CN101113124A - 分子筛组合物、催化剂、其制备方法及在转化过程中的应用 - Google Patents

分子筛组合物、催化剂、其制备方法及在转化过程中的应用 Download PDF

Info

Publication number
CN101113124A
CN101113124A CNA2007101374007A CN200710137400A CN101113124A CN 101113124 A CN101113124 A CN 101113124A CN A2007101374007 A CNA2007101374007 A CN A2007101374007A CN 200710137400 A CN200710137400 A CN 200710137400A CN 101113124 A CN101113124 A CN 101113124A
Authority
CN
China
Prior art keywords
molecular sieve
metal oxide
catalyst composition
alkene
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101374007A
Other languages
English (en)
Inventor
徐腾
S·N·沃恩
R·B·豪尔
D·雷文
J·C·瓦图里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN101113124A publication Critical patent/CN101113124A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种催化剂组合物、其制备方法及其在使原料(优选含氧原料)转化成一或多种烯烃(优选乙烯和/或丙烯)中的应用。所述催化剂组合物包含分子筛和至少一种金属氧化物如氧化镁,所述金属氧化物当用丙酮饱和并在25℃下与所述丙酮接触1小时时,使多于80%的丙酮转化。

Description

分子筛组合物、催化剂、其制备方法及在转化过程中的应用
本发明是申请日为2003年2月10日、申请号为03808265.9、发明名称为“分子筛组合物、催化剂、其制备方法及在转化过程中的应用”的中国专利申请的分案申请。
本发明涉及分子筛组合物及包含其的催化剂、此组合物和催化剂的合成及此组合物和催化剂在生产烯烃的转化过程中的应用。
传统上由石油原料通过催化裂化或蒸汽裂化生产烯烃。这些裂化方法特别是蒸汽裂化法由各种各样的烃类原料生产轻烯烃如乙烯和/或丙烯。乙烯和丙烯是适用于各种塑料和其它化合物生产工艺的重要石油化学产品。
石化工业知道含氧化合物特别是醇类可转化成轻烯烃已有一段时间了。优选用于生产轻烯烃的醇是甲醇,使含甲醇的原料转化成轻烯烃(主要是乙烯和/或丙烯)的优选方法涉及使原料与分子筛催化剂组合物接触。
已知许多不同类型的分子筛可使含有含氧化合物的原料转化成一或多种烯烃。例如,US5 367 100描述用沸石ZSM-5使甲醇转化成烯烃;US4 062 905描述用结晶硅铝酸盐沸石例如T沸石、ZK5、毛沸石和菱沸石使甲醇和其它含氧化合物转化成乙烯和丙烯;US4 079 095描述用ZSM-34使甲醇转化成烃类产品如乙烯和丙烯;US4 310 440描述用结晶铝磷酸盐(通常表示为AlPO4)由醇生产轻烯烃。
最适用于使甲醇转化成烯烃的一些分子筛是硅铝磷酸盐(SAPO)分子筛。硅铝磷酸盐分子筛包含[SiO2]、[AlO2]、和[PO2]共角四面体单元的三维微孔结晶骨架结构。SAPO分子筛的合成、其制成催化剂的配方、及其使原料转化成烯烃的用途(特别是在原料为甲醇的情况下)公开在US4 499 327、4 677 242、4 677 243、4 873 390、5 095 163、5 714662和6 166 282中,均引入本文供参考。
用于使甲醇转化成烯烃时,大多数分子筛包括SAPO分子筛快速结焦,因而需要频繁再生,典型地涉及使催化剂暴露于高温和汽蒸环境。结果是,现有的甲醇转化催化剂趋于有有限的使用寿命,因而需要提供特别是用于使甲醇转化成烯烃时使用寿命延长的分子筛催化剂组合物。
US4 465 889描述一种催化剂组合物,包含浸渍有钍、锆或钛金属氧化物的硅质岩分子筛,用于使甲醇、二甲醚或其混合物转化成富含异-C4化合物的烃类产品。
US6 180 828描述用改性分子筛由甲醇和氨生产甲胺,其中例如使硅铝磷酸盐分子筛与一或多种改性剂如氧化锆、氧化钛、氧化钇、蒙脱土或高岭土组合。
US5 417 949涉及用分子筛和金属氧化物粘合剂使含氧流出物中有害的氮氧化物转化成氮气和水的方法,其中优选的粘合剂是氧化钛,所述分子筛是硅铝酸盐。
EP-A-312981公开一种用催化剂组合物使含有钒的烃原料流裂化的方法,所述催化剂组合物包含包埋在无机耐火基体材料中的沸石和负载于含氧化硅的载体材料之上的铍、镁、钙、锶、钡或镧的至少一种氧化物(优选氧化镁)的物理混合物。
Kang and Inui,“通过机械化学法减少Ni-SAPO-34晶态催化剂外表面酸位点数量的影响”,Catalysis Letters 53,p171-176(1998)公开在Ni-SAPO-34上使甲醇转化成乙烯中可通过将所述催化剂与在非多孔性氧化硅上的MgO、CaO、BaO或Cs2O(BaO是最优选的)一起研磨提高择形性并减轻焦炭的形成。
WO98/29370公开在小孔非沸石分子筛上使含氧化合物转化成烯烃,所述分子筛包含选自镧系元素、锕系元素、钪、钇、第4族金属、第5族金属或其组合的金属。
一方面,本发明在于一种催化剂组合物,包含:
(a)金属氧化物,其表面积大于20m2/g,在高于200℃的温度下焙烧过,且其用丙酮饱和并在25℃下与所述丙酮接触1小时时,使多于80%的丙酮转化;
(b)粘合剂;
(c)基体材料;和
(d)平均孔径小于5埃的分子筛。
所述分子筛适宜包含至少包括[AlO4]和[PO4]四面体单元的骨架、特别是至少包括[SiO4]、[AlO4]和[PO4]四面体单元的骨架,如硅铝磷酸盐。
一实施方案中,所述金属氧化物包括氧化镁。
另一方面,本发明在于一种催化剂组合物,包含分子筛和至少一种选自元素周期表第2族金属的氧化物,其中所述金属氧化物在100℃下的二氧化碳摄入量为至少0.03mg/m2金属氧化物。
适宜地,所述催化剂组合物还包含至少一种选自元素周期表第3族金属的氧化物,如氧化钇、氧化镧、氧化钪及其混合物。
另一方面,本发明在于一种催化剂组合物的制备方法,所述方法包括使包含分子筛的第一粒子与包含至少一种选自元素周期表第2族金属氧化物的第二粒子物理混合,其中所述金属氧化物在100℃下的二氧化碳摄入量为至少0.03mg/m2金属氧化物。
另一方面,本发明在于一种催化剂组合物的制备方法,所述方法包括使硅铝磷酸盐分子筛、粘合剂、基体材料、和至少一种金属氧化物组合,所述金属氧化物用丙酮饱和并在25℃下与所述丙酮接触1小时时,使多于25%的丙酮转化。
再另一方面,本发明在于一种催化剂组合物的制备方法,所述方法包括:(a)使分子筛、粘合剂和基体材料组合产生催化剂前体;和(b)向所述催化剂前体中加入在200至700℃范围内的温度下焙烧过的金属氧化物。
一实施方案中,所述金属氧化物为氧化镁,使之与由包含至少一种模板剂和硅源、磷源和铝源至少之二的反应混合物合成的分子筛物理混合。
再另一方面,本发明在于一种在分子筛催化剂组合物存在下使原料转化成一或多种烯烃的方法,所述催化剂组合物包含分子筛、粘合剂、基体材料和活性金属氧化物,所述金属氧化物用丙酮饱和并在25℃下与所述丙酮接触1小时时,使多于80%的丙酮转化。
再另一方面,本发明在于一种生产一或多种烯烃的方法,所述方法包括使包含至少一种含氧化合物的原料与催化剂组合物接触,所述催化剂组合物包含小孔分子筛、粘合剂、基体材料、已在200至700℃的温度范围内焙烧过的氧化镁、和第3族金属氧化物。
本发明涉及一种催化剂组合物、其合成及其用于使烃类原料特别是含氧原料转化成烯烃的用途。已发现分子筛与特殊的金属氧化物组合产生用于使原料如含氧化合物、特别是甲醇转化成烯烃时催化剂寿命较长的催化剂组合物。此外,所得催化剂组合物趋于有较高的丙烯选择性而且产生较少量不想要的乙烷和丙烷。优选的金属氧化物是在100℃下的二氧化碳摄入量为至少0.03mg/m2金属氧化物的金属氧化物和/或在室温下能使多于80%的丙酮转化的金属氧化物。一实施方案中,所述金属氧化物是表面积大于20m2/g而且在高于200℃的温度下焙烧过的氧化镁。使元素周期表(采用CRC Handbook of Chemistry and Physics,78thEdition,CRC Press,Boca Raton,Florida(1997)中所述IUPAC版式)第3族金属(例如钪、镧或钇)的氧化物与所述氧化镁组合时此意外结果进一步增强。
分子筛
国际沸石协会结构委员会已根据IUPAC委员会的沸石命名原则对分子筛进行分类。根据此分类,结构已确定的骨架型沸石和沸石型分子筛被赋予三个字母代码,描述在Atlas of Zeolite Framework Types,5thedition,Elsevier,London,England(2001)中,引入本文供参考。
尤其用于使含有含氧化合物的原料转化成烯烃的优选分子筛的非限制性实例包括骨架类型AEL、AFY、AEI、BEA、CHA、EDI、FAU、FER、GIS、LTA、LTL、MER、MFI、MOR、MTT、MWW、TAM和TON。一优选实施方案中,本发明催化剂组合物中所用分子筛有AEI拓扑结构或CHA拓扑结构、或其组合,最优选CHA拓扑结构。
结晶分子筛材料有共角[TO4]四面体的三维四连骨架结构,其中T为任何四面体配位阳离子,如[SiO4]、[AlO4]和/或[PO4]四面体单元。适用于本发明的分子筛适宜包括含有[AlO4]和[PO4]四面体单元的骨架即铝磷酸盐(AlPO)分子筛或含[SiO4]、[AlO4]和[PO4]四面体单元的骨架即硅铝磷酸盐(SAPO)分子筛。最优选用于本发明的分子筛是硅铝磷酸盐(SAPO)分子筛或取代的、优选金属取代的SAPO分子筛。适合的金属取代基的例子是元素周期表第1族的碱金属、元素周期表第2族的碱土金属、元素周期表第3族的稀土金属(包括镧系元素:镧、铈、镨、钕、钐、铕、钆、铒、镝、钬、铒、铥、镱、和镥;和钪或钇)、元素周期表第4至12族的过渡金属、或这些金属物质之任意的混合物。
优选用于本发明的分子筛有[TO4]的8-元环限定的孔系,平均孔径小于5埃,如在3至5埃、例如3至4.5埃、特别是3.5至4.2埃的范围内。
适用于本发明的SAPO和AlPO分子筛的非限制性实例包括SAPO-5、SAPO-8、SAPO-11、SAPO-16、SAPO-17、SAPO-18、SAPO-20、SAPO-31、SAPO-34、SAPO-35、SAPO-36、SAPO-37、SAPO-40、SAPO-41、SAPO-42、SAPO-44(US6 162 415)、SAPO-47、SAPO-56、AlPO-5、AlPO-11、AlPO-18、AlPO-31、AlPO-34、AlPO-36、AlPO-37、AlPO-46、及其含金属的分子筛之一或组合。其中,特别适用的分子筛是SAPO-18、SAPO-34、SAPO-35、SAPO-44、SAPO-56、AlPO-18和AlPO-34及其含金属的衍生物之一或组合,例如SAPO-18、SAPO-34、AlPO-34和AlPO-18及其含金属的衍生物之一或组合,特别是SAPO-34和AlPO-18及其含金属的衍生物之一或组合。
一实施方案中,所述分子筛是一种分子筛组合物内有两或多个不同晶相的共生物。具体地,共生分子筛描述在US专利申请No.2002-0165089和1998年4月16日公开的WO98/15496中,均引入本文供参考。例如,SAPO-18、AlPO-18和RUW-18有AEI骨架类型,SAPO-34有CHA骨架类型。因此,适用于本发明的分子筛可包含至少一个AEI和CHA骨架类型的共生相,尤其是CHA骨架类型与AEI骨架类型(通过US专利申请公开No.2002-0165089中公开的DIFFaX确定)之比大于1∶1时。
优选所述分子筛为硅铝磷酸盐时,所述分子筛的Si/Al比小于或等于0.65、例如0.65至0.10、优选0.40至0.10、更优选0.32至0.10、最优选0.32至0.15。
一具体实施方案中,所述分子筛为SAPO-18、SAPO-34或其共生物,其中所述分子筛的骨架主要由[SiO4]、[AlO4]和[PO4]四面体单元组成,因而不含其它骨架元素如镍。
金属氧化物
本发明所述金属氧化物是不同于典型粘合剂和/或基体材料的那些金属氧化物,其与分子筛组合使用时,在催化转化过程中提供益处。具体地,适用于本发明的金属氧化物是用丙酮饱和并使之在室温下与丙酮接触1小时时使多于80%的丙烯(例如多于85%、如多于90%、某些情况下多于95%)转化的氧化物。测定丙酮转化率的方法很多,此方法之一是利用13C固态NMR。该方法中,首先在真空下在用逐级升温程序加热的同时使所述金属氧化物脱水。典型地,该脱水步骤中所用最高温度为400℃。然后用常规真空管线技术在室温(约25℃)下用丙酮-2-13C饱和所述金属氧化物。在不接触空气或湿气的情况下将已吸附了丙酮-2-13C的金属氧化物移至7-mm NMR旋转器内。使试样在25℃保持1小时后获得幻角旋转定量13C固态NMR波谱确定丙酮的转化率。
适合的金属氧化物是单独或与第3族金属氧化物组合的第2族金属氧化物,在100℃下其二氧化碳摄入量为至少0.03mg/m2金属氧化物、例如至少0.35mg/m2金属氧化物。虽然所述金属氧化物的二氧化碳摄入量的上限无关紧要,但一般来说适用于本发明的金属氧化物在100℃下的二氧化碳摄入量小于10mg/m2金属氧化物、例如小于5mg/m2金属氧化物。
在环境压力下用Mettler TGA/SDTA 851热重分析系统采用以下步骤测定金属氧化物的二氧化碳摄入量。采集金属氧化物试样,在流动空气中加热至约500℃持续1小时使试样脱水。然后在流动的氦气中使试样的温度降至100℃。试样在流动的氦气中在要求的吸附温度下达到平衡之后,使试样经受包含10wt%二氧化碳而其余为氦气的气态混合物的20次脉冲(约12秒/脉冲)。所述吸附气体的每次脉冲之后,用流动氦气冲洗金属氧化物试样3分钟。在500℃处理后基于吸附剂重量按mg/mg吸附剂计的试样重量增量为吸附二氧化碳的量。按ASTM D3663公开的Brunauer,Emmett,and Teller(BET)法测量试样的表面积以提供按mg二氧化碳/m2金属氧化物计的二氧化碳摄入量。
最优选的第2族金属氧化物是氧化镁(MgO)。适合的第3族金属氧化物包括氧化钇、氧化镧、氧化钪及其混合物。
一实施方案中,所述活性金属氧化物(优选MgO、甚至更优选MgO与第3族金属氧化物的组合物)按ASTM D 3663公开的BET法测定的表面积大于20m2/g、如大于50m2/g、例如大于80m2/g、甚至大于200m2/g。适合的金属氧化物是表面积大于20m2/g、已焙烧至高于200℃、而且在室温下能使多于25%、如多于50%、例如多于80%丙酮转化的那些金属氧化物。
另一实施方案中,所述金属氧化物(优选MgO、甚至更优选MgO与第3族金属氧化物的组合物)在200至700℃、如约250至650℃、例如300至600℃、典型地350至550℃范围内的温度下焙烧。
一实施方案中,所述镁金属氧化物的表面积为约250m2/g、和/或将氧化镁焙烧至约550℃。
所述活性金属氧化物可用各种方法制备。所述活性金属氧化物可由活性金属氧化物前体如金属盐、优选第2族或第3族金属盐前体制备。其它适合的第2族金属氧化物源包括在焙烧过程中生成这些金属氧化物的化合物如氯氧化物和硝酸盐。其它适合的第2族或第3族金属氧化物源包括含第2族或第3族金属阳离子的盐,如卤化物、硝酸盐、和乙酸盐。醇盐也是第2族或第3族金属氧化物源。
一种方法中,在流动空气中在高温如600℃下使含金属的化合物如草酸镁和草酸钡热解制备活性金属氧化物。如此制备的金属氧化物通常有较低的BET表面积,例如低于30m2/g。
另一方法中,使含金属的化合物水解然后脱水和焙烧制备活性金属氧化物。例如,MgO与去离子水混合使MgO羟基化,形成白色浆液。将所述浆液在加热板上缓慢加热至干燥形成白色粉末。再使所述白色粉末在真空烘箱内于100℃干燥至少4小时、例如12小时。然后将干燥的白色粉末在空气中于至少400℃、例如至少500℃、典型地至少550℃的温度下焙烧。如此制备的活性金属氧化物一般有比通过活性金属氧化物前体热解制备的活性金属氧化物更高的BET表面积(在30至300m2/g之间)。
再另一方法中,通过所谓气凝胶法(Koper,O.B.,Lagadic,I.,Volodin,A.and Klabunde,K.J.Chem.Mater.1997,9,2468-2480)制备活性金属氧化物。该方法中,在氮气吹扫下使Mg粉与无水甲醇反应生成Mg(OCH3)2的甲醇溶液。将所得Mg(OCH3)2溶液加入甲苯中。然后在剧烈搅拌下向所述Mg(OH)2的甲醇-甲苯溶液中滴加水。将所得Mg(OH)2胶态悬浮体置于高压釜中,用干氮气加压至约100psig(690kPag),缓慢加热至约1000psig(6895kPag)的终压。排出超临界溶剂产生Mg(OH)2白色细粉。将所述白色细粉在真空下于400℃加热得到毫微晶状MgO。如此制备的活性金属氧化物有最高的BET表面积,一般大于300m2/g。
由第2族和第3族金属氧化物前体制备混合金属氧化物有许多方法,例如浸渍法、初湿法和共沉淀法。
一实施方案中,使第3族金属氧化物前体浸至第2族金属氧化物之上制备混合金属氧化物。典型的制备中,使第3族金属氧化物前体如La(乙酰丙酮)3溶于有机溶剂如甲苯。溶剂的用量足够填充第2族金属氧化物的中孔和大孔容积。将第3族金属氧化物前体溶液滴加至第2族金属氧化物中。使湿混合物在真空烘箱内干燥1至12小时除去溶剂。然后将所得固体混合物在足以使第3族金属氧化物前体分解成氧化物的高温例如400℃下焙烧。
另一实施方案中,通过初湿技术制备混合氧化物。典型地,使第3族金属氧化物前体如乙酸镧溶于去离子水。将所述溶液滴加至第2族金属氧化物中。使混合物在真空烘箱内于50℃干燥1至12小时。将干燥的混合物粉碎,在空气中于550℃焙烧3小时。
再另一实施方案中,通过共沉淀法制备混合金属氧化物。使包含第2族和第3族金属氧化物前体的水溶液经受足以使固体氧化物材料的水合前体沉淀的条件,例如加入氢氧化钠或氢氧化铵。共沉淀过程中所述液体介质保持的温度典型地为20至100℃。然后将所得凝胶在50和100℃之间的温度下水热处理几天。所述水热处理典型地在高于常压下进行。
然后回收所得材料,例如通过过滤或离心分离,并洗涤和干燥。然后将所得材料在高于200℃、优选高于300℃、更优选高于400℃、最优选高于450℃的温度下焙烧。
分子筛组合物
本发明催化剂组合物包括前面所述分子筛之任一和一或多种上述活性金属氧化物,可选地包含粘合剂和/或不同于所述活性金属氧化物的基体材料。典型地,所述催化剂组合物中活性金属氧化物与分子筛之重量比在1至800wt%、如5至200wt%、特别是10至100wt%的范围内。
有许多不同的粘合剂适用于形成催化剂组合物。适合单独或组合使用的粘合剂的非限制性实例包括各种类型的水合氧化铝、氧化硅、和/或其它无机氧化物溶胶。一种优选的含氧化铝的溶胶是羟基氯化铝(aluminum chlorhydrol)。无机氧化物溶胶象胶一样使合成分子筛和其它材料如基体粘合在一起,尤其是在热处理之后。加热时,无机氧化物溶胶(优选有低粘度)转化成无机氧化物粘合剂组分。例如,热处理后氧化铝溶胶将转化成氧化铝粘合剂。
羟基氯化铝(含氯抗衡离子的羟基化铝基溶胶)有以下通式:AlmOn(OH)oClp·x(H2O),其中m为1至20,n为1至8,o为5至40,p为2至15,x为0至30。一实施方案中,粘合剂为G.M.Wolterman,etal.,Stud.Surf.Sci.and Catal.,76,p105-144(1993)中所述Al13O4(OH)24Cl7·12(H2O),引入本文供参考。另一实施方案中,一或多种粘合剂与一或多种其它氧化铝材料的非限制性实例如羟基氧化铝、γ-氧化铝、勃姆石、水铝石、和过渡氧化铝如α-氧化铝、β-氧化铝、γ-氧化铝、δ-氧化铝、ε-氧化铝、κ-氧化铝、和ρ-氧化铝、三氢氧化铝如三水铝石、三羟铝石、诺三水铝石、doyelite、及其混合物组合。
另一实施方案中,所述粘合剂为氧化铝溶胶,主要包含氧化铝,可选地包含一些硅。再另一实施方案中,所述粘合剂是用酸(优选不含卤素的酸)处理水合氧化铝如假勃姆石制备溶胶或铝离子溶液得到的胶溶氧化铝。商购胶态氧化铝溶胶的非限制性实例包括购自Nalco ChemicalCo.,Naperville,Illinois的Nalco 8676和购自Nyacol NanoTechnologies,Inc.,Ashland,Massachussetts的Nyacol AL20DW。
所述催化剂组合物包含基体材料的情况下,优选不同于活性金属氧化物和任何粘合剂。基体材料典型地能降低催化剂的总成本,起热穴的作用有助于在例如再生过程中屏蔽来自催化剂组合物的热量、使催化剂组合物致密、和提高催化剂强度如压碎强度和抗磨性。
基体材料的非限制性实例包括一或多种非活性金属氧化物,包括氧化铍、石英、氧化硅或溶胶、及其混合物,例如氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钛、氧化硅-氧化铝和氧化硅-氧化铝-氧化钍。一实施方案中,基体材料为天然粘土如来自蒙脱土和高岭土族的那些。这些天然粘土包括变膨润土和称为例如Dixie、McNamee、Georgia和Florida粘土的那些高岭土。其它基体材料的非限制性实例包括埃洛石(haloysite)、高岭石、地开石、珍珠陶土、或蠕陶土。可使基体材料如粘土经受公知的改性过程如焙烧和/或酸处理和/或化学处理。
一优选实施方案中,所述基体材料是粘土或粘土型组合物,特别是铁或氧化钛含量低的粘土或粘土型组合物,最优选所述基体材料是高岭土。已发现高岭土形成可泵送的高固含量浆液,新生表面积小,而且因其小片状结构易堆积在一起。优选所述基体材料(最优选高岭土)的平均粒度为约0.1至约0.6μm,D90粒度分布小于约1μm。
所述催化剂组合物包含粘合剂或基体材料的情况下,所述催化剂组合物典型地包含1至80%、如5至60%、特别是5至50wt%的分子筛,基于催化剂组合物之总重。
所述催化剂组合物包含粘合剂和基体材料的情况下,粘合剂与基体材料之重量比典型地为1∶15至1∶5、如1∶10至1∶4、特别是1∶6至1∶5。粘合剂的量典型地为2至30wt%、如5至20wt%、特别是7至15wt%,基于粘合剂、分子筛和基体材料之总重。已发现分子筛含量较高而基体材料含量较低使分子筛催化剂组合物的性能提高,而分子筛含量较低而基体材料含量较高改善所述组合物的抗磨性。
所述催化剂组合物的密度典型地在0.5至5g/cc、如0.6至5g/cc、例如0.7至4g/cc、特别是0.8至3g/cc的范围内。
催化剂组合物的制备方法
制备催化剂组合物中,首先形成分子筛,然后使之与上述第2族金属氧化物或第2族和第3族金属氧化物的混合物物理混合,优选在基本上干燥、干燥后、或焙烧后的状态进行混合。最优选使分子筛和活性金属氧化物在其焙烧后的状态进行物理混合。不受限于任何特定理论,相信所述分子筛与一或多种活性金属氧化物均匀混合改善使用所述分子筛组合物和本发明催化剂组合物的转化过程。可通过本领域已知的任何方法实现均匀混合,例如用混合研磨机、鼓式混合机、螺条/桨式混合机、或捏合机等进行混合。分子筛与金属氧化物之间的化学反应是不必要的,一般不优选。
所述催化剂组合物包含基体和/或粘合剂的情况下,便于先使分子筛与基体和/或粘合剂配制成催化剂前体,然后使活性金属氧化物与所配制的前体组合。所述活性金属氧化物可以非负载型粒子形式加入,或可与载体如粘合剂或基体材料组合在一起加入。然后可通过公知技术如喷雾干燥、造粒、和挤出等将所得催化剂组合物制成适合形状和粒度的颗粒。
一实施方案中,使所述分子筛组合物和基体材料(可选地有粘合剂)与液体组合形成浆液,然后混合产生包含所述分子筛组合物的基本上均匀的混合物。适合液体的非限制性实例包括水、醇、酮、醛、和/或酯。最优选的液体是水。然后将分子筛组合物、粘合剂和基体材料供入成型装置如喷雾干燥器,将所述催化剂组合物制成所要形状例如微球。
一旦所述分子筛催化剂组合物以基本上干燥或干燥后的状态成型,为使成型的催化剂组合物进一步硬化和/或活化,通常进行热处理例如在高温下焙烧。典型的焙烧温度在400至1000℃、如500至800℃、例如550至700℃的范围内。典型的焙烧环境是空气(可包括少量水蒸汽)、氮气、氦气、烟道气(贫氧燃烧产物)、或其任何组合。
一优选实施方案中,将所述催化剂组合物在氮气中于600至700℃的温度下加热。加热时间典型地为30分钟至15小时、如1至10小时、例如1至5小时、特别是2至4小时。
分子筛催化剂组合物的使用方法
上述催化剂组合物适用于许多过程,包括:裂化,例如使石脑油原料裂化成轻烯烃(US6 300 537)或使较高分子量(MW)的烃裂化成较低MW的烃;加氢裂化,例如使重石油和/或环状原料加氢裂化;异构化,例如使芳烃如二甲苯异构化;聚合,例如使一或多种烯烃聚合生产聚合物产品;重整;氢化;脱氢;脱蜡,例如使烃脱蜡除去直链烷属烃;吸收,例如吸收烷基芳族化合物分离出其异构体;烷基化,例如使芳烃如苯和烷基苯烷基化,可选地用丙烯生产枯烯或用长链烯烃;烷基转移,例如芳烃和多烷基芳烃组合物的烷基转移;脱烷基化;氢化开环;歧化,例如使甲苯歧化生产苯和对二甲苯;低聚,例如直链和支链烯烃的低聚;和脱氢环化。
优选的过程包括使石脑油转化成高度芳化的混合物;使轻烯烃转化成汽油、馏出物和润滑剂;使含氧化合物转化成烯烃;使轻链烷烃转化成烯烃和/或芳烃;及使不饱和烃(乙烯和/或乙炔)转化成醛以转化成醇、酸和酯的过程。
最优选的本发明方法是使原料转化成一或多种烯烃。典型地,所述原料包含一或多种含脂族部分的化合物、优选一或多种含氧化合物,所述脂族部分含1至约50个碳原子、优选1至20个碳原子、更优选1至10个碳原子、最优选1至4个碳原子。
适合的含脂族部分的化合物的非限制性实例包括醇如甲醇和乙醇;烷基硫醇如甲硫醇和乙硫醇;烷基硫醚如甲硫醚;烷基胺如甲胺;烷基醚如二甲醚、二乙醚和甲乙醚;烷基卤如甲基氯和乙基氯;烷基酮如二甲酮;甲醛;和各种酸如乙酸。优选所述原料包含甲醇、乙醇、二甲醚、二乙醚或其组合物,更优选甲醇和/或二甲醚,最优选甲醇。
使用上述各种原料、特别是包含含氧化合物如醇的原料,本发明催化剂组合物能使所述原料主要转化成一或多种烯烃。所生产的烯烃典型地有2至30个碳原子、优选2至8个碳原子、更优选2至6个碳原子、还更优选2至4个碳原子、最优选乙烯和/或丙烯。
典型地,本发明催化剂组合物能使包含一或多种含氧化合物的原料转化成包含多于50wt%、典型地多于60wt%、如多于70wt%、优选多于80wt%烯烃(基于产品中烃的总重)的产品。此外,乙烯和/或丙烯的产量(基于产品中烃的总重)典型地大于40wt%、例如大于50wt%、优选大于65wt%、更优选大于78wt%。典型地,乙烯的产量(基于所生产烃产品总重的重量百分数)大于20wt%、如大于30wt%、例如大于40wt%。此外,丙烯的产量(基于所生产烃产品总重的重量百分数)大于20wt%、如大于25wt%、例如大于30wt%、优选大于35wt%。
用本发明催化剂组合物使包含甲醇和二甲醚的原料转化成乙烯和丙烯时,发现在相同转化条件下与没有活性金属氧化物组分的类似催化剂组合物相比使乙烷和丙烷的产量下降多于10%、如多于20%、例如多于30%、特别是在30至40%的范围内。
除含氧化合物组分如甲醇之外,所述原料可还包含一或多种稀释剂,所述稀释剂一般不与原料或分子筛催化剂组合物反应,常用于降低原料浓度。稀释剂的非限制性实例包括氦气、氩气、氮气、一氧化碳、二氧化碳、水、基本上非反应性的烷属烃(尤其是链烷烃如甲烷、乙烷和丙烷)、基本上非反应性的芳香化合物、及其混合物。最优选的稀释剂是水和氮气,特别优选的是水。
本发明方法可在很宽的温度范围内进行,如在200至1000℃、例如250至800℃、包括250至750℃、适宜为300至650℃、优选350至600℃、更优选350至550℃的范围内。
类似地,本发明方法可在很宽的压力范围内进行,包括自生压力。典型地除所述方法中使用的任何稀释剂之外所述原料的分压在0.1kPaa至5MPaa、优选5kPaa至1MPaa、更优选20kPaa至500kPaa的范围内。
重时空速(WHSV)(定义为不包含任何稀释剂的原料总重/小时/催化剂组合物中分子筛的重量)可在1至5000hr-1、优选2至3000hr-1、更优选5至1500hr-1、最优选10至1000hr-1的范围内。一实施方案中,WHSV为至少20hr-1,原料包含甲醇和/或二甲醚的情况下在20至300hr-1的范围内。
本发明方法便于以固定床法、或更典型地以流化床法(包括湍流床法)、如连续流化床法、特别是连续高速流化床法进行。
一实施方案中,所述方法以流化床法进行,使用反应器系统、再生系统和回收系统。该方法中,新鲜原料(可选地有一或多种稀释剂)与分子筛催化剂组合物一起供入反应器系统中的一或多个提升管反应器。在提升管反应器内使原料转化成气态流出物,与焦化的催化剂组合物一起进入反应器系统中的分离容器。在分离容器内(典型地借助旋风分离器)使焦化的催化剂组合物与气态流出物分离,然后进入汽提区,典型地在分离容器下部。在汽提区内,使焦化的催化剂组合物与气体如水蒸汽、甲烷、二氧化碳、一氧化碳、氢气和/或惰性气体如氩气(优选水蒸汽)接触,从焦化的催化剂组合物中回收被吸附的烃,然后引入再生系统。
在再生系统内,使焦化的催化剂组合物与再生介质(优选含氧气体)在能燃烧来自焦化催化剂组合物的焦炭的再生条件下接触,优选达到基于进入再生系统的焦化分子筛催化剂组合物总重低于0.5wt%的水平。例如,所述再生条件可包括温度在450至750℃、优选550至700℃的范围内。
从再生系统中排出的再生催化剂组合物与新鲜的分子筛催化剂组合物和/或再循环的分子筛催化剂组合物和/或原料和/或新鲜的气体或液体合并,返回提升管反应器。
所述气态流出物从分离系统中排出,通过回收系统分离和提纯气态流出物中的轻烯烃特别是乙烯和丙烯。
一实施方案中,本发明方法构成由烃类原料特别是甲烷和/或乙烷生产轻烯烃的联合方法的一部分。该方法的第一步是使气态原料(优选与水蒸汽组合)通入合成气生产区产生合成气流,典型地包含二氧化碳、一氧化碳和氢气。然后一般通过在150至450℃范围内的温度和5至10MPa范围内的压力下与多相催化剂(典型地为铜基催化剂)接触使合成气流转化成包含含氧化合物的物流。提纯后,可用所述包含含氧化合物的物流作原料在上述方法中生产轻烯烃如乙烯和/或丙烯。此联合方法的非限制性实例描述在EP-B-0 933 345中,引入本文供参考。
另一更完全的联合法中,可选地与上述联合法组合,将生产的烯烃引入一或多个聚合过程生产各种聚烯烃。
提供以下实施例以更好地理解本发明,包括其典型优点。
实施例A-分子筛的制备
在作为有机结构导向剂或模板剂的氢氧化四乙铵(R1)和二丙胺(R2)存在下使硅铝磷酸盐分子筛SAPO-34(表示为MSA)结晶。制备以下摩尔比组成的混合物:
0.2 SiO2/Al2O3/P2O5/0.9 R1/1.5 R2/50 H2O
使一定量的Condea Pural SB与去离子水均匀混合形成浆液。向该浆液中加入一定量的磷酸(85%)。这些加料过程都在搅拌下进行形成均匀混合物。向该均匀混合物中加入Ludox AS40(40%SiO2),然后加入R1混合形成均匀混合物。向该均匀混合物中加入R2。然后在搅拌下在不锈钢高压釜内加热至170℃长达40小时使该均匀混合物结晶。得到结晶分子筛的浆液。然后过滤使晶体与母液分离。再使分子筛晶体与粘合剂和基体材料混合,通过喷雾干燥制成颗粒。
实施例B-转化过程
给出的所有催化或转化率数据都是用由置于炉内的不锈钢反应器(1/4in(0.64cm)外径)组成的微流量反应器获得的,向其中供应汽化的甲醇。所述甲醇转化反应在475℃、25psig(172kPag)和100WHSV(相对于SAPO-34的量)下进行。如实施例A中所述配制的SAPO 34的典型载荷为95mg,所述反应器床用1g石英砂稀释以减小反应器中的反应放热量。具体地,对于本发明催化剂组合物而言,所述分子筛和金属氧化物使用实施例A的MSA分子筛与活性金属氧化物的物理混合物。
反应器的流出物收集在15-进样环管Valco阀内。通过配有火焰离子化检测器的在线气相色谱(Hewlett Packard 6890)分析收集的试样。所用色谱柱为Q-柱。所用响应因子列于下表1中。
表1
  C1  C2  C2° C3 C3°   CH3OH   (CH3)2O   C4’s   C5′s   C6′s   C7′s
  1.103  1.000  1.070 1.003 1.052   3.035   2.639   0.993   0.999   1.006   1.000
术语“C4’s、C5+等”意指烃中的碳数。注意表示为“C5+’s”的选择性由C5’s、C6’s和C7’s之和组成。基于下式计算加权平均(选择性):x1*y1+(x2-x1)*(y1+y2)/2+(x3-x2)*(y2+y3)/2+...,其中xi和yi分别为产量和g供入的甲醇/g分子筛。所报告的催化剂寿命(g甲醇/g分子筛)是累积转化的甲醇。注意所述寿命和WHSV均基于SAPO-34分子筛的重量。所述计算中以低于10wt%的转化率转化的甲醇不计。二甲醚不算作产物,在计算选择性和转化率中视为未反应的甲醇。
实施例1-对照试验
该实施例1中,催化剂组合物由实施例A中所述表示为MAS的分子筛组成。将所述催化剂用石英稀释形成反应器床。在实施例B中所述反应器和条件下进行此试验的结果示于表2中。
表2
  C1   C2   C2°  C3  C3°  C4s  C5 +s  C2+3     寿命g/g
  1.77   37.65   0.29  39.80  0.63  13.04  6.82  77.45     16.34
实施例2-MgO的制备和丙酮转化率的测量
如下制备MgO。使5.0g MgO(98%,来自Aldrich的ACS级试剂)与150ml去离子水混合形成白色浆液。在加热板上将此白色浆液缓慢加热至干。使此干块成为碎片并研磨成细粉。再使粉末在烘箱内于120℃干燥12小时。然后将该白色粉末在空气中于550℃焙烧3小时。如此制备的活性金属氧化物MgO有较高的表面积(BET面积为约250m2/g)。将此MgO粉末筛分得到各种粒度的颗粒。粒度在75至150微米之间的用于实施例B中所述转化过程。
将0.25g如此制备的MgO装载于玻璃管中,使该管通过9mm O-环接头与真空管线相连。然后将MgO在真空下加热至450℃并在450℃保持2小时从所述氧化物中除去水。冷却至室温(25℃)后,将所述MgO用丙酮-2-13C浸透。然后将吸附了丙酮-2-13C的MgO在不接触任何空气或湿气的情况下移至7-mm NMR旋转器内。丙酮转化率的NMR测量之前使试样在室温(约25℃)下静置1小时。在有幻角旋转的200MHz固态NMR波谱仪上进行13C NMR试验。用1-s脉冲延迟、2-ms接触时间和2000次扫描获得交叉极化波谱。用15-s脉冲延迟和400或更多次扫描获得定量单脉冲波谱。重复试验,13C NMR的结果显示平均1小时后已消耗多于80%的丙酮。
实施例3-分子筛和MgO
该实施例3中,分子筛催化剂组合物由33.6wt%MSA、50.4wt%粘合剂和16wt%前面实施例2中所述MgO组成。使催化剂组合物充分混合,然后用石英稀释形成反应器床。在实施例B中所述反应器和条件下试验的结果示于表3中。表2和表3中的数据表明MgO占催化剂组合物载荷的16wt%时,SAPO-34分子筛的寿命由16.34g/g分子筛增至31.66g/g分子筛,提高94%。
表3
 C1  C2  C2° C3 C3° C4s  C5+s  C2+3     寿命g/g
 1.73  36.86  0.27 40.74 0.53 14.01  5.87  77.59     31.66
实施例4-MgO与第3族金属氧化物(5wt%La2O3)混合
通过初湿法使第3族金属氧化物(所述金属为La)加载至高表面积MgO之上。使0.2261g乙酸镧溶于约1.9ml去离子水。将该溶液滴加至2.0146g MgO中。使该混合物在真空烘箱内于50℃干燥1小时。使干燥的混合物粉碎,在空气中于550℃焙烧3小时。La2O3的wt%为约5%。将此金属氧化物粉末筛分得到各种粒度的颗粒。粒度在75至150微米之间的用于转化过程。
实施例5-分子筛和混合金属氧化物:La2O3(5wt%)/MgO
该实施例5中,催化剂组合物由33.6wt%MSA、50.4wt%粘合剂和16wt%前面实施例4中所述含5wt%第3族金属氧化物(其中所述金属为La)的MgO组成。使催化剂组合物充分混合,然后用石英稀释形成反应器床。在实施例B中所述反应器和条件下试验的结果示于表4中。表2和表4中的数据表明含5wt%La2O3的MgO占催化剂组合物载荷的16wt%时,SAPO-34分子筛的寿命由16.34g/g分子筛增至65.90g/g分子筛,提高300%。
表4
  C1   C2   C2°   C3   C3°   C4s   C5+s   C2+3   寿命g/g
  1.59   34.54   0.23   42.02   0.50   14.24   6.87   76.56   65.90a
a.在该转化过程中测定的最低转化率为30.69wt%,寿命为57.57g甲醇/g分子筛。报道的寿命(65.90g甲醇/g分子筛)是通过将转化率从30.69wt%外推到10wt%估算的。
对比例6-分子筛和BaO
此对比例6中,使28.8wt%MSA、43.2wt%粘合剂和28wt%乙酸钡充分混合,然后用石英稀释形成反应器床。在20ml/min氧气和50ml/min氦气混合物气流中将反应器加热至550℃并在550℃保持90分钟。在这些条件下乙酸钡分解成氧化钡。所述分子筛催化剂组合物由32wt%MSA、48wt%粘合剂和20wt%BaO组成。然后使反应器温度降至475℃,在前面实施例B的条件下在转化过程中测试所述催化剂组合物。所述转化过程的结果示于表5中。表2和表5中的数据表明BaO构成催化剂组合物载荷的20wt%时,SAPO-34分子筛的寿命提高43%。
表5
  C1   C2   C2°   C3   C3°   C4s   C5+s   C2+3     寿命g/g
  1.74   37.19   0.27   40.36   0.55   13.57   6.32   77.55     23.36

Claims (18)

1.一种在分子筛催化剂组合物存在下使原料转化成一或多种烯烃的方法,所述催化剂组合物包含分子筛、粘合剂、基体材料和金属氧化物,所述金属氧化物当用丙酮饱和并在25℃下与所述丙酮接触1小时时,使多于80%的丙酮转化。
2.权利要求1的方法,其中所述金属氧化物已焙烧至200至700℃范围内的温度。
3.权利要求1的方法,其中所述金属氧化物的表面积大于70m2/g。
4.权利要求1的方法,其中所述金属氧化物在100℃下的二氧化碳摄入量为至少0.03mg/m2金属氧化物。
5.权利要求1的方法,其中所述金属氧化物包括氧化镁。
6.权利要求5的方法,其中所述催化剂组合物还包含第3族金属氧化物。
7.权利要求1的方法,其中所述原料包括甲醇和/或二甲醚。
8.一种在分子筛催化剂组合物存在下使原料转化成一或多种烯烃的方法,所述催化剂组合物通过如下方法制备,所述方法包括使包含分子筛的第一粒子与包含至少一种选自元素周期表第2族金属氧化物的第二粒子物理混合,其中所述金属氧化物在100℃下的二氧化碳摄入量为至少0.03mg/m2金属氧化物。
9.一种在分子筛催化剂组合物存在下使原料转化成一或多种烯烃的方法,所述催化剂组合物通过如下方法制备,所述方法包括使分子筛、粘合剂、基体材料、和至少一种金属氧化物组合,所述金属氧化物当用丙酮饱和并在25℃下与所述丙酮接触1小时时,使多于25%的丙酮转化。
10.一种在分子筛催化剂组合物存在下使原料转化成一或多种烯烃的方法,所述催化剂组合物通过如下方法制备,所述方法包括:(a)使分子筛、粘合剂和基体材料组合产生催化剂前体粒子;和(b)向所述催化剂前体粒子中加入在200至700℃范围内的温度下焙烧过的包含第2族金属氧化物或第2族金属氧化物前体的粒子,以形成活性第2族金属氧化物。
11.一种在分子筛催化剂组合物存在下使原料转化成一或多种烯烃的方法,所述催化剂组合物通过如下方法制备,所述方法包括:
(i)从包含至少一种模板剂和硅源、磷源和铝源至少之二的反应混合物合成的分子筛;
(ii)回收步骤(i)中合成的分子筛;
(iii)在200至700℃的温度范围内焙烧的氧化镁或氧化镁前体,以形成活性氧化镁;以及
(iv)物理混合所述回收的步骤(i)中的分子筛和所述活性氧化镁。
12.一种制备一或多种烯烃的方法,所述方法包括:
(a)在催化剂组合物的存在下,将包含至少一种含氧化合物的原料引入反应器系统中,所述催化剂组合物包含小孔分子筛、粘合剂、基体材料、已在200至700℃的温度范围内焙烧过的氧化镁、和第3族金属氧化物;
(b)从该反应器系统中排出流出物流,该流出物流含有一或多种烯烃;
(c)使该流出物流通过回收系统;以及
(d)回收至少一或多种烯烃。
13.权利要求12的方法,其中所述烯烃包括乙烯和丙烯;所述分子筛为硅铝磷酸盐分子筛;所述原料包括甲醇;所述氧化镁的表面积大于80m2/g;所述粘合剂为氧化铝溶胶;以及所述基体材料为粘土。
14.权利要求12的方法,其中所述氧化镁当用丙酮饱和并在25℃下与所述丙酮接触1小时时,使多于80%的丙酮转化。
15.一种制备一或多种烯烃的联合方法,该联合方法包括:
(a)将烃原料通入合成气生产区以产生合成气流;
(b)使该合成气流与催化剂接触以形成氧化的原料;以及
(c)将该氧化的原料在分子筛催化剂组合物的存在下转化为一或多种烯烃,该分子筛催化剂组合物包含平均孔径小于5埃的小孔分子筛和表面积大于80m2/g的金属氧化物。
16.权利要求15的联合方法,其中所述金属氧化物在100℃下的二氧化碳摄入量为至少0.03mg/m2金属氧化物。
17.权利要求15的联合方法,其中所述方法进一步包括(d)在聚合催化剂的存在下将该一或多种烯烃聚合为聚烯烃。
18.权利要求15的联合方法,其中所述氧化的原料包括甲醇;所述烯烃包括乙烯和丙烯;以及所述金属氧化物为已在300至575℃的温度范围内焙烧过的氧化镁。
CNA2007101374007A 2002-02-28 2003-02-10 分子筛组合物、催化剂、其制备方法及在转化过程中的应用 Pending CN101113124A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US36096302P 2002-02-28 2002-02-28
US60/360,963 2002-02-28
US60/366,012 2002-03-20
US60/374,697 2002-04-22
US10/215,511 2002-08-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB038082659A Division CN100335172C (zh) 2002-02-28 2003-02-10 分子筛组合物、催化剂、其制备方法及在转化过程中的应用

Publications (1)

Publication Number Publication Date
CN101113124A true CN101113124A (zh) 2008-01-30

Family

ID=37970011

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101374007A Pending CN101113124A (zh) 2002-02-28 2003-02-10 分子筛组合物、催化剂、其制备方法及在转化过程中的应用

Country Status (2)

Country Link
CN (1) CN101113124A (zh)
ZA (3) ZA200405973B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144951A1 (zh) * 2018-01-26 2019-08-01 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制乙烯的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144951A1 (zh) * 2018-01-26 2019-08-01 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制乙烯的方法

Also Published As

Publication number Publication date
ZA200406608B (en) 2009-07-29
ZA200405973B (en) 2006-03-29
ZA200406712B (en) 2006-05-31

Similar Documents

Publication Publication Date Title
CN100335172C (zh) 分子筛组合物、催化剂、其制备方法及在转化过程中的应用
US7501375B2 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US7411106B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
JP4781627B2 (ja) 分子篩触媒組成物、その製造、及び変換方法におけるその使用
US6844291B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
WO2006023095A1 (en) Conversion of oxygenates to olefins
CN101113124A (zh) 分子筛组合物、催化剂、其制备方法及在转化过程中的应用
US7186875B2 (en) Conversion of oxygenates to olefins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080130