CN101121115A - A kind of denitrification and dephosphorization carrier and its application - Google Patents
A kind of denitrification and dephosphorization carrier and its application Download PDFInfo
- Publication number
- CN101121115A CN101121115A CNA2007100527946A CN200710052794A CN101121115A CN 101121115 A CN101121115 A CN 101121115A CN A2007100527946 A CNA2007100527946 A CN A2007100527946A CN 200710052794 A CN200710052794 A CN 200710052794A CN 101121115 A CN101121115 A CN 101121115A
- Authority
- CN
- China
- Prior art keywords
- carrier
- water
- crosses
- nitrogen
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000000843 powder Substances 0.000 claims abstract description 31
- 238000002360 preparation method Methods 0.000 claims abstract description 20
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims abstract description 18
- 235000011613 Pinus brutia Nutrition 0.000 claims abstract description 18
- 241000018646 Pinus brutia Species 0.000 claims abstract description 18
- 239000011398 Portland cement Substances 0.000 claims abstract description 15
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910001603 clinoptilolite Inorganic materials 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 15
- 150000003839 salts Chemical class 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 37
- 238000003756 stirring Methods 0.000 claims description 8
- 239000004568 cement Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 230000003203 everyday effect Effects 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 3
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 claims 5
- 238000006424 Flood reaction Methods 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 66
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 56
- 239000011574 phosphorus Substances 0.000 abstract description 56
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 56
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 33
- 239000010865 sewage Substances 0.000 abstract description 18
- 239000010440 gypsum Substances 0.000 abstract description 17
- 229910052602 gypsum Inorganic materials 0.000 abstract description 17
- 239000010842 industrial wastewater Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 23
- 239000010457 zeolite Substances 0.000 description 15
- 229910021536 Zeolite Inorganic materials 0.000 description 14
- 239000003463 adsorbent Substances 0.000 description 14
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 14
- 235000002639 sodium chloride Nutrition 0.000 description 13
- 229910052761 rare earth metal Inorganic materials 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000010802 sludge Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000010881 fly ash Substances 0.000 description 8
- -1 rare earth hydroxide Chemical class 0.000 description 8
- 150000002910 rare earth metals Chemical class 0.000 description 8
- 238000011069 regeneration method Methods 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 239000000945 filler Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 239000005909 Kieselgur Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- CZMAIROVPAYCMU-UHFFFAOYSA-N lanthanum(3+) Chemical compound [La+3] CZMAIROVPAYCMU-UHFFFAOYSA-N 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical group CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000150 monocalcium phosphate Inorganic materials 0.000 description 1
- 235000019691 monocalcium phosphate Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
本发明属于水处理技术领域,具体涉及一种脱氮除磷载体的制备及用途。本发明的载体能够对含氨态氮、无机磷的工业废水、生活污水以及面源污染中污染源(水)等进行脱氮除磷处理的水环境保护。本发明的脱氮除磷载体特征在于,以制成品干基为200kg并按重量计的组分如下:斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上)100~120kg;石膏粉(90%过100目)50~70kg;粒径为2-3cm的工业用食盐10kg;普通硅酸盐水泥(标号325-525)20kg;松树锯末为2kg;补充清水100-200kg。本发明还公开该载体的制备方法及其应用。The invention belongs to the technical field of water treatment, and in particular relates to the preparation and application of a nitrogen and phosphorus removal carrier. The carrier of the invention can protect the water environment by performing denitrification and phosphorus removal treatment on industrial wastewater containing ammoniacal nitrogen and inorganic phosphorus, domestic sewage and pollution sources (water) in non-point source pollution. The nitrogen and phosphorus removal carrier of the present invention is characterized in that the dry basis of the finished product is 200 kg and the components by weight are as follows: clinoptilolite powder (90% crossing 100 mesh exchange capacity is more than 100 cmol (+)/kg) 100 ~120kg; gypsum powder (90% over 100 mesh) 50~70kg; industrial salt with a particle size of 2-3cm 10kg; ordinary Portland cement (label 325-525) 20kg; pine sawdust 2kg; supplementary water 100- 200kg. The invention also discloses the preparation method and application of the carrier.
Description
技术领域 technical field
本发明属于水处理技术领域,具体地,本发明涉及一种脱氮除磷载体的制备及用途。本发明的载体能够对含氨态氮、无机磷的工业废水、生活污水以及面源污染中污染源(水)等进行脱氮除磷处理的水环境保护。The invention belongs to the technical field of water treatment, in particular, the invention relates to the preparation and application of a nitrogen and phosphorus removal carrier. The carrier of the invention can protect the water environment by performing denitrification and phosphorus removal treatment on industrial wastewater containing ammoniacal nitrogen and inorganic phosphorus, domestic sewage and pollution sources (water) in non-point source pollution.
技术背景technical background
江河、湖泊及水库水体富营养化过程的产生主要是输入的污水中含有超过这些水体自净能力的氮磷营养盐(主要为氨态氮和无机磷)。水环境保护领域很重要的任务就是采取有效技术,在含氮磷水源进入上述水体之前被去除到一定程度,以保证水体的生态环境安全。The eutrophication process of rivers, lakes and reservoirs is mainly caused by the input sewage containing nitrogen and phosphorus nutrients (mainly ammoniacal nitrogen and inorganic phosphorus) that exceed the self-purification capacity of these water bodies. A very important task in the field of water environment protection is to adopt effective technologies to remove nitrogen and phosphorus-containing water sources to a certain extent before entering the above-mentioned water bodies, so as to ensure the safety of the ecological environment of the water bodies.
经检索,中国发明专利中各类污水脱氮除磷的发明专利申请近年来有加速增长的趋势,经检索目前的相关专利文献如下:According to the search, the invention patent applications for various types of sewage denitrification and phosphorus removal in China's invention patents have a trend of accelerated growth in recent years. The current relevant patent documents are as follows:
申请号为200410084313的文献公开了一种粉煤灰合成沸石的制备方法及其应用,其核心技术是采用粉煤灰为主要原料,添加含铝,含硅,含氯或含氟等能在碱性溶液中溶解的物质,混合后加入金属碱溶液并通过水热合成反应合成粉煤灰沸石,再经水溶性的金属盐溶液转型活化,经固液分离后制得粉煤灰合成沸石;利用粉煤灰合成沸石对氨氮和磷酸盐的同步吸附净化能力,实现对污水的同步脱氮除磷处理,也可将粉末状粉煤灰合成沸石直接投加于污水中进行同步脱氮除磷。该方法需要复杂的化学反应将原料转型活化,经固液分离后制得粉煤灰合成沸石。The document with the application number of 200410084313 discloses a method for preparing zeolite synthesized from fly ash and its application. Its core technology is to use fly ash as the main raw material, add aluminum, silicon, chlorine or fluorine, etc. After mixing, add metal alkali solution and synthesize fly ash zeolite through hydrothermal synthesis reaction, then transform and activate water-soluble metal salt solution, and obtain fly ash synthetic zeolite after solid-liquid separation; The synchronous adsorption and purification ability of fly ash synthetic zeolite to ammonia nitrogen and phosphate can realize the simultaneous denitrification and phosphorus removal of sewage, and the powdered fly ash synthetic zeolite can also be directly added to sewage for simultaneous denitrification and phosphorus removal. This method requires complex chemical reactions to transform and activate the raw materials, and the fly ash synthetic zeolite is obtained after solid-liquid separation.
申请号为200510046987文献公开了一种曝气生物滤池填料及其制备方法,该方法采用粘土和硅藻土为主要原料,在此基础上添加铁渣和碳黑;各组份的重量百分比如下:粘土46.5%-87.5%,铁渣11.5%-52.5%,碳黑1.0-2.0%,硅藻土0-5.0%。制备方法:将铁渣晾晒、球磨、过200目筛,混合原料;填料造粒,粒径为2-8mm,摊晾2h;填料在1100-1200℃焙烧20-30min;填料过筛、入库,这一技术提高了曝气生物滤池工艺脱氮除磷的效果,比陶粒滤料的总氮去除率提高20%,总磷去除率提高了5%,而且实现了废物再利用,降低原材料成本至少10%,但该方法需对原料球磨和高温煅烧。The application number is 200510046987, which discloses a biological aerated filter filler and its preparation method. The method uses clay and diatomaceous earth as the main raw materials, and iron slag and carbon black are added on this basis; the weight percentage of each component is as follows : Clay 46.5%-87.5%, iron slag 11.5%-52.5%, carbon black 1.0-2.0%, diatomaceous earth 0-5.0%. Preparation method: dry the iron slag in the air, ball mill, pass through a 200-mesh sieve, and mix the raw materials; granulate the filler with a particle size of 2-8mm, and spread it out for 2 hours; roast the filler at 1100-1200°C for 20-30 minutes; sieve the filler and put it into storage , this technology improves the nitrogen and phosphorus removal effect of the biological aerated filter process. Compared with the ceramsite filter material, the total nitrogen removal rate is increased by 20%, and the total phosphorus removal rate is increased by 5%. The cost of raw materials is at least 10%, but the method requires ball milling and high-temperature calcination of raw materials.
申请号为200510048671的文献公开了一种污水脱氮除磷稀土吸附剂的制备方法,其技术过程为将粒度为60-100目的粉状沸石、硅藻土或氧化铝,在蒸馏水中浸泡15-30min,过滤后在100-430℃温度下烘干1-2小时,按照设计的固液重量比加入配制好的稀土氢氧化物溶液中,常温下搅拌45-60分钟,静置浸渍15-20小时,将溶液过滤,得到滤饼和滤液,滤饼经温度300-600℃,时间0.5-2h焙烧后经筛分,得到孔径0.3nm-0.5nm的吸附剂。该吸附剂能同时除去污水中的氮和磷,对氮的吸附容量达到15-20mg/g,对磷的吸附容量达到22-25mg/g,吸附饱和后的吸附剂经碱液再生后,吸附容量仅降低6%-7%,该方法不仅将原料先要进行化学反应,然后物料还需经过过滤、焙烧后经粉碎、筛分后才能制得,且再生时仍需焙烧。The document whose application number is 200510048671 discloses a preparation method of a rare earth adsorbent for denitrification and dephosphorization of sewage. The technical process is to soak powdered zeolite, diatomaceous earth or alumina with a particle size of 60-100 mesh in distilled water for 15- 30min, filter and dry at 100-430℃ for 1-2 hours, add to the prepared rare earth hydroxide solution according to the designed solid-to-liquid weight ratio, stir at room temperature for 45-60 minutes, stand and impregnate for 15-20 minutes After 1 hour, filter the solution to obtain a filter cake and filtrate. The filter cake is roasted at a temperature of 300-600° C. for 0.5-2 hours and then sieved to obtain an adsorbent with a pore size of 0.3nm-0.5nm. The adsorbent can remove nitrogen and phosphorus in sewage at the same time. The adsorption capacity for nitrogen reaches 15-20mg/g, and the adsorption capacity for phosphorus reaches 22-25mg/g. The capacity is only reduced by 6%-7%. This method not only requires the raw materials to undergo a chemical reaction, but then the materials need to be filtered, roasted, crushed, and screened before they can be produced, and roasting is still required for regeneration.
申请号为200610010634文献公开了一种污水脱氮除磷后稀土吸附剂的再生方法,该方法是将应用于污水脱氮除磷后的饱和稀土吸附剂,先用再生溶液为浓度0.5-3mol/L的氯化钠溶液、饱和稀土吸附剂与再生溶液的重量比为1∶50-70、以线速为2-5m/h的再生溶液进行循环脱附处理,处理过程中用碱液调节再生溶液pH值在8-14之间,脱附3-4小时;过滤,再用与该饱和稀土吸附剂相同的稀土元素配制成的活化液对脱附后稀土吸附剂进行循环活化浸渍处理;再过滤,然后干燥焙烧后获得再生,其吸附容量达到原吸附剂的90%以上。其缺陷如上述方法一样,不仅将原料先要进行化学反应,然后物料还需经过过滤、焙烧后经粉碎、筛分后才能制得,且再生时仍需焙烧。The application number is 200610010634, which discloses a regeneration method of rare earth adsorbent after denitrification and dephosphorization of sewage. The method is to apply the saturated rare earth adsorbent after denitrification and dephosphorization of sewage. The weight ratio of sodium chloride solution in L, saturated rare earth adsorbent and regeneration solution is 1:50-70, and the regeneration solution with a line speed of 2-5m/h is used for cyclic desorption treatment, and lye is used to regulate regeneration during the treatment process The pH value of the solution is between 8-14, desorbing for 3-4 hours; filtering, and then using an activation solution prepared from the same rare earth elements as the saturated rare earth adsorbent to perform cyclic activation and impregnation treatment on the desorbed rare earth adsorbent; After filtration, drying and roasting, regeneration is obtained, and its adsorption capacity reaches more than 90% of the original adsorbent. Its defect is the same as the above-mentioned method, not only the raw materials need to be chemically reacted first, and then the materials need to be filtered, roasted, crushed and sieved before they can be produced, and roasting is still required for regeneration.
申请号为200610010644文献公开了一种改性天然及自制漂浮载体和介孔分子筛脱氮除磷材料、制备及应用,该脱氮除磷材料包括稀土镧离子、铈离子、金属铝离子、钙离子或其组合为5-33%,余量为大比表面轻骨料;稀土镧离子、铈离子、金属铝离子、钙离子或其组合为3-20%,大比表面轻骨料之细合50-85%、粉煤灰5-10%、表面活性剂0.5-1%、水泥1-5%,余量为双灰粉;稀土镧离子、铈离子、金属铝离子、钙离子或其组合为10-50%,余量为硅基介孔分子筛。制备所得吸附剂比表面大、吸附容量高,效率高。该方法虽然也是制备脱氮除磷材料,但制备原料为稀土元素,这种制备方法无形之中提高了吸附剂生产成本。The application number is 200610010644, which discloses a modified natural and self-made floating carrier and mesoporous molecular sieve denitrification and phosphorus removal material, preparation and application. The nitrogen and phosphorus removal material includes rare earth lanthanum ions, cerium ions, metal aluminum ions, calcium ions Or its combination is 5-33%, and the balance is light aggregate with large specific surface; Rare earth lanthanum ion, cerium ion, metal aluminum ion, calcium ion or their combination is 3-20%, fine combination of large specific surface light aggregate 50-85%, fly ash 5-10%, surfactant 0.5-1%, cement 1-5%, the balance is double ash powder; rare earth lanthanum ion, cerium ion, metal aluminum ion, calcium ion or their combination 10-50%, and the balance is silicon-based mesoporous molecular sieve. The prepared adsorbent has large specific surface area, high adsorption capacity and high efficiency. Although this method also prepares nitrogen and phosphorus removal materials, the raw materials for the preparation are rare earth elements, and this preparation method virtually increases the production cost of the adsorbent.
申请号为200610086102公开了一种固定化污泥去除富营养化水体中氮、磷的方法,该发明通过固定化技术将驯化污泥包埋固定在载体上制成固定化污泥小球,并对其预厌氧处理,将预处理后的固定化污泥小球用于富营养化水体的脱氮除磷处理。其中固定化污泥的载体是海藻酸钠,包埋的污泥为自行驯化的高效脱氮除磷污泥。该方法在处理富营养化水体时具有良好的脱氮除磷效果,固液分离容易,尽管该方法是将吸附剂制备成颗粒小球,但吸附剂本身是一种污泥,其吸附性能会随着污泥特性的变化而变化,故其对氮磷的去除效果很难稳定。The application number is 200610086102, which discloses a method for removing nitrogen and phosphorus in eutrophic water bodies by immobilizing sludge. In this invention, domesticated sludge is embedded and fixed on a carrier by immobilization technology to make immobilized sludge pellets, and For its pre-anaerobic treatment, the pre-treated immobilized sludge pellets are used for denitrification and phosphorus removal of eutrophic water bodies. The carrier of the immobilized sludge is sodium alginate, and the embedded sludge is a self-adapted sludge with high efficiency of denitrification and phosphorus removal. This method has good denitrification and phosphorus removal effects when treating eutrophic water bodies, and the solid-liquid separation is easy. Although the method is to prepare the adsorbent into pellets, the adsorbent itself is a kind of sludge, and its adsorption performance will decrease. It changes with the characteristics of sludge, so its removal effect on nitrogen and phosphorus is difficult to be stable.
上述去除污水氮磷的脱氮除磷材料(或称吸附剂、或称载体)虽对氮磷都有较高的去除率,但各自的制备过程复杂。另外,现有专利中都没有表明各自适用脱氮除磷的浓度范围,专利的公开都不充分,使本领域的技术人员依照说明书很难实施其发明并达到发明所称的发明效果。Although the above-mentioned nitrogen and phosphorus removal materials (or adsorbents, or carriers) for removing nitrogen and phosphorus in sewage have relatively high removal rates for nitrogen and phosphorus, their respective preparation processes are complicated. In addition, none of the existing patents indicated the appropriate concentration ranges for denitrification and phosphorus removal, and the disclosures in the patents were not sufficient, making it difficult for those skilled in the art to implement their inventions according to the instructions and achieve the claimed inventive effects.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的缺陷,研制一种吸附性能好,制备工艺简单,制备成本较低的一种去除污水氮磷的载体。本发明制备的脱氮除磷载体机械强度高,可同时去除污水中的氮和磷,去除率高,无一次污染,满足当前污水治理的需要。The purpose of the present invention is to overcome the defects of the prior art and develop a carrier for removing nitrogen and phosphorus in sewage with good adsorption performance, simple preparation process and low preparation cost. The nitrogen and phosphorus removal carrier prepared by the invention has high mechanical strength, can simultaneously remove nitrogen and phosphorus in sewage, has high removal rate, has no primary pollution, and meets the needs of current sewage treatment.
本发明是这样实现的:The present invention is achieved like this:
本发明载体以天然沸石、石膏为主料,辅以水泥、粗食盐、松木锯末等原料,通过物料混匀、加水塑化,成型造孔,加工成脱氮除磷载体(其制备工艺与技术路线参见图1)。实施本发明的核心技术是将具有较高阳离子交换量的天然沸石粉末添加一定比例的石膏粉用搅拌器充分混匀,在搅拌过程中先加入粗食盐逐渐混匀后再加一定比例的水泥和松木锯末搅匀,当混合物料看不出异质性时,逐渐缓慢加入一定量的清水混和,待物料出现塑性时停止混和,用煤球造粒器将物料挤压成球形载体。成型后的球形载体加水淹没浸泡1周,其间,每天将填料颗粒搅动半小时,到时弃去浸泡水,载体沥干后即为本发明的脱氮除磷载体。The carrier of the present invention uses natural zeolite and gypsum as main materials, supplemented by raw materials such as cement, coarse salt, pine sawdust, etc., through material mixing, adding water and plasticizing, forming holes, and processing into a nitrogen and phosphorus removal carrier (its preparation process and technology) See Figure 1 for the route. The core technology of implementing the present invention is to add a certain proportion of gypsum powder to the natural zeolite powder with a higher cation exchange capacity and fully mix it with a stirrer. Stir the pine wood sawdust evenly. When the mixed material has no heterogeneity, gradually add a certain amount of water and mix it. When the material becomes plastic, stop mixing. Use a briquette granulator to squeeze the material into a spherical carrier. The formed spherical carrier is submerged in water and soaked for 1 week, during which the filler particles are stirred for half an hour every day, then the soaking water is discarded, and the carrier is drained to become the denitrification and phosphorus removal carrier of the present invention.
本发明的具体技术方案是:Concrete technical scheme of the present invention is:
一种脱氮除磷载体,按重量计的组分如下:A nitrogen and phosphorus removal carrier, the components by weight are as follows:
以制成品干基为200kg计:Based on the dry basis of the finished product as 200kg:
斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上) 100~120kgClinoptilolite powder (90% through 100 mesh exchange capacity above 100cmol(+)/kg) 100~120kg
石膏粉(90%过100目) 50~70kgGypsum powder (90% over 100 mesh) 50~70kg
工业用食盐(粒径2-3cm) 10kgIndustrial salt (particle size 2-3cm) 10kg
普通硅酸盐水泥(标号325-525) 20kgOrdinary Portland cement (label 325-525) 20kg
松树锯末 2kgPine sawdust 2kg
补充清水 100-200kgAdd fresh water 100-200kg
按照下列步骤制备:Prepare as follows:
1)按配方将斜发沸石粉和石膏粉用粉体混合机混合5~10min,得到物料1;1) According to the formula, mix clinoptilolite powder and gypsum powder with a powder mixer for 5-10 minutes to obtain material 1;
2)在搅拌条件下,向物料1中加入工业用食盐,普通硅酸盐水泥,松树锯末,继续混合,以肉眼看不到物料有未混匀迹象为准,得到物料2;2) Under stirring conditions, add industrial salt, ordinary portland cement, and pine sawdust to material 1, and continue mixing, subject to the fact that there is no sign of unmixed material with the naked eye, to obtain material 2;
3)将步骤2)所得的物料2在搅拌下喷洒清水,观察物料出现塑性为准,得到物料3;3) Spray the material 2 obtained in step 2) with clear water under stirring, and observe the plasticity of the material to obtain material 3;
4)将步骤3)所得的物料3用挤压造粒机制成3~5cm球状新鲜载体;4) The material 3 obtained in step 3) is made into a 3-5 cm spherical fresh carrier with an extrusion granulator;
5)将步骤4)所得的新鲜载体用水淹没,使载体造孔,并使载体内水泥逐渐硬化;5) submerging the fresh carrier obtained in step 4) with water, making the carrier pore-forming, and gradually hardening the cement in the carrier;
6)将步骤5)所浸没的载体和水一起每天搅拌30min,使制备的载体抗压强度达到65~75N,沥干该载体备用。6) The carrier submerged in step 5) is stirred with water for 30 minutes every day, so that the compressive strength of the prepared carrier reaches 65-75N, and the carrier is drained for later use.
按照前述的制备方法,其中一个优化的配方,按重量计的组分如下:According to the aforementioned preparation method, one of the optimized formulas, the components by weight are as follows:
以制成品干基为200kg计:Based on the dry basis of the finished product as 200kg:
斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上) 100kgClinoptilolite powder (90% through 100 mesh exchange capacity above 100cmol(+)/kg) 100kg
石膏粉(90%过100目) 70kgGypsum powder (90% over 100 mesh) 70kg
工业用食盐(粒径2-3cm) 10kgIndustrial table salt (particle size 2-3cm) 10kg
普通硅酸盐水泥(标号425) 20kgOrdinary Portland cement (label 425) 20kg
松树锯末 2kgPine sawdust 2kg
补充清水 200kg。Add 200kg of clean water.
按照前述的制备方法,其中另一个优化的配方,按重量计的组分如下:According to the aforementioned preparation method, wherein another optimized formula, the components by weight are as follows:
斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上) 110kgClinoptilolite powder (90% through 100 mesh exchange capacity above 100cmol(+)/kg) 110kg
石膏粉(90%过100目) 60kgGypsum powder (90% over 100 mesh) 60kg
工业用食盐(粒径2-3cm) 10kgIndustrial table salt (particle size 2-3cm) 10kg
普通硅酸盐水泥(标号325) 20kgOrdinary Portland cement (label 325) 20kg
松树锯末 2kgPine sawdust 2kg
补充清水 150kg。Add water 150kg.
按照前述的制备方法,其中最佳的配方,按重量计的组分如下:According to the aforementioned preparation method, wherein the best formula, the components by weight are as follows:
以制成品干基为200kg计:Based on the dry basis of the finished product as 200kg:
斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上) 120kgClinoptilolite powder (90% through 100 mesh exchange capacity above 100cmol(+)/kg) 120kg
石膏粉(90%过100目) 50kgGypsum powder (90% over 100 mesh) 50kg
工业用食盐粒径(2-3cm) 10kgIndustrial salt particle size (2-3cm) 10kg
普通硅酸盐水泥(标号525) 20kgOrdinary Portland cement (label 525) 20kg
松树锯末 2kgPine sawdust 2kg
补充清水 100kg。Add water 100kg.
本发明制备的脱氮除磷载体具有良好的经济效益,根据市场可比价格,每生产1吨本脱氮除磷载体(含50%沸石、35%石膏、5%工业食盐和10%水泥),约需材料成本费用约合人民币257元。The denitrification and phosphorus removal carrier prepared by the present invention has good economic benefits. According to the comparable market price, every ton of the nitrogen and phosphorus removal carrier (containing 50% zeolite, 35% gypsum, 5% industrial salt and 10% cement) is produced, The cost of materials is about RMB 257.
本发明制备的脱氮除磷载体具有良好的使用效果,根据质量平衡进行计算,在保证沸石的交换性质量的前提下,每吨载体可拦截处理4~5kg的NH4 +-N,被拦截的NH4 +-N在载体中通过反硝化作用生成N2而被去除。因此,从理论上讲,载体可以反复使于脱氮;每吨载体可去除55.8kg无机磷,对含磷0.25mg/L的污水(流量0.05m3/s)中磷的拦截效果可达10年之久。The denitrification and dephosphorization carrier prepared by the present invention has a good use effect. According to the calculation based on the mass balance, under the premise of ensuring the exchangeable quality of the zeolite, each ton of the carrier can intercept and process 4-5kg of NH 4 + -N, and the intercepted The NH 4 + -N in the carrier is removed by denitrification to generate N 2 . Therefore, in theory, the carrier can be used repeatedly for denitrification; 55.8kg of inorganic phosphorus can be removed per ton of carrier, and the interception effect of phosphorus in sewage containing 0.25mg/L of phosphorus (flow 0.05m 3 /s) can reach 10 years long.
反应动力学实验表明,本发明的脱氮除磷载体对NH4 +-N拦截的速率常数为0.02h-1,拦截4mg/L NH4 +-N的半衰期在34~37h之间,去除无机磷的速率常数为0.2~0.3h-1之间,去除5mg/L无机磷的半衰期在3~4h之间。The reaction kinetics experiment shows that the rate constant of NH 4 + -N interception by the nitrogen and phosphorus removal carrier of the present invention is 0.02h -1 , the half-life of intercepting 4mg/L NH 4 + -N is between 34 and 37h, and the removal of inorganic The rate constant of phosphorus is between 0.2 and 0.3h -1 , and the half-life of removing 5mg/L inorganic phosphorus is between 3 and 4h.
本发明的技术原理是:Technical principle of the present invention is:
沸石等一些天然矿物具有捕获无机离子的能力。沸石具有良好的热稳定性、耐酸性、耐高温性、耐辐射特性,更重要的还有离子交换特性,这种特性可使沸石交换溶液中NH4 +。除了交换性的矿物外,有些矿物具有微溶性。石膏是一种微溶性矿物,其溶解度比碳酸钙高4个数量级,比磷酸一轻钙高3个数量级,比磷酸钙更高。因此,将石膏与溶解性无机磷放在一起,就可使石膏转化为磷酸钙,从而除去水中的无机磷。本发明巧妙地运用沸石、石膏这些具有特殊性质的矿物,制备成本发明的脱氮除磷载体。Some natural minerals, such as zeolites, have the ability to trap inorganic ions. Zeolite has good thermal stability, acid resistance, high temperature resistance, radiation resistance, and more importantly, ion exchange properties, which allow zeolite to exchange NH 4 + in the solution. In addition to exchangeable minerals, some minerals are slightly soluble. Gypsum is a slightly soluble mineral, its solubility is 4 orders of magnitude higher than calcium carbonate, 3 orders of magnitude higher than monocalcium phosphate, and higher than calcium phosphate. Therefore, putting gypsum and dissolved inorganic phosphorus together can convert gypsum into calcium phosphate, thereby removing inorganic phosphorus in water. The present invention cleverly uses minerals with special properties such as zeolite and gypsum to prepare the nitrogen and phosphorus removal carrier of the present invention.
本发明的有益效果是:The beneficial effects of the present invention are:
1)本发明的脱氮除磷载体制备过程非常简单,将原料物料混合、混和成型、硬化即可,能耗低且原料成本低;1) The preparation process of the denitrification and dephosphorization carrier of the present invention is very simple, and the raw materials are mixed, mixed and formed, and hardened, and the energy consumption is low and the raw material cost is low;
2)本发明充分考虑了载体拦截NH4 +-N的可生化降解性(载体引入松木锯末,为NH4 +-N的生物降解提供了碳源);2) The present invention fully considers the biodegradability of the carrier to intercept NH 4 + -N (the carrier introduces pine sawdust to provide a carbon source for the biodegradation of NH 4 + -N);
3)本发明用水泥作为载体的粘合剂,保证了载体的机械强度,用工业食盐作为造孔剂,切实保证了载体的多孔性,提高了载体与污水的接触面。3) The present invention uses cement as the binder of the carrier to ensure the mechanical strength of the carrier, and uses industrial salt as the pore-forming agent to effectively ensure the porosity of the carrier and improve the contact surface between the carrier and the sewage.
附图说明 Description of drawings
图1:是本发明的工艺和技术路线流程图。Fig. 1: is technique and technical route flowchart of the present invention.
图2:是本发明实施例1、实施例2、实施例3制备的载体的实施效果的脱氮动力学曲线。Fig. 2: is the denitrification kinetics curve of the implementation effect of the carriers prepared in Example 1, Example 2, and Example 3 of the present invention.
图3:是本发明实施例1、实施例2、实施例3制备的载体的实施效果的除磷动力学曲线。Figure 3: is the phosphorus removal kinetics curve of the implementation effect of the carriers prepared in Example 1, Example 2, and Example 3 of the present invention.
具体实施方式 Detailed ways
实施例1Example 1
一种脱氮除磷载体,按重量计的组分如下:A nitrogen and phosphorus removal carrier, the components by weight are as follows:
以制成品干基为200kg计:Based on the dry basis of the finished product as 200kg:
斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上) 100kgClinoptilolite powder (90% through 100 mesh exchange capacity above 100cmol(+)/kg) 100kg
石膏粉(90%过100目) 70kgGypsum powder (90% over 100 mesh) 70kg
工业用食盐(粒径2-3cm) 10kgIndustrial table salt (particle size 2-3cm) 10kg
普通硅酸盐水泥(标号425) 20kgOrdinary Portland cement (label 425) 20kg
松树锯末 2kgPine sawdust 2kg
补充清水 200kg。Add 200kg of clean water.
按照下列步骤制备:Prepare as follows:
1)按配方将斜发沸石粉和石膏粉用粉体混合机混合5~10min,得到物料1;1) According to the formula, mix clinoptilolite powder and gypsum powder with a powder mixer for 5-10 minutes to obtain material 1;
2)在搅拌条件下,向物料1中加入工业用食盐,普通硅酸盐水泥,松树锯末,继续混合,以肉眼看不到物料有未混匀迹象为准,得到物料2;2) Under stirring conditions, add industrial salt, ordinary portland cement, and pine sawdust to material 1, and continue mixing, subject to the fact that there is no sign of unmixed material with the naked eye, to obtain material 2;
3)将步骤2)所得的物料2在搅拌下喷洒清水,观察物料出现塑性为准,得到物料3;3) Spray the material 2 obtained in step 2) with clear water under stirring, and observe the plasticity of the material to obtain material 3;
4)将步骤3)所得的物料3用挤压造粒机制成3~5cm球状新鲜载体;4) The material 3 obtained in step 3) is made into a 3-5 cm spherical fresh carrier with an extrusion granulator;
5)将步骤4)所得的新鲜载体用水淹没,使载体造孔,并使载体内水泥逐渐硬化;5) submerging the fresh carrier obtained in step 4) with water, making the carrier pore-forming, and gradually hardening the cement in the carrier;
6)将步骤5)所浸没的载体和水一起每天搅拌30min,使制备的载体抗压强度达到65~75N,沥干该载体备用。6) The carrier submerged in step 5) is stirred with water for 30 minutes every day, so that the compressive strength of the prepared carrier reaches 65-75N, and the carrier is drained for later use.
本实施例所制备的脱氮除磷载体在脱氮过程的一级反应速率常数为0.0188h-1,半衰期为37h;除磷过程的一级反应速率常数为0.1923h-1,半衰期为4h。The nitrogen and phosphorus removal carrier prepared in this example has a first order reaction rate constant of 0.0188h -1 in the denitrification process and a half-life of 37h; a first order reaction rate constant of 0.1923h -1 in the phosphorus removal process and a half life of 4h.
实施例2Example 2
按照实施例的制备方法,本实施例是其中另一个优化的配方,按重量计的组分如下:According to the preparation method of the embodiment, the present embodiment is another optimized formula wherein, the components by weight are as follows:
斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上) 110kgClinoptilolite powder (90% over 100 mesh exchange capacity above 100cmol(+)/kg) 110kg
石膏粉(90%过100目) 60kgGypsum powder (90% over 100 mesh) 60kg
工业用食盐(粒径2-3cm) 10kgIndustrial table salt (particle size 2-3cm) 10kg
普通硅酸盐水泥(标号325) 20kgOrdinary Portland cement (label 325) 20kg
松树锯末 2kgPine sawdust 2kg
补充清水 150kg。Add water 150kg.
本实施例所制备的脱氮除磷载体在脱氮过程的一级反应速率常数为0.0197h-1,半衰期为35h;除磷过程的一级反应速率常数为0.3395h-1,半衰期为2h。The nitrogen and phosphorus removal carrier prepared in this example has a first order reaction rate constant of 0.0197h -1 in the denitrification process and a half-life of 35h; a first order reaction rate constant of 0.3395h -1 in the phosphorus removal process and a half life of 2h.
实施例3Example 3
本实施例是本发明的最佳实施方式,按照实施例的制备方法,其配方按重量计的组分如下:The present embodiment is the best implementation mode of the present invention, according to the preparation method of embodiment, its formula by weight component is as follows:
以制成品干基为200kg计:Based on the dry basis of the finished product as 200kg:
斜发沸石粉(90%过100目交换容量在100cmol(+)/kg以上) 120kgClinoptilolite powder (90% through 100 mesh exchange capacity above 100cmol(+)/kg) 120kg
石膏粉(90%过100目) 50kgGypsum powder (90% over 100 mesh) 50kg
工业用食盐粒径(2-3cm) 10kgIndustrial salt particle size (2-3cm) 10kg
普通硅酸盐水泥(标号525) 20kgOrdinary Portland cement (label 525) 20kg
松树锯末 2kgPine sawdust 2kg
补充清水 100kg。Add water 100kg.
本实施例所制备的脱氮除磷载体在脱氮过程的一级反应速率常数为0.0205h-1,半衰期为34h;除磷过程的一级反应速率常数为0.2191h-1,半衰期为3h。The nitrogen and phosphorus removal carrier prepared in this example has a first order reaction rate constant of 0.0205h -1 in the denitrification process and a half-life of 34h; a first order reaction rate constant of 0.2191h -1 in the phosphorus removal process and a half life of 3h.
按照本发明提供的技术方案和实施例,本发明的脱氮除磷载体一般被制备成球形载体,使用时可将该载体球放置于污水通过的渠道中,形成所谓的“生物廊道”,达到污水脱氮除磷之目的。也可以用网状容器将所述的载体球装着,置于静水池塘,同样达到脱氮除磷之目的。According to the technical solutions and examples provided by the present invention, the nitrogen and phosphorus removal carrier of the present invention is generally prepared as a spherical carrier. When used, the carrier ball can be placed in the channel through which the sewage passes to form a so-called "biological corridor". To achieve the purpose of denitrification and dephosphorization of sewage. The carrier balls can also be packed in a mesh container and placed in a still water pond to achieve the same purpose of nitrogen and phosphorus removal.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100527946A CN100500279C (en) | 2007-07-20 | 2007-07-20 | A kind of denitrification and dephosphorization carrier and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100527946A CN100500279C (en) | 2007-07-20 | 2007-07-20 | A kind of denitrification and dephosphorization carrier and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101121115A true CN101121115A (en) | 2008-02-13 |
CN100500279C CN100500279C (en) | 2009-06-17 |
Family
ID=39083736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100527946A Expired - Fee Related CN100500279C (en) | 2007-07-20 | 2007-07-20 | A kind of denitrification and dephosphorization carrier and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100500279C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101935195A (en) * | 2010-09-01 | 2011-01-05 | 郑俊 | Porous phosphorus removing ceramic granules with function of slowly releasing alkali and preparation method thereof |
CN102151548A (en) * | 2011-04-22 | 2011-08-17 | 湖北富邦科技股份有限公司 | Adsorption material for treating phosphorus wastewater and use thereof |
CN102173506A (en) * | 2011-03-21 | 2011-09-07 | 尹军 | Bioactive compound filling material |
CN103331145A (en) * | 2013-07-08 | 2013-10-02 | 湖北富邦科技股份有限公司 | Preparation method of heavy metal ion absorbent from phosphogypsum |
CN103721667A (en) * | 2013-12-17 | 2014-04-16 | 江苏省农业科学院 | Efficient dephosphorization adsorbent and preparation method thereof |
CN104860360A (en) * | 2015-05-19 | 2015-08-26 | 东北师范大学 | Device for blocking farmland non-point source pollution in river basin |
CN108236912A (en) * | 2016-12-27 | 2018-07-03 | 中国科学院宁波城市环境观测研究站 | It is a kind of except adsorbent of water systems'phosphorus and preparation method thereof |
CN116371372A (en) * | 2023-05-25 | 2023-07-04 | 中国长江三峡集团有限公司 | Method for preparing adsorption material by utilizing sodium alginate reinforced ditch sludge screening product and prepared adsorption material |
-
2007
- 2007-07-20 CN CNB2007100527946A patent/CN100500279C/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101935195A (en) * | 2010-09-01 | 2011-01-05 | 郑俊 | Porous phosphorus removing ceramic granules with function of slowly releasing alkali and preparation method thereof |
CN101935195B (en) * | 2010-09-01 | 2012-07-25 | 郑俊 | Porous phosphorus removing ceramic granules with function of slowly releasing alkali and preparation method thereof |
CN102173506A (en) * | 2011-03-21 | 2011-09-07 | 尹军 | Bioactive compound filling material |
CN102173506B (en) * | 2011-03-21 | 2013-01-23 | 尹军 | Bioactive compound filling material |
CN102151548A (en) * | 2011-04-22 | 2011-08-17 | 湖北富邦科技股份有限公司 | Adsorption material for treating phosphorus wastewater and use thereof |
CN102151548B (en) * | 2011-04-22 | 2012-07-25 | 湖北富邦科技股份有限公司 | Adsorption material for treating phosphorus wastewater and use thereof |
CN103331145A (en) * | 2013-07-08 | 2013-10-02 | 湖北富邦科技股份有限公司 | Preparation method of heavy metal ion absorbent from phosphogypsum |
CN103331145B (en) * | 2013-07-08 | 2014-12-31 | 湖北富邦科技股份有限公司 | Preparation method of heavy metal ion absorbent from phosphogypsum |
CN103721667A (en) * | 2013-12-17 | 2014-04-16 | 江苏省农业科学院 | Efficient dephosphorization adsorbent and preparation method thereof |
CN104860360A (en) * | 2015-05-19 | 2015-08-26 | 东北师范大学 | Device for blocking farmland non-point source pollution in river basin |
CN108236912A (en) * | 2016-12-27 | 2018-07-03 | 中国科学院宁波城市环境观测研究站 | It is a kind of except adsorbent of water systems'phosphorus and preparation method thereof |
CN116371372A (en) * | 2023-05-25 | 2023-07-04 | 中国长江三峡集团有限公司 | Method for preparing adsorption material by utilizing sodium alginate reinforced ditch sludge screening product and prepared adsorption material |
CN116371372B (en) * | 2023-05-25 | 2024-05-28 | 中国长江三峡集团有限公司 | Method for preparing adsorption material by utilizing sodium alginate reinforced ditch sludge screening product and prepared adsorption material |
Also Published As
Publication number | Publication date |
---|---|
CN100500279C (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101935195B (en) | Porous phosphorus removing ceramic granules with function of slowly releasing alkali and preparation method thereof | |
CN101121115A (en) | A kind of denitrification and dephosphorization carrier and its application | |
CN101791534B (en) | A kind of phosphorus removal adsorbent and preparation method thereof | |
CN112441804B (en) | A preparation method of phosphorus and nitrogen removal type biological filter material and its application in integrated rural domestic sewage treatment equipment | |
CN104229999B (en) | A kind of filler for artificial swamp water treatment and preparation method thereof | |
CN101229945A (en) | A biological aerated filter filler with waste as main raw material and preparation method thereof | |
CN111905690A (en) | Method for preparing water body nitrogen and phosphorus removal oxygenation composite material by utilizing coal ash | |
CN114394800A (en) | A kind of method of sludge biochar resource utilization | |
Lian et al. | A comprehensive study of phosphorus removal and recovery with a Fe-loaded sulfoaluminate cement (FSC) adsorbent | |
CN109354209B (en) | Modified mineral-microorganism coupling water purification material and preparation method thereof | |
CN105819891A (en) | Preparation method of sludge ceramsite used for medium and low concentration ammonia nitrogen wastewater treatment | |
CN112661231A (en) | Multifunctional long-acting composite filler and preparation method thereof | |
CN110407334B (en) | Preparation and application of synchronous denitrification biological filler for adsorbing nitrate ions | |
CN110252240B (en) | A kind of method and application of preparing phosphorus-containing wastewater adsorbent without roasting aluminum-containing waste residue | |
CN105858787B (en) | A kind of dephosphorization filler X-Phos matrix and preparation method thereof | |
CN100415360C (en) | A kind of method that uses ion adsorption type rare earth to prepare sewage dephosphorization adsorbent | |
CN114890535A (en) | Composite environment-friendly water purifying agent suitable for improving water quality of rivers and lakes and preparation method thereof | |
CN110759696B (en) | Preparation method of porous lightweight ceramsite using phosphorus solid waste as raw material | |
CN108636343A (en) | A kind of reinforcing absorption clinker and preparation method thereof and purposes | |
CN110575812B (en) | Environment-friendly adsorbing material for efficient phosphorus removal of argil/pyrolusite and preparation method thereof | |
CN113000025A (en) | Phosphorus removal adsorbent and preparation method and application thereof | |
CN111072139A (en) | Preparation method of sulfur autotrophic denitrification biological brick and biological brick prepared by same | |
KR100261041B1 (en) | Production method of artificial granular zeolite for waste water purification | |
CN116282547A (en) | Molecular sieve functional filler for denitrification and dephosphorization of subsurface flow constructed wetland | |
JP2003071493A (en) | Composition for removing nitrate nitrogen, etc., and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090617 Termination date: 20110720 |