CN101073015B - 校正装置保护 - Google Patents

校正装置保护 Download PDF

Info

Publication number
CN101073015B
CN101073015B CN2005800393673A CN200580039367A CN101073015B CN 101073015 B CN101073015 B CN 101073015B CN 2005800393673 A CN2005800393673 A CN 2005800393673A CN 200580039367 A CN200580039367 A CN 200580039367A CN 101073015 B CN101073015 B CN 101073015B
Authority
CN
China
Prior art keywords
correcting
electric means
power
supply system
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800393673A
Other languages
English (en)
Other versions
CN101073015A (zh
Inventor
杰克·麦考尔
阿伦·卡尔尤兹尼
蒂莫西·罗伯特·戴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cooper Technologies Co
Original Assignee
Cooper Technologies Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cooper Technologies Co filed Critical Cooper Technologies Co
Publication of CN101073015A publication Critical patent/CN101073015A/zh
Application granted granted Critical
Publication of CN101073015B publication Critical patent/CN101073015B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

用于电源系统的控制系统包括电校正装置、电压测量装置、电流测量装置和保护装置,所述电压测量装置被耦合到所述电源系统的每一相,所述电流测量装置被连接在所述电源系统的每一相与所述电校正装置之间,而所述保护装置被连接到所述电压测量装置和所述电流测量装置的输出。所述保护装置包括控制器,所述控制器被配置来以无需使用或者与针对所述电校正装置中的其他点进行的其他新近电压或电流测量独立,并且与在所述电校正装置处进行的中性点-地测量独立的方式,使用从所述电压测量装置和所述电流测量装置输出的测得的电压和电流来检测不平衡。

Description

校正装置保护
相关申请的交叉引用:本申请要求2004年10月18日递交的美国申请No.60/619,032的优先权,所述申请在这里通过引用被整体包括。
技术领域
本文涉及保护电源系统中的校正装置。
背景
公用事业单位经常将诸如电抗器或电容器组(bank)的校正装置连接到电源系统,以降低系统损耗,消除感应电抗,或者改善电压调整(voltage regulation)。
内容
在一个总的方面,执行一种方法来检测连接到电源系统的电校正装置中的不平衡。所述方法包括测量所述电源系统的每一相的电压,测量所述电源系统的每一相与所述电校正装置之间的电流,以及检测所述电校正装置中的不平衡。所述不平衡是以与针对所述电校正装置中的其他点的其他新近电压或电流测量独立,并且与在所述电校正装置处进行的中性点-地测量独立的方式,使用所述测得的电压和所述电流来检测的。
多种实现方式可以包括下面特征中的一种或更多种。例如,所述电校正装置可以包括电抗器组。所述电校正装置可以包括电容器组。
检测不平衡的步骤可以包括使用测得的值来确定负序电流,以及将所述负序电流与针对未损坏的电校正装置计算的预先确定的负序电流进行比较。
所述电校正装置可以是并联连接的。所述电校正装置可以是未接地的。所述电校正装置可以包括以Y字形的结构布置的元件组。所述电校正装置可以是未接地的或者接地的。
所述方法还可以包括当不平衡被检测到时,驱动切换装置来将所述电校正装置与所述电源系统隔离开。
检测所述不平衡的步骤可以包括对由环境温度改变造成的所述测得的电压和电流的误差进行补偿。
所述方法可以包括确定所述不平衡是在哪一相发生的。
在另一个总的方面,用于电源系统的控制系统包括电校正装置、电压测量装置、电流测量装置和保护装置。所述电压测量装置被连接来测量所述电源系统的每一相的电压。所述电流测量装置被连接来测量所述电源系统的每一相与所述电校正装置之间的电流。所述保护装置被连接到所述电压测量装置和所述电流测量装置的输出。所述保护装置包括控制器,所述控制器被配置来以与针对所述电校正装置中的其他点进行的其他新近电压或电流测量独立,并且与在所述电校正装置处进行的中性点-地测量独立的方式,使用从所述电压测量装置和所述电流测量装置输出的所述测得的电压和电流来检测不平衡。
多种实现方式可以包括下面特征中的一个或更多个。例如,所述电校正装置可以包括电容器组或电抗器组。所述电校正装置可以是并联连接的。所述电校正装置可以是未接地的。所述电校正装置可以包括以Y字形的结构布置的元件组。所述电校正装置可以是接地的。
所述控制系统可以包括所述电源系统的每一相中的切换装置,并且所述电校正装置可以被连接到所述切换装置,以在不平衡被检测到时,驱动所述切换装置来将所述电校正装置与所述电源系统隔离开。
在另一个总的方面,用于检测连接到电源系统的电校正装置中的不平衡的系统包括用于测量所述电源系统的每一相的电压的装置,用于测量所述电源系统的每一相与所述电校正装置之间的电流的装置,以及用于检测不平衡的装置。用于检测所述不平衡的所述装置以与针对所述电校正装置中的其他点进行的其他新近电压和电流测量独立,并且与在所述电校正装置处进行的中性点-地测量独立的方式,来使用所述测得的电压和电流。
在另一个总的方面,执行一种方法来检测连接到电源系统的电校正装置中的不平衡。所述方法包括测量所述电源系统的每一相A、B、C的电压VA、VB和VC;测量所述电源系统的每一相与所述电校正装置之间的电流IA、IB和IC;以及基于所述电流IA、IB和IC以及所述电压VA、VB和VC,分别计算正序、负序和零序装置电流I1、I2和I0,以及分别计算正序、负序和零序电压V1、V2和V0。所述方法还包括确定未损坏的电校正装置的预先确定的负序电流I2un;通过将计算得到的所述负序电流I2与所述预先确定的负序电流I2un进行比较,来计算负序电流差值;以及,如果I2-I2un超过预先确定的阈值,断开(de-energizing)所述电校正装置。
多个实现方式可以包括下面特征中的一个或更多个。例如,针对未接地的电校正装置,可以基于分别在所述电校正装置处的所述正序和负序电压V1和V2,以及在所述电校正装置的所述正序电流I1来计算所述预先确定的负序电流I2un
对于未接地的电校正装置来说,项
I 2 un = [ ( C 21 C + jB 21 C ) V 1 + ( G 11 C + jB 11 C ) V 2 ] × | I 1 V 1 G 11 C 2 + B 11 C 2 | ;
其中
G 11 C = V 1 C I 1 rC + V 2 rC I 2 rC + V 2 iC I 2 iC V 1 C 2 + ( V 2 rC 2 + V 2 iC 2 ) ,
B 11 C = V 1 C I 1 iC + V 2 iC I 2 rC - V 2 rC I 2 iC V 1 C 2 - ( V 2 rC 2 + V 2 iC 2 ) ,
G 21 C = I 2 rC - G 11 C V 2 rC + B 11 C V 2 iC V 1 C ,
B 21 C = I 2 iC - G 11 C V 2 iC - B 11 C V 2 rC V 1 C ;
并且
V1C=V1C,       V2C=V2rC+jV2iC
I1C=I1rC+jI1iC,I2C=I2rC+jI2iC
并且其中V1C、I1C、V2C和I2C分别是在所述电校正装置被投入工作(was commissioned)时曾测得的正序电压、正序电流、负序电压和负序电流;I1rC、I1iC分别是I1C的实和虚分量;V2rC、V2iC分别是V2C的实和虚分量;并且,I2rC、I2iC分别是I2C的实和虚分量。
针对接地的电校正装置,可以基于分别在所述电校正装置处的正、负和零序电压V1、V2、V0,以及在所述电校正装置处的所述正序电流I1来计算所述预先确定的负序电流I2un
对于接地的电校正装置来说,项
I 2 un = I 2 un = [ Y 10 C V 1 + Y 11 C V 2 + Y 12 C V 0 ] × | I 1 V 1 Y 11 C | ;
并且
Y11C=g11I1C+g12I2C+g13I0C
Y12C=g12I1C+g13I2C+g11I0C
Y10C=g13I1C+g11I2C+g12I0C
并且
g 11 = ( V 1 C ) 2 - V 2 C V 0 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C ,
g 12 = ( V 2 C ) 2 - V 1 C V 0 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C ,
g 13 = ( V 0 C ) 2 - V 1 C V 2 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C .
在另一个总的方面,执行一种方法来检测连接到电源系统的电校正装置中的不平衡。所述方法包括测量所述电源系统的每一相与所述电校正装置之间的电流IA、IB和IC;基于所述电流IA、IB和IC,计算负序电流I2;确定未损坏的电校正装置的预先确定的负序电流I2un;通过将计算得到的所述负序电流I2与所述预先确定的负序电流I2un进行比较,计算负序电流差值;以及,如果I2-I2un超过预先确定的阈值,断开所述电校正装置。
对于许多应用来说,采用双Y字形形式的组构造。但是,这种形式的组构造可能需要更多的空间来安装,并且相比诸如单Y字形结构的其他结构,可能制作更加昂贵。所描述的控制系统和方法允许以单Y字形的方式配置组,而不会丢失双Y字形构造的益处,并且由此减少在变电所(substation)中的安装空间,并且进一步降低组的总体成本。
对于单Y字形系统来说,从成本和可靠性的立场来看,可能不期望包括中性点-地测量装置,所述中性点-地测量装置例如为(用于未接地的组的)电压传感器(transducer)或者(用于接地的组的)中心点-地电流传感器。以下描述的控制系统和方法提供可比程度的组保护,但是消除对中性点-地测量装置的需求。
所描述的控制系统和方法还提供无需进行组内部的测量而确定组中的内部不平衡的方法。仅通过测量组的输出是不可能确定这样的内部不平衡的。
根据说明书、附图和权利要求书,将清楚其他的特征。
附图说明
图1是包括未接地的校正装置的控制系统的框图;
图2是包括接地的校正装置的控制系统的框图。
不同附图中的相同标注可以指示相似的元件。
详细描述
诸如电抗器和电容器组的校正装置可以以“并联”的结构(即,以线-中性点(line-neutral)的布置方式)而不是以串联(或者说成行(in-line))的连接方式连接。作为并联连接的装置,所述组可以是接地的(即,使得组中性点以故意的低阻抗联结被连接到电源系统地)或者未接地的(即,使得在组中性点与系统地之间没有故意的连接)。
一旦该组被接通,外部保护系统被用来确保组内的电压可接受,以免对组中的个别电抗器或电容器部件过度加压。这在包括许多互连的单独部件的电容器组中尤其要考虑。如果组内的个别部件故障,则内部组电压将变化,并且在剩余的工作单元两端电压升高。如果该升高的电压应力没有被检测到,以及在必要时没有响应于此断开整个组,则内部级联以及通常情况下灾难性故障可能发生。确定是否存在潜在的损坏性电压水平的一种方法是测量组内的每个内部部件两端的电压应力。但是,由于部件数量众多,这可能不切实际。因此,现有的保护系统采用间接测量,使用组外部的电压和可能流过组的电流,结合公知的等式来估计内部电压水平。
对于未接地的组来说,如以上所提及的,个别部件的故障产生导致组内升高的电压应力的不平衡。该不平衡表现为中性点-地电压的漂移。通过在中性点到地位置(neutral-to-ground location)处采用电压传感器,可以测量中性点电压,并且可以使用保护系统来估计内部电压应力的幅度。
对于接地的组来说,个别部件的故障也产生导致组内升高的电压应力的不平衡。该不平衡表现为中性点-地电流的漂移。通过在中性点到地位置处采用电流传感器,可以测量中性点电流,并且可以使用保护系统来估计内部电压应力的幅度。不管接地的结构如何,以多个时间延迟(with time delays)将估计的内部电压应力的幅度与阈值进行比较,以确定是否以及什么时候组应该从电源系统被切断。
参照图1和2,控制系统100或200检测异常,所述异常例如未接地(图1)或接地(图2)的电抗器或电容器组内的不平衡,所述电抗器或电容器组被并联连接到电源系统。控制系统100或200无需测量组内的一个或更多个内部部件两端的电压应力(即,独立于组内的一个或更多个内部部件两端的电压应力)并且无需在组中使用中性点-地测量装置,而确定是否存在潜在的损坏性电压水平。
如以上说明的,在现有的系统中,当未接地的组以单个电Y字形的方式被布置时,监控在该组的未接地中性点与电源系统地之间的电压。如果组以双Y字形的方式被布置,则监控在两个Y字形结构的中性点之间流动的电流(“中性点到中性点电流”)或者中性点-地电压。通常,利用分别的电压或电流传感器来测量这些信号,所述电压或电流传感器是电源系统的额外部件,所述额外部件增加获取和操作成本两者,并且可能降低可靠性。一旦被定量,中性点-地电压或者中性点-中性点电流被用来检测潜在的损坏性不平衡状况何时在组内发生。具体参照图1,在控制系统100中,仍使用组外部的电信号。但是,这些电压和电流信号对于其他测定和备用保护功能来说通常是可用的。
控制系统100被设计用于三相(A、B、C)电源系统,并且包括三相高电压总线105,所述总线105被示出在到三相未接地的并联电抗器或电容器组110的连接点处。系统100还包括三个诸如电流传感器115的电流测量装置,所述电流测量装置提供从总线105的每一相流向并联组110的电流IA、IB和IC。除了被控制系统100使用以外,由传感器115提供的电流测量还可以被电源系统的其他部分中的测定设备和备用保护使用。
控制系统100还包括用于总线105的每一相的电压测量装置(例如电压传感器120),所述电压测量装置提供从每一相到地的电压VA、VB和VC。除了被控制系统100使用以外,由电压传感器120提供的电压测量还可以被电源系统的其他部分中的测定设备和备用保护使用。
控制系统100包括切换装置125,所述切换装置125被用来根据需要将组110连接到电源系统,以及在系统100内检测到损坏性的不平衡时,使组110停止服务。控制系统100还包括计算机化的保护装置130,所述计算机化的保护装置130基于测得的值VA、VB、VC、IA、IB和IC进行计算。装置130以控制信号的形式输出决定,所述控制信号被发送到切换装置125,使得在检测到损坏性的不平衡时,组110可以被断开。在一些实现中,保护装置130可以是切换装置125的部件。
参照图2,用于三相(A、B、C)电源系统的控制系统200包括三相高电压总线205,所述总线205被示出在到三相接地的并联电抗器或电容器组210的连接点处。与系统100相似,系统200包括三个诸如电流传感器215的电流测量装置,所述电流测量装置提供从总线205的每一相流向并联组210的电流IA、IB和IC。控制系统200还包括用于总线205的每一相的电压测量装置(例如电压传感器220),所述电压测量装置提供从每一相到地的电压VA、VB和VC
控制系统200包括切换装置225,所述切换装置225与切换装置125类似,并且也被用来根据需要将并联组210连接到电源系统,以及在系统200内检测到损坏性的不平衡时,使组210停止服务。控制系统200包括计算机化的保护装置230,所述计算机化的保护装置230以与装置130类似的方式,基于测得的值VA、VB、VC、IA、IB和IC进行计算。
在系统100和200两者中,保护装置130或230使用下面的关系式,基于组110或210的相电流IA、IB和IC以及相到地电压VA、VB和VC,分别计算正序、负序和零序装置电流I1、I2和I0,并且分别计算正序、负序和零序电压V1、V2和V0
I 1 = 1 3 × ( I A + aI B + a 2 I C )
I 2 = 1 3 × ( I A + a 2 I B + aI C )
I 0 = 1 3 × ( I A + I B + I C )
V 1 = 1 3 × ( V A + aV B + a 2 V C )
V 2 = 1 3 × ( V A + a 2 V B + a V C )
V 0 = 1 3 × ( V A + V B + V C )
其中:
a = - 1 2 + j 3 2 是福蒂斯丘算子(Fortescue Operator)。
保护装置130或230进行负序电流差值计算,以进行对以单Y字形结构连接的三相电抗装置的不平衡保护。该计算基于将组计算的(以上基于组相电流确定的)负序电流I2与未损坏的组的预先确定的负序电流I2un进行的比较。如同不对称仅因为外部(系统)电压不平衡和/或因为固有的相不平衡而存在那样计算负序电流I2un,所述固有相不平衡是由制造公差(即,不是组的所有相都包括等量的电抗)造成的。计算得到的信号I2和预先确定的负序电流I2un之间的向量差值IUN与由内部错误(单元故障)造成的受保护的组的内部不对称成比例:
IUN=I2-I2un
当向量差值IUN超过预先确定的阈值时,存在内部错误,所述内部错误要求诸如断开整个组的操作。如在以上的等式中看到的,I2基于测得的组相电流IA、IB和IC被计算。测得的信号I2可以包括虚假不平衡效应,所述虚假不平衡效应是由于不平衡总线电压,由制造公差造成的组中的固有不平衡,或者由环境温度的改变造成的组的电性质(诸如导纳)的变化造成的。负序电流项I2un从计算得到的信号I2去除任何这样的误差信号,并且如下面示出的,基于组未接地或接地的状况被计算。
针对未接地组的I 2un 的计算
预先确定的负序电流I2un基于在组终端处测得的正序和负序电压V1和V2,以及基于测得的正序组电流I1被计算:
I 2 un = [ ( G 21 C + jB 21 C ) V 1 + ( G 11 C + jB 11 C ) V 2 ] × | I 1 V 1 G 11 C 2 + B 11 C 2 | ;
其中G11C+jB11C和G21C+jB21C是当组正投入工作(was being commissioned)时存在的组110或210的序导纳矩阵的元素。这些值被保存在保护装置130或230的非易失性存储器中。在以上的符号中,以及在下面的那些符号中,下标“C”表示在组投入工作或者初始服务时可获得的测得量或导出量。
矩阵元素可以基于曾在组110或210投入工作时测得的正序电压V1C、负序电压V2C、正序电流I1C和负序电流I2C被计算。假设矢量V1C与实轴一致,则测得的对称分量可以以下面的代数形式来表示:
V1C=V1C,       V2C=V2rC+jV2iC
I1C=I1rC+jI1iC,I2C=I2rC+jI2iC
下标“i”和“r”分别表示测得的分量的虚部和实部,并且V1C、V2rC、V2iC、I1rC、I1iC、I2rC和I2iC是实数。
参数G11C、B11C、G21C和B21C可以从下面的等式导出:
C 11 C = V 1 C I 1 rC + V 2 rC I 2 rC + V 2 iC I 2 iC V 1 C 2 + ( V 2 rC 2 + V 2 iC 2 ) ,
B 11 C = V 1 C I 1 iC + V 2 iC I 2 rC - V 2 rC I 2 iC V 1 C 2 - ( V 2 rC 2 + V 2 iC 2 ) ,
G 21 C = I 2 rC - G 11 C V 2 rC + B 11 C V 2 iC V 1 C ,
B 21 C = I 2 iC - G 11 C V 2 iC - B 11 C V 2 rC V 1 C .
作为这些技术的额外的益处,未损坏的组的负序电流I2un考虑了组电抗随温度的改变。具体地说,用来确定I2un的等式的项 | I 1 V 1 G 11 C 2 + B 11 c 2 | 进行自动温度补偿。这个益处在保护表现出明显的温度依赖性的并联电容器组时是最期望的。没有温度补偿的话,这些技术可能产生在环境温度的大的变化下发生的虚假不平衡信号,所述虚假不平衡信号可能导致不期望的断开组的操作。
针对接地组的I 2un 的计算
预先确定的负序电流I2un基于在组终端处测得的正、负和零序电压(V1、V2和V0),以及基于测得的正序组电流I1来计算:
I 2 un = I 2 un = [ Y 10 C V 1 + Y 11 C V 2 + Y 12 C V 0 ] × | I 1 V 1 Y 11 C |
“C”下标表示在组初始服务时测得的或者计算得到的量。该等式通过包括因子
Figure G05839367320070521D000087
来考虑矩阵元素相对在组投入工作期间测得的量的偏移,所述偏移由于温度变化而可能发生。以上出现的Ynn项使用以下表达式来计算
        Y11C=g11I1C+g12I2C+g13I0C
        Y12C=g12I1C+g13I2C+g11I0C
        Y10C=g13I1C+g11I2C+g12I0C
以上出现的gnn项使用以下表达式来计算
g 11 = ( V 1 C ) 2 - V 2 C V 0 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C ,
g 12 = ( V 2 C ) 2 - V 1 C V 0 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C ,
g 13 = ( V 0 C ) 2 - V 1 C V 2 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C .
有错误相的确定
当升高的IUN水平指示组内部的单元故障时,保护装置130或230可以命令切换装置125或225断开组,以防止对组的剩余的未损坏元件的电压应力。为了帮助标识发生故障的一个或多个单元以进行替换,不仅指示不平衡问题的存在,而且查出(isolate to)故障所涉及的相(即A、B或C)是有用的。例如,参照下面的表,如在下面的表中详细说明的,关于电容器组的IUN和V1复数值之间的角度关系示出不平衡已经发生在哪一相。
Figure G05839367320070521D000094
也可以针对电抗器组确定这些关系。
其他实现方式落入所附的权利要求书的范围内。

Claims (28)

1.一种检测连接到电源系统的电校正装置中的不平衡的方法,所述方法包括:
测量电源系统的每一相的电压,所述电源系统包括三相高电压总线,其中所述电源系统的每一相的所述电压是从所述高电压总线的每一相到地;
测量所述电源系统的每一相与连接到所述电源系统的所述三相高电压总线的电校正装置之间的电流,所述电校正装置包括多个互连的单独的电容性或电抗性部件,并且所述电校正装置被配置来执行降低系统损耗,消除感应电抗,或者改善所述电源系统的电压调整中的至少一个;以及
使用所述测得的电压和电流确定是否不平衡存在于所述电校正装置中,所述确定独立于与包括在所述电校正装置中的所述部件相关联的直接电压或电流测量,并且独立于在所述电校正装置处的中性点-地测量。
2.如权利要求1所述的方法,其中所述电校正装置包括电抗器组。
3.如权利要求1所述的方法,其中所述电校正装置包括电容器组。
4.如权利要求1所述的方法,其中所述确定是否所述不平衡存在的步骤包括使用测得的值确定负序电流,并且将所述负序电流与针对未损坏的电校正装置所计算的预先确定的负序电流进行比较。
5.如权利要求1所述的方法,其中所述电校正装置是并联连接的。
6.如权利要求5所述的方法,其中所述电校正装置是未接地的。
7.如权利要求6所述的方法,其中所述电校正装置包括以Y字形结构布置的元件组。
8.如权利要求1所述的方法,其中所述电校正装置是未接地的。
9.如权利要求1所述的方法,其中所述电校正装置是接地的。
10.如权利要求1所述的方法,其中不平衡存在于所述电校正装置中,并且所述方法还包括驱动切换装置,所述切换装置被配置来将所述电校正装置与所述电源系统隔离开。
11.如权利要求1所述的方法,其中确定是否所述不平衡存在的步骤包括对由于环境温度改变造成的所述测得的电压和电流的误差进行补偿。
12.如权利要求1所述的方法,其中不平衡存在于所述电校正装置中,并且所述方法还包括确定所述不平衡发生在哪一相。
13.一种用于电源系统的控制系统,所述控制系统包括:
电校正装置,所述电校正装置被配置为连接到所述电源系统的三相高电压总线,所述电校正装置包括多个互连的单独的电容性或电抗性部件并且所述电校正装置当被连接到所述电源系统时,被配置来执行降低系统损耗,消除感应电抗,或者改善所述电源系统的电压调整中的至少一个;
电压测量装置,所述电压测量装置被连接来测量所述电源系统的每一相的电压,其中所述电源系统的每一相的所述电压是从所述高电压总线的每一相到地;
电流测量装置,所述电流测量装置被连接来测量所述电源系统的每一相与所述电校正装置之间的电流;以及
保护装置,所述保护装置被连接到所述电压测量装置的输出和所述电流测量装置的输出;
其中所述保护装置包括控制器,所述控制器被配置来使用所述电压测量装置的所述输出和所述电流测量装置的所述输出确定是否不平衡存在于所述电校正装置中,所述确定独立于与包括在所述电校正装置中的所述部件相关联的直接电压或电流测量,并且独立于在所述电校正装置处的中性点-地测量。
14.如权利要求13所述的控制系统,其中所述电校正装置包括电容器组。
15.如权利要求13所述的控制系统,其中所述电校正装置包括电抗器组。
16.如权利要求13所述的控制系统,其中所述电校正装置是并联连接的。
17.如权利要求16所述的控制系统,其中所述电校正装置是未接地的。
18.如权利要求17所述的控制系统,其中所述电校正装置包括以Y字形结构布置的元件组。
19.如权利要求13所述的控制系统,其中所述电校正装置是未接地的。
20.如权利要求13所述的控制系统,其中所述电校正装置是接地的。
21.如权利要求13所述的控制系统,还包括所述电源系统的每一相中的切换装置,其中所述电校正装置被连接到所述切换装置,以在不平衡存在时,驱动所述切换装置来将所述电校正装置与所述电源系统隔离开。
22.一种用于检测连接到电源系统的电校正装置中的不平衡的系统,所述系统包括:
用于测量电源系统的每一相的电压的装置,所述电源系统包括三相高电压总线,其中所述电源系统的每一相的所述电压是从所述高电压总线的每一相到地;
用于测量所述电源系统的每一相与电校正装置之间的电流的装置,所述电校正装置连接到所述电源系统的所述三相高电压总线,所述电校正装置包括多个互连的单独的电容性或电抗性部件,并且所述电校正装置被配置来执行降低系统损耗,消除感应电抗,或者改善所述电源系统的电压调整中的至少一个;以及
使用所述测得的电压和电流确定是否不平衡存在于所述电校正装置中的装置,所述确定独立于与包括在所述电校正装置中的所述部件相关联的直接电压或电流测量,并且独立于在所述电校正装置处的中性点-地测量。
23.一种用于检测连接到电源系统的电校正装置中的不平衡的方法,所述方法包括:
测量电源系统的每一相A、B、C的电压VA、VB和VC,所述电源系统包括三相高电压总线,其中所述电源系统的每一相的所述电压是从所述高电压总线的每一相到地;
测量所述电源系统的每一相A、B、C与电校正装置之间的电流IA、IB和IC,所述电校正装置连接到所述电源系统的所述三相高电压总线,所述电校正装置被配置来执行降低系统损耗,消除感应电抗,或者改善所述电源系统的电压调整中的至少一个;
基于所述电流IA、IB和IC以及所述电压VA、VB和VC,分别计算正序、负序和零序装置电流I1、I2和I0,以及分别计算正序、负序和零序电压V1、V2和V0
确定未损坏的电校正装置的预先确定的负序电流I2un
通过将计算得到的所述负序电流I2与所述预先确定的负序电流I2un进行比较,来计算负序电流差值;
将所述负序电流差值与预先确定的阈值比较;
如果所述负序电流差值超过所述预先确定的阈值,确定不平衡存在于所述电校正装置中;以及
当不平衡存在于所述电校正装置中时,断开所述电校正装置。
24.如权利要求23所述的方法,其中,针对未接地的电校正装置,基于分别在所述电校正装置处的所述正序和负序电压V1和V2,以及在所述电校正装置处的所述正序电流I1来计算所述预先确定的负序电流I2un
25.如权利要求23所述的方法,其中对于未接地的电校正装置来说:
I 2 un = [ ( G 21 C + j B 21 C ) V 1 + ( G 11 C + j B 11 C ) V 2 ] × | I 1 V 1 G 11 C 2 + B 11 C 2 | ;
其中:
G 11 C = V 1 C I 1 rC + V 2 rC I 2 rC + V 2 iC I 2 iC V 1 C 2 + ( V 2 rC 2 + V 2 iC 2 ) ,
B 11 C = V 1 C I 1 iC + V 2 iC I 2 rC - V 2 rC I 2 iC V 1 C 2 - ( V 2 rC 2 + V 2 iC 2 ) ,
G 21 C = I 2 rC - G 11 C V 2 rC + B 11 C V 2 iC V 1 C ,
B 21 C = I 2 iC - G 11 C V 2 iC - B 11 C V 2 rC V 1 C ;
并且
V1C=V1C,V2C=V2rC+jV2iC
I1C=I1rC+jI1iC,I2C=I2rC+jI2iC
其中V1C、I1C、V2C和I2C分别是在所述电校正装置投入工作时曾测得的正序电压、正序电流、负序电压和负序电流;I1rC、I1iC分别是I1C的实和虚分量;V2rC、V2iC分别是V2C的实和虚分量;而I2rC、I2iC分别是I2C的实和虚分量。
26.如权利要求23所述的方法,其中针对接地的电校正装置,基于分别在所述电校正装置处的正、负和零序电压V1、V2、V0,以及在所述电校正装置处的所述正序电流I1来计算所述预先确定的负序电流I2un
27.如权利要求23所述的方法,其中对于接地的电校正装置来说:
I 2 un = I 2 un = [ Y 10 C V 1 + Y 11 C V 2 + Y 12 C V 0 ] × | I 1 V 1 Y 11 C | ;
Y11C=g11I1C+g12I2C+g13I0C
Y12C=g12I1C+g13I2C+g11I0C
Y10C=gBI1C+g11I2C+g12I0C
并且
g 11 = ( V 1 C ) 2 - V 2 C V 0 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C ,
g 12 = ( V 2 C ) 2 - V 1 C V 0 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C ,
g 13 = ( V 0 C ) 2 - V 1 C V 2 C ( V 1 C ) 3 + ( V 2 C ) 3 + ( V 0 C ) 3 - 3 V 1 C V 2 C V 0 C .
28.一种用于检测连接到电源系统的电校正装置中的不平衡的方法,所述方法包括:
测量电源系统的每一相与电校正装置之间的电流IA、IB和IC,所述电校正装置连接到所述电源系统的三相高电压总线,并且所述电校正装置被配置来执行降低系统损耗,消除感应电抗,或者改善所述电源系统的电压调整中的至少一个;
基于所述电流IA、IB和IC,计算负序电流I2
确定未损坏的电校正装置的预先确定的负序电流I2un
通过将计算得到的所述负序电流I2与所述预先确定的负序电流I2un进行比较,来计算负序电流差值;
将所述负序电流差值与预先确定的阈值比较;
如果所述负序电流差值超过所述预先确定的阈值,确定不平衡存在于所述电校正装置中;以及
当不平衡存在于所述电校正装置中时,断开所述电校正装置。
CN2005800393673A 2004-10-18 2005-10-17 校正装置保护 Expired - Fee Related CN101073015B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61903204P 2004-10-18 2004-10-18
US60/619,032 2004-10-18
PCT/US2005/037000 WO2006044647A2 (en) 2004-10-18 2005-10-17 Corrective device protection

Publications (2)

Publication Number Publication Date
CN101073015A CN101073015A (zh) 2007-11-14
CN101073015B true CN101073015B (zh) 2012-03-14

Family

ID=36203550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800393673A Expired - Fee Related CN101073015B (zh) 2004-10-18 2005-10-17 校正装置保护

Country Status (6)

Country Link
US (3) US7616005B2 (zh)
EP (1) EP1804906A4 (zh)
KR (1) KR101189956B1 (zh)
CN (1) CN101073015B (zh)
AU (2) AU2005295599B2 (zh)
WO (1) WO2006044647A2 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1804906A4 (en) * 2004-10-18 2014-09-10 Cooper Technologies Co CORRECTION DEVICE PROTECTION
AU2008257410A1 (en) * 2007-05-25 2008-12-04 Cooper Technologies Company Device protection using temperature compensation
AU2009344066B2 (en) * 2009-04-09 2015-08-06 Abb Schweiz Ag An arrangement for exchanging power
US8164314B2 (en) * 2009-05-07 2012-04-24 Toyota Motor Engineering & Manufacturing North America, Inc. Distributed capacitor bank controllers and methods thereof
US8575941B2 (en) * 2009-09-08 2013-11-05 Schweitzer Engineering Laboratories Inc Apparatus and method for identifying a faulted phase in a shunt capacitor bank
US9054589B2 (en) 2010-05-28 2015-06-09 Rockwell Automation Technologies, Inc. Method and apparatus for detecting power converter capacitor degradation using negative sequence currents
US8259426B2 (en) 2010-05-28 2012-09-04 Rockwell Automation Technologies, Inc. Variable frequency drive and methods for filter capacitor fault detection
CN103026572B (zh) 2010-07-23 2015-07-01 Abb技术有限公司 用于电容器组保护的方法和装置
DE102011079398A1 (de) * 2010-12-21 2012-06-21 Siemens Aktiengesellschaft Überwachung und Fehlerdiagnose einer elektrischen Maschine
CN102570842B (zh) 2010-12-30 2015-05-20 意法半导体研发(深圳)有限公司 三相计量系统及其方法
WO2012110087A1 (en) 2011-02-16 2012-08-23 Abb Research Ltd Method and arrangement for detecting an internal failure in h-bridge connected capacitor bank
US9653984B2 (en) 2012-04-30 2017-05-16 Rockwell Automation Technologies, Inc. Filter capacitor degradation detection apparatus and method
KR101328872B1 (ko) * 2012-07-06 2013-11-13 현대종합금속 주식회사 전류 불균형 감지 장치
US9318944B2 (en) 2013-04-29 2016-04-19 Rockwell Automation Technologies, Inc. Methods and apparatus for active front end filter capacitor degradation detection
US9294005B2 (en) 2013-10-01 2016-03-22 Rockwell Automation Technologies, Inc. Method and apparatus for detecting AFE filter capacitor degradation
US9651592B2 (en) 2013-12-03 2017-05-16 Rockwell Automation Technologies, Inc. Impedance detector apparatus and method
US20150177306A1 (en) * 2013-12-23 2015-06-25 Cooper Technologies Company Validation of Capacitor Bank Operation
US10122162B2 (en) * 2013-12-27 2018-11-06 Beckwith Electric Co., Inc. Detection of capacitor bank fuse/switch failure
US9488686B2 (en) 2014-02-24 2016-11-08 Rockwell Automation Technologies, Inc. Filter capacitor degradation identification using computed current
US9490690B2 (en) 2014-03-11 2016-11-08 Rockwell Automation Technologies, Inc. Filter capacitor degradation identification using computed power
US9389263B2 (en) 2014-06-05 2016-07-12 Rockwell Automation Technologies, Inc. Filter capacitor degradation identification using measured and expected voltage
US9735696B2 (en) 2015-11-25 2017-08-15 Rockwell Automation Technologies, Inc. Filter capacitor degradation and calibration
CN106932649B (zh) * 2017-02-28 2019-10-01 上海交通大学 基于串联电容的三相架空输电线路相电压自校准方法
US11567109B2 (en) * 2019-10-11 2023-01-31 Schweitzer Engineering Laboratories, Inc. Capacitor bank control using wireless electrical measurement sensors away from capacitor bank
EP4193442A1 (en) * 2020-09-14 2023-06-14 Hitachi Energy Switzerland AG Fault detection in shunt capacitor banks
US11592498B2 (en) 2020-10-02 2023-02-28 Schweitzer Engineering Laboratories, Inc. Multi-phase fault identification in capacitor banks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998098A (en) * 1989-01-26 1991-03-05 Schweitzer Engineering Laboratories Inc. Overvoltage detector to indicate voltage to a remote monitor
US6308140B1 (en) * 1996-05-20 2001-10-23 Crane Nuclear, Inc. Motor condition and performance analyzer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942153A (en) * 1958-01-09 1960-06-21 Mc Graw Edison Co Means for protecting shunt capacitor bank
GB1545491A (en) * 1975-05-13 1979-05-10 Ass Elect Ind Voltage stabilising saturated reactor arrangements
US4669024A (en) * 1985-10-23 1987-05-26 Westinghouse Electric Corp. Multiphase frequency selective phase locked loop with multiphase sinusoidal and digital outputs
US5514978A (en) * 1995-03-20 1996-05-07 General Electric Company Stator turn fault detector for AC motor
US5670864A (en) * 1995-05-26 1997-09-23 Pacific Scientific Company Adaptive automatic power capacitor for controlling controller a capacitor bank of a power distribution system
US5786708A (en) * 1996-04-01 1998-07-28 General Electric Company Self-tuning and compensating turn fault detector
US5883796A (en) * 1997-04-07 1999-03-16 Wisconsin Alumni Research Foundation Dynamic series voltage restoration for sensitive loads in unbalanced power systems
US6246332B1 (en) * 1998-11-18 2001-06-12 Abb Power T&D Company Inc. System and method for detecting voltage and current imbalance in an electrical energy supply
GB0000067D0 (en) * 2000-01-06 2000-02-23 Delta Electrical Limited Current detector and current measurement apparatus including such detector with temparature compensation
US7099130B2 (en) * 2003-01-17 2006-08-29 Ericson Manufacturing Company Voltage monitor for ground fault circuit interrupter
EP1804906A4 (en) * 2004-10-18 2014-09-10 Cooper Technologies Co CORRECTION DEVICE PROTECTION

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998098A (en) * 1989-01-26 1991-03-05 Schweitzer Engineering Laboratories Inc. Overvoltage detector to indicate voltage to a remote monitor
US6308140B1 (en) * 1996-05-20 2001-10-23 Crane Nuclear, Inc. Motor condition and performance analyzer

Also Published As

Publication number Publication date
CN101073015A (zh) 2007-11-14
US20100020449A1 (en) 2010-01-28
AU2005295599B2 (en) 2010-04-22
US7616005B2 (en) 2009-11-10
EP1804906A2 (en) 2007-07-11
US7973537B2 (en) 2011-07-05
AU2010203040B2 (en) 2012-06-07
KR101189956B1 (ko) 2012-10-12
AU2010203040A1 (en) 2010-08-12
EP1804906A4 (en) 2014-09-10
US20080007230A1 (en) 2008-01-10
WO2006044647A2 (en) 2006-04-27
WO2006044647A3 (en) 2007-07-12
US20100301874A1 (en) 2010-12-02
KR20070093396A (ko) 2007-09-18
AU2005295599A1 (en) 2006-04-27
US7786735B2 (en) 2010-08-31

Similar Documents

Publication Publication Date Title
CN101073015B (zh) 校正装置保护
CN101344567B (zh) 用于确定相对地故障位置的方法
EP1992954B1 (en) Method for determining location of phase-to-earth fault
US9625519B2 (en) Drive failure protection
EP2676346B1 (en) Method and arrangement for detecting an internal failure in h-bridge connected capacitor bank
US7728600B2 (en) System and method for determining location of phase-to-earth fault
CN101291056B (zh) 一种长线模型故障选相方法
CN103328991A (zh) 用于y-y连接电容器组中内部故障检测的方法和装置
CN105143894A (zh) 用于检测三相ac电路中的过度电压降的系统和方法
CN111948467B (zh) 一种电容器组内部故障检测方法及电容器保护装置
KR101989350B1 (ko) 중첩 무효 에너지 측정을 통한 마이크로그리드 보호계전기 및 그 제어 방법
CN105391035B (zh) 基于故障因子的输电线路差动保护系统及保护方法
CN110024249A (zh) 用于检测电力传输线路中的故障的方法和使用该方法的保护系统
CN109270402A (zh) 一种用于串补线路的变时限距离保护辅助测距方法和系统
US20240072533A1 (en) Fault detection in shunt capacitor banks
US20230184834A1 (en) Method of monitoring joint and contact conditions in an electrical network
Lim et al. A refined Differential Current Protection Method in the FACTS-compensated line
CN117269675A (zh) 基于相电压自比较的配电网单相接地故障选相方法及系统
るG 平 k kttGG|

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120314

Termination date: 20151017

EXPY Termination of patent right or utility model