节点状态和区域电网有功网损信息即可完成全网潮流的协调求解的方法。可以完成满足以下基本要求的全网一体化潮流计算:It is a Jaobian-free Newton GMRES(m) iterative algorithm, under the premise of retaining the independence of each dispatching center, it only needs to exchange the state of the boundary nodes and the active network loss information of the regional power grid to complete the coordinated solution of the power flow of the whole network Methods. It can complete the integrated power flow calculation of the whole network that meets the following basic requirements:

a、全网所有节点都满足功率平衡;a. All nodes in the whole network meet power balance;

b、全网有功网损在各个区域电网间合理分配,即各个区域电网按照一定的比例分担的全网有功网损;b. The active network loss of the whole network is reasonably distributed among the regional power grids, that is, the active network loss of the whole network is shared by each regional power grid according to a certain proportion;

c、各区域电网潮流计算过程中可以采用独立的电压相角参考节点;c. Independent voltage phase angle reference nodes can be used in the power flow calculation process of each regional power grid;

请参阅图3所示,为全网一体化潮流分析连接示意图;其中,区域调度中心内的潮流计算服务器,负责其所辖电网的潮流计算;而上级调度中心内的协调计算服务器,负责协调各区域电网潮流计算过程,即通过改变区域电网潮流计算所需的边界条件来影响区域电网潮流计算结果,直至所有区域电网的潮流计算同时达到和全网集中求解收敛时一样的潮流结果。Please refer to Figure 3, which is a schematic diagram of the network-wide integrated power flow analysis connection; among them, the power flow calculation server in the regional dispatch center is responsible for the power flow calculation of the power grid under its jurisdiction; and the coordination calculation server in the superior dispatch center is responsible for coordinating all The regional grid power flow calculation process is to affect the regional grid power flow calculation results by changing the boundary conditions required for regional grid power flow calculations, until the power flow calculations of all regional grids simultaneously achieve the same power flow results as the convergence of the entire network centralized solution.

请参阅图4所示,为带边界区域的系统切分方式示意图;Please refer to Figure 4, which is a schematic diagram of a system segmentation method with a border area;

从图中可以看出,系统S0包括两个区域系统S1和S2,它们通过联络线l相互连接。其中B1代表S1区域的边界节点,Sln 1为S1中除了边界节点外其他节点组成的网络。S2的情况类似。若将边界节点B1和B2分别分裂开来,虚拟出边界节点

Figure A20071012179200131
Figure A20071012179200132
并将联络线l与其两端的虚拟边界节点
Figure A20071012179200133
单独看作一个SB,则区域起到连接其他所有区域作用,可称为边界区域。区域S1和S2属于区域电网调度中心管辖范围,而区域SB属于上级调度中心管辖范围。在这种切分方式下,全网潮流的收敛条件为:区域S1和S2中潮流计算达到收敛,它们内部节点功率均达到平衡,且边界节点状态满足It can be seen from the figure that the system S 0 includes two regional systems S 1 and S 2 , which are connected to each other by a tie line l. Among them, B 1 represents the boundary nodes of S 1 area, and S ln 1 is the network composed of other nodes in S 1 except the boundary nodes. The situation with S2 is similar. If the boundary nodes B 1 and B 2 are split separately, the boundary nodes are virtualized
Figure A20071012179200131
and
Figure A20071012179200132
and connect the contact line l with the virtual boundary nodes at its two ends
Figure A20071012179200133
and Viewed as a single S B , the area plays the role of connecting all other areas, which can be called the boundary area. Areas S 1 and S 2 belong to the jurisdiction of the regional power grid dispatching center, while area S B belongs to the jurisdiction of the superior dispatching center. In this split mode, the convergence condition of the power flow in the whole network is: the power flow calculation in areas S 1 and S 2 reaches convergence, the power of their internal nodes reaches balance, and the state of the boundary nodes satisfies

uu BB == uu BB ~~ ,, &theta;&theta; BB == &theta;&theta; BB ~~ ii &RightArrow;&Right Arrow; BB ++ ii &RightArrow;&Right Arrow; BB ~~ == 00 -- -- -- (( 11 ))

其中uB和θB是区域电网内潮流计算收敛结果中边界节点B1和B2的电压幅值和相角向量;

Figure A20071012179200142
Figure A20071012179200143
是边界区域SB内潮流计算收敛时边界节点B1和B2的电压幅值和相角向量;
Figure A20071012179200144
是区域电网潮流计算收敛结果中边界节点B1和B2上来自联络线的注入电流相量组成的向量,以流入为正方向;
Figure A20071012179200145
是边界区域SB中潮流计算收敛时从边界节点B1和B2向联络线上注入的电流相量组成的向量,以流出为正方向。where u B and θ B are the voltage amplitude and phase angle vectors of boundary nodes B 1 and B 2 in the convergence results of power flow calculation in the regional power grid;
Figure A20071012179200142
and
Figure A20071012179200143
is the voltage amplitude and phase angle vector of boundary nodes B 1 and B 2 when the power flow calculation in the boundary area S B converges;
Figure A20071012179200144
is the vector composed of the injected current phasor from the tie line on the boundary nodes B 1 and B 2 in the convergence result of the regional grid power flow calculation, with the inflow as the positive direction;
Figure A20071012179200145
is the vector composed of the current phasor injected from the boundary nodes B 1 and B 2 to the tie line when the power flow calculation converges in the boundary area S B , with the outflow as the positive direction.

请参阅图5所示,全网一体化潮流分解协调求解过程示意图;可以看出,包括以下步骤;Please refer to Figure 5, a schematic diagram of the whole network integrated power flow decomposition coordination solution process; it can be seen that the following steps are included;

a、上级调度中心内的协调计算服务器按照步骤3.4、3.5初始化本地基础网络数据和计算参数,区域调度中心内区域潮流计算服务器按照步骤3.1~3.3初始化本地基础网络数据和计算参数;a. The coordination calculation server in the superior dispatching center initializes the local basic network data and calculation parameters according to steps 3.4 and 3.5, and the regional power flow calculation server in the regional dispatching center initializes the local basic network data and calculation parameters according to steps 3.1 to 3.3;

b、协调计算服务器设定初始边界条件,即区域电网边界节点上来自联络线的注入电流相量组成的向量IB及各区域电网松弛节点相角设定值组成的向量Θ,并按照步骤2中网络化分关系,将相应的注入电流和相角设定值发送(网络通信)给区域电网潮流计算服务器;b. The coordination calculation server sets the initial boundary conditions, that is, the vector I B composed of the injected current phasor from the tie line on the boundary nodes of the regional power grid and the vector Θ composed of the phase angle setting values of the relaxed nodes of each regional power grid, and follow step 2 In the network sub-relationship, the corresponding injection current and phase angle set value are sent (network communication) to the regional grid power flow calculation server;

c、区域电网潮流计算服务器启动本区域潮流计算过程,根据所得到的边界条件和内部节点参数求解区域潮流方程,从收敛的潮流结果中得到偏差边界节点的电压VB i和区域网损信息Ploss i,i=1,2,并将这些信息发送(网络通信)给协调计算服务器;c. The regional grid power flow calculation server starts the regional power flow calculation process, solves the regional power flow equation according to the obtained boundary conditions and internal node parameters, and obtains the voltage V B i of the deviation boundary node and the regional network loss information P from the converged power flow results loss i , i=1, 2, and send these information (network communication) to the coordination computing server;

d、协调计算服务器根据得到的区域潮流计算结果信息以及初始化过程中设定的参数,计算边界节点的电流不平衡量ΔI,和区域电网负担全网有功网损的不平衡量ΔP;d. The coordination calculation server calculates the current unbalance ΔI of the boundary node and the unbalance ΔP of the active power loss of the whole network borne by the regional power grid according to the obtained regional power flow calculation result information and the parameters set in the initialization process;

e、若‖[ΔI,ΔP]T2≤ξ则判断全网潮流收敛,计算过程结束,其中‖·‖2表示向量的二范数,ξ为小的正常数;否则根据[ΔI,ΔP]T计算边界条件修正量[ΔIB,ΔΘ]T后更新边界条件设定值,返回步骤(4.2)。e. If ‖[ΔI, ΔP] T2 ≤ ξ, it is judged that the power flow of the whole network is converged, and the calculation process ends, where ‖·‖ 2 represents the two-norm of the vector, and ξ is a small normal number; otherwise, according to [ΔI, ΔP ] T calculates the boundary condition correction amount [ΔI B , ΔΘ] T , updates the boundary condition setting value, and returns to step (4.2).

请参阅图6所示,为协调计算服务器计算[ΔI,ΔP]T过程示意图;Please refer to Figure 6, which is a schematic diagram of the process of calculating [ΔI, ΔP] T by the coordination computing server;

a、协调计算服务器设定边界条件IB和Θ,发送至区域潮流计算服务器;a. The coordination calculation server sets the boundary conditions I B and Θ, and sends them to the regional power flow calculation server;

b、区域潮流计算服务器按照步骤4.3.1~4.3.3计算本区域电网潮流,从潮流结果中提取VB和Ploss信息,其中VB是边界节点电压相量组成的向量,Ploss是区域电网有功网损信息,并将这些信息发送到协调计算服务器;b. The regional power flow calculation server calculates the regional grid power flow according to steps 4.3.1~4.3.3, and extracts V B and P loss information from the power flow results, where V B is a vector composed of voltage phasors at boundary nodes, and P loss is the area Power grid active network loss information, and send this information to the coordination calculation server;

c、协调计算服务器根据边界节点的电压VB,按照(5)式计算边界节点来自联络线的注入电流理论值 I ~ B = { i &RightArrow; B ~ i } , 以流出边界节点为正方向,c. According to the voltage V B of the boundary node, the coordination calculation server calculates the theoretical value of the injection current of the boundary node from the tie line according to formula (5) I ~ B = { i &Right Arrow; B ~ i } , Taking the outflow boundary node as the positive direction,

ii &RightArrow;&Right Arrow; BB ~~ ii == (( uu BB ~~ ii &angle;&angle; &theta;&theta; BB ~~ ii -- uu BB ~~ jj &angle;&angle; &theta;&theta; BB ~~ jj )) (( gg ll ++ jj bb ll )) -- -- -- (( 55 ))

其中前述a中设定的边界条件电流IB和注入电流理论值

Figure A20071012179200153
之和即为边界节点电流不平衡量ΔI,即Among them, the boundary condition current I B and the theoretical value of the injected current set in a above
Figure A20071012179200153
The sum is the boundary node current imbalance ΔI, namely

&Delta;I&Delta;I == II BB ++ II ~~ BB -- -- -- (( 66 ))

d、协调计算服务器根据设定的区域电网负担全网有功网损的比例向量∏和各区域电网潮流结果中统计出的有功网损信息Ploss,根据(2)式计算区域电网有功网损不平衡量组成的向量 &Delta;P = { &Delta; P loss i } ; d. The coordination calculation server calculates the regional power grid active power loss unevenness according to the formula (2) according to the set proportional vector Π of the regional power grid’s burden of the whole network’s active network loss and the statistics of the active power loss information P loss in the power flow results of each regional power grid a vector of measure components &Delta;P = { &Delta; P loss i } ;

在具体实施例中,本发明按照以下3个阶段实施In a specific embodiment, the present invention is implemented according to the following three stages

1、阶段1:从电力系统拓扑连接关系出发,根据实际系统的运行状况,采用带有边界区域的切分方法对系统进行切分。1. Phase 1: Starting from the topological connection relationship of the power system, according to the actual system operating conditions, the system is segmented using the segmentation method with boundary areas.

电力系统具有区域运营、分布式管理的特点,区域电网之间耦合较弱,通过少数的联络线连接,一般的互联电网可以简化成的两区域互联系统形式。如图7所示,系统S0包括两个区域系统S1和S2,它们通过联络线l相互连接。其中B1代表S1区域的边界节点,Sln 1为S1中除了边界节点外其他节点组成的网络。S2的情况类似。若将边界节点B1和B2分别分裂开来,虚拟出边界节点并将联络线l与其两端的虚拟边界节点

Figure A20071012179200158
单独看作一个SB,则区域起到连接其他所有区域作用,可称为边界区域。区域S1和S2属于区域电网调度中心管辖范围,而区域SB属于上级调度中心管辖范围。The power system has the characteristics of regional operation and distributed management. The coupling between regional power grids is weak. They are connected by a small number of tie lines. The general interconnected grid can be simplified into a two-region interconnected system. As shown in Fig. 7, the system S 0 includes two regional systems S 1 and S 2 , which are connected to each other by a tie line l. Among them, B 1 represents the boundary nodes of S 1 area, and S ln 1 is the network composed of other nodes in S 1 except the boundary nodes. The situation with S2 is similar. If the boundary nodes B 1 and B 2 are split separately, the boundary nodes are virtualized and and connect the contact line l with the virtual boundary nodes at its two ends
Figure A20071012179200158
and Viewed as a single S B , the area plays the role of connecting all other areas, which can be called the boundary area. Areas S 1 and S 2 belong to the jurisdiction of the regional power grid dispatching center, while area S B belongs to the jurisdiction of the superior dispatching center.

请参阅图8所示,为带边界区域的系统切分方式示意图;Please refer to Figure 8, which is a schematic diagram of a system segmentation method with a border area;

请参阅图9所示,为IEEE39系统的切分示意图。Please refer to FIG. 9 , which is a schematic diagram of segmentation of the IEEE39 system.

以IEEE39节点系统为例,将其分为三区域电网区域及一个边界区域,具体切分方式见图4。支路9~8、3~4、14~15、16~17为联络线,节点3、4、8、9、14、15、16、17为边界节点,它们共同边界区域;三个区域电网区域包含节点数情况如表1所示,各区域的节点和支路参数如表2~7所示Taking the IEEE39 node system as an example, it is divided into three regional power grid areas and one border area. The specific division method is shown in Figure 4. Branches 9~8, 3~4, 14~15, 16~17 are tie lines, nodes 3, 4, 8, 9, 14, 15, 16, and 17 are border nodes, and they share the border area; the three regional power grids The number of nodes included in the area is shown in Table 1, and the parameters of nodes and branches in each area are shown in Tables 2-7

表1IEEE39节点系统区域情况Table 1 IEEE39 node system area situation

  区域area   1 1   2 2   33   节点数Number of nodes   1515   1212   1212

表2区域电网区域1节点参数Table 2 Parameters of regional power grid region 1 node

  节点号node number   电压幅值voltage amplitude   电压相角Voltage phase angle   有功出力Active contribution   无功出力Reactive output   有功负荷active load   无功负荷Reactive load   并联电导parallel conductance   并联电钠Parallel sodium   节点类型node type   1 1   1 1   00   00   00   00   00   00   00   PQPQ   2 2   1 1   00   00   00   00   00   00   00   PQPQ   33   1 1   00   00   00   3.223.22   0.0240.024   00   0.11070.1107   PQPQ   9 9   1 1   00   00   00   00   00   00   0.19020.1902   PQPQ   1717   1 1   00   00   00   00   00   00   0.06710.0671   PQPQ   1818   1 1   00   00   00   1.581.58   0.30.3   00   00   PQPQ   2525   1 1   00   00   00   2.242.24   0.4720.472   00   00   PQPQ   2626   1 1   00   00   00   1.391.39   0.170.17   00   00   PQPQ   2727   1 1   00   00   00   2.812.81   0.7550.755   00   00   PQPQ   2828   1 1   00   00   00   2.062.06   0.2760.276   00   00   PQPQ   2929   1 1   00   00   00   2.8352.835   0.2690.269   00   00   PQPQ   3030   1.0471.047   00   2.52.5   00   00   00   00   00   PVPV   3737   1.0271.027   00   5.45.4   00   00   00   00   00   PVPV   3838   1.0261.026   00   8.38.3   00   00   00   00   00   PVPV   3939   1.031.03   00   1010   00   11.0411.04   2.52.5   00   00   Vθ

表3区域电网区域1支路参数Table 3 Parameters of regional power grid area 1 branch

  首节点first node   尾节点tail node   电阻Resistance   电抗 Reactance   充电电容charging capacitor   变比Ratio   2 2   1 1   0.00350.0035   0.04110.0411   0.69870.6987   1 1   3939   1 1   0.0010.001   0.0250.025   0.750.75   1 1   33   2 2   0.00130.0013   0.01510.0151   0.25720.2572   1 1   2525   2 2   0.0070.007   0.00860.0086   0.1460.146   1 1   1818   33   0.00110.0011   0.01330.0133   0.21380.2138   1 1   3939   9 9   0.0010.001   0.0250.025   1.21.2   1 1   1818   1717   0.00070.0007   0.00820.0082   0.13190.1319   1 1   2727   1717   0.00130.0013   0.01730.0173   0.32160.3216   1 1   2626   2525   0.00320.0032   0.03230.0323   0.5130.513   1 1   2727   2626   0.00140.0014   0.01470.0147   0.23960.2396   1 1   2828   2626   0.00430.0043   0.04740.0474   0.78020.7802   1 1   2929   2626   0.00570.0057   0.06250.0625   1.0291.029   1 1   2929   2828   0.00140.0014   0.01510.0151   0.2490.249   1 1   2 2   3030   00   0.01810.0181   00   1.0251.025

  2525   3737   0.00060.0006   0.02320.0232   00   1.0251.025   2929   3838   0.00080.0008   0.01560.0156   00   1.0251.025

表4区域电网区域2节点参数Table 4 Parameters of regional power grid region 2 nodes

  节点号node number   电压幅值voltage amplitude   电压相角Voltage phase angle   有功出力Active contribution   无功出力Reactive output   有功负荷active load   无功负荷Reactive load   并联电导parallel conductance   并联电钠Parallel sodium   节点类型node type   44   1 1   00   00   00   55   1.841.84   00   0.11070.1107   PQPQ   55   1 1   00   00   00   00   00   00   00   PQPQ   66   1 1   00   00   00   00   00   00   00   PQPQ   77   1 1   00   00   00   2.3382.338   0.840.84   00   00   PQPQ   8 8   1 1   00   00   00   5.225.22   1.761.76   00   0.19020.1902   PQPQ   1010   1 1   00   00   00   00   00   00   00   PQPQ   1111   1 1   00   00   00   00   00   00   00   PQPQ   1212   1 1   00   00   00   0.0850.085   0.880.88   00   00   PQPQ   1313   1 1   00   00   00   00   00   00   00   PQPQ   1414   1 1   00   00   00   00   00   00   0.1830.183   PQPQ   3131   0.9820.982   00   5.725.72   00   0.0920.092   0.0460.046   00   00   Vθ   3232   0.9830.983   00   6.56.5   00   00   00   00   00   PVPV

表5区域电网区域2支路参数Table 5 Regional Power Grid Area 2 Branch Parameters

  首节点first node   尾节点tail node   电阻Resistance   电抗 Reactance   充电电容charging capacitor   变比Ratio   55   44   0.00080.0008   0.01280.0128   0.13420.1342   1 1   1414   44   0.00080.0008   0.01290.0129   0.13820.1382   1 1   66   55   0.00020.0002   0.00260.0026   0.04340.0434   1 1   8 8   55   0.00080.0008   0.01120.0112   0.14760.1476   1 1   77   66   0.00060.0006   0.00920.0092   0.1130.113   1 1   1111   66   0.00070.0007   0.00820.0082   0.13890.1389   1 1   8 8   77   0.00040.0004   0.00460.0046   0.0780.078   1 1   1111   1010   0.00040.0004   0.00430.0043   0.07290.0729   1 1   1313   1010   0.00040.0004   0.00430.0043   0.07290.0729   1 1   1414   1313   0.00090.0009   0.01010.0101   0.17230.1723   1 1   66   3131   00   0.0250.025   00   1.071.07   1212   1111   0.00160.0016   0.04350.0435   00   1.0061.006   1212   1313   0.00160.0016   0.04350.0435   00   1.0061.006   1010   3232   00   0.020.02   00   1.071.07

表6区域电网区域3节点参数Table 6 Parameters of regional power grid region 3 nodes

  节点号node number   电压幅值voltage amplitude   电压相角Voltage phase angle   有功出力Active contribution   无功出力Reactive output   有功负荷active load   无功负荷Reactive load   并联电导parallel conductance   并联电钠Parallel sodium   节点类型node type   1515   1 1   00   00   00   3.23.2   1.531.53   00   0.1830.183   PQPQ   1616   1 1   00   00   00   3.293.29   0.3230.323   00   0.06710.0671   PQPQ   1919   1 1   00   00   00   00   00   00   00   PQPQ   2020   1 1   00   00   00   6.86.8   1.031.03   00   00   PQPQ   21 twenty one   1 1   00   00   00   2.742.74   1.151.15   00   00   PQPQ   22 twenty two   1 1   00   00   00   00   00   00   00   PQPQ   23 twenty three   1 1   00   00   00   2.4752.475   0.8460.846   00   00   PQPQ   24 twenty four   1 1   00   00   00   3.0863.086   -0.922-0.922   00   00   PQPQ   3333   0.9970.997   00   6.326.32   00   00   00   00   00   PVPV   3434   1.0121.012   00   5.085.08   00   00   00   00   00   PVPV   3535   1.0491.049   00   6.56.5   00   00   00   00   00   Vθ   3636   1.0631.063   00   5.65.6   00   00   00   00   00   PVPV

表7区域电网区域3支路参数Table 7 Parameters of regional power grid area 3 branch

  首节点first node   尾节点tail node   电阻Resistance   电抗 Reactance   充电电容charging capacitor   变比Ratio   1616   1515   0.00090.0009   0.00940.0094   0.1710.171   1 1   1919   1616   0.00160.0016   0.01950.0195   0.3040.304   1 1   21 twenty one   1616   0.00080.0008   0.01350.0135   0.25480.2548   1 1   24 twenty four   1616   0.00030.0003   0.00590.0059   0.0680.068   1 1   1919   2020   0.00070.0007   0.01380.0138   00   1.061.06   22 twenty two   21 twenty one   0.00080.0008   0.0140.014   0.25650.2565   1 1   23 twenty three   22 twenty two   0.00060.0006   0.00960.0096   0.18460.1846   1 1   24 twenty four   23 twenty three   0.00220.0022   0.0350.035   0.3610.361   1 1   1919   3333   0.00070.0007   0.01420.0142   00   1.071.07   2020   3434   0.00090.0009   0.0180.018   00   1.0091.009   22 twenty two   3535   00   0.01430.0143   00   1.0251.025   23 twenty three   3636   0.00050.0005   0.02720.0272   00   1 1

基于上述互联电力系统切分方式,由区域电网潮流计算服务器负责计算区域电网潮流,由上级调度中心内协调计算服务器负责更新并向各区域电网发送边界条件,以及判断全网一体化潮流是否收敛。Based on the above-mentioned segmentation method of the interconnected power system, the regional grid power flow calculation server is responsible for calculating the regional grid power flow, and the coordination calculation server in the superior dispatching center is responsible for updating and sending boundary conditions to each regional grid, and judging whether the integrated power flow of the entire network is converged.

2.阶段2:全网一体化潮流分解协调计算初始化过程。该过程包括区域电网潮流计算服务器初始化和上级调度中心内协调计算服务器初始化两部分,以下分别介绍。2. Phase 2: The initialization process of network-wide integrated power flow decomposition coordination calculation. This process includes two parts: the initialization of the power flow calculation server in the regional power grid and the initialization of the coordination calculation server in the superior dispatching center, which are introduced separately below.

(2.1)区域电网潮流计算服务器按照以下步骤完成初始化;(2.1) The regional grid power flow calculation server completes the initialization according to the following steps;

(2.1.1)读入本区域潮流计算的节点和支路参数,例如表2和3中所示参数;(2.1.1) Read in the node and branch parameters for power flow calculation in this area, such as the parameters shown in Tables 2 and 3;

(2.1.2)初始化边界条件信息,包括边界节点编号和名称,以及边界条件与边界节点之间的对应关系等;(2.1.2) Initialize boundary condition information, including the number and name of boundary nodes, and the correspondence between boundary conditions and boundary nodes, etc.;

(2.1.3)初始化潮流计算控制参数,包括使用的迭代求解方法、最大迭代次数、节点电压上下限、收敛判据等;(2.1.3) Initialize the control parameters of power flow calculation, including the iterative solution method used, the maximum number of iterations, the upper and lower limits of node voltage, convergence criteria, etc.;

(2.2)上级调度中心内协调计算服务器按照以下步骤完成初始化;(2.2) The coordination computing server in the superior dispatching center completes the initialization according to the following steps;

(2.2.1)读入边界区域网络参数,包括边界节点名称、联络线阻抗等;(2.2.1) Read in the network parameters of the border area, including the name of the border node, the impedance of the tie line, etc.;

(2.2.2)初始化区域电网承担全网有功网损比例参数∏;(2.2.2) Initialize the parameter ∏ of active power network loss ratio of the whole network undertaken by the regional power grid;

(2.2.3)设定采用JFNG(m)求解边界协调方程的控制参数,包括最大Newton迭代次数max NIter、最大GMRES迭代次数maxGIter、Newton迭代收敛精度ξ(边界节点电流平衡和区域负担全网有功网损平衡的精度要求)、GMRES迭代收敛精度ε、有限差分步长w等。(2.2.3) Set the control parameters for solving the boundary coordination equation using JFNG(m), including the maximum number of Newton iterations max NIter, the maximum number of GMRES iterations maxGIter, Newton iteration convergence accuracy ξ (current balance of boundary nodes and active power of the whole network burdened by the area Network loss balance accuracy requirements), GMRES iterative convergence accuracy ε, finite difference step size w, etc.

3.阶段3:采用改进JFNG(m)方法求解边界协调方程,实现全网潮流一体化求解。3. Stage 3: The improved JFNG(m) method is used to solve the boundary coordination equation, and the integrated solution of the power flow of the whole network is realized.

具体求解过程如下:The specific solution process is as follows:

(3.1)令k=-1,令xB=[Re(IB),Im(IB),Θ]T为边界条件组成的向量,其中Re(IB)和Im(IB)分别表示边界节点来自联络线的注入电流相量实部和虚部组成的向量;给定初始边界条件xB 0,选择任意非奇异矩阵M0为预处理矩阵,例如单位阵;(3.1) Let k=-1, let x B =[Re(I B ), Im(I B ), Θ] T is a vector composed of boundary conditions, where Re(I B ) and Im(I B ) represent The boundary node is a vector composed of the real part and the imaginary part of the injected current phasor from the tie line; given the initial boundary condition x B 0 , choose any non-singular matrix M 0 as the preprocessing matrix, such as the identity matrix;

(3.2)k=k+1,重复步骤(3.2)~(3.9), | | G ( x B k ) | | 2 < &xi; 或是k>max NIter,结束;(3.2) k=k+1, repeat steps (3.2)~(3.9), | | G ( x B k ) | | 2 < &xi; Or k>max NIter, end;

(3.3)进入GMRES(m)迭代求解修正方程: G &prime; ( x B k ) &Delta; x B k = - G ( x B k ) , 其中G′(xB k)表示边界协调方程在xB k的一阶倒数,即边界协调方程的Jacobian矩阵,G(xB k)为边界条件为xB k时边界协调函数的值,为了计算需要将ΔI的实部和虚部分开,令 G ( x B k ) = [ Re ( &Delta;I ) , Im ( &Delta;I ) , &Delta;P ] T ; (3.3) Enter GMRES(m) to iteratively solve the correction equation: G &prime; ( x B k ) &Delta; x B k = - G ( x B k ) , where G′(x B k ) represents the first-order reciprocal of the boundary coordination equation at x B k , that is, the Jacobian matrix of the boundary coordination equation, and G(x B k ) is the value of the boundary coordination function when the boundary condition is x B k , for The calculation needs to separate the real and imaginary parts of ΔI, so that G ( x B k ) = [ Re ( &Delta;I ) , Im ( &Delta;I ) , &Delta;P ] T ;

(3.4) r 0 = - G ( x B k ) , l=1,ρ=β=‖r02,v1=r0,errtolG=ε‖r02>0,1>ε>0;(3.4) r 0 = - G ( x B k ) , l=1, ρ=β=‖r 02 , v 1 =r 0 , errtol G =ε‖r 02 >0, 1>ε>0;

(3.5)若ρ>errtolG并且l<max GIter,则l=l+1,计算zl=Mkvl &Delta; G l = G ( x B k + w z l ) - G ( x B k ) , &Delta; x B l = w z l , vl+1=ΔGl/w,w为一个小的正常数,一般取10-5>w>0;(3.5) If ρ>errtol G and l<max GIter, then l=l+1, calculate z l =M k v l , &Delta; G l = G ( x B k + w z l ) - G ( x B k ) , &Delta; x B l = w z l , v l+1 =ΔG l /w, w is a small normal number, generally 10 -5 >w>0;

(3.6)修正预处理矩阵 M k = M k + ( &Delta; x B l - M k &Delta; G l ) ( &Delta; x B l ) T M k ( &Delta; x B l ) T M k &Delta; G l ; (3.6) Modified preprocessing matrix m k = m k + ( &Delta; x B l - m k &Delta; G l ) ( &Delta; x B l ) T m k ( &Delta; x B l ) T m k &Delta; G l ;

(3.7)正交化Vl+1=[v1,v2,...,vl+1]得到Hessenberg阵

Figure A20071012179200198
求解 &rho; = min y &Element; R k | | &beta; e 1 - H &OverBar; l y | | 得到ρ和yl,若ρ<errtolG,则得到 &Delta; x B k = M k V l y l , 否则返回步骤(3.5);(3.7) Orthogonalize V l+1 = [v 1 , v 2 , ..., v l+1 ] to get the Hessenberg matrix
Figure A20071012179200198
solve &rho; = min the y &Element; R k | | &beta; e 1 - h &OverBar; l the y | | Get ρ and y l , if ρ<errtol G , then get &Delta; x B k = m k V l the y l , Otherwise return to step (3.5);

(3.8) x B k + 1 = x B k + 1 + &Delta; x B k , &Delta; G k = G ( x B k + 1 ) - G ( x B k ) ; (3.8) x B k + 1 = x B k + 1 + &Delta; x B k , &Delta; G k = G ( x B k + 1 ) - G ( x B k ) ;

(3.9)修正预处理矩阵 M k + 1 = M k + ( &Delta; x B k - M k &Delta; G k ) ( &Delta; x B k ) T M k ( &Delta; x B k ) T M k &Delta; G k , 返回步骤(3.2);(3.9) Modified preprocessing matrix m k + 1 = m k + ( &Delta; x B k - m k &Delta; G k ) ( &Delta; x B k ) T m k ( &Delta; x B k ) T m k &Delta; G k , Return to step (3.2);

其中边界协调函数G(xB)的求值过程按照以下步骤完成:The evaluation process of the boundary coordination function G(x B ) is completed according to the following steps:

(3.10)上级调度中心内的协调计算服务器设定边界条件,即区域电网边界节点上来自联络线的注入电流相量组成的向量IB及各区域电网松弛节点相角设定值组成的向量Θ,并按照地域从属关系,将相应的注入电流和相角设定值发送给区域电网潮流计算服务器;(3.10) The coordination computing server in the superior dispatching center sets the boundary conditions, that is, the vector I B composed of the injected current phasor from the tie line on the regional power grid boundary nodes and the vector Θ composed of the phase angle setting values of the relaxed nodes in each regional power grid , and send the corresponding injection current and phase angle setting values to the regional grid power flow calculation server according to the regional affiliation;

(3.11)区域电网潮流计算服务器启动本区域潮流计算过程,根据所得到的边界条件和内部节点参数求解S1和S2潮流方程(4),从收敛的潮流结果中得到偏差边界节点的电压VB和区域网损信息Ploss,并将这些信息发送给协调计算服务器;(3.11) The regional grid power flow calculation server starts the regional power flow calculation process, solves the S1 and S2 power flow equations (4) according to the obtained boundary conditions and internal node parameters, and obtains the voltage V of the deviation boundary node from the converged power flow results B and regional network loss information P loss , and send the information to the coordination calculation server;

(3.12)协调计算服务器根据得到的区域潮流计算结果信息以及初始化过程中设定的参数,按照式(5)和(6)计算边界节点的电流不平衡量ΔI,并按照式(3.12) The coordination calculation server calculates the current imbalance ΔI of the boundary nodes according to formulas (5) and (6) according to the obtained regional power flow calculation result information and the parameters set in the initialization process, and according to the formula

(2)计算区域电网负担全网有功网损的不平衡量ΔP;(2) Calculating the unbalanced amount ΔP of the active power loss of the whole network borne by the regional power grid;

对本发明的计算机仿真结果如下:The computer simulation result of the present invention is as follows:

采用IEEE39节点系统进行仿真。网络参数及区域情况如表1~7所示。算例按照以下条件进行:The IEEE39 node system is used for simulation. Network parameters and regional conditions are shown in Tables 1-7. The calculation example is carried out according to the following conditions:

(1)各区域电网潮流计算服务器参数为:(1) The parameters of the power flow calculation server in each region are:

(1.1)各区域电网潮流从平启动开始,即PQ节点电压幅值和相角分别为1和0,PV节点电压相角设为0,松弛(Vθ)节点相角为0;(1.1) The power flow of each regional power grid starts from a flat start, that is, the voltage amplitude and phase angle of the PQ node are 1 and 0, respectively, the PV node voltage phase angle is set to 0, and the relaxation (Vθ) node phase angle is 0;

(1.2)采用Newton-Raphson迭代方法求解潮流方程(3);(1.2) The Newton-Raphson iterative method is used to solve the power flow equation (3);

(1.3)最大迭代次数为30,节点电压幅值上下限为1.5和0.5,潮流收敛精度10-7(1.3) The maximum number of iterations is 30, the upper and lower limits of node voltage amplitude are 1.5 and 0.5, and the convergence accuracy of power flow is 10 -7 ;

(2)协调侧计算服务器参数为:(2) The calculation server parameters on the coordination side are:

(2.1)设定区域电网负担全网有功网损的比例向量为∏=[0,1,0],即规定全网所有的网损均由区域电网区域2内的松弛节点承担,这样的设置和IEEE39节点标准数据的设置是一致的;(2.1) Set the proportion vector of regional power grid to bear the active network loss of the whole network as ∏=[0, 1, 0], that is, it is stipulated that all network losses of the whole network are borne by the slack nodes in area 2 of the regional power grid. Such a setting It is consistent with the setting of IEEE39 node standard data;

(2.2)JFNG(m)算法的控制参数为,ξ=10-4,ε=0.1,max NIter=30,maxGlter=30,w=10-6(2.2) The control parameters of the JFNG(m) algorithm are: ξ=10 -4 , ε=0.1, max NIter=30, maxGlter=30, w=10 -6 .

按照以上条件,进行对IEEE39节点系统一体化潮流分解协调计算。According to the above conditions, the power flow decomposition and coordination calculation of the IEEE39 node system integration is carried out.

表8分布式潮流计算测试结果Table 8 Test results of distributed power flow calculation

  系统 system   集中NR法迭代次数Concentrated NR method iterations   改进JFNG(m)法Improved JFNG(m) method   节点电压幅值最大偏差Maximum deviation of node voltage amplitude   节点电压相角最大偏差Maximum deviation of node voltage phase angle   Newton迭代Newton iteration   GMRES迭代GMRES iteration   求值次数evaluation times   IEEE39IEEE39   33   44   0+7+4+40+7+4+4   1919   6.37×10-7 6.37×10 -7   3.94×10-6 3.94×10 -6

从表8可看出:采用JFNG(m)算法求解边界协调方程,其外层迭代次数与传统的串行NR法相当,具有较高的收敛性。自适应预处理技术的使用可以显著提高内层迭代的收敛性,从而减少协调方程求解的次数,这将大大提高算法在分布式计算环境中的通信次数,从而使得算法适用于高延时的广域网络通信环境。本发明给出的全网一体化潮流分解协调求解算法计算精度较高,能够满足实用计算需要。It can be seen from Table 8 that the JFNG(m) algorithm is used to solve the boundary coordination equation, and the number of outer iterations is equivalent to that of the traditional serial NR method, which has high convergence. The use of adaptive preprocessing technology can significantly improve the convergence of the inner layer iteration, thereby reducing the number of coordination equations to solve, which will greatly increase the communication times of the algorithm in a distributed computing environment, so that the algorithm is suitable for high-latency wide-area network communication environment. The whole-network integrated power flow decomposition coordination solution algorithm provided by the present invention has high calculation accuracy and can meet practical calculation needs.

最后应说明的是:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that: the above embodiments are only used to illustrate the present invention rather than limit the technical solutions described in the present invention; Those of ordinary skill in the art should understand that the present invention can still be modified or equivalently replaced; and all technical solutions and improvements that do not depart from the spirit and scope of the invention should be covered by the claims of the present invention.

Claims (9)

1.一种通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于包括:1. A method for completing distributed power flow analysis by exchanging boundary node states and network loss information, characterized in that it comprises: 步骤1;根据电力系统实际调度管理方式构建分布式潮流分析系统;Step 1: Construct a distributed power flow analysis system according to the actual dispatching management mode of the power system; 所述的电力系统由区域调度中心和上级调度中心协调一致、信息互联;The power system is coordinated and interconnected by the regional dispatch center and the superior dispatch center; 所述的分布式潮流计算系统由区域调度中心内的潮流计算服务器和上级调度中心内的协调计算服务器通过网络连接构成;其中:潮流计算服务器,负责其所辖电网的潮流计算;而上级调度中心内的协调计算服务器,负责协调各区域电网潮流计算过程;The distributed power flow calculation system is composed of the power flow calculation server in the regional dispatch center and the coordination calculation server in the superior dispatch center connected through the network; wherein: the power flow calculation server is responsible for the power flow calculation of the power grid under its jurisdiction; and the superior dispatch center The coordinating calculation server in the network is responsible for coordinating the power flow calculation process of each regional power grid; 步骤2;从电力系统拓扑连接关系出发,根据实际系统的运行状况,采用带有边界区域的切分方法对系统进行切分,按照实际网络连接情况,对互联电网进行划分,明确潮流计算服务器和协调计算服务器的计算对象和数据来源;Step 2: Starting from the topological connection relationship of the power system, according to the actual system operating conditions, the system is segmented using the segmentation method with boundary areas, and the interconnected grid is divided according to the actual network connection conditions, and the power flow calculation server and Coordinate computing objects and data sources of computing servers; 所述的系统定义为(S0);包括两个区域系统(S1)和(S2),通过联络线l相互连接;其中(B1)(B2)分别代表(S1)(S2)区域的边界节点,(Sln 1)(Sln 2)分别为(S1)(S2)中除了边界节点外其他节点组成的网络;Said system is defined as (S 0 ); it includes two regional systems (S 1 ) and (S 2 ), connected to each other by tie line l; where (B 1 )(B 2 ) represent (S 1 )(S 2 ) The boundary nodes of the region, (S ln 1 )(S ln 2 ) are networks composed of other nodes in (S 1 )(S 2 ) except the boundary nodes; 将边界节点B1和B2分别分裂,虚拟出边界节点
Figure A2007101217920002C1
并将联络线l与其两端的虚拟边界节点
Figure A2007101217920002C3
单独看作一个SB,则区域起到连接其他所有区域作用,定义为边界区域;
Split the boundary nodes B 1 and B 2 respectively to virtualize the boundary nodes
Figure A2007101217920002C1
and and connect the contact line l with the virtual boundary nodes at its two ends
Figure A2007101217920002C3
and Viewed as a single S B , the area plays the role of connecting all other areas, which is defined as the boundary area;
所述区域S1和S2属于区域电网调度中心管辖范围,区域SB属于上级调度中心管辖范围;在这种切分方式下,全网潮流的收敛条件为:区域S1和S2中潮流计算达到收敛,它们内部节点功率均达到平衡,且边界节点状态满足The areas S 1 and S 2 belong to the jurisdiction of the regional power grid dispatching center, and the area S B belongs to the jurisdiction of the superior dispatching center; in this segmentation mode, the convergence condition of the power flow in the whole network is: the power flow in the areas S 1 and S 2 The calculation reaches convergence, the power of their internal nodes reaches balance, and the state of the boundary nodes satisfies uu BB == uu BB ~~ ,, &theta;&theta; BB == &theta;&theta; BB ~~ ii &RightArrow;&Right Arrow; BB ++ ii &RightArrow;&Right Arrow; BB ~~ == 00 -- -- -- (( 11 )) 其中uB和θB是区域电网内潮流计算收敛结果中边界节点B1和B2的电压幅值和相角向量;
Figure A2007101217920002C6
Figure A2007101217920002C7
是边界区域SB内潮流计算收敛时边界节点B1和B2的电压幅值和相角向量;
Figure A2007101217920002C8
是区域电网潮流计算收敛结果中边界节点B1和B2上来自联络线的注入电流相量组成的向量,以流入为正方向;
Figure A2007101217920002C9
是边界区域SB中潮流计算收敛时从边界节点B1和B2向联络线上注入的电流相量组成的向量,以流出为正方向。
where u B and θ B are the voltage amplitude and phase angle vectors of boundary nodes B 1 and B 2 in the convergence results of power flow calculation in the regional power grid;
Figure A2007101217920002C6
and
Figure A2007101217920002C7
is the voltage amplitude and phase angle vector of boundary nodes B 1 and B 2 when the power flow calculation in the boundary area S B converges;
Figure A2007101217920002C8
is the vector composed of the injected current phasor from the tie line on the boundary nodes B 1 and B 2 in the convergence result of the regional grid power flow calculation, with the inflow as the positive direction;
Figure A2007101217920002C9
is the vector composed of the current phasor injected from the boundary nodes B 1 and B 2 to the tie line when the power flow calculation converges in the boundary area S B , with the outflow as the positive direction.
步骤3;区域潮流计算服务器和上级协调计算服务器计算用数据和参数初始化,包括以下步骤:Step 3: Data and parameter initialization for regional power flow calculation server and superior coordination calculation server calculation, including the following steps: 步骤3.1:区域电网调度中心内的潮流计算服务器初始化所辖电网的网络参数,包括所有参与潮流计算的网络节点的类型、负荷和发电机出力设定值、发电机机端节点电压幅值以及松弛节点相角等;Step 3.1: The power flow calculation server in the regional power grid dispatching center initializes the network parameters of the power grid under its jurisdiction, including the types of all network nodes participating in the power flow calculation, load and generator output settings, generator terminal node voltage amplitude and slack Node phase angle, etc.; 步骤3.2:区域电网调度中心内的潮流计算服务器初始化边界条件信息,包括边界节点的编号、名称等、边界条件的组成,即边界节点的注入电流相量组成的向量和区域电网松弛节点相角;Step 3.2: The power flow calculation server in the regional power grid dispatching center initializes the boundary condition information, including the number and name of the boundary nodes, the composition of the boundary conditions, that is, the vector composed of the injected current phasors of the boundary nodes and the phase angle of the regional power grid relaxation nodes; 步骤3.3:区域电网调度中心内的潮流计算服务器初始化潮流计算的参数,包括所使用的迭代求解方法、最大迭代次数、节点电压上下限、用以判断潮流收敛的最小功率偏差;Step 3.3: The power flow calculation server in the regional power grid dispatching center initializes the parameters of power flow calculation, including the iterative solution method used, the maximum number of iterations, the upper and lower limits of node voltage, and the minimum power deviation for judging the convergence of the power flow; 步骤3.4:上级调度中心内的协调计算服务器初始化边界区域网络参数,包括边界节点的名称、联络线阻抗;Step 3.4: The coordination calculation server in the upper-level dispatch center initializes the network parameters of the border area, including the name of the border node and the impedance of the tie line; 步骤3.5:上级调度中心内的协调计算服务器设定全网一体化潮流协调求解控制参数;最大迭代次数、各区域负担全网有功网损的比例系数,以及边界节点功率平衡精度要求,即判定边界节点功率平衡所需的边界节点上不平衡的电流向量最大幅值。Step 3.5: The coordination computing server in the upper-level dispatching center sets the control parameters of the integrated power flow coordination solution of the entire network; the maximum number of iterations, the proportional coefficient of each area’s burden on the active network loss of the entire network, and the power balance accuracy requirements of boundary nodes, that is, the decision boundary Maximum magnitude of unbalanced current vectors on boundary nodes required for node power balance. 步骤4:协调计算服务器调用区域潮流计算服务器共同完成全网一体化潮流分解协调求解过程;服务器间调用流程,包括以下基本步骤:Step 4: The coordination calculation server calls the regional power flow calculation server to jointly complete the whole network integrated power flow decomposition coordination solution process; the call process between servers includes the following basic steps: 步骤4.1:上级调度中心内的协调计算服务器按照步骤3.4、3.5初始化本地基础网络数据和计算参数,区域调度中心内区域潮流计算服务器按照步骤3.1~3.3初始化本地基础网络数据和计算参数;Step 4.1: The coordination calculation server in the superior dispatch center initializes the local basic network data and calculation parameters according to steps 3.4 and 3.5, and the regional power flow calculation server in the regional dispatch center initializes the local basic network data and calculation parameters according to steps 3.1 to 3.3; 步骤4.2:协调计算服务器设定初始边界条件,即区域电网边界节点上来自联络线的注入电流相量组成的向量IB及各区域电网松弛节点相角设定值组成的向量Θ,并按照步骤2中网络化分关系,将相应的注入电流和相角设定值发送给区域电网潮流计算服务器;Step 4.2: The coordination calculation server sets the initial boundary conditions, that is, the vector I B composed of the injected current phasor from the tie line on the boundary nodes of the regional power grid and the vector Θ composed of the phase angle setting values of the relaxed nodes of each regional power grid, and follow the steps 2. The network sub-relationship, and the corresponding injection current and phase angle setting value are sent to the power flow calculation server of the regional power grid; 步骤4.3:区域电网潮流计算服务器启动本区域潮流计算过程,根据所得到的边界条件和内部节点参数求解区域潮流方程,从收敛的潮流结果中得到偏差边界节点的电压VB i和区域网损信息Ploss i,i=1,2,并将信息发送给协调计算服务器;Step 4.3: The regional grid power flow calculation server starts the regional power flow calculation process, solves the regional power flow equation according to the obtained boundary conditions and internal node parameters, and obtains the voltage V B i of the deviation boundary node and the regional network loss information from the converged power flow results P loss i , i=1, 2, and send the information to the coordination calculation server; 步骤4.4:协调计算服务器根据得到的区域潮流计算结果信息以及初始化过程中设定的参数,计算边界节点的电流不平衡量ΔI,和区域电网负担全网有功网损的不平衡量ΔP:Step 4.4: The coordination calculation server calculates the current unbalance ΔI of the boundary nodes and the unbalance ΔP of the regional power grid’s active power loss of the entire network based on the obtained regional power flow calculation results and the parameters set during the initialization process: 步骤4.5:若‖[ΔI,ΔP]T2≤ξ则判断全网潮流收敛,计算过程结束,其中‖.‖2表示向量的二范数,ξ为小的正常数;否则根据[ΔI,ΔP]T计算边界条件修正量[ΔIB,ΔΘ]T后更新边界条件设定值,返回步骤4.2;Step 4.5: If ‖[ΔI, ΔP] T2 ≤ ξ, it is judged that the power flow of the whole network is converged, and the calculation process ends, where ‖.‖ 2 represents the two-norm of the vector, and ξ is a small normal number; ΔP] T Calculate the boundary condition correction amount [ΔI B , ΔΘ] T and update the boundary condition setting value, return to step 4.2; 步骤5:区域电网潮流计算服务器将计算结果反馈给协调计算服务器,以使协调计算服务器获得收敛的全网一体化潮流计算结果。Step 5: The power flow calculation server of the regional power grid feeds back the calculation results to the coordination calculation server, so that the coordination calculation server can obtain the convergent network-wide integrated power flow calculation results.
2.根据权利要求1所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:根据计算边界节点的电流不平衡量和区域电网有功网损的不平衡量,判断全网一体化潮流是否一致收敛;需要同时满足以下基本条件:2. The method for completing distributed power flow analysis by exchanging boundary node states and network loss information according to claim 1, characterized in that: according to the calculation of the current imbalance of the boundary nodes and the imbalance of the active network loss of the regional power grid, it is judged that the overall Whether the network integration power flow is consistent; the following basic conditions need to be met at the same time: A:边界节点功率达到平衡,即满足方程;A: The power of the boundary nodes is balanced, that is, the equation is satisfied; uu BB == uu BB ~~ ,, &theta;&theta; BB == &theta;&theta; BB ~~ ii &RightArrow;&Right Arrow; BB ++ ii &RightArrow;&Right Arrow; BB ~~ == 00 -- -- -- (( 11 )) B:全网有功网损在各区域电网间合理分配,满足以下方程,B: The active network loss of the whole network is reasonably distributed among the regional power grids, satisfying the following equations, &Delta;P&Delta;P lossloss ii == PP lossloss ii -- PP lossloss allall &eta;&eta; ii == 00 ,, ii == 1,21,2 -- -- -- (( 22 )) 其中∏={ηi}是区域电网S1和S2负担全网有功网损的比例向量,i=1,2, &Sigma; i = 1 2 &eta; i = 1 ; Pi loss是从区域电网潮流计算结果中统计出的有功网损; P loss all = &Sigma; i 2 P loss i 是由各区域电网有功网损相加得到的全网有功网损;ΔPloss i是区域电网负担全网有功网损的不平衡量,定义为区域电网有功网损不平衡量。Wherein ∏={η i } is the proportional vector of regional power grid S 1 and S 2 burdening the active network loss of the whole network, i=1, 2, &Sigma; i = 1 2 &eta; i = 1 ; P i loss is the active network loss calculated from the calculation results of regional grid power flow; P loss all = &Sigma; i 2 P loss i It is the active network loss of the whole network obtained by adding the active network losses of each regional power grid; 3.根据权利要求1所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:所述的边界条件包括:区域电网的边界母线上来自联络线的注入电流相量组成的向量IB以及区域电网松弛节点相角设定值Θ。3. The method for completing distributed power flow analysis by exchanging boundary node states and network loss information according to claim 1, characterized in that: the boundary conditions include: the injection current phase from the tie line on the boundary bus of the regional power grid The vector I B composed of the quantity and the setting value Θ of the phase angle of the regional power grid slack nodes. 4.根据权利要求1所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:所述的区域潮流计算服务器根据给定的边界条件计算区域潮流;其中所述的区域电网S14. The method for completing distributed power flow analysis by exchanging boundary node states and network loss information according to claim 1, characterized in that: said regional power flow calculation server calculates regional power flow according to given boundary conditions; wherein said The regional grid S 1 : 设电网由n个节点和若干条支路组成,潮流计算模型可表述为非线性方程组形式,即Assuming that the power grid is composed of n nodes and several branches, the power flow calculation model can be expressed in the form of nonlinear equations, namely gg (( vv &RightArrow;&Right Arrow; 11 ,, vv &RightArrow;&Right Arrow; 22 ,, .. .. .. vv &RightArrow;&Right Arrow; nno )) == PP ii SPSP -- uu ii &Sigma;&Sigma; jj &Element;&Element; ii uu jj (( GG ijij coscos &theta;&theta; ijij ++ BB ijij sinsin &theta;&theta; ijij )) == 00 QQ ii SPSP -- uu ii &Sigma;&Sigma; jj &Element;&Element; ii uu jj (( GG ijij sinsin &theta;&theta; ijij -- BB ijij coscos &theta;&theta; ijij )) == 00 -- -- -- (( 33 )) 其中 v &RightArrow; i = u i &angle; &theta; i , i=1,2,…,n为节点电压相量,g为节点功率平衡方程,Pi SP和Qi SP是节点i的给定有功和无功功率,Gij+jBij是节点i和节点j之间的导纳,j∈i表示与i节点相联的所有节点,包括i节点自身。in v &Right Arrow; i = u i &angle; &theta; i , i=1, 2,..., n is the node voltage phasor, g is the node power balance equation, P i SP and Q i SP are the given active and reactive power of node i, G ij +jB ij is the node i and Admittance between nodes j, j∈i means all nodes connected to node i, including node i itself. 5.根据权利要求1所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:S1区域所有节点由内部节点Sln 1和边界节点B1两部分,对应的以 V ln 1 = { v &RightArrow; i } | i &Element; S 1 ln 代表内部节点的电压相量组成的向量,以 V B 1 = { v &RightArrow; i } | i &Element; B 1 代表边界节点电压相量组成的向量;对应地,可将方程(2)描述的节点功率平衡方程组也可以划分为两类,内部节点Sln 1的功率平衡方程组gln 1和边界节点的功率平衡方程组gB 1;如区域电网计算潮流时不选择边界节点作为松弛节点,在完成给定内部节点的中发电机节点的有功出力、节点电压幅值,负荷节点的有功和无功负荷,以及松弛节点的电压幅值和相角情况下,内部节点功率平衡方程gln 1内部节点和边界节点电压相关,边界节点功率平衡方程gB 1与内部节点电压、边界节点电压及其来自联络线的注入电流相量相关,其表述为如下形式,5. the method for completing distributed power flow analysis by exchanging boundary node states and network loss information according to claim 1, characterized in that: all nodes in the S 1 area are composed of internal node S ln 1 and boundary node B 1 two parts, corresponding of V ln 1 = { v &Right Arrow; i } | i &Element; S 1 ln A vector consisting of voltage phasors representing internal nodes, with V B 1 = { v &Right Arrow; i } | i &Element; B 1 Represents the vector composed of the boundary node voltage phasors; correspondingly, the node power balance equations described by equation (2) can also be divided into two types, the power balance equations g ln 1 of the internal node S ln 1 and the boundary node Power balance equation group g B 1 ; if the regional power grid does not choose the boundary node as a slack node when calculating the power flow, the active output of the generator node, the voltage amplitude of the node, and the active and reactive loads of the load node in the completion of a given internal node , and the voltage amplitude and phase angle of the slack node, the internal node power balance equation g ln 1 is related to the internal node and boundary node voltage, and the boundary node power balance equation g B 1 is related to the internal node voltage, boundary node voltage and its connection with The phasor correlation of the injected current of the line is expressed as the following form, gg 11 == gg lnln 11 (( VV BB 11 ,, VV lnln 11 )) == PP ii SPSP -- uu ii &Sigma;&Sigma; jj &Element;&Element; ii uu jj (( GG ijij coscos &theta;&theta; ijij ++ BB ijij sinsin &theta;&theta; ijij )) == 00 ,, ii &Element;&Element; SS lnln 11 QQ ii SPSP -- uu ii &Sigma;&Sigma; jj &Element;&Element; ii uu jj (( GG ijij sinsin &theta;&theta; ijij -- BB ijij coscos &theta;&theta; ijij )) == 00 ,, ii &Element;&Element; SS lnln 11 gg BB 11 (( VV BB 11 ,, VV lnln 11 ,, II BB 11 )) == uu kk &angle;&angle; &theta;&theta; kk ** ii &RightArrow;&Right Arrow; ^^ kk -- uu kk &Sigma;&Sigma; jj &Element;&Element; kk uu jj (( GG ijij coscos &theta;&theta; ijij ++ BB ijij sinsin &theta;&theta; ijij )) -- juju kk &Sigma;&Sigma; jj &Element;&Element; kk uu jj (( GG ijij sinsin &theta;&theta; ijij -- BB ijij coscos &theta;&theta; ijij )) == 00 ,, kk &Element;&Element; SS BB 11 -- -- -- (( 44 )) 其中 I B 1 = { i &RightArrow; B 1 } 是由边界节点B1上来自联络线的注入电流相量组成的向量,
Figure A2007101217920005C3
表示节点k上来自联络线的注入电流相量的共轭,其他变量意义同式(3)。
in I B 1 = { i &Right Arrow; B 1 } is the vector consisting of the injected current phasor from the tie line at the boundary node B1 ,
Figure A2007101217920005C3
Represents the conjugate of the injected current phasor from the tie line on node k, and the meanings of other variables are the same as formula (3).
6.根据权利要求1所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:当完成步骤3.1中的基础数据初始化过程后,再给定IB 1和区域电网S1内松弛节点电压相角设定值θref 1即可采用普通的Newton-Raphson方法求解方程(4)式,得到区域电网S1内的潮流。6. the method for completing distributed power flow analysis by exchanging boundary node states and network loss information according to claim 1, characterized in that: after completing the basic data initialization process in step 3.1, then given I B 1 and area The slack node voltage phase angle set value θ ref 1 in the grid S 1 can use the ordinary Newton-Raphson method to solve equation (4), and obtain the power flow in the regional grid S 1 . 7.根据权利要求1所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:步骤4.3中协调计算服务器需要根据边界条件、联络线参数和区域电网潮流计算结果来计算边界节点的电流不平衡量ΔI,和区域电网负担全网有功网损的不平衡量ΔP;包括以下步骤:7. The method for completing distributed power flow analysis by exchanging boundary node states and network loss information according to claim 1, characterized in that: in step 4.3, the coordination calculation server needs to calculate results according to boundary conditions, tie line parameters and regional grid power flow To calculate the current unbalance ΔI of the boundary node, and the unbalance ΔP of the active network loss borne by the regional grid; including the following steps: a:协调计算服务器设定边界条件IB和Θ,发送至区域潮流计算服务器;a: The coordination calculation server sets the boundary conditions I B and Θ, and sends them to the regional power flow calculation server; b:区域潮流计算服务器按照(4)式计算本区域电网潮流,从潮流结果中提取VB和Ploss。信息,其中VB是边界节点电压相量组成的向量,Ploss是区域电网有功网损信息,并将这些信息发送到协调计算服务器;b: The regional power flow calculation server calculates the power flow in the region according to formula (4), and extracts V B and P loss from the power flow results. Information, where V B is a vector composed of boundary node voltage phasors, P loss is the active network loss information of the regional power grid, and sends these information to the coordination calculation server; c:协调计算服务器根据边界节点的电压VB,按照(5)式计算边界节点来自联络线的注入电流理论值 I ~ B = { i &RightArrow; B ~ i } , 以流出边界节点为正方向,c: The coordination calculation server calculates the theoretical value of the injection current of the boundary node from the tie line according to the formula (5) according to the voltage V B of the boundary node I ~ B = { i &Right Arrow; B ~ i } , Taking the outflow boundary node as the positive direction, ii &RightArrow;&Right Arrow; BB ~~ ii == (( uu BB ~~ ii &angle;&angle; &theta;&theta; BB ~~ ii -- uu BB ~~ jj &angle;&angle; &theta;&theta; BB ~~ jj )) (( gg ll ++ jbjb ll )) -- -- -- (( 55 )) a中设定的边界条件电流IB和注入电流理论值
Figure A2007101217920005C6
之和即为边界节点电流不平衡量ΔI,即
Boundary condition current I B and theoretical value of injection current set in a
Figure A2007101217920005C6
The sum is the boundary node current imbalance ΔI, namely
&Delta;&Iota;&Delta;&Iota; == II BB ++ II ~~ BB -- -- -- (( 66 )) d协调计算服务器根据设定的区域电网负担全网有功网损的比例向量∏和各区域电网潮流结果中统计出的有功网损信息Ploss,根据(2)式计算区域电网有功网损不平衡量组成的向量 &Delta;P = { &Delta;P loss i } . d The coordination calculation server calculates the unbalanced active network loss of the regional power grid according to the formula (2) according to the set proportional vector Π of the regional power grid's burden of the active network loss of the whole network and the statistics of the active power loss information P loss in the power flow results of each regional power grid Composed of vectors &Delta;P = { &Delta;P loss i } .
8.根据权利要求1所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:所述的协调计算服务器采用改进的Jacobian-free Newton-GMRES(m)方法计算边界条件的修正量,并迭代直至‖[ΔI,ΔP]T2≤ξ,具体步骤如下:8. The method for completing distributed power flow analysis by exchanging boundary node states and network loss information according to claim 1, characterized in that: said coordination calculation server adopts the improved Jacobian-free Newton-GMRES(m) method to calculate The correction amount of the boundary conditions, and iterate until ‖[ΔI, ΔP] T2 ≤ ξ, the specific steps are as follows: a.令k=-1,令xB=[Re(IB),Im(IB),Θ]T为边界条件组成的向量,其中Re(IB)和Im(IB)分别表示边界节点来自联络线的注入电流相量实部和虚部组成的向量;给定初始边界条件xB 0,选择任意非奇异矩阵M0为预处理矩阵;a. Let k=-1, let x B =[Re(I B ), Im(I B ), Θ] T is a vector composed of boundary conditions, where Re(I B ) and Im(I B ) represent the boundary respectively A vector composed of the real and imaginary parts of the injected current phasor from the tie line; given the initial boundary condition x B 0 , choose any non-singular matrix M 0 as the preprocessing matrix; b.k=k+1,重复步骤a~i,直至‖[ΔI,ΔP]T2≤ξ满足或是k>max NIter,max NIter为Newton迭代次数限制,结束;bk=k+1, repeat steps a~i until ‖[∆I, ∆P] T2 ≤ ξ is satisfied or k>max NIter, max NIter is the Newton iteration limit, end; c.令 G ( x B k ) = [ Re ( &Delta;I ) , Im ( &Delta;I ) , &Delta;P ] T 为边界条件为xB k时通过步骤a~e计算得到的边界节点电流不平衡量和区域有功网损不平衡量,为了计算需要将ΔI的实部和虚部分开;c. order G ( x B k ) = [ Re ( &Delta;I ) , Im ( &Delta;I ) , &Delta;P ] T is the boundary node current unbalance and regional active network loss unbalance calculated through steps a to e when the boundary condition is x B k , and the real part and imaginary part of ΔI need to be separated for calculation; d. r 0 = - G ( x B k ) , l=1,ρ=β=‖r02,v1=r0,errtolG=ε‖r02>0,1>ε>0;d. r 0 = - G ( x B k ) , l=1, ρ=β=‖r 02 , v 1 =r 0 , errtol G =ε‖r 02 >0, 1>ε>0; e.若ρ>errtolG并且l<max GIter,max GIter是GMRES迭代次数限制,则l=l+1,zl=Mkvl &Delta;G l = G ( x B k + wz l ) - G ( x B k ) , &Delta;x B l = wz l , vl+1=ΔGl/w,w为一个小的正常数,一般取10-5>w>0;e. If ρ>errtol G and l<max GIter, max GIter is the GMRES iteration limit, then l=l+1, z l =M k v l , &Delta;G l = G ( x B k + w l ) - G ( x B k ) , &Delta;x B l = w l , v l+1 =ΔG l /w, w is a small normal number, generally 10 -5 >w>0; f.修正预处理矩阵 M k = M k + ( &Delta;x B l - M k &Delta;G l ) ( &Delta;x B l ) T M k ( &Delta;x B l ) T M k &Delta;G l ; f. Modified preprocessing matrix m k = m k + ( &Delta;x B l - m k &Delta;G l ) ( &Delta;x B l ) T m k ( &Delta;x B l ) T m k &Delta;G l ; g.正交化Vl+1=[v1,v2,L,vl+1]得到Hessenberg阵
Figure A2007101217920006C7
求解 &rho; = min y &Element; R k | | &beta;e l - H &OverBar; l y | | 得到ρ和yl,若ρ<errtolG,则得到 &Delta;x B k = M k V l y l , 否则返回步骤e;
g. Orthogonalize V l+1 = [v 1 , v 2 , L, v l+1 ] to get the Hessenberg matrix
Figure A2007101217920006C7
solve &rho; = min the y &Element; R k | | &beta;e l - h &OverBar; l the y | | Get ρ and y l , if ρ<errtol G , then get &Delta;x B k = m k V l the y l , Otherwise return to step e;
h. x B k + 1 = x B k + 1 + &Delta;x B k , &Delta;G k = G ( x B k + 1 ) - G ( x B k ) ; h. x B k + 1 = x B k + 1 + &Delta;x B k , &Delta;G k = G ( x B k + 1 ) - G ( x B k ) ; i.修正预处理矩阵 M k + 1 = M k + ( &Delta;x B k - M k &Delta;G k ) ( &Delta;x B k ) T M k ( &Delta;x B k ) T M k &Delta;G k , 返回步骤b;i. Correct the preprocessing matrix m k + 1 = m k + ( &Delta;x B k - m k &Delta;G k ) ( &Delta;x B k ) T m k ( &Delta;x B k ) T m k &Delta;G k , Return to step b;
9.根据权利要求8所述的通过交换边界节点状态和网损信息完成分布式潮流分析的方法,其特征在于:其中步骤f和i为内层和外层预处理矩阵修正。9. The method for completing distributed power flow analysis by exchanging boundary node status and network loss information according to claim 8, wherein steps f and i are inner and outer preprocessing matrix corrections.
CN2007101217928A 2007-09-14 2007-09-14 Method for distributed tidal current analyzing by exchange boundary node state and net damage information Active CN101141064B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101217928A CN101141064B (en) 2007-09-14 2007-09-14 Method for distributed tidal current analyzing by exchange boundary node state and net damage information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101217928A CN101141064B (en) 2007-09-14 2007-09-14 Method for distributed tidal current analyzing by exchange boundary node state and net damage information

Publications (2)

Publication Number Publication Date
CN101141064A true CN101141064A (en) 2008-03-12
CN101141064B CN101141064B (en) 2010-12-15

Family

ID=39192864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101217928A Active CN101141064B (en) 2007-09-14 2007-09-14 Method for distributed tidal current analyzing by exchange boundary node state and net damage information

Country Status (1)

Country Link
CN (1) CN101141064B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937490A (en) * 2010-08-27 2011-01-05 河北省电力研究院 A Calculation Method for Analysis and Calculation of Power Network Loss in Planning State
CN101540504B (en) * 2009-04-30 2012-01-11 东北大学 Current analytical device and method on basis of step-length variable neural network
CN102385654A (en) * 2011-10-25 2012-03-21 中国电力科学研究院 Electromechanical transient modeling method based on VSC (Voltage Source Converter) grid-connection photovoltaic power station and energy-storage power station
CN101777764B (en) * 2010-01-05 2013-01-09 华北电力大学 Area control deviation and unit generation deviation-based scheduling feedback control system
CN103198205A (en) * 2013-02-25 2013-07-10 中国电力科学研究院 Initial value calculation method suitable for large-scale data load flow calculation
CN103353921A (en) * 2013-06-18 2013-10-16 国家电网公司 Method for determining power system parallel load flow based on heuristic automatic network partitioning
CN103530736A (en) * 2013-10-23 2014-01-22 华北电力大学 Construction method of distributed tide computing system graphics platform based on WEB-SVG
CN104680430A (en) * 2015-03-19 2015-06-03 国网上海市电力公司 Multi-voltage-grade electric network reliability evaluation method based on transmission node capacity model
CN104716646A (en) * 2015-03-31 2015-06-17 湖南大学 Node coupling degree analysis method based on injection currents
CN105406459A (en) * 2014-09-10 2016-03-16 三菱电机株式会社 Method For Estimating Optimal Power Flows In Power Grids Using Consensus-based Distributed Processing
CN105576648A (en) * 2015-11-23 2016-05-11 中国电力科学研究院 Static security analysis double-layer parallel method based on GPU-CUP heterogeneous computing platform
CN105811420A (en) * 2016-05-05 2016-07-27 国网江苏省电力公司南京供电公司 Decomposition coordinated master and distribution network integrated power flow calculation method
CN106130005A (en) * 2016-05-13 2016-11-16 国家电网公司 220kV sub area division boundary node processing method based on geographical zone
CN106201985A (en) * 2016-07-07 2016-12-07 三峡大学 A kind of distributed parallel load flow calculation system development approach based on PQ method
CN107134769A (en) * 2016-02-26 2017-09-05 中国电力科学研究院 A kind of electric network model border planing method
CN107482624A (en) * 2017-08-11 2017-12-15 国网江苏省电力公司经济技术研究院 A Power Loss Control Strategy Based on UPFC
CN107994583A (en) * 2017-11-14 2018-05-04 华北电力大学 The ac and dc systems Distributed Power Flow algorithm that DC link is modeled in cooperation layer
CN108400601A (en) * 2018-01-25 2018-08-14 国电南瑞科技股份有限公司 A kind of province of extra-high voltage direct-current near region power grid state point collaboration Reactive Power Reserve computational methods
CN108647830A (en) * 2018-05-16 2018-10-12 清华大学 The value generation methods such as the boundary of security constraint inside the province towards transregional electricity transaction transprovincially
CN108847672A (en) * 2018-07-02 2018-11-20 国网山西省电力公司电力科学研究院 Minimum voltage based on distributed continuous tide stablizes abundant acquisition methods and system
CN109193664A (en) * 2018-09-12 2019-01-11 国电南瑞科技股份有限公司 Containing the grid-connected distribution power system load flow calculation method of DG
CN111262249A (en) * 2019-12-20 2020-06-09 国网新疆电力有限公司 Power grid flow simulation method and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373733C (en) * 2004-01-06 2008-03-05 中国电力科学研究院 Parallel Calculation Method of Power System Power Flow Sub-network
CN100481668C (en) * 2006-09-22 2009-04-22 天津大学 Parallel computation method for large-scale electrical power system network tidal current segmentation

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540504B (en) * 2009-04-30 2012-01-11 东北大学 Current analytical device and method on basis of step-length variable neural network
CN101777764B (en) * 2010-01-05 2013-01-09 华北电力大学 Area control deviation and unit generation deviation-based scheduling feedback control system
CN101937490A (en) * 2010-08-27 2011-01-05 河北省电力研究院 A Calculation Method for Analysis and Calculation of Power Network Loss in Planning State
CN102385654B (en) * 2011-10-25 2015-09-23 中国电力科学研究院 A kind of electromechanical transient modeling method based on VSC grid-connected photovoltaic, energy-accumulating power station
CN102385654A (en) * 2011-10-25 2012-03-21 中国电力科学研究院 Electromechanical transient modeling method based on VSC (Voltage Source Converter) grid-connection photovoltaic power station and energy-storage power station
CN103198205A (en) * 2013-02-25 2013-07-10 中国电力科学研究院 Initial value calculation method suitable for large-scale data load flow calculation
CN103198205B (en) * 2013-02-25 2017-02-08 中国电力科学研究院 Initial value calculation method suitable for large-scale data load flow calculation
CN103353921A (en) * 2013-06-18 2013-10-16 国家电网公司 Method for determining power system parallel load flow based on heuristic automatic network partitioning
CN103530736A (en) * 2013-10-23 2014-01-22 华北电力大学 Construction method of distributed tide computing system graphics platform based on WEB-SVG
CN105406459A (en) * 2014-09-10 2016-03-16 三菱电机株式会社 Method For Estimating Optimal Power Flows In Power Grids Using Consensus-based Distributed Processing
CN105406459B (en) * 2014-09-10 2018-03-16 三菱电机株式会社 Utilize the method for the optimal load flow estimated based on uniformity distributed treatment in power network
CN104680430A (en) * 2015-03-19 2015-06-03 国网上海市电力公司 Multi-voltage-grade electric network reliability evaluation method based on transmission node capacity model
CN104680430B (en) * 2015-03-19 2018-04-27 国网上海市电力公司 Multi-voltage grade system adequacy evaluation method based on transmission node capacity model
CN104716646A (en) * 2015-03-31 2015-06-17 湖南大学 Node coupling degree analysis method based on injection currents
CN104716646B (en) * 2015-03-31 2016-02-24 湖南大学 A kind of node Coupling Degrees method based on Injection Current
CN105576648A (en) * 2015-11-23 2016-05-11 中国电力科学研究院 Static security analysis double-layer parallel method based on GPU-CUP heterogeneous computing platform
CN107134769A (en) * 2016-02-26 2017-09-05 中国电力科学研究院 A kind of electric network model border planing method
CN107134769B (en) * 2016-02-26 2020-08-18 中国电力科学研究院 A method for boundary planning of power grid model
CN105811420A (en) * 2016-05-05 2016-07-27 国网江苏省电力公司南京供电公司 Decomposition coordinated master and distribution network integrated power flow calculation method
CN106130005B (en) * 2016-05-13 2021-09-28 国家电网公司 Geographical partition-based 220kV power grid partition boundary node processing method
CN106130005A (en) * 2016-05-13 2016-11-16 国家电网公司 220kV sub area division boundary node processing method based on geographical zone
CN106201985A (en) * 2016-07-07 2016-12-07 三峡大学 A kind of distributed parallel load flow calculation system development approach based on PQ method
CN106201985B (en) * 2016-07-07 2019-09-24 三峡大学 A kind of distributed parallel load flow calculation system development approach based on PQ method
CN107482624B (en) * 2017-08-11 2019-09-13 国网江苏省电力公司经济技术研究院 A Power Loss Control Strategy Based on UPFC
CN107482624A (en) * 2017-08-11 2017-12-15 国网江苏省电力公司经济技术研究院 A Power Loss Control Strategy Based on UPFC
CN107994583B (en) * 2017-11-14 2020-05-08 华北电力大学 Distributed Power Flow Algorithm for AC-DC System Modeled by DC Tie Line at Coordination Layer
CN107994583A (en) * 2017-11-14 2018-05-04 华北电力大学 The ac and dc systems Distributed Power Flow algorithm that DC link is modeled in cooperation layer
CN108400601A (en) * 2018-01-25 2018-08-14 国电南瑞科技股份有限公司 A kind of province of extra-high voltage direct-current near region power grid state point collaboration Reactive Power Reserve computational methods
CN108647830A (en) * 2018-05-16 2018-10-12 清华大学 The value generation methods such as the boundary of security constraint inside the province towards transregional electricity transaction transprovincially
CN108647830B (en) * 2018-05-16 2021-10-15 清华大学 An Equivalent Generation Method of Intra-provincial Safety Constraint Boundary for Inter-regional and Inter-provincial Power Transactions
CN108847672A (en) * 2018-07-02 2018-11-20 国网山西省电力公司电力科学研究院 Minimum voltage based on distributed continuous tide stablizes abundant acquisition methods and system
CN109193664A (en) * 2018-09-12 2019-01-11 国电南瑞科技股份有限公司 Containing the grid-connected distribution power system load flow calculation method of DG
WO2020052104A1 (en) * 2018-09-12 2020-03-19 国电南瑞科技股份有限公司 Method for determining power flow of dg-connected distribution network and computer storage medium
CN111262249A (en) * 2019-12-20 2020-06-09 国网新疆电力有限公司 Power grid flow simulation method and system
CN111262249B (en) * 2019-12-20 2024-01-30 国网新疆电力有限公司 Power grid tide simulation method and system

Also Published As

Publication number Publication date
CN101141064B (en) 2010-12-15

Similar Documents

Publication Publication Date Title
CN101141064B (en) Method for distributed tidal current analyzing by exchange boundary node state and net damage information
CN110266038B (en) Distributed coordination regulation and control method for multiple virtual power plants
CN106549384A (en) A kind of general tidal current computing method containing UPFC power systems
CN102354981B (en) Distributed computation based voltage stability assessment method of sub-networks in interconnected power network
CN105048468B (en) Power transmission-distribution network integrating voltage stability assessment method based on distributed calculation
CN102856918A (en) Power distribution network reactive power optimization method based on ecological niche particle swarm algorithm
CN107947245B (en) Equivalent optimal power flow model construction method considering natural gas system constraint
CN105186578A (en) Distributed automatic dispatching method for power system with accurate network loss calculation capability
CN105391056B (en) A kind of power system distribution economic load dispatching method for considering uneven communication network
CN108471144A (en) A kind of power dispatching method suitable for transnational energy internet
CN112217197A (en) Optimization method for economic dispatch of double-layer distributed multi-region power distribution network
Zhang et al. A distributed multi-control-center dynamic power flow algorithm based on asynchronous iteration scheme
CN105956693B (en) A Distributed Gradient Algorithm Based Economic Dispatch Method for Virtual Power Plant
CN102709955B (en) Multi-section-based power flow control method
CN115276015B (en) Electric power system optimal scheduling method and system considering new energy uncertainty
CN110120673B (en) Distributed transmission and distribution cooperative reactive power optimization method and system based on Thevenin equivalent parameter identification
CN102891485A (en) Three-phase decoupling load flow calculation method for weakly meshed distribution network based on sequence component method
CN105184418A (en) Optimal power flow calculating method for equivalent interconnected power network on the basis of consistency of power flow, sensitivity and constraint
CN105406517B (en) Economic Dispatch method based on finite time average homogeneity algorithm
CN106786536A (en) Consider the method for estimating state of outer net extended Ward equivalent
CN108599974B (en) A distributed communication topology design method for microgrid based on graph theory connectivity
CN105787604A (en) Transmission-distribution-cooperative distribution network situation quick awareness method
CN106294022B (en) A kind of Jacobian matrix redundancy storage method for static security analysis
CN105976052A (en) Improved quantum-behaved particle swarm optimization algorithm-based multi-region economic dispatch method
CN111834996B (en) Power grid line loss calculation method and device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant