CN101132120A - Dual-capacitance micromachined tunable vertical-cavity surface-emitting laser and its preparation method - Google Patents
Dual-capacitance micromachined tunable vertical-cavity surface-emitting laser and its preparation method Download PDFInfo
- Publication number
- CN101132120A CN101132120A CNA2007101757714A CN200710175771A CN101132120A CN 101132120 A CN101132120 A CN 101132120A CN A2007101757714 A CNA2007101757714 A CN A2007101757714A CN 200710175771 A CN200710175771 A CN 200710175771A CN 101132120 A CN101132120 A CN 101132120A
- Authority
- CN
- China
- Prior art keywords
- distributed feedback
- bragg reflector
- layer
- feedback bragg
- ohmic contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 230000003647 oxidation Effects 0.000 claims abstract description 16
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 16
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000003990 capacitor Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 12
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 9
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 230000009977 dual effect Effects 0.000 claims description 5
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 3
- 229910001258 titanium gold Inorganic materials 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 claims 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 238000006073 displacement reaction Methods 0.000 description 10
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
一种双电容式微机械可调谐垂直腔面发射激光器及制备方法属于半导体光电子器件领域。该激光器从上至下包括:调谐电极(1)、绝缘介质薄膜(70)、上分布反馈布拉格反射镜(20)、中空牺牲层(40),中空部分是空气隙层(30)、注入电极(3)、欧姆接触层(2)、中分布反馈布拉格反射镜(90)、氧化限制层(4)、有源区层(5)、下分布反馈布拉格反射镜(50)、衬底(6)和欧姆接触电极(7),所述的绝缘介质薄膜(70)与上分布反馈布拉格反射镜(20)、中空牺牲层(40)构成双电容结构,所述的上分布反馈布拉格反射镜(20)和中分布反馈布拉格反射镜(90)为掺杂p+型,下分布反馈布拉格反射镜(50)为n+型。本发明有效提高了器件波长调谐范围。
A dual-capacitance micromachine tunable vertical cavity surface-emitting laser and a preparation method thereof belong to the field of semiconductor optoelectronic devices. The laser includes from top to bottom: a tuning electrode (1), an insulating dielectric film (70), an upper distributed feedback Bragg reflector (20), a hollow sacrificial layer (40), and the hollow part is an air gap layer (30), an injection electrode (3), ohmic contact layer (2), middle distributed feedback Bragg reflector (90), oxidation confinement layer (4), active region layer (5), lower distributed feedback Bragg reflector (50), substrate (6 ) and ohmic contact electrodes (7), the insulating dielectric film (70) forms a double capacitor structure with the upper distributed feedback Bragg reflector (20) and the hollow sacrificial layer (40), and the upper distributed feedback Bragg reflector ( 20) and the middle distributed feedback Bragg reflector (90) are doped p + type, and the lower distributed feedback Bragg reflector (50) is n + type. The invention effectively improves the wavelength tuning range of the device.
Description
技术领域technical field
双电容式微机械可调谐垂直腔面发射激光器属于半导体光电子器件领域,涉及一种波长可调谐面发射激光器结构设计和制备方法。A dual-capacitance micromachine tunable vertical-cavity surface-emitting laser belongs to the field of semiconductor optoelectronic devices, and relates to a structural design and preparation method of a wavelength-tunable surface-emitting laser.
背景技术Background technique
多模宽带光纤和密集波分复用(DWDM)系统在光通信领域的应用越来越重要,这也同时要求传统VCSEL光源提供的波长范围越来越大,因此人们对宽范围波长可调谐VCSEL的需求越来越强烈。目前,广泛采用的是将微机械系统(MEMS)和传统VCSEL相结合的方法制备出微机械可调谐VCSEL。通过静电力调谐的VCSEL不仅具有调谐范围大、响应速度快、易于实现无跳模连续调谐的特点,而且操作简单、制作成本低,得到了广泛的重视和研究。The application of multimode broadband fiber and dense wavelength division multiplexing (DWDM) system in the field of optical communication is becoming more and more important, which also requires the traditional VCSEL light source to provide an increasing wavelength range, so people are interested in wide-range wavelength tunable VCSEL demand is growing stronger. At present, it is widely used to prepare micro-mechanical tunable VCSELs by combining micro-mechanical systems (MEMS) and traditional VCSELs. VCSELs tuned by electrostatic force not only have the characteristics of large tuning range, fast response speed, and easy continuous tuning without mode hopping, but also are simple to operate and low in production cost, and have received extensive attention and research.
半导体可调谐VCSEL采用的调谐方式是静电力机械调谐。当电压加于上电极时,将会在可动上分布反馈布拉格反射镜与注入电极之间产生电势差,从而在上电极与下电极之间形成平板电容器,产生静电力,从而使可动上分布反馈布拉格反射镜产生位移,进而改变谐振腔的宽度,使波长发生位移。但是,可调谐VCSEL采用的材料为GaAs系材料,GaAs材料的健能只有2.59eV,绝缘强度为3.5×70e4V/cm,因此,对于可调谐VCSEL的微机械部分的最高调谐电压限制在15V左右,否则很容易因电压过高引起的器件击穿发射。这对调谐电压的限制将大大影响可动分布反馈布拉格反射镜的位移量,从而使波长调谐范围减小,使可调谐VCSEL本质上的大范围调谐特性不能完全发挥出来。The tuning method adopted by semiconductor tunable VCSEL is electrostatic force mechanical tuning. When a voltage is applied to the upper electrode, a potential difference will be generated between the movable upper distribution feedback Bragg reflector and the injection electrode, thereby forming a flat plate capacitor between the upper electrode and the lower electrode, generating electrostatic force, thereby making the movable upper distribution The feedback Bragg mirror produces a displacement, which in turn changes the width of the resonant cavity and shifts the wavelength. However, the material used in the tunable VCSEL is GaAs-based materials. The energy of the GaAs material is only 2.59eV, and the dielectric strength is 3.5×70e4V/cm. Therefore, the highest tuning voltage for the micromechanical part of the tunable VCSEL is limited to about 15V. Otherwise, it is easy to cause device breakdown and emission due to excessive voltage. This restriction on the tuning voltage will greatly affect the displacement of the movable distributed feedback Bragg reflector, thereby reducing the wavelength tuning range and preventing the intrinsic large-range tuning characteristics of the tunable VCSEL from being fully utilized.
发明内容Contents of the invention
本发明的目的是提供一种可以有效提高可动分布反馈布拉格反射镜位移量的波长连续大范围调谐的VCSEL。The purpose of the present invention is to provide a VCSEL capable of effectively increasing the displacement of the movable distributed feedback Bragg reflector and continuously tuning the wavelength in a wide range.
本发明公开了一种双电容式微机械可调谐垂直腔面发射激光器,包括The invention discloses a dual capacitive micromachine tunable vertical cavity surface emitting laser, comprising
调谐电极1、绝缘介质薄膜70、上分布反馈布拉格反射镜20、中空牺牲层40,中空部分是空气隙层30、注入电极层3、欧姆接触层2、中分布反馈布拉格反射镜90、氧化限制层4、有源区层5、下分布反馈布拉格反射镜50、衬底6和欧姆接触电极7,所述的绝缘介质薄膜70与上分布反馈布拉格反射镜20、中空牺牲层40构成双电容结构,所述的中空牺牲层40厚度是四分之一激光器激射波长的5-7倍,所述的上分布反馈布拉格反射镜20和中分布反馈布拉格反射镜90为掺杂p+型,下分布反馈布拉格反射镜50为n+型。
前述的中空牺牲层40材料是半导体化合物GaAs、AlGaAs、GaInP、AlAs之一;The material of the aforementioned hollow
前述的绝缘介质薄膜70材料是SiO2或Si3N4;The aforementioned insulating
前述的上分布反馈布拉格反射镜20、下分布反馈布拉格反射镜50是由折射率不同的两种半导体化合物材料生长20~26对周期得到,中分布反馈布拉格反射镜90是由折射率不同的两种半导体化合物材料生长为2~4对周期得到。The aforementioned upper distributed feedback Bragg
一种双电容式微机械可调谐垂直腔面发射激光器结构的制备方法,包括以下步骤:A method for preparing a dual-capacitance micromachine tunable vertical-cavity surface-emitting laser structure, comprising the following steps:
步骤1、采用金属有机化学汽相淀积或者分子束外延系统在衬底6上依次外延生长下分布反馈布拉格反射镜50,有源区5,氧化限制层4,中分布反馈布拉格反射镜90,p型欧姆接触层2;
步骤2、采用金属有机化学汽相淀积或者分子束外延系统在p型欧姆接触层2上一次外延生长牺牲层和上分布反馈布拉格反射镜20,采用等离子增强化学气相淀积方法制备绝缘介质薄膜70;
步骤3、利用光刻和选择性湿法腐蚀相结合的方法,将绝缘介质薄膜70和上分布反馈布拉格反射镜20选择腐蚀,制备出悬臂梁立体轮廓图形,悬臂梁具体说明参见(申请号:200710175248.1,名称:悬臂梁式波长可调谐垂直腔面发射激光器结构及制备方法,单位:北京工业大学);
步骤4、进行二次光刻,腐蚀欧姆接触层2和中分布反馈布拉格反射镜90,形成台面结构,暴露出氧化限制层4侧壁;
步骤5、利用氧化炉设备在440℃下,氧化30分钟,对氧化限制层4进行氧化,形成注入电流限制孔径20um;
步骤6、选择刻蚀牺牲层,暴露出p型欧姆接触层2;
步骤7、在绝缘介质薄膜70上溅射调谐电极1,在p型欧姆接触层2表面溅射TiAu注入电极3;
步骤8、在衬底6下表面溅射AuGeNiAu欧姆接触电极7。Step 8, sputtering AuGeNiAu
步骤9、选择腐蚀牺牲层,中空牺牲层40的中空部分是由空气隙层30组成。Step 9, selectively etching the sacrificial layer, the hollow part of the hollow
调谐电极1加上偏置电压后,绝缘介质薄膜70和注入电极3分布是电容器的两极,所述电容器的介质分别为上分布反馈布拉格反射镜20和空气隙层30两种介质,所述电容器内部相当于是上分布反馈布拉格反射镜20与空气隙层30形成的两个电容器串连。通过静电力操纵可动分布反馈布拉格反射镜20,使谐振腔厚度减小,谐振波长发生蓝移,关断电压后,在弹性恢复力的作用下,可动上分布反馈布拉格反射镜20回到其原来的位置状态,从而达到激射波长可调。After the bias voltage is applied to the
采用本发明的结构设计和工艺制备方法得到的可调谐激光器具有调谐电压高,满足可动薄膜位移大要求,激射波长调谐范围广的特点。避免器件易于调谐电压低、可动薄膜位移范围小对调谐波长范围的限制。The tunable laser obtained by adopting the structural design and process preparation method of the present invention has the characteristics of high tuning voltage, meeting the requirement of large displacement of the movable film, and wide tuning range of lasing wavelength. Avoiding the limitation of the easy-to-tune voltage of the device and the small displacement range of the movable film on the tuning wavelength range.
附图说明Description of drawings
图1:本发明中提出的双电容式微机械可调谐垂直腔面发射激光器结构的器件层结构示意图;Figure 1: Schematic diagram of the device layer structure of the dual-capacitance micromachined tunable vertical-cavity surface-emitting laser structure proposed in the present invention;
图2:本发明结构中可动上分布反馈布拉格反射镜的调谐电压与位移示意图。Figure 2: Schematic diagram of the tuning voltage and displacement of the movable upper distributed feedback Bragg reflector in the structure of the present invention.
具体实施方式Detailed ways
本发明公开了一种双电容式微机械可调谐垂直腔面发射激光器,包括The invention discloses a dual capacitive micromachine tunable vertical cavity surface emitting laser, comprising
调谐电极1、绝缘介质薄膜70、上分布反馈布拉格反射镜20、中空牺牲层40,中空部分是空气隙层30、注入电极层3、欧姆接触层2、中分布反馈布拉格反射镜90、氧化限制层4、有源区层5、下分布反馈布拉格反射镜50、衬底6和欧姆接触电极7,所述的绝缘介质薄膜70与上分布反馈布拉格反射镜20、中空牺牲层40构成双电容结构,所述的中空牺牲层40厚度是四分之一激光器激射波长的5-7倍,所述的上分布反馈布拉格反射镜20和中分布反馈布拉格反射镜90为掺杂p+型,下分布反馈布拉格反射镜50为n+型。
具体步骤如下:Specific steps are as follows:
1、采用金属有机化学汽相淀积(MOCVD)或者分子束外延(MBE)系统晶向外延在n-砷化镓衬底6上依次外延生长26对GaAs和AlGaAs周期生长结构的n+型下分布反馈布拉格反射镜50,有源区5,AlGaAs氧化限制层4,p型欧姆接触层2,3对GaAs和AlGaAs周期生长结构的中分布反馈布拉格反射镜90,AlGaAs中空牺牲层40,23对GaAs和AlGaAs周期生长结构的上分布布拉格反射镜20;1. Use metal-organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) system crystal-direction epitaxy to sequentially grow 26 pairs of GaAs and AlGaAs periodic growth structures on the n-
2、采用离子增强化学气象淀积PECVD制备SiO2绝缘介质薄膜70,厚度为100nm,并形成于上分布布拉格反射镜20上表面;2. The SiO2 insulating
3、利用光刻和选择性湿法腐蚀相结合的方法,将绝缘介质薄膜70和上分布反馈布拉格反射镜20选择腐蚀,制备出悬臂梁立体轮廓图形;3. Using a combination of photolithography and selective wet etching, the insulating
4、进行二次光刻,腐蚀欧姆接触层2和中分布反馈布拉格反射镜90,形成台面结构,暴露出氧化限制层4侧壁;4. Carry out secondary photolithography to corrode the
5、利用氧化炉设备在440℃下,氧化30分钟,对氧化限制层4进行氧化,形成注入电流限制孔径20um;5. Using oxidation furnace equipment to oxidize at 440°C for 30 minutes to oxidize the
6、选择刻蚀牺牲层,暴露出p型欧姆接触层5;6. Selectively etch the sacrificial layer to expose the p-type
7、在绝缘介质薄膜70上制备调谐电极1,在p型欧姆接触层2表面制备TiAu注入电极3;7. Prepare the
8、在衬底6下表面制备AuGeNiAu欧姆接触电极7;8. Prepare AuGeNiAu
9、选择腐蚀牺牲层,中空牺牲层40的中空部分是空气隙层30,厚度为激射波长的四分之五;9. Selectively corrode the sacrificial layer, the hollow part of the hollow
选择腐蚀牺牲层得到中空牺牲层40,中空部分由空气隙30组成,从而使上分布布拉格反射镜20悬空与有源区5之上。空气隙层30作为谐振腔的一部分,空气与相邻半导体材料接触表面对激光器出光效果影响很大,因此,牺牲层40最后是选择腐蚀数率比很大的两种材料,例如GaAs与AlGaAs。The sacrificial layer is selectively etched to obtain a hollow
图2为上分布反馈布拉格反射镜20随调谐电压变化的位移曲线。附图标记D1和D2分别对应调谐电压15V和30V点。它们表示出对应不同调谐电压时,上分布反馈布拉格反射镜20位移量的多少。FIG. 2 is a displacement curve of the upper distributed
D1所示的情形为:没有绝缘介质薄膜70情况下,调谐电压最大值为15V左右,在调谐电极1与注入电极3之间静电力作用下,上分布反馈布拉格反射镜20位移只有50nm;The situation shown in D1 is: without the insulating
D2所示的情形为:采用本发明中绝缘介质薄膜70的情况下,调谐电压能够提高到30V以上。绝缘介质薄膜70、调谐电极1、上分布反馈布拉格反射镜20、中空牺牲层30和注入电极3组成双电容结构,在静电力作用下,上分布反馈布拉格反射镜20位移达到了250nm。The situation shown in D2 is: in the case of using the insulating
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101757714A CN100479281C (en) | 2007-10-11 | 2007-10-11 | Double-capacitor micro-mechanical tunable vertical-cavity surface emitting laser and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101757714A CN100479281C (en) | 2007-10-11 | 2007-10-11 | Double-capacitor micro-mechanical tunable vertical-cavity surface emitting laser and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101132120A true CN101132120A (en) | 2008-02-27 |
CN100479281C CN100479281C (en) | 2009-04-15 |
Family
ID=39129277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101757714A Expired - Fee Related CN100479281C (en) | 2007-10-11 | 2007-10-11 | Double-capacitor micro-mechanical tunable vertical-cavity surface emitting laser and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100479281C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135671A (en) * | 2010-01-22 | 2011-07-27 | 三星电子株式会社 | Optical modulator |
CN111884046A (en) * | 2020-07-06 | 2020-11-03 | 武汉光谷量子技术有限公司 | Distributed Bragg reflector and manufacturing method and design method thereof |
CN112421377A (en) * | 2020-11-18 | 2021-02-26 | 广东鸿芯科技有限公司 | Anti-light-mixing semiconductor laser and preparation method thereof |
WO2022110909A1 (en) * | 2020-11-25 | 2022-06-02 | 上海禾赛科技有限公司 | Resonant cavity, laser unit, chip, laser device and formation method therefor, and laser radar |
-
2007
- 2007-10-11 CN CNB2007101757714A patent/CN100479281C/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135671A (en) * | 2010-01-22 | 2011-07-27 | 三星电子株式会社 | Optical modulator |
CN102135671B (en) * | 2010-01-22 | 2015-08-26 | 三星电子株式会社 | light modulator |
CN111884046A (en) * | 2020-07-06 | 2020-11-03 | 武汉光谷量子技术有限公司 | Distributed Bragg reflector and manufacturing method and design method thereof |
CN111884046B (en) * | 2020-07-06 | 2021-11-09 | 武汉光谷量子技术有限公司 | Distributed Bragg reflector and manufacturing method and design method thereof |
CN112421377A (en) * | 2020-11-18 | 2021-02-26 | 广东鸿芯科技有限公司 | Anti-light-mixing semiconductor laser and preparation method thereof |
CN112421377B (en) * | 2020-11-18 | 2021-09-28 | 广东鸿芯科技有限公司 | Anti-light-mixing semiconductor laser and preparation method thereof |
WO2022110909A1 (en) * | 2020-11-25 | 2022-06-02 | 上海禾赛科技有限公司 | Resonant cavity, laser unit, chip, laser device and formation method therefor, and laser radar |
Also Published As
Publication number | Publication date |
---|---|
CN100479281C (en) | 2009-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6744805B2 (en) | Single mode operation of microelectromechanically tunable, half-symmetric, vertical cavity surface emitting lasers | |
CN102013633B (en) | Bridge type nano grating tunable vertical cavity surface emitting laser and preparation method thereof | |
CN100479280C (en) | Cantilever beam type wavelength-tunable vertical-cavity surface emitting laser structure and its manufacturing method | |
US6768097B1 (en) | Optoelectronic device with wavelength filtering by cavity coupling | |
US20020048301A1 (en) | Single mode operation of microelectromechanically tunable, half-symmetric, vertical cavity surface emitting lasers | |
Ansbæk et al. | 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL | |
CN102570302B (en) | Polarization wavelength tunable vertical cavity surface emitting laser and its preparation method | |
CN103227416B (en) | Adjustable semiconductor laser based on orthogonal micro-nano period structure mode selection | |
JP2004534383A (en) | Vertical-cavity finely-tunable vertical-cavity optical functional device and method of manufacturing the same | |
Mateus et al. | Widely tunable torsional optical filter | |
CN100479281C (en) | Double-capacitor micro-mechanical tunable vertical-cavity surface emitting laser and its manufacturing method | |
US20030128733A1 (en) | Vertical-cavity surface-emitting laser including a supported airgap distributed Bragg reflector | |
CN102570301B (en) | Biplate integrated adjustable vertical cavity surface emitting laser structure and preparation method thereof | |
Amano et al. | Design and fabrication of GaAs-GaAlAs micromachined tunable filter with thermal strain control | |
Sun et al. | Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure | |
CN108879327A (en) | A kind of low stress MEMS, preparation method and tunable vertical-cavity surface emitting laser | |
Sano et al. | Athermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure | |
Vail et al. | High performance and novel effects of micromechanical tunable vertical-cavity lasers | |
KR101466703B1 (en) | Wideband tunable vertical-cavity surface-emitting laser | |
US20020151126A1 (en) | Edge-emitting semiconductor tunable laser | |
KR100527108B1 (en) | Method for fabricating semiconductor optical device | |
Li et al. | Widely tunable 1060-nm high-contrast grating VCSEL | |
CN112537752B (en) | Micro-electromechanical system, vertical cavity surface emitting laser and preparation method thereof | |
Wang et al. | Tunable MEMS-VCSEL with high-contrast grating | |
CN112600073A (en) | High speed, high bandwidth VCSEL with controlled overshoot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090415 Termination date: 20141011 |
|
EXPY | Termination of patent right or utility model |