CN101119115A - 多通道模数转换装置及方法 - Google Patents

多通道模数转换装置及方法 Download PDF

Info

Publication number
CN101119115A
CN101119115A CNA2006101092665A CN200610109266A CN101119115A CN 101119115 A CN101119115 A CN 101119115A CN A2006101092665 A CNA2006101092665 A CN A2006101092665A CN 200610109266 A CN200610109266 A CN 200610109266A CN 101119115 A CN101119115 A CN 101119115A
Authority
CN
China
Prior art keywords
signal
circuit
analog
voltage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101092665A
Other languages
English (en)
Other versions
CN101119115B (zh
Inventor
程朋胜
任会峰
郭宇红
高贵贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Das Intellitech Co Ltd
Original Assignee
Shenzhen Das Intellitech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Das Intellitech Co Ltd filed Critical Shenzhen Das Intellitech Co Ltd
Priority to CN 200610109266 priority Critical patent/CN101119115B/zh
Publication of CN101119115A publication Critical patent/CN101119115A/zh
Application granted granted Critical
Publication of CN101119115B publication Critical patent/CN101119115B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

本发明涉及一种多通道模数转换装置,包括模拟信号输入端口、控制采样电路,还包括与模拟信号输入端口和控制采样电路相连的通道开关选择电路。本发明还涉及一种多通道模数转换的方法,包括:多组模拟信号进入通道开关选择电路,由通道开关选择电路逐个选通每组模拟信号对应的通道;通道开关选择电路选通的模拟信号进入信号调理电路后,信号调理电路将模拟信号转换成电压信号;电压信号进入控制采样电路进行模数转换,输出电压的数字量值。本发明增加了通道开关选择电路和信号调理电路,能够自动切换多路模拟输入信号来进行模数转换。另外本发明还采用放大电路充分利用模数转换装置的满度,从而提高了模数转换的精度。

Description

多通道模数转换装置及方法
技术领域
本发明涉及一种多通道模数转换装置及方法,尤其是一种针对多类型模拟信号通过多通道输入并进行模数转换(A/D)的装置,以及转换的方法。
背景技术
在微机数据采集或测控系统中,模数转换电路是模拟量输入通道重要的核心部件,其作用是将反映现场或过程参数实时变化的物理量转换成计算机能够接收和识别的离散数字代码,主要应用在以单片机或计算机为主的系统中。
目前,市场上模数转换装置已经非常普及,许多这个领域的研究都集中在如何提高模数转换的转换精度,提高分辨率以及降低量化误差,但这些研究以及市场上成熟的模数转换产品都只是针对于单一通道或单一信号的数字化处理,在智能建筑领域很多现场存在地理位置分散,每个位置有多种模拟信号类型,而每种类型信号只有一两点需要采集。通常对于这种多通道多类型模拟输入信号的模数转换需对每种类型信号分别采用不同的信号调理电路,导致电路复杂,成本高。
发明内容
本发明的第一目的是针对现有单一通道或单一信号的模数转换装置无法对多通道多类型信号同时进行处理的缺陷,提出了一种多通道模数转换装置,既能够对多通道多类型信号进行模数转换,又能够提高模数转换的精度。
本发明的第二目的是针对于现有单一通道或单一信号的模数转换装置无法转换多通道多类型信号同时进行处理的缺陷,提出了一种多通道模数转换的方法,能够同时对多路输入模拟信号进行模数转换。
为实现上述第一目的,本发明提供了一种多通道模数转换装置,包括模拟信号输入端口、控制采样电路,还包括与所述模拟信号输入端口和控制采样电路相连的通道开关选择电路,用于将输入的多路模拟信号进行模拟信号输入通道选择,并将选择后的多路模拟信号通过所述控制采样电路完成模数转换。
在上述技术方案中,所述通道开关选择电路包括数个模拟多路输出选择器,分别与输入的模拟信号相连,用于选择输入的模拟信号中的一路到所述信号调理电路。还可以进一步包括信号调理电路,设置在所述通道开关选择电路和控制采样电路之间,用于将输入模拟信号转换成电压信号,并将电压信号放大,以使在量程范围内利用控制采样电路的满度。
所述信号调理电路进一步包括:参考电压生成电路,该参考电压生成电路包括模拟多路输出选择器,该第一模拟多路输出选择器的输入端与参考电压相连,输出端与所述电压放大器的反相输入端相连,当选通信号为热电阻信号或热敏电阻信号时,为反相输入端提供相应的参考电压。
由热电阻或者热敏电阻的电阻信号转换成的电压信号是热电阻或者热敏电阻的阻值与流经热电阻或者热敏电阻的电流的乘积。热电阻或者热敏电阻的阻值随着温度变化,其转换后的电压也相应变化,设同相输入端0电压V+,反相输入端电压是V-。要保证V+与V-的差值的最小值越接近0越好,并且大于0。
当模数转换芯片的模数转换范围是[0,10V]时,为了提高模数转换的精度,要求转换后的电压尽量分布在[0,10V]的整个区间,而且要保证大于0。这是因为控制采样电路的模数转换范围是[0,10V],不能是负电压。所以仪表放大器的输出不应该与同相输入端电压反相,不应该是负电压。
所述信号调理电路还包括恒流源电路,与所述模拟多路输出选择器相连,用于当模拟信号为电阻信号时,将电阻信号转换成电压信号。
在所述模拟多路输出选择器上外接具有精确阻值的电阻,用于测量热电阻或者热敏电阻时,首先选通精确电阻所在的通道,测量电压放大器的输出端电压;然后选通被测热电阻或者热敏电阻所在通道,并测量此时电压放大器输出端电压。将分别获得的输出端电压做差,以消除所述模拟多路输出选择起的内阻。
在测量热电阻或者热敏电阻时,外接一个标准电阻(例如阻值为500欧姆),先测量这个标准电阻在电压放大器的输出端的电压是V500=(i*(500+2r))-V-)*K,然后切换到被测热电阻或者热敏电阻的通道,测量出此时的电压放大器输出端电压Vo=(i*(Rt+2r)-V-)*K,可得到Vo-V500=K*i*(Rt-5 00)。
将得到的两个输出端电压做差,结果与内阻r无关。此时,由于K、i、Vo、V500都是已知的,就可以得到Rt=(Vo-V500)/(K*i)+500。其中K、i、V500是定值,Rt与(Vo-V500)成线性/正比例关系,我们就可以根据Pt1000或者热敏电阻NTC20k的分度表,得到Rt与(Vo-V500)的线性关系表。再根据(Vo-V500)转换后的数字量值,就可以通过查表得到Rt的值,从而获得温度值。
对于表中没有的(Vo-V500)的数字量值,因为该表表示了Rt与(Vo-V500)的线性关系,可以通过分区线性化的方法计算得到被测热电阻或者热敏电阻的值,也就得到了温度值。
还可以进一步增加电压跟随器,将其设置在所述信号调理电路和控制采样电路之间,用于进行阻抗匹配,以使输出电压得到缓冲。
为了实现上述第二目的,本发明提供了一种多通道模数转换的方法,包括以下步骤:
步骤1,多组模拟信号进入通道开关选择电路,由通道开关选择电路选通逐个选择每组模拟信号对应的通道;
步骤2,所述通道开关选择电路选通的模拟信号进入信号调理电路后,所述信号调理电路将所述模拟信号转换成电压信号;
步骤3,所述电压信号进入控制采样电路进行模数转换,输出电压的数字量值。
其中,所述步骤2具体为:所述通道开关选择电路选通的模拟信号进入信号调理电路后,所述信号调理电路将所述模拟信号转换为预定范围内的电压信号,以充分利用控制采样电路的满度。
当选通的模拟信号为热电阻或热敏电阻信号时,恒流源电路选通工作,将所述热电阻或热敏电阻信号转换成电压信号,并输入到电压放大器的同相输入端;同时,参考电压经模拟多路输出选择器选通输入到电压放大器的反相输入端。
当通道开关选择电路选通的模拟信号为电压信号时,模拟多路输出选择器关断恒流源电路的输入,电压放大器的反相输入端接地信号。
当采集的模拟信号为电流信号时,在通道开关选择电路接精确电阻,将电流信号转换成的电压信号,再输入到电压放大器的同相输入端。
基于上述技术方案,本发明在模拟信号输入端口和控制采样电路之间增加了通道开关选择电路和信号调理电路,能够自动切换多路模拟输入信号来进行模数转换,对于多种类型的模拟输入信号都可以利用信号调理电路转换成电压信号,对于模拟输入信号为热电阻PT1000以及热敏电阻NTC20K,能够消除多路开关内阻的影响。另外本发明还采用放大电路充分利用模数转换装置的满度,从而提高了模数转换的精度。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明多通道模数转换装置的结构示意图。
图2为本发明多通道模数转换装置的另一种结构示意图。
图3为本发明多通道模数转换装置的再一种结构示意图。
图4为图3中通道选择开关电路和信号调理电路的具体结构示意图,其中参考电压生成电路用于输入电阻信号时接通。
图5为图3中信号调理电路的另一种具体结构示意图,其中恒流源电路在输入热电阻或热敏电阻时接通。
图6为本发明多通道模数转换装置的具体实施例的结构示意图。
图7为图6具体实施例的等效电路的结构示意图。
图8为本发明多通道模数转换的方法的流程示意图。
具体实施方式
本发明对多路不同类型的模拟输入信号进行通道选择,然后根据输入信号的类型进行相应的处理,转换成电压信号,在放大到量程范围内可以充分利用模数转换器的满度,最后再通过控制采样电路输出电压的数字量值。
如图1所示,为本发明多通道模数转换装置的结构示意图,包括模拟信号输入端口1、通道选择开关电路2和控制采样电路3,其中通道选择开关电路2与模拟信号输入端口1相连,接收输入的多路不同类型的模拟信号;控制采样电路3与通道选择开关电路2的输出端相连,将输入的模拟量转换成数字量。输入模拟信号类型可以包括不同范围的直流电压信号、直流电流信号、PT1000、NTC20K等。
如图2所示,为本发明多通道模数转换装置的另一种结构示意图,与上面区别的是,在通道选择开关电路2和控制采样电路3之间,又增加了信号调理电路4,能够将输入模拟信号转换成电压信号,并将电压信号放大,以使在量程范围内利用控制采样电路的满度。
图3为本发明多通道模数转换装置的再一种结构示意图,在图2电路结构的基础上,又增加了电压跟随器5,设于信号调理电路4和控制采样电路3之间,能够起到阻抗匹配的作用,能够使得后面的控制采样电路更好的工作。
参考图4、5,分别为图3的两种具体,其中通道选择开关电路2由多个模拟多路输出选择器构成,在本实施例中,采用8路输入模拟信号,因此可设置三个模拟多路输出选择器21、22、23对8路输入模拟信号进行选通,可以用轮询的方式,逐个选通每路通道,保证每时每刻只有一路模拟输入信号被选通,也可以根据具体要求只对某几条通道进行选通。
在信号调理电路4中包括用来根据选通的输入模拟信号的类型将输入模拟信号转化成电压信号,并放大的电压放大器41,电压放大器41的反相输入端与参考电压生成电路的输出端或者地信号相连,其正相输入端与通道开关选择电路2的输出端相连。参考电压生成电路由参考电压和一模拟多路输出选择器42相连,当输入电阻信号时,电压放大器41的反相输入端与模拟多路输出选择器42的输出端相连,当选通信号为热电阻信号或热敏电阻信号时,为反相输入端提供相应的参考电压。
由热电阻或者热敏电阻的电阻信号转换成的电压信号是热电阻或者热敏电阻的阻值与流经热电阻或者热敏电阻的电流的乘积。热电阻或者热敏电阻的阻值随着温度变化,其转换后的电压也相应变化,设同相输入端电压V+,反相输入端电压是V-。要保证V+与V-的差值的最小值越接近0越好,并且大于0。
当模数转换芯片的模数转换范围是[0,10V]时,为了提高模数转换的精度,要求转换后的电压尽量分布在[0,10V]的整个区间,而且要保证大于0。这是因为控制采样电路的模数转换范围是[0,10V],不能是负电压。所以仪表放大器的输出不应该与同相输入端电压反相,不应该是负电压。
信号调理电路4还包括恒流源电路43,与模拟多路输出选择器42相连,当模拟信号为热电阻信号或热敏电阻信号时,为热电阻或热敏电阻提供电源,以使所述模拟信号转换为电压信号。在模拟多路输出选择器上外接具有精确阻值的电阻,可以测量分别接通后所述电压放大器的输出端电压,并将分别获得的输出端电压做差,以消除所述模拟多路输出选择器的内阻。
在测量热电阻或者热敏电阻时,外接一个标准电阻(例如阻值为500欧姆),先测量这个标准电阻在电压放大器的输出端的电压是V500=(i*(500+2r))-V-)*K,然后切换到被测热电阻或者热敏电阻的通道,测量出此时的电压放大器输出端电压Vo=(i*(Rt+2r)-V-)*K,可得到Vo-V500=K*i*(Rt-500)。
将得到的两个输出端电压做差,结果与内阻r无关。此时,由于K、i、Vo、V500都是已知的,就可以得到Rt=(Vo-V5oo)/(K*i)+500。其中K、i、V500是定值,Rt与(Vo-V500)成线性/正比例关系,我们就可以根据Pt1000或者热敏电阻NTC20k的分度表,得到Rt与(Vo-V500)的线性关系表。再根据(Vo-V500)转换后的数字量值,就可以通过查表得到Rt的值,从而获得温度值。
对于表中没有的(Vo-V500)的数字量值,因为该表表示了Rt与(Vo-V500)的线性关系,可以通过分区线性化的方法计算得到被测热电阻或者热敏电阻的值,也就得到了温度值。
可以通过调整放大电路的发大倍数,使输出电压落在一个预定的范围内,例如输出范围为0~10V的电压,从而充分的利用控制采样电路3的满度,所谓满度即量程的最大值。
以上给出了本发明的几种功能模块的结构说明,接下来本发明的一个具体实施例,如图6所示,为本发明多通道模数转换装置的具体实施例的结构示意图,输入信号端TG2-4分别与模拟多路输出选择器U1的X0-2相连,输入信号端TG5-7分别与模拟多路输出选择器U3的X0-2相连,输入信号端TG8、TG9分别与模拟多路输出选择器U5的X0、X1相连,U1、U3、U5的X输出端与电压放大器U4的正相输入端相连,U1、U3、U5在同一时刻只选通一路。
为了克服U1、U3、U5的内阻,可以在每个模拟多路输出选择器的X3端口接入电阻R1、R2、R3。模拟多路输出选择器U1、U3、U5共同组成了模拟多路选择电路。在本实施例中只提供了3个模拟多路输出选择器,但本发明可以根据输入通道的个数选择更多或更少的模拟多路输出选择器。
电压放大器U4是信号调理电路中的一部分,其作用是放大输入的电压信号,以使采样控制电路能够在满量程内工作,从而提高转换精度。
当输入信号为热电阻信号或热敏电阻信号时,需要将热电阻信号或热敏电阻信号转换成电压信号,才能够进行放大,因此在信号调理电路中加入参考电压生成电路,即模拟多路输出选择器U2,U2的Y0、Y1分别通过电阻R4、R5与参考电压+2.5V相连,其中R4对应着热电阻信号,R5对应着热敏电阻信号,在选通不同信号时,也选通R4和R5对应的回路。
信号调理电路还包括恒流源电路,即由三端可调电流源D1、可变电阻VR1、电阻R9、电阻R10、二极管D2构成,恒流源电路与U2的X0、X1端口连接,在这里U2作为恒流源的开关。模拟多路输出选择器U6作为选通不同电阻的电子开关,X0、Y0、Y1端口与电阻R8、R7、R6相连。
为了控制电压的放大倍数,可以在电压放大器的控制端接入模拟多路输出选择器U8,在该模拟多路输出选择器U8与电压放大器控制端组成的电路中,接入电阻R14、R15、R16,根据阻值的大小来计算放大倍数,由A、B端口输入的信号选通不同的电阻来适应不同的输入信号。
电压放大器U4的输出端与电压放大器U7的正相输入端相连,电压放大器U7作为电压跟随器,起到阻抗匹配的作用,其输出端与控制采样电路U9连接。控制采样电路U9对转换后的电压信号进行模数转换。
如图7所示,为图6具体实施例的等效电路的结构示意图,其中模拟多路输出选择器U2为开关S1和S2,分别为恒流源电路和参考电压生成电路选通和切断;开关S4是由模拟多路输出选择器U6提供的,电阻R4和R6是当输入分别为热电阻信号或热偶电阻时接通,并在运算时做差以消除内阻的影响,具体可参见前面叙述。
模拟多路输出选择器U1、U3、U5共同组成开关S4和S5,在一个时刻内只能选通一路信号,Rt为被测电阻,可以是为了消除多路开关内阻的具有精确阻值的标准电阻,或者热电阻或热敏电阻。基于上述的多通道模数转换装置,本发明的多通道模数转换的过程如图8所示,为本发明多通道模数转换的方法的流程示意图,包括以下步骤:
步骤101,多组模拟信号进入通道开关选择电路,由通道开关选择电路选通逐个选择每组模拟信号对应的通道;
步骤102,通道开关选择电路选通的模拟信号进入信号调理电路后,所述信号调理电路将所述模拟信号转换成电压信号;
步骤103,电压信号进入控制采样电路进行模数转换,输出电压的数字量值。
在步骤102中,通道开关选择电路选通的模拟信号进入信号调理电路后,所述信号调理电路将所述模拟信号转换为预定范围内的电压信号,以充分利用控制采样电路的满度。
当选通的模拟信号为电阻信号时,参考电压生成电路4 2被接通,模拟多路输出选择器42输出恒流信号,将电阻信号转换成电压信号。电压放大器41可选用仪表放大器,设同相输入端电压V+,反相输入端电压是V-
当模数转换芯片的模数转换范围是[0,10V]时,为了提高模数转换的精度,要求转换后的电压尽量分布在[0,10V]的整个区间,而且要保证大于0。这是因为仪表放大器的输出不能与同相输入端电压反相,不能是负电压。
首先将通道切换到标准电阻上,标准电阻选为500欧姆,电压放大器41的输出为:
V500=(i*(500+2r))-V-)*K;
再切换到模拟输入信号Rt上,电压放大器41的输出为Vo=(i*(Rt+2r)-V-)*K,
可推导出Rt=(Vo-V500)/(K*i)+500,即Vo-V500=K*i*(Rt-500),
式中,K为放大倍数,V-是反向输入端电压,r是模拟开关内阻,500欧姆为标准参考电阻,i是恒流源电流,Rt是输入电阻信号。其中,参考电位V-的选择要保证Rt取范围最小值时,电压放大器41的输出大于零,并尽量接近0;在Rt取范围最大值时,电压放大器41的输出不大于模数转换的满度。
当选通的模拟信号为热敏电阻或热电阻信号时,恒流源电路选通工作,与输入电阻信号的处理方式相似,将热敏电阻或热电阻信号转换成电压信号,并输入到电压放大器的同相输入端;同时,参考电压经模拟多路输出选择器选通输入到电压放大器的反相输入端。
显然,两个输出端电压做差的结果与内阻r无关,其中K、i、V500是定值,Rt与(Vo-V500)成线性/正比例关系,我们就可以根据Pt1000或者热敏电阻NTC20k的分度表,得到Rt与(Vo-V500)的线性关系表。再根据(Vo-V500)转换后的数字量值,就可以通过查表得到Rt的值,从而获得温度值。
对于表中没有的(Vo-V500)的数字量值,因为该表表示了Rt与(Vo-V500)的线性关系,可以通过分区线性化的方法计算得到被测热电阻或者热敏电阻的值,也就得到了温度值。
当通道开关选择电路选通的模拟信号为电压信号时,模拟多路输出选择器关断恒流源电路的输入,电压放大器的反相输入端接地信号。
当采集的模拟信号为4~20mA电流信号时,通过在通道开关选择电路接250欧姆的精确电阻,转换成1~5V的电压信号,再输入到电压放大器的同相输入端。
还可以通过CPU对各个模拟多路输出选择器、放大电路、参考电压生成电路等端口进行控制,可以实现各个模拟多路输出选择器的通断选择,以及放大电路形式和放大倍数的选择。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (13)

1.一种多通道模数转换装置,包括模拟信号输入端口、控制采样电路,其特征在于,还包括与所述模拟信号输入端口和控制采样电路相连的通道开关选择电路,用于将输入的多路模拟信号进行模拟信号输入通道选择,并将选择的一路模拟信号通过所述控制采样电路完成模数转换。
2.根据权利要求1所述的多通道模数转换装置,其特征在于,还包括信号调理电路,设置在所述通道开关选择电路和控制采样电路之间,用于将输入模拟信号转换成电压信号,并将电压信号放大,以使在量程范围内利用控制采样电路的满度。
3.根据权利要求2所述的多通道模数转换装置,其特征在于,还包括电压跟随器,设置在所述信号调理电路和控制采样电路之间,用于进行阻抗匹配,以使输出电压得到缓冲。
4.根据权利要求3所述的多通道模数转换装置,其特征在于,所述通道开关选择电路包括数个模拟多路输出选择器,分别与输入的模拟信号相连,用于选择输入的模拟信号中的一路到所述信号调理电路。
5.根据权利要求3所述的多通道模数转换装置,其特征在于,所述信号调理电路进一步包括:电压放大器,该电压放大器的正相输入端与所述通道开关选择电路的输出端相连,反相输入端通过电阻与地信号相连,用于根据选通的输入模拟信号的类型将输入模拟信号转化成电压信号,并放大所述电压信号,以使在量程范围内利用控制采样电路的满度。
6.根据权利要求5所述的多通道模数转换装置,其特征在于,所述信号调理电路进一步包括:参考电压生成电路,该参考电压生成电路包括模拟多路输出选择器,该第一模拟多路输出选择器的输入端与参考电压相连,输出端与所述电压放大器的反相输入端相连,用于当选通信号为热电阻信号或热敏电阻信号时,为反相输入端提供相应的参考电压。
7.根据权利要求6所述的多通道模数转换装置,其特征在于,所述信号调理电路还包括恒流源电路,与所述模拟多路输出选择器相连,用于当模拟信号为电阻信号时,将电阻信号转换成电压信号。
8.根据权利要求5所述的多通道模数转换装置,其特征在于,在所述模拟多路输出选择器上外接具有精确阻值的电阻,用于测量热电阻或者热敏电阻时,首先选通精确电阻所在的通道,测量电压放大器的输出端电压;然后选通被测热电阻或者热敏电阻所在通道,并测量此时电压放大器输出端电压。将分别获得的输出端电压做差,以消除所述模拟多路输出选择起的内阻。
9.一种多通道模数转换的方法,其特征在于,包括以下步骤:
步骤1,多组模拟信号进入通道开关选择电路,由通道开关选择电路选通逐个选择每组模拟信号对应的通道;
步骤2,所述通道开关选择电路选通的模拟信号进入信号调理电路后,所述信号调理电路将所述模拟信号转换成电压信号;
步骤3,所述电压信号进入控制采样电路进行模数转换,输出电压的数字量值。
10.根据权利要求9所述的多通道模数转换的方法,其特征在于,所述步骤2具体为:所述通道开关选择电路选通的模拟信号进入信号调理电路后,所述信号调理电路将所述模拟信号转换为预定范围内的电压信号,以充分利用控制采样电路的满度。
11.根据权利要求10所述的多通道模数转换的方法,其特征在于,当选通的模拟信号为热电阻或者热敏电阻信号时,恒流源电路选通工作,将所述热电阻或热敏电阻信号转换成电压信号,并输入到电压放大器的同相输入端;同时,参考电压经模拟多路输出选择器选通输入到电压放大器的反相输入端。
12.根据权利要求10所述的多通道模数转换的方法,其特征在于,当通道开关选择电路选通的模拟信号为电压信号时,模拟多路输出选择器关断恒流源电路的输入,电压放大器的反相输入端接地信号。
13.根据权利要求10所述的多通道模数转换的方法,其特征在于,当采集的模拟信号为电流信号时,在通道开关选择电路接精确电阻,将电流信号转换成的电压信号,再输入到电压放大器的同相输入端。
CN 200610109266 2006-08-03 2006-08-03 多通道模数转换装置及方法 Expired - Fee Related CN101119115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610109266 CN101119115B (zh) 2006-08-03 2006-08-03 多通道模数转换装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610109266 CN101119115B (zh) 2006-08-03 2006-08-03 多通道模数转换装置及方法

Publications (2)

Publication Number Publication Date
CN101119115A true CN101119115A (zh) 2008-02-06
CN101119115B CN101119115B (zh) 2011-06-01

Family

ID=39055082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610109266 Expired - Fee Related CN101119115B (zh) 2006-08-03 2006-08-03 多通道模数转换装置及方法

Country Status (1)

Country Link
CN (1) CN101119115B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701971B (zh) * 2009-10-24 2011-09-21 中北大学 高精度多通道模拟信号源
CN103152052A (zh) * 2011-12-06 2013-06-12 中国科学院深圳先进技术研究院 对多个电压模拟信号进行采样的方法
CN104501986A (zh) * 2014-12-16 2015-04-08 北京航天时代光电科技有限公司 一种高精度大量程温度测量系统
CN105281770A (zh) * 2015-10-26 2016-01-27 云顶科技(江苏)有限公司 一种模拟信号处理电路
CN106468897A (zh) * 2015-08-21 2017-03-01 博世力士乐(西安)电子传动与控制有限公司 接口装置和处理系统
CN106559027A (zh) * 2015-09-17 2017-04-05 北汽福田汽车股份有限公司 用于车辆电机控制器的数据隔离采集系统和方法以及车辆
CN107907736A (zh) * 2017-12-27 2018-04-13 广东东方电讯科技有限公司 数字化非线性模拟前端测量电路
CN108344888A (zh) * 2018-01-26 2018-07-31 中国人民解放军战略支援部队信息工程大学 基于电路传输的通信线路中小信号电路检测装置及其方法
CN108667459A (zh) * 2018-05-03 2018-10-16 四川福润得数码科技有限责任公司 模拟信号发生器监控电路、信号监控方法、校准方法及开关性能参数测试方法
CN110058551A (zh) * 2019-05-06 2019-07-26 石家庄德堃电子科技有限公司 一种过程控制器分组控制方法
CN110277995A (zh) * 2019-07-30 2019-09-24 荏原冷热系统(中国)有限公司 采样通道修正方法及系统
CN110442182A (zh) * 2019-08-15 2019-11-12 惠州汇能精电科技有限公司 一种调理电路及调理电路的控制方法
CN110806533A (zh) * 2019-12-04 2020-02-18 绵阳市维博电子有限责任公司 一种基于通道复用的25Hz相敏轨道信号检测电路
CN110926635A (zh) * 2019-10-17 2020-03-27 安徽普利仪器仪表科技有限公司 一种具有温度补偿的温度变送器
CN111245249A (zh) * 2020-03-23 2020-06-05 阳光电源股份有限公司 一种开关电源及其控制方法
CN111426868A (zh) * 2020-04-23 2020-07-17 合肥巨一动力系统有限公司 一种控制器电流采样系统
CN111611196A (zh) * 2019-02-26 2020-09-01 北京知存科技有限公司 一种存算一体芯片及其dac复用控制方法
CN111999625A (zh) * 2020-06-02 2020-11-27 武汉精立电子技术有限公司 一种电流监控电路、图形信号发生器及面板检测系统
CN112073068A (zh) * 2020-09-02 2020-12-11 中国航空工业集团公司西安飞行自动控制研究所 通用模拟信号的输入输出电路及其使用方法
CN112415578A (zh) * 2020-10-20 2021-02-26 山东大学 一种用于隧道地震波信号采集的无线传感器及方法
CN113489389A (zh) * 2021-06-22 2021-10-08 深圳市航顺芯片技术研发有限公司 电机三相电流采样电路、方法、芯片及计算机设备
CN114280985A (zh) * 2021-12-13 2022-04-05 航天新长征大道科技有限公司 信号输出板卡及自动化测试系统
CN114326496A (zh) * 2021-12-24 2022-04-12 铜权科技(嘉兴)有限公司 高速数据采集仪及其采集方法
CN114500363A (zh) * 2020-10-28 2022-05-13 四零四科技股份有限公司 可配置输入/输出装置及其操作方法
CN114499526A (zh) * 2021-12-31 2022-05-13 杭州士兰微电子股份有限公司 模数转换电路
WO2022141583A1 (zh) * 2020-12-31 2022-07-07 深圳市韶音科技有限公司 信号处理电路和方法
CN114927114A (zh) * 2022-06-29 2022-08-19 高创(苏州)电子有限公司 显示装置输入电路、显示装置及其控制方法
CN118518929A (zh) * 2024-07-22 2024-08-20 湖南恩智测控技术有限公司 电流采样电路、方法、装置、源表及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484132B1 (ko) * 2002-01-29 2005-04-18 삼성전자주식회사 다채널 a/d 변환기 및 그 시스템
CN2938573Y (zh) * 2006-08-03 2007-08-22 深圳达实智能股份有限公司 多通道模数转换装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701971B (zh) * 2009-10-24 2011-09-21 中北大学 高精度多通道模拟信号源
CN103152052A (zh) * 2011-12-06 2013-06-12 中国科学院深圳先进技术研究院 对多个电压模拟信号进行采样的方法
CN103152052B (zh) * 2011-12-06 2017-05-10 中国科学院深圳先进技术研究院 对多个电压模拟信号进行采样的方法
CN104501986A (zh) * 2014-12-16 2015-04-08 北京航天时代光电科技有限公司 一种高精度大量程温度测量系统
CN104501986B (zh) * 2014-12-16 2017-08-29 北京航天时代光电科技有限公司 一种高精度大量程温度测量系统
CN106468897A (zh) * 2015-08-21 2017-03-01 博世力士乐(西安)电子传动与控制有限公司 接口装置和处理系统
CN106559027A (zh) * 2015-09-17 2017-04-05 北汽福田汽车股份有限公司 用于车辆电机控制器的数据隔离采集系统和方法以及车辆
CN105281770A (zh) * 2015-10-26 2016-01-27 云顶科技(江苏)有限公司 一种模拟信号处理电路
CN105281770B (zh) * 2015-10-26 2018-06-19 云顶科技(江苏)有限公司 一种模拟信号处理电路
CN107907736A (zh) * 2017-12-27 2018-04-13 广东东方电讯科技有限公司 数字化非线性模拟前端测量电路
CN108344888B (zh) * 2018-01-26 2020-07-10 中国人民解放军战略支援部队信息工程大学 基于电路传输的通信线路中小信号电路检测装置及其方法
CN108344888A (zh) * 2018-01-26 2018-07-31 中国人民解放军战略支援部队信息工程大学 基于电路传输的通信线路中小信号电路检测装置及其方法
CN108667459A (zh) * 2018-05-03 2018-10-16 四川福润得数码科技有限责任公司 模拟信号发生器监控电路、信号监控方法、校准方法及开关性能参数测试方法
CN111611196A (zh) * 2019-02-26 2020-09-01 北京知存科技有限公司 一种存算一体芯片及其dac复用控制方法
CN110058551A (zh) * 2019-05-06 2019-07-26 石家庄德堃电子科技有限公司 一种过程控制器分组控制方法
CN110277995A (zh) * 2019-07-30 2019-09-24 荏原冷热系统(中国)有限公司 采样通道修正方法及系统
CN110442182A (zh) * 2019-08-15 2019-11-12 惠州汇能精电科技有限公司 一种调理电路及调理电路的控制方法
CN110926635A (zh) * 2019-10-17 2020-03-27 安徽普利仪器仪表科技有限公司 一种具有温度补偿的温度变送器
CN110806533A (zh) * 2019-12-04 2020-02-18 绵阳市维博电子有限责任公司 一种基于通道复用的25Hz相敏轨道信号检测电路
CN111245249A (zh) * 2020-03-23 2020-06-05 阳光电源股份有限公司 一种开关电源及其控制方法
CN111426868A (zh) * 2020-04-23 2020-07-17 合肥巨一动力系统有限公司 一种控制器电流采样系统
CN111426868B (zh) * 2020-04-23 2022-03-29 合肥巨一动力系统有限公司 一种控制器电流采样系统
CN111999625A (zh) * 2020-06-02 2020-11-27 武汉精立电子技术有限公司 一种电流监控电路、图形信号发生器及面板检测系统
CN112073068A (zh) * 2020-09-02 2020-12-11 中国航空工业集团公司西安飞行自动控制研究所 通用模拟信号的输入输出电路及其使用方法
CN112073068B (zh) * 2020-09-02 2024-04-09 中国航空工业集团公司西安飞行自动控制研究所 通用模拟信号的输入输出电路及其使用方法
CN112415578A (zh) * 2020-10-20 2021-02-26 山东大学 一种用于隧道地震波信号采集的无线传感器及方法
CN114500363A (zh) * 2020-10-28 2022-05-13 四零四科技股份有限公司 可配置输入/输出装置及其操作方法
CN114500363B (zh) * 2020-10-28 2023-10-24 四零四科技股份有限公司 可配置输入/输出装置及其操作方法
WO2022141583A1 (zh) * 2020-12-31 2022-07-07 深圳市韶音科技有限公司 信号处理电路和方法
CN113489389B (zh) * 2021-06-22 2023-01-03 深圳市航顺芯片技术研发有限公司 电机三相电流采样电路、方法、芯片及计算机设备
CN113489389A (zh) * 2021-06-22 2021-10-08 深圳市航顺芯片技术研发有限公司 电机三相电流采样电路、方法、芯片及计算机设备
CN114280985A (zh) * 2021-12-13 2022-04-05 航天新长征大道科技有限公司 信号输出板卡及自动化测试系统
CN114326496A (zh) * 2021-12-24 2022-04-12 铜权科技(嘉兴)有限公司 高速数据采集仪及其采集方法
CN114326496B (zh) * 2021-12-24 2024-05-24 铜权科技(嘉兴)有限公司 高速数据采集仪及其采集方法
CN114499526A (zh) * 2021-12-31 2022-05-13 杭州士兰微电子股份有限公司 模数转换电路
CN114927114A (zh) * 2022-06-29 2022-08-19 高创(苏州)电子有限公司 显示装置输入电路、显示装置及其控制方法
CN114927114B (zh) * 2022-06-29 2024-04-09 高创(苏州)电子有限公司 显示装置输入电路、显示装置及其控制方法
CN118518929A (zh) * 2024-07-22 2024-08-20 湖南恩智测控技术有限公司 电流采样电路、方法、装置、源表及存储介质

Also Published As

Publication number Publication date
CN101119115B (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
CN101119115B (zh) 多通道模数转换装置及方法
CN2938573Y (zh) 多通道模数转换装置
CN101872193B (zh) 基于现场总线的多功能测控模块
CN204101635U (zh) 一种微电阻测量仪和电子产品生产装置
CN111256862B (zh) 一种高精度自标校智能温度采集和控制电路
CN207703359U (zh) 一种多路热敏电阻温度采集与处理装置
CN106918795B (zh) 基于fpga的高精度电阻校准系统及采用该系统实现的电阻校准方法
CN202075059U (zh) 新型铂电阻温度测量模块
CN102025364B (zh) 采用数字化隔离和调理技术的模拟量输入电路
CN109059969A (zh) 一种阻性传感阵列读出电路以及测量方法
CN101629975A (zh) 一种继电器触点电压测量调理电路及测量方法
CN103604525A (zh) 一种基于校验数据的热电阻温度测量仪
CN103149395B (zh) 一种用于多路模拟量采集卡的温度补偿方法
CN104501854A (zh) 基于teds传感器和矩阵开关技术的智能测试系统及测试方法
CN107037760B (zh) 一种输入电流型模拟电阻器及电阻控制方法
CN106707213B (zh) 一种数字集成电路标准样片
CN208902293U (zh) 一种pt100测温电路
CN102478422A (zh) 一种零漂模拟校准方法及装置
CN208477016U (zh) 一种多通道电阻测量的电路
CN206339316U (zh) 多路温度检测装置
CN115752792A (zh) 一种多路温度测量电路及测量方法
CN206740271U (zh) 一种温度测量电路
CN112304465B (zh) 一种多通道并行式温度测量装置
CN102565742B (zh) 高压高阻箱数字化电路
CN112304466B (zh) 一种多通道扫描式温度测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110601

Termination date: 20150803

EXPY Termination of patent right or utility model