CN101061033A - Aircraft and method of controlling it in vertical, horizontal and flight filter modes - Google Patents
Aircraft and method of controlling it in vertical, horizontal and flight filter modes Download PDFInfo
- Publication number
- CN101061033A CN101061033A CN 03813759 CN03813759A CN101061033A CN 101061033 A CN101061033 A CN 101061033A CN 03813759 CN03813759 CN 03813759 CN 03813759 A CN03813759 A CN 03813759A CN 101061033 A CN101061033 A CN 101061033A
- Authority
- CN
- China
- Prior art keywords
- aircraft
- thrust
- wing
- suspension rod
- lift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 35
- 230000005484 gravity Effects 0.000 claims description 34
- 230000007704 transition Effects 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 claims description 13
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 10
- 210000001015 abdomen Anatomy 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims 46
- 230000000630 rising effect Effects 0.000 claims 9
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims 3
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical compound COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 claims 2
- 239000013598 vector Substances 0.000 abstract description 4
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Toys (AREA)
Abstract
Description
技术领域technical field
本发明涉及飞行器,更具体说,涉及一种改进的飞行器,它具备垂直起飞和着陆飞行器,例如,旋转翼飞行器和飞机,例如,固定翼或挠性翼飞行器的优点,还涉及一种改进的飞行器控制方法,它可保障在垂直和水平方向飞行,以及其间所有的过渡模式中的固有稳定飞行。The present invention relates to aircraft, and more particularly to an improved aircraft that provides the advantages of vertical takeoff and landing aircraft, such as rotary wing aircraft, and aircraft, such as fixed wing or flexible wing aircraft, and to an improved A method of aircraft control that provides inherently stable flight in vertical and horizontal directions of flight, and in all transition modes therebetween.
背景技术Background technique
在整个二十世纪期间,现有技术为各种不同类型的飞行器作出了改进,一般说,飞行器可区分为二种基本类型。第一类的飞行器通常称为固定翼飞行器,而第二类飞行器通常称为旋转翼飞行器。Throughout the twentieth century, the state of the art has improved for a variety of different types of aircraft, generally speaking, two basic types of aircraft can be distinguished. Aircraft of the first type are generally referred to as fixed-wing aircraft, while aircraft of the second type are generally referred to as rotary-wing aircraft.
在固定翼飞行器中,发动机将其输出传送至水平延伸的传动轴,而使螺旋桨旋转,为固定翼飞行器旋转提供水平推力。或者,发动机也可以是通过排出热气体为固定翼飞行器提供水平推力的喷气发动机。In fixed-wing aircraft, the engine sends its output to a horizontally extending drive shaft, which rotates the propeller, providing horizontal thrust for the rotation of the fixed-wing aircraft. Alternatively, the engine may be a jet engine that provides horizontal thrust to a fixed-wing aircraft by exhausting hot gases.
传统的固定翼飞机必须具有前方质量中心(质心)。如果不是这样,而飞机机翼进入失速状态,则将缺乏降低机头的手段来恢复飞行速度,因此,飞机将是内在不稳定的。在支轴的布置中飞机的设计物理学要求质心在升力作用中心的前方以提供飞机在飞行模式中的固有飞行稳定性,只要飞机处在飞行模式中。这种支轴布置提供了飞行中来自飞行器尾部的向下压力,它起着配重静止的前方质心的作用。固定翼飞行器在低于特定飞行器的失速速度时是内在不稳定的。固定翼飞行器利用可换置的飞行表面,在向前飞行时,飞行器对于控制表面上方气流所生成的力产生反作用,以实现对飞行器的控制。襟翼,升降舵,方向舵,副翼,和安定面都是这类飞行控制器的例子。A conventional fixed-wing aircraft must have a forward center of mass (centroid). If this were not the case, and the aircraft's wings went into a stall, there would be no means of lowering the nose to regain flight speed, and therefore, the aircraft would be inherently unstable. The design physics of the aircraft in the arrangement of the fulcrums requires that the center of mass be forward of the center of action of lift to provide inherent flight stability of the aircraft in flight mode as long as the aircraft is in flight mode. This fulcrum arrangement provides downward pressure from the tail of the vehicle in flight, and it acts as a static forward center of mass for the counterweight. Fixed-wing aircraft are inherently unstable below the aircraft-specific stall speed. Fixed-wing aircraft use replaceable flight surfaces. When flying forward, the aircraft reacts to the force generated by the airflow above the control surface to achieve control of the aircraft. Flaps, elevators, rudders, ailerons, and stabilizers are examples of such flight controls.
在旋转翼飞行器中,旋转翼飞行器包括具有用来转动旋翼的垂直延伸轴以便为旋转翼飞行器提供垂直推力的发动机。旋翼绕垂直延伸的轴旋转时,旋翼的为旋转翼飞行器提供垂直升力。旋转翼飞行器必须有一摆锤质心。旋转翼飞行器在零前向空速时是稳定的,因为飞行器的质心像摆锤那样悬于旋转翼的升力中心下面。旋转翼飞行器靠制导推力而不是靠飞行控制来实现对飞行器的控制。集合螺距(collective pitch),差动旋翼叶片推力,和交变螺距(cyclic pitch)都是这类制导推力飞行控制器的例子。旋转翼导向器可以沿纵向,横向和垂直方向改变旋翼的推力,以确定所需的飞行路径。In a rotary wing aircraft, the rotary wing aircraft includes an engine having a vertically extending shaft for turning the rotors to provide vertical thrust to the rotary wing aircraft. The rotor provides vertical lift to the rotary wing aircraft as the rotor rotates about a vertically extending axis. A rotary wing aircraft must have a pendulum center of mass. Rotary wing aircraft are stable at zero forward airspeed because the vehicle's center of mass hangs like a pendulum below the rotor's center of lift. Rotary wing aircraft rely on guidance thrust rather than flight control to achieve control of the aircraft. Collective pitch, differential rotor blade thrust, and cyclic pitch are examples of this type of guided thrust flight controller. The rotor director can vary the thrust of the rotor longitudinally, laterally and vertically to determine the desired flight path.
旋转翼飞行器和固定翼飞行器都有各自的优缺点。旋转翼飞行器因其旋转翼的垂直推力而具有垂直起飞和着陆以及盘旋动作的优点。与固定翼飞行器比较,旋转翼飞行器的缺点有不胜任横穿全国的飞行,不能用于高速水平飞行,和较低的飞行高度。Both rotary-wing and fixed-wing aircraft have their own advantages and disadvantages. Rotary wing aircraft have the advantage of vertical take-off and landing as well as hovering maneuvers due to the vertical thrust of their rotary wings. Compared with fixed-wing aircraft, the disadvantages of rotary-wing aircraft are that they are not capable of flying across the country, cannot be used for high-speed horizontal flight, and have a lower flight altitude.
与旋转翼飞行器相比,固定翼飞行器的优点是可以更有效地高速飞行和在更高的高空中飞行。固定翼飞行器的缺点是其相当高的起飞和着陆速度,因此,起飞和着陆都需要相当的跑道空间。此外,固定翼飞行器不能低于工作空速飞行或盘旋动作,因为速度不足会导致飞行器固定机翼上方的升力丧失。Fixed-wing aircraft have the advantage of being able to fly more efficiently at high speeds and at higher altitudes than rotary-wing aircraft. The disadvantage of fixed-wing aircraft is their relatively high take-off and landing speeds, and therefore, considerable runway space is required for both take-off and landing. Additionally, fixed-wing aircraft cannot fly below operating airspeed or perform hovering maneuvers, as insufficient speed will result in a loss of lift over the aircraft's fixed wings.
试图制造螺旋飞机或通过在运载器上附加机翼而将其形成为飞机的尝试都未能成功。自旋的旋翼在高前向速度下产生巨大的牵制力,还有与向前和向后弯曲状旋翼叶片有关的所有问题和质心仍维持为与飞机固有不同的问题。Attempts to create a spiral plane or to form it into an airplane by attaching wings to the carrier were unsuccessful. A spinning rotor creates enormous drag at high forward speeds, plus all the problems associated with forward and backward curved rotor blades and the problem that the center of mass remains inherently different from the aircraft.
已知的“螺旋飞机”的示例有美国专利3,934,843;4,730,795;6,086,016;5,758,844和6,343,768,它们都整体在此引为参考。Examples of known "rotor planes" are US Patents 3,934,843; 4,730,795; 6,086,016; 5,758,844 and 6,343,768, all of which are incorporated herein by reference in their entirety.
所有先前的技术均未能指明现有垂直飞行飞行器(直升机)和现有水平飞行飞行器(飞机)的质心,包括动态和静态的,之间的根本区别。All prior art fails to specify the fundamental difference between the center of mass, both dynamic and static, of existing vertical flying vehicles (helicopters) and existing horizontal flying vehicles (airplanes).
所有先前的技术均未能说明垂直飞行飞行器(直升机)的前向运动和现有水平飞行飞行器(飞机)的前向运动在效率方面的根本区别。All prior art fails to account for the fundamental difference in efficiency between the forward motion of vertically flying vehicles (helicopters) and the forward motion of existing horizontally flying vehicles (airplanes).
反之,所有先前的技术均未能说明垂直飞行飞行器(直升机)的垂直运动和现有水平飞行飞行器(飞机)的垂直运动在效率方面的根本区别。Conversely, all prior art fails to account for the fundamental difference in efficiency between the vertical movement of vertical flying vehicles (helicopters) and the vertical movement of existing horizontal flying vehicles (airplanes).
虽然本申请中参考的很多美国专利,和我知道的另一些专利都曾试图提供一种兼有固定翼飞行器和旋转翼飞行器的优点的混合型飞行器,但前面提到的那些美国专利都未能实现这一目标。没有一个专利具备商业应用价值。已有技术的混合型飞行器未能实现这一目标的一个根本原因是在于作为固定翼飞行器运行和作为旋转翼飞行器运行之间的过渡阶段中出现的不稳定阶段。在此过渡阶段,混合型飞行器的质心在作为旋转翼飞行器的运行和作为固定翼飞行器的运行之间移动,反之亦然。混合型飞行器质心的运动导致混合型飞行器运行中的基本不稳定性,从而造成在这种过渡阶段中很难控制混合型飞行器。这可参见图1和图2得到最好的解释。While many of the U.S. patents referenced in this application, and others known to me, attempt to provide a hybrid aircraft that combines the advantages of both fixed-wing and rotary-wing aircraft, none of the aforementioned U.S. patents achieve this goal. None of the patents have commercial application value. A fundamental reason why prior art hybrid aircraft have failed to achieve this goal is the instability phase that occurs in the transition phase between operation as a fixed wing aircraft and operation as a rotary wing aircraft. During this transition phase, the center of mass of the hybrid aircraft moves between operation as a rotary-wing aircraft and operation as a fixed-wing aircraft, and vice versa. Movement of the hybrid vehicle's center of mass results in substantial instability in the operation of the hybrid vehicle, making it difficult to control the hybrid vehicle during such transition phases. This is best explained with reference to Figures 1 and 2.
图1是传统旋转翼飞行器10R的侧视图,它包括机身12R和发动机14R。发动机14R通过垂直传动轴20R耦合,以便旋转旋翼30R,从而为旋转翼飞行器10R提供垂直升力。尾段50R刚性固定于带尾旋翼56R的机身12R上。尾旋翼56R具有与图2传统固定翼飞行器10F中的方向舵56F相同的功能。FIG. 1 is a side view of a conventional
旋转翼飞行器10R旋翼30为旋转翼飞行器10R提供升力中心(CL)。质心(CM)像摆锤一样悬挂在旋转翼飞行器10R升力中心(CL)的下面。由于旋翼30R提供了正好在旋转翼飞行器10R质心(CM)上面的升力中心(CL),因而旋转翼飞行器10R可在零水平速度的盘旋模式中像重力稳定摆锤那样工作。旋转翼飞行器30R的控制靠制导旋翼的推力来获得。当由旋翼产生的推力沿向后的方向引导时,旋转旋翼30R以前的垂直推力的分量随后提供一水平推力分量,以反抗制导推力而沿向前方向推进旋转翼飞行器10R。Rotor 30 of
当由旋翼30R产生的推力进一步沿向后方向倾斜而引发向前运动时,旋转旋翼30R为旋转翼飞行器10R提供的升力的分力按照所述推力在向后方向的角度的余弦递减。这是旋转翼飞行器10R的根本局限性。As the thrust produced by
图2是包括机身12F和发动机14F的传统固定翼飞行器10F的侧视图。发动机14F通过水平传动轴20F耦合而旋转螺旋桨30F,从而为固定翼飞行器10F提供向前的运动。固定翼飞行器10F包括刚性固定在固定翼飞行器10F机身12F上的固定翼40F。通常,固定翼40F包括多个副翼42F和多个襟翼44F。尾段50F刚性固定在机身12F上并有一水平稳定面54F和一垂直稳定面52F。水平稳定面54F包括多个升降舵58F而垂直稳定面52F则包括一个方向舵56F。FIG. 2 is a side view of a conventional fixed-
固定翼飞行器10F的固定翼40F为固定翼飞行器10F提供升力中心(CL)。固定翼飞行器的质心(CM)位于固定翼飞行器10F升力中心(CL)的前方。位于升力中心(CL)前方的质心(CM),即前方质心是实现飞行动态平衡所必须的,也是在失速状态下恢复对固定翼飞行器10F的控制所要求的。Fixed
失速状态存在于固定翼飞行器10F的迎角超出为维持流至机翼上表面的空气流所必须的临界角的时候。此时,气流离开机翼的上表面,从而破坏了飞行器的升力和控制。由于固定翼飞行器10F具有前方质心,失速状态下的升力丧失将使机翼的迎角减小,这样就重新建立起固定翼40F上的迎面气流,以提供足以支持固定翼飞行器10F的升力。固定翼40F升力的重新建立使飞行员可恢复对固定翼飞行器10F控制。虽然图中给出了固定翼飞行器10F是由一台发动机螺旋桨驱动的固定翼飞行器10F,但可以理解,同样的工作原理也适用于两种类型的喷气式飞行器和各种多发动机异型。A stall condition exists when the angle of attack of the fixed wing aircraft 1OF exceeds the critical angle necessary to maintain airflow to the upper surface of the wing. At this point, the airflow leaves the upper surface of the wing, disrupting the lift and control of the aircraft. Since the fixed-
如前所述,我察觉到,很多现有技术都在不断尝试形成一种兼有旋转翼飞行器10R和固定翼飞行器10F的各种优点的混合型飞行器。不幸的是,这类现有技术的混合型飞行器未能解决旋转翼飞行器10R和固定翼飞行器10F在质心(CM)位置方面的基本差别。在垂直起飞期间,如果要使飞行器基本稳定,则所有混合型飞行器都必须工作得像旋转翼飞行器10R那样具有位于混合型飞行器升力中心(CL)下面的像摆锤一样的质心(CM)。然而,在水平飞行期间,如果要混合型飞行器像固定翼飞行器那样运行并且是内在稳定的,则其质心(CM)必须位于混合型飞行器升力中心(CL)的前面。在这种混合型中,在混合型飞行器从像旋转翼飞行器10R那样运行向像固定翼飞行器10F那样运行过渡的期间,混合型飞行器质心(CM)的运动会形成一段不稳定时期。As mentioned earlier, I have observed that many prior art attempts are being made to form a hybrid aircraft that combines the advantages of both the
发明内容Contents of the invention
因此,本发明的一个目的是将垂直起飞和着陆飞行器,例如,旋转翼飞行器,和飞机,例如,固定翼或挠性翼飞行器的优点结合在一种在包括水平,垂直和各种过渡飞行模式在内的所有运行模式中都是固有稳定的改进型飞行器中。Accordingly, it is an object of the present invention to combine the advantages of vertical takeoff and landing aircraft, such as rotary wing aircraft, and aircraft, such as fixed wing or flexible wing aircraft, in one flight mode including horizontal, vertical and various transitions In modified aircraft that are inherently stable in all modes of operation, including
本发明的另一个目的是将垂直起飞和着陆飞行器,例如,旋转翼飞行器,和飞机,例如,固定翼或挠性翼飞行器的优点结合在一种克服了现有技术的各种困难并为飞行器技术提供明显改进的改进型飞型器中。Another object of the present invention is to combine the advantages of vertical take-off and landing aircraft, such as rotary-wing aircraft, and aircraft, such as fixed-wing or flexible-wing aircraft, in an aircraft that overcomes various difficulties of the prior art and provides The technology offers marked improvements in the improved flying machine.
本发明的另一个目的是将垂直起飞和着陆飞行器,例如,旋转翼飞行器,和飞机,例如,固定翼或挠性翼飞行器的优点结合在一种基于全新的飞行器设计和飞行器控制理论的改进型飞行器中。Another object of the present invention is to combine the advantages of vertical take-off and landing aircraft, such as rotary-wing aircraft, and aircraft, such as fixed-wing or flexible-wing aircraft, in an improved version based on a new aircraft design and aircraft control theory. in the aircraft.
本发明的另一个目的是为飞行器提供一种不论是在其垂直飞行,水平飞行,或任意过渡模式中都适用的改进控制方法。Another object of the present invention is to provide an improved control method for an aircraft whether in its vertical flight, horizontal flight, or any transition mode.
本发明提供的飞行器包括机身;可操纵连接于机身的升力翼;具有相反远端和近端部分的吊杆,所述吊杆的近端部分可枢轴转动地支承在所述机身上;和用位于所述吊杆远端部分处的推力源来生成用来推进飞行器推力的发动机,所述吊杆的可自由调节(即,不需飞行员的介入)的方位角使由所述发动机产生的推力与作用在所述飞行器上的重力,升力和牵制力相平衡。The invention provides an aircraft comprising a fuselage; a lift wing operatively connected to the fuselage; a boom having opposing distal and proximal portions, the proximal portion of the boom being pivotally supported on the fuselage and a thrust source located at the distal portion of the boom to generate thrust for propulsion of the aircraft, the freely adjustable (i.e., without pilot intervention) azimuth of the boom being controlled by the The thrust produced by the engines is balanced by the gravitational, lift and drag forces acting on the aircraft.
依照本发明的一个方面,本发明飞行器具有被建立的双摆锤布置,第一重力锤与第二上升/牵制锤相互作用以提供垂直,水平和各种过渡飞行模式下的固有稳定性。作用在飞行器上的重力形成重力摆锤。由机身和机翼产生的上升/牵制力形成上升/牵制摆锤因为二个摆锤都作用在自由杠杆轴的近端,所以该上升/牵制锤与重力锤是相互作用的。In accordance with one aspect of the invention, the inventive aircraft has a dual pendulum arrangement established, with a first gravity weight interacting with a second lift/drag weight to provide inherent stability in vertical, horizontal and various transition flight modes. The gravitational force acting on the craft forms a gravitational pendulum. The lift/drag force generated by the fuselage and wings forms the lift/drag pendulum. The lift/drag weight interacts with the gravity hammer because both pendulums act on the proximal end of the free lever shaft.
依照本发明的另一方面,有一机翼,它最好是一自由机翼,被组合在本发明飞行器中。最好是,该自由机翼固定至机身时,其升力中心处在本发明飞行器质心处或其上方,并在垂直方向接近于质心。自由翼可在没有飞行员干预的情况下自由地绕固定点翼展方向的轴线做枢轴旋转。自由翼有利于从垂直至水平飞行的平滑过渡。在本发明的范畴内,在另一实施例中,所提供的可枢轴旋转的机翼还可响应于制导推力而被机械地强制呈现一适当迎角。According to another aspect of the invention, a wing, preferably a free wing, is incorporated in the aircraft of the invention. Preferably, when the free wing is fixed to the fuselage, its center of lift is at or above the center of mass of the aircraft of the present invention, and is close to the center of mass in the vertical direction. A free wing is free to pivot about a fixed point spanwise axis without pilot intervention. The free wing facilitates a smooth transition from vertical to horizontal flight. In another embodiment, within the scope of the present invention, the pivotable airfoil provided may also be mechanically forced to assume a proper angle of attack in response to the guidance thrust.
依照本发明的又一个方面,吊杆起着自由杠杆的作用。吊杆可绕它的近端做枢轴转动,最好是纵向转至少90度并不一定要任何横向制约。一对相对旋转的推进旋翼安装在吊杆上,吊杆可绕另一个也是位于飞行器质心处或其上方的展向轴线做枢轴旋转。最好是,吊杆的轴线处在自由翼升力中心的轴线和飞行器的质心之间。更好是,吊杆的近端和自由翼的升力中心和飞行器的质心基本上是垂直方向对齐的。也在本发明的范畴内,在另一实施例中,所提供的可绕枢轴转动的吊杆响应于制导推力而机械地强制呈现一适当的方位角。According to yet another aspect of the invention, the boom acts as a free lever. The boom is pivotable about its proximal end, preferably longitudinally through at least 90 degrees and does not necessarily require any lateral restraint. A pair of counter-rotating propulsion rotors are mounted on booms that are pivotable about another spanwise axis, also at or above the vehicle's center of mass. Preferably, the axis of the boom is between the axis of the center of lift of the free wing and the center of mass of the aircraft. More preferably, the proximal end of the boom is substantially vertically aligned with the center of lift of the free wing and the center of mass of the aircraft. In another embodiment, also within the scope of the present invention, the pivotable boom is provided to mechanically force a proper azimuth in response to the pilot thrust.
依照本发明的再一个方面,本发明飞行器在水平飞行和垂直飞行时都起着摆锤的作用——垂直飞行时相当于重力摆锤和水平飞行时相当于上升/牵制摆锤。介于纯垂直或纯水平之间的任何飞行是二种锤的相互作用。According to yet another aspect of the invention, the inventive aircraft acts as a pendulum in both horizontal and vertical flight - acting as a gravity pendulum for vertical flight and a lift/drag pendulum for horizontal flight. Any flight between pure vertical or pure horizontal is the interaction of the two hammers.
依照本发明的又一个方面,所有飞行控制作用,不论是水平,垂直或各种过渡飞行模式,都可分解为推力制导和动态飞行控制的合成作用。According to yet another aspect of the invention, all flight control actions, whether horizontal, vertical or various transition flight modes, can be broken down into a combined action of thrust guidance and dynamic flight control.
依照本发明的再一个方面,本发明飞行器还包括在所述吊杆上的动态飞行控制表面。该动态飞行控制表面,当工作时,传给吊杆一个垂直于其安装轴线的力。其结果是,作为制导推力摆锤的吊杆动态平衡被移位了,于是吊杆被迫去寻找将平衡作用在其远端和近端的力的新的平衡角度。最好是,动态平衡控制表面是辅助翼的一部分,而辅助翼则最好是自由翼。According to yet another aspect of the invention, the inventive aircraft further comprises a dynamic flight control surface on said boom. The dynamic flight control surfaces, when operative, impart a force to the boom perpendicular to its mounting axis. As a result, the dynamic balance of the boom acting as the guiding thrust pendulum is displaced, and the boom is forced to find a new equilibrium angle that will balance the forces acting on its distal and proximal ends. Preferably, the dynamically balanced control surface is part of an aileron which is preferably a free wing.
依据又一方面,本发明采用了垂直和水平飞行公用的推进系统,这种方法导致飞行器在垂直和水平飞行以及所有各种过渡飞行模式中都是固有稳定的。本发明采用一种双摆锤设置,第一摆锤是重力,或者说静态摆锤,第二摆锤是由机翼和飞行器上方气流形成的上升/牵制摆锤。上升/摆锤具有变化或动态的本质,因为它的力随机翼和飞行器周围气流的速度而变。上升/牵制锤的作用是在水平飞行时将作用在自由杠杆传动轴近端的重力减小至零。机翼产生的垂直升力的副作用是水平方向的牵制,它形成与发动机推力对抗的牵制摆锤。According to yet another aspect, the present invention employs a common propulsion system for both vertical and horizontal flight. This approach results in an aircraft that is inherently stable in both vertical and horizontal flight and in all of the various transitional flight modes. The present invention employs a dual pendulum arrangement, the first pendulum being the gravity, or static pendulum, and the second pendulum being the lift/drag pendulum formed by the airflow over the wings and aircraft. The ascent/pendulum has a changing or dynamic nature, as its force varies with the velocity of the airflow around the wing and vehicle. The function of the lift/pull hammer is to reduce the gravitational force acting on the proximal end of the free lever drive shaft to zero in level flight. A side effect of the vertical lift generated by the wings is the horizontal pinning, which forms a pinching pendulum against the thrust of the engines.
本发明还提供了一种在水平飞行,垂直飞行或介于水平与垂直飞行之间的任何过渡飞行模式下控制飞行器的方法。该方法包括在所有飞行模式下,将飞行器作为推力制导摆锤来进行控制。该方法在垂直飞行时将飞行器作为制导推力重力摆锤来控制,而在水平飞行时则作为制导推力上升/牵制摆锤来控制。在介于纯垂直和纯水平飞行间的过度阶段,飞行器的控制仍作为制导推力摆锤来控制,该摆锤是重力摆锤和上升/牵制/力摆锤的净力矢量的分解。The present invention also provides a method of controlling an aircraft in horizontal flight, vertical flight or any transitional flight mode between horizontal and vertical flight. The method includes controlling the vehicle as a thrust-guided pendulum in all flight modes. This method controls the vehicle as a guidance thrust gravity pendulum in vertical flight and as a guidance thrust ascending/pinning pendulum in horizontal flight. During the transition phase between pure vertical and pure horizontal flight, the vehicle is still controlled as a guidance thrust pendulum which is a decomposition of the net force vectors of the gravity pendulum and lift/pin/force pendulum.
本发明还提供了一种飞行器,它包括机身,用来生成推进飞行器的推力的推力产生装置,用来制导所述推力以获得制导推力的推力制导装置,和用来响应于所述制导推力,相对于机身来移动所述推力发生装置,以使作用在所述飞行器上的重力,上升和牵制力与所述制导推力相平衡的力平衡装置。The present invention also provides an aircraft comprising a fuselage, thrust generating means for generating thrust to propel the aircraft, thrust guidance means for directing said thrust to obtain a guided thrust, and means for responding to said guided thrust , a force balancing device that moves the thrust generating means relative to the fuselage so that the gravitational, lift and drag forces acting on the aircraft are balanced with the guiding thrust.
在参考以下详细说明之后,对本领域技术人员来说,本发明的其他目的和优点将更为明白显见。在下面的说明中所示和描述的各优选实施例只是为了更好地说明本发明。可以理解,在不偏离本发明的前提下,本发明也可以有其他不同的实施例,它的某些细节可以在很多明显不同的方面作出修改。相应地,这里的附图和说明也应视为示例而非约束。Other objects and advantages of the present invention will become more apparent to those skilled in the art after referring to the following detailed description. The preferred embodiments shown and described in the following description are intended only to better illustrate the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings and descriptions herein are to be considered as illustrations and not as limitations.
附图说明Description of drawings
为更好地理解本发明的本质和目的,应在参考各附图的情况下阅读下面的详细说明,附图中:For a better understanding of the nature and purpose of the present invention, the following detailed description should be read with reference to the accompanying drawings, in which:
图1是传统旋转翼飞行器的侧视图;Fig. 1 is a side view of a conventional rotary wing aircraft;
图2是传统固定翼飞行器的侧视图;Fig. 2 is a side view of a traditional fixed-wing aircraft;
图3是依照其一个实施例的本发明改进飞行器的侧视图;Fig. 3 is a side view of the improved aircraft of the present invention according to one embodiment thereof;
图4是图3改进飞行器的顶视图;Fig. 4 is a top view of the improved aircraft of Fig. 3;
图5是图3改进飞行器的前视图;Fig. 5 is the front view of Fig. 3 improved aircraft;
图6是展示图3改进飞行器的旋转自由杠杆轴近端的详图;Figure 6 is a detailed view showing the proximal end of the free-rotation lever shaft of the improved aircraft of Figure 3;
图7是本发明改进飞行器的示意图,它展示了用于垂直起飞模式下垂直取向的自由杠杆吊杆和相对旋转的旋翼。Figure 7 is a schematic illustration of the improved aircraft of the present invention showing the vertically oriented free lever boom and relative rotation of the rotors for vertical takeoff mode.
图8是类似于图7的示意图,它展示了使改进飞行器向前运动的大致向前取向的自由杠杆旋转轴和旋翼;FIG. 8 is a schematic diagram similar to FIG. 7 showing the generally forwardly oriented free lever axis of rotation and rotors for forward motion of the improved aircraft;
图9是类似于图8的示意图,它展示了使改进飞行器进一步向前运动的进一步向前过渡取向的自由杠杆旋转轴和旋翼;Figure 9 is a schematic diagram similar to Figure 8 showing the free lever axis of rotation and the rotors in a further forward transition orientation for further forward motion of the improved aircraft;
图10是类似于图9的示意图,它展示了使改进飞行器更向前运动的更向前过渡取向的自由杠杆旋转轴和旋翼;Figure 10 is a schematic diagram similar to Figure 9 showing a more forward transition oriented free lever axis of rotation and rotors for more forward motion of the improved aircraft;
图11类似于图10的示意图,它展示了通过旋翼和借助于由自由翼提供的全部垂直升力使改进飞行器完全向前推进的完全沿向前方向取向的自由杠杆旋转轴和旋翼;Fig. 11 is a schematic diagram similar to Fig. 10 showing the free lever axis of rotation and rotors oriented entirely in the forward direction through the rotors and with the improved vehicle fully forwardly propelled by the full vertical lift provided by the free wings;
图12是吊杆处于图11中所示向前方向时的飞行器顶视图;Figure 12 is a top view of the aircraft with the boom in the forward orientation shown in Figure 11;
图13A是将飞行器发动机产生的力矩传送至自由杠杆轴的可变耦合的原理剖视图;Figure 13A is a schematic cross-sectional view of a variable coupling transmitting torque generated by an aircraft engine to a free lever shaft;
图13B和14是展示不同角度位置中的自由杠杆旋转轴的侧示图;13B and 14 are side views showing the axis of rotation of the free lever in different angular positions;
图15是依照本发明第二实施例的改进飞行器侧视图,它利用喷气发动机产生推力,自由杠杆旋转轴垂直向上取向;Figure 15 is a side view of an improved aircraft according to a second embodiment of the present invention, which utilizes a jet engine to generate thrust, with the axis of rotation of the free lever oriented vertically upward;
图16是图15飞行器的顶视图;Figure 16 is a top view of the aircraft of Figure 15;
图17是图15的飞行器的前视图;Figure 17 is a front view of the aircraft of Figure 15;
图18是图17的飞行器的右侧自由杠杆旋转轴和喷气发动机的放大视图;Figure 18 is an enlarged view of the right side free lever rotation axis and jet engine of the aircraft of Figure 17;
图19是图18的侧视图;Figure 19 is a side view of Figure 18;
图20-21和23是展示各种飞行模式下图15的飞行器的示意图,其中自由杠杆旋转轴呈现各种取向;Figures 20-21 and 23 are schematic diagrams showing the aircraft of Figure 15 in various flight modes, wherein the axis of rotation of the free lever assumes various orientations;
图22是图23的顶视图;Figure 22 is a top view of Figure 23;
图24是展示依照本发明另一实施例,垂直起飞前在地面上的飞行器侧视图的原理图;24 is a schematic diagram showing a side view of an aircraft on the ground before vertical takeoff according to another embodiment of the present invention;
图25是展示图24飞行器顶视图的原理图;Figure 25 is a schematic diagram showing a top view of the aircraft of Figure 24;
图26是展示水平飞行期间图24飞行器侧视图的原理图Figure 26 is a schematic diagram showing a side view of the aircraft of Figure 24 during level flight
图27是展示图26飞行器顶视图的原理图;Figure 27 is a schematic diagram showing a top view of the aircraft of Figure 26;
图28是图27的前视图;Figure 28 is a front view of Figure 27;
图29是图24的前视图;Figure 29 is a front view of Figure 24;
图30是图28的顶视图;Figure 30 is a top view of Figure 28;
在全部附图中,相同的标号表示相同的零部件。Throughout the drawings, the same reference numerals refer to the same parts.
具体实施方式Detailed ways
定义definition
在此使用时,术语“推力中心”指的是推力的水平,垂直,和横向轴线相交处的空间点。As used herein, the term "thrust center" refers to the point in space where the horizontal, vertical, and transverse axes of thrust intersect.
在此使用时,术语“牵制中心”指的是牵制力的水平,垂直,和横向轴线相交处的空间点。As used herein, the term "center of pinning" refers to the point in space where the horizontal, vertical, and transverse axes of pinning force intersect.
在此使用时,术语“导向装置”指是是用来制导由飞行器发动机力矩所产生的推力的机构。As used herein, the term "guide" refers to a mechanism for directing thrust generated by aircraft engine torque.
在此使用时,术语“动态平衡”指的是在给定运行范围内经历不断变化时仍保持稳定的一种状态,因为在运行范围内输入的任何变化会引起向新的,但不一定是稳定和平衡的状态转移。As used herein, the term "homeostasis" refers to a state that remains stable while undergoing constant variation over a given operating range, since any change in the input within the operating range induces a new, but not necessarily Stable and balanced state transitions.
在此使用时,术语“自由杠杆”或“自由杠杆轴”或“自由杠杆吊杆”或“自由杠杆旋转轴”指是的处于空间中的一个杠杆,它可自由地绕一个轴作枢轴旋转以采取某一平衡作用于自由杠杆远端和近端上各种力的角度。换言之,自由杠杆的空间位置完全由作用在自由杠杆一端上的推力和作用在自由杠杆另一端上的牵制力和上升力的相互作用决定。As used herein, the terms "free lever" or "free lever axis" or "free lever boom" or "free lever pivot" refer to a lever in space which is free to pivot about an axis Rotate to adopt an angle that balances the various forces acting on the distal and proximal ends of the free lever. In other words, the spatial position of the free lever is completely determined by the interaction of the pushing force acting on one end of the free lever and the pulling and lifting forces acting on the other end of the free lever.
在此使用时,术语“自由翼”指的是以机翼可自由地绕其展向轴线做枢轴旋转的方式安装到飞行器机身上的机翼。换言之,自由翼在飞行期间具有完全由气动力决定的迎角。As used herein, the term "free wing" refers to a wing mounted to an aircraft fuselage in such a manner that the wing is free to pivot about its spanwise axis. In other words, a free wing has an angle of attack during flight that is determined entirely by aerodynamic forces.
在此使用时,术语“上升/牵制摆锤”或“牵制摆锤”指的是作用在飞行器上的重力与作用在飞行器上的牵制力和上升力相互作用的力矢量分解。As used herein, the terms "lift/drag pendulum" or "drag pendulum" refer to the force vector decomposition of the interaction of gravity acting on the aircraft with the drag and lift forces acting on the aircraft.
在此使用时,术语“静态平衡”指的是在导致扰动并随后扰动被消除后系统返回的稳定,不变的平衡状态。As used herein, the term "static equilibrium" refers to the stable, unchanging state of equilibrium to which a system returns after a disturbance has been induced and subsequently canceled.
在此使用时,术语“可变耦合”指的是在自由杠杆轴的全部运动范围内将发动机产生的力矩通过自由杠杆轴传送给旋翼的耦合。As used herein, the term "variable coupling" refers to a coupling that transmits torque generated by the engine through the free lever shaft to the rotor over the full range of motion of the free lever shaft.
其他术语在初次讨论时予以定义。Other terms are defined during the initial discussion.
图3-6是本发明改进飞行器110的各种视图。改进飞行器110包括机身112和发动机114。机翼140最好是自由翼,可操纵地固定在机身112上以产生升力。改进飞行器110的质心(CM)像重力摆锤那样悬挂在自由翼140的升力中心或者说气动中心下面。3-6 are various views of the
发动机114通过延伸于其近端121和远端122之间的新颖自由杠杆轴或吊杆120与旋翼组合件耦合。轴120的近端121通过可变耦合件601与发动机114(图6,13A和13B)耦合。具体地说,吊杆轴120的近端121可以不直接与发动机114相连,而仅仅是可操纵地安排成可传送发动机的输出。轴120的远端122支承着旋翼组合件的相对旋转旋翼130,以便为改进飞行器110提供推力。在本发明的这个例子中,旋翼130是有旋翼叶片131和132的相对旋转的旋翼130。相对旋转的旋翼130使来自作用到自由杠杆120或作用到改进飞行器110机身上的任何弯矩和失衡力矩减至最小。最好是,自由杠杆轴120的自由杠杆工作特性允许自由杠杆轴可在改进飞行器110的运行期间自由调节其倾斜度,以平衡各种推力,重力,升力和牵制力分量。作用到改进飞行器110机身上的任何失衡力矩的最小化排除了对尾旋翼的需求。The
在图13A中示意地说明了将飞行器发动机114产生的力矩传送至自由杠杆轴120的可变耦合件601。发动机114有与驱动齿环170耦合的发动机输出轴1302,环齿170则与固定至轴120近端121上的齿杆160咬合。发动机114产生的力矩从发动机输出轴1302传送至齿环170从而传送至齿杆160,并造成自由杠杆轴120绕其纵轴旋转。最好是,环齿170和齿杆160都被封闭在齿轮箱1308中,齿轮箱1308示于图14中,但在图13B中则略去了。齿轮箱1308由飞行器机架可旋转地支承在1304处。自由杠杆轴120和齿轮箱1308之间有一推力轴承1306。轴120的近端121由机身可枢轴转动地支承,使自由杠杆轴或者说吊杆120可自由地绕其近端,最好是在预定范围内做枢轴旋转,如图13B和14中所示。因为齿环170和齿杆160在整个自由杠杆的运动范围内是咬合的,如图13B和14中所示,因此,发动机产生的力矩可通过自由杠杆轴不间断地传送至旋翼。最好是,自由杠杆轴120近端121的枢点与发动机输出轴1302是同轴的。为清晰起见,图13A中略去了近端121的枢点。A variable coupling 601 transmitting torque generated by the
如上所述,机翼140,它最好是自由翼,是可枢轴旋转地固定在改进飞行器110的机身112上的。自由翼,如在本领域所公知的(见,例如以它们的整体在此引为参考的美国专利5,509,623;5,769,359;5,765,777;5,560,568;5,395,073;5,430,057和5,280,863),是一种以机翼可绕通常位于它的气动中心前方的展向轴线做自由枢轴转动(即,没有飞行员的介入)的方式固定到飞行器机身上的机翼。这种布置方式使机翼可具有完全由飞行期间的气动力确定,因此,仅受由机翼上升和牵制所强加的气动俯仰动量支配的迎角。在没有飞行员干预的情况下,由飞行期间正或负垂直风阵撞击机翼所引起的机翼旋转导致入射角或机翼和飞行器机身之间倾角的变化,以使机翼呈现相对于气流的恒定迎角,使飞行器在飞行期间实质上不会失速。自由翼可为固定机翼模式中的飞行锁定在相对于机身选定的预定固定迎角中。应指出的是,用固定机翼或机械枢轴旋转机翼替代上述自由机翼也在本发明的范畴之内。然而,在改进飞行器中使用自由机翼具有自由翼所产生的升力随飞行器前向速度的增大而逐渐增大的优点。换句话说,飞行器的重量是逐渐“转移”到自由翼上的。其结果是,飞行器可平滑地改变它的飞行模式,如从水平或垂直飞行改变至任何过渡飞行模式或相反。反之,如果,作为示例,采用的是固定机翼,固定翼通常不能在低于飞行器失速速度时产生升力。当飞行器的前向速度到达失速速度时,飞行器的重量“突然”转移至机翼,所造成的震动可能使飞行器的乘务员和旅客感到不适。
最好是,自由翼140包括多个用于改进飞行器110水平飞行时横向控制的副(辅助)翼142。水平飞行期间,通过使用多个升降舵来调节自由翼140的迎角并提供横向控制。在图5中可以看到,自由翼140在146处可绕枢轴转动地连接至机身112的支承部分148上,以绕展向轴线146自由旋转。Preferably,
改进飞行器110可包括任意数量用于水平飞行时控制偏航运动稳定性的机构,包括翼梢垂直稳定器和方向舵,安装在尾部的垂直稳定器和方向舵,或蛤壳式副翼。改进飞行器110可包括任意数量用于垂直飞行时控制偏航运动稳定性的机构,包括旋翼气流扰动(rotor wash)内的腹部方向舵,或差动旋翼扭矩。在图示实施例中,改进飞行器110包括刚性固定在机身112上并有垂直稳定器152和方向舵156的尾段150。
与现有技术旋转翼飞行器10R相反,改进飞行器110的自由杠杆轴120和旋翼130可自由动态运动,以便在旋翼轴工作于基本垂直方向和基本水平方向之间时平衡推力和牵制力。轴120和旋翼130可相对于机身,在不倾斜机身112的状态下,在基本垂直方向和基本水平方向之间自由地做枢轴转动。In contrast to prior art
不论飞行器是处理垂直飞行中还是水平飞行中,改进飞行器110的旋翼130都为改进飞行器110提供通用推力(T)。改进飞行器110的自由翼140根据机翼附近的气流速度为改进飞行器110提供可变升力(L),这个升力虽然与改进飞行器110的水平速度不呈线性关系,但它没有不连续点,因为机翼不可能失速。改进飞行器110的质心(CM)位于改进飞行器110的自由翼升力中心(CL)处或在其下方。在图3-23的各实施例中,改进飞行器的质心(CM)位于自由翼或机翼升力中心(CL)的下方。在图24-30的各实施例中,改进飞行器的质心(CM)当机身水平取向时与机翼或自由翼的升力中心(CL)基本上处于相同高度。
旋翼130的推力(T)为改进飞行器110提供上升和/或向前的推力。由旋翼130提供的上升和/或向前推力可随吊杆120的向前倾斜角θ而变,这在下面参见图7-11的说明中可得到清楚的理解。可绕枢轴转动的自由翼140为改进飞行器提供上升或牵制力。由自由翼140提供的升力或牵制力可随自由翼附近的气流,因此,也随旋翼130提供的向前推力而变。旋翼130的可变升力和/或可变向前推力和可绕枢轴转动的自由翼140的可变升力和轴120的特有自由杠杆运动协同作用,为改进飞行器110提供恰当的向前推力和恰当的上升升力,对此下面将有更详细的说明。自由翼140为改进飞行器110提供因旋翼角度取向而失去的必需垂直升力。The thrust (T) of
图7是改进飞行器110的原理图,这展示了使改进飞行器能在垂直模式下爬高的旋翼轴120和旋翼130的角度位置。Figure 7 is a schematic diagram of the
旋翼轴120和旋翼130朝向垂直方向,当旋翼轴120朝向垂直方向时,旋翼130的全部推力取向上的方向。改进飞行器110的质心(CM)处于垂直取向旋翼轴120的升力中心的下方。在这种运行模式下,自由翼140为改进飞行器110提供的升力达到最小值或没有升力。在这种运行模式下,改进飞行器110的运行更像带悬吊负荷的图1所示旋转翼飞行器10R。The
图8-11是类似于图7的原理图,它们展示了从垂直方向逐步向前的各种取向下的旋转轴120和旋翼130。作用在自由杠杆轴远端122的来自旋翼130的推力是被制导的(例如,受图5中示意性所示的飞行员控制导向装置501的制导),以使改进飞行器110产生向前的运动。向前运动在自由翼和机身上形成上升力和牵制力。净重力产生的力作用在自由杠杆轴120的近端121上。上升和牵制力也作用在自由杠杆轴120的近端121,以建立自由杠杆轴的新倾角,以平衡作用在自由杠杆轴远端的制约重力的推力和作用在自由杠杆轴近端的上升和牵制力。自由杠杆轴120和旋翼130采取向前方向的取向将平衡作用在自由杠杆轴远端的反抗重力的推力和来自机翼和飞行器的作用在自由杠杆轴近端的上升和牵制力。自由杠杆轴120当作用在其远端和近端122,121的力相平衡时是稳定的。当受飞行员或飞行控制器干预而把推力制导至不同于稳定角的某一角度时,将导致自由杠杆轴自动寻找一个新的、平衡作用在飞行器上的推力、重力、上升和牵制力的平衡角度。8-11 are schematic diagrams similar to FIG. 7 showing the axis of
在图8-11中,旋转轴120稳定在向前方向的不同角度(相应为15°,45°,60°和90°)处,推力(T)的垂直分量(T·cosθ)取向上方向,用来提升改进飞行器110。推力(T)的水平分量(T·sinθ)取水平方向,用来沿向前方向移动改进飞行器110。改进飞行器110的向前运动形成跨越自由翼140的气流。自由翼140的后缘逐渐向上转动(可在图7-11中看到),为改进飞行器110的上升提供向上的升力。推力(T)的垂直分量(T·cosθ)与自由翼140的向上升力合在一起提供所需的上升能力,将改进飞行器110保持在稳定的高度。In Figures 8-11, the axis of
在图11中,用于提升改进飞行器110的推力(T)的垂直分量为零。用来在前进方向运动改进飞行器110的推力(T)的水平分量是(T)。自由翼140的向上升力为提升改进飞行器110提供所需的全部上升能力。飞行器的空速使改进飞行器110周围的牵制力等于推力(T)。In FIG. 11 , the vertical component of the thrust (T) used to lift the
如前面提到的那样,自由杠杆轴120可自由地倾斜其远端122的取向以在由飞行器发动机114旋加在自由杠杆120远端,被自由翼的升力和牵制分量,机身的牵制分量平衡的各推力分量与作用在自由杠杆轴近端的重力之间获得动态平衡。导向装置(示意地示于图的501处)制导由飞行器发动机产生的水平和垂直推力,并导致自由杠杆轴自由地调整关于其近端121的倾角,以离开已知平衡点到达所希望的新的平衡点。推力的制导可通过本领域常见的任何数量的机构,诸如控制旋翼叶片倾角的集合(collective)和旋转斜盘(swash plates),旋翼叶片上的伺服调整片,或旋翼轴上的常平架机构(gimballing)来实现。美国专利5,507,453中描述了另一示例性推力导向装置,该专利在此整体引为参考。As previously mentioned, the
作为导向装置501功能的一个示例,对于稳定水平飞行中的某已知前向速度,如果导向装置改变给定的水平和垂直推力分量,使所产生的垂直推力大于水平推力,则自由杠杆轴将绕其近端自由转动,为飞行器寻找新的,较低空速但较高高度的平衡点。As an example of the function of the guide 501, for some known forward speed in steady level flight, if the guide changes the given horizontal and vertical thrust components so that the vertical thrust produced is greater than the horizontal thrust, the free lever axis will Rotate freely around its proximal end to find a new, lower airspeed but higher altitude balance point for the aircraft.
上述依照本发明的飞行器的结构包括一种双摆锤布置,其中重力摆锤与升力/牵制摆锤相互作用,以提供垂直,水平和任意过渡飞行模式下的内在稳定性。重力或者说静态摆锤D从F或飞行器的质心CM延伸到自由杠杆轴120近端121的枢点C。自由杠杆或者说动态摆锤A从自由杠杆轴120远端122处的推力中心B延伸至近端121的枢点C。在图7中看得最清楚,当改进飞行器处于纯垂直状态时,重力摆锤和自由杠杆摆锤重迭并重合以包住F点处的摆锤质量或飞行器的质心CM和与从推力中心B至飞行器质心CM的距离相等的力(矩)臂。The structure of the aircraft according to the invention described above includes a dual pendulum arrangement in which the gravity pendulum interacts with the lift/drag pendulum to provide intrinsic stability in vertical, horizontal and any transition flight modes. A gravitational or static pendulum D extends from F or the vehicle's center of mass CM to a pivot point C at the
由于自由杠杆轴是自由地在枢点“C”上转动,枢点“C”是自由杠杆的近端,因此,来自质心的所有的力都作用在自由杠杆的近端。机翼产生作用在机翼周围气流上的上升和牵制力,它又作用在飞行器上,但因为安装在飞行器内的是自由杠杆的可绕枢轴转动的端,所以来自机翼的所有上升和牵制力都作用在自由杠杆的近端。机身产生作用在机身周围气流上的牵制(或许还有上升)力,它又作用在飞行器上,但由于安装在飞行器内的是自由杠杆的可绕枢轴转动的端,所以来自机身的所有上升和牵制力也作用在自由杠杆的近端。重力形成重力摆锤而上升/牵制力形成上升/牵制摆锤,两者相互作用,因为它们都作用在自由杠杆轴的近端。Since the free lever shaft is free to rotate on pivot point "C", which is the proximal end of the free lever, all forces from the center of mass act on the proximal end of the free lever. The wings create lift and drag forces that act on the airflow around the wing, which in turn acts on the vehicle, but because the pivotable end of the free lever is mounted in the vehicle, all lift and drag from the wing The restraining force acts on the proximal end of the free lever. The fuselage produces a drag (and perhaps lift) force acting on the airflow around the fuselage, which in turn acts on the vehicle, but since the pivotable end of the free lever is mounted in the vehicle, it comes from the fuselage All lift and hold-down forces also act on the proximal end of the free lever. The force of gravity forms the gravity pendulum and the lift/hold force forms the lift/hold pendulum, both interact as they both act on the proximal end of the free lever shaft.
在改进飞行器中,重力与飞行器的上升/牵制力因为都作用在自由杠杆轴的近端而相互作用,结果形成一动态摆锤,它是所述各种力的力矢量分解。由机翼生成的升力,以及它的副产品牵制力,造成作用在自由杠杆轴近端的净重力逐步减小直至零,与此同时,造成作用在所述近端的水平牵制力逐步增大直至等于作用在远端的推力。作用在所述近端的净重力为零时,自由杠杆轴可在水平角度下获得平衡。In the modified aircraft, gravity and the vehicle's lift/drag forces interact as both act proximal to the free lever axis, resulting in a dynamic pendulum which is the force vector resolution of the various forces. The lift generated by the airfoil, and its by-product drag force, causes the net gravitational force acting on the proximal end of the free lever shaft to gradually decrease until zero, while at the same time causing the horizontal drag force acting on said proximal end to gradually increase until Equal to the thrust acting on the distal end. When the net gravity acting on the proximal end is zero, the free lever shaft can be balanced at a horizontal angle.
虽然在前面讲到的自由翼和自由杠杆轴是可自由绕轴转动的,但应理解,也可以将自由翼和/或自由杠杆轴自由绕枢轴的转动限制在一预定范围内。例如,可以提供若干制动件(未示出)来防止自由杠杆轴120的转动超出相应于图11和图7中给出的水平和垂直位置。在由水平和垂直位置界定的角度区域内,自由杠杆轴是可自由绕枢轴转动的。提供用来将自由杠杆轴锁定在给定角度上,例如,当改进飞行器在起动飞行器发动机前停留在地面上时将其锁定在垂直方向的锁定机构也在本发明范畴内。飞行期间,锁定机构脱开,以允许自由杠杆轴自由绕枢轴转动。Although the aforementioned free wing and free lever shaft are freely pivotable, it should be understood that the free wing and/or free lever shaft can be freely pivoted to a predetermined range. For example, stops (not shown) may be provided to prevent rotation of the
图15-23是本发明第二实施例的示图,其中,旋翼由也可以是螺旋桨发动机等的喷气发动机214替代。在这个实施例中,采用了二个自由杠杆轴220,每个轴支承一台喷气发动机214。然而,提供任何数量的自由杠杆轴和喷气发动机也在本发明的范畴内。15-23 are illustrations of a second embodiment of the invention in which the rotors are replaced by
每台喷气发动机214通过延伸于近端221和远端222之间的自由杠杆轴220耦合。近端221通过元件260,270由机身212可绕枢转地支承。Each
这个实施例中的改进飞行器210还包括一个机翼240,它最好是自由翼,像图3-11中所示第一实施例中的自由翼。最好是,自由翼240包括多个在改进飞行器水平飞行时用作横向控制的副翼。自由翼240的迎角是可调节的,水平飞行时的横向控制可通过采用多个升降舵来提供。自由翼240连接至机身212的支承部分248,以绕展向轴线246自由转动。改进飞行器210还包括尾段250,尾段250刚性固定在机身212上并有垂直稳定器252和方向舵256。The
改进飞行器210的性能与第一实施例的飞行器110的相似。具体说,当由喷气发动机214产生的推力被制导时,例如,如图20中所示,自由杠杆轴220将自由地绕枢轴转动以寻找新的动态平衡点,如图21中所示。最好是,在图21的新的动态平衡点处,自由杠杆轴220通常以与制导推力的推力线(一般说,如图20中所示喷气发动机轴线的方向)相同的角度倾斜。图22-23给出水平飞行时的第二实施例飞行器,此时,吊杆220和喷气发动机214的推力线都是水平取向的。注意,自由翼240的迎角从图21至23是逐渐改变的。The performance of the modified
二台喷气发动机214产生的推力可以同步或分别制导。喷气发动机可用螺桨推进器或滑轮螺桨发动机替代。The thrust produced by the two
图24-30示出本发明的第三实施例,它基本上类似于第一实施例。具体说,所示出的飞行器300处于起飞前停留在地面2400上的不动状态。飞行器300包括机身2415,自由翼2414,轮子或着陆齿链2402,2404,和有近端和受机身与远端支承旋翼2418可绕枢轴转动支承的自由杠杆轴2416。24-30 show a third embodiment of the invention which is substantially similar to the first embodiment. Specifically,
这个实施例与第一实施例的区别在于,辅助横向和腹部动态飞行控制表面,例如,2709,是在自由杠杆轴的远端和近端2422,2421之间,而最好是,如在图27中看得最清楚那样朝向远端2422,固定至所述自由杠杆轴上的。This embodiment differs from the first embodiment in that the auxiliary lateral and ventral dynamic flight control surfaces, for example, 2709, are between the distal and
横向动态飞行控制表面可以是带控制表面的机翼,可绕枢轴转动的机翼,或依照本发明的某优选实施例,带控制表面2709的自由翼2708。最好有一个辅助自由翼,因为在如图29中所示的垂直或接近垂直飞行中,垂直方向推力所造成的升力受辅助翼存在的影响不大。腹部动态飞行控制表面(未示出)可以是翼梢垂直方向舵,翼梢蛤壳型方向舵或十字形方向舵。The lateral dynamic flight control surface may be a wing with control surfaces, a pivotable wing, or according to a preferred embodiment of the invention, a
在第一实施例中,对旋翼130产生的推力的制导,例如,在传统直升机中,是在旋翼叶片旋转时,靠旋翼叶片131,132改变迎角来实现的。依照本发明的一个方面,叶片迎角的这个变化可通过使用旋转斜盘(swashplates),或用旋翼叶片上的伺服调节片来实现。依照本发明的另一方面,整个旋翼头(接近图3中的标号122)可由旋翼轴的常平架机构来倾斜。但是,所有这些方法在机械方面都比较复杂。第三实施例的辅助横向(例如,2709)腹部控制表面提供了一种新的,改进和简化的制导作用在自由杠杆远端的推力的方法。In a first embodiment, the guidance of the thrust generated by the
更具体说,在第三实施例中,辅助翼2708有横向动态飞行控制表面2709,该表面将垂直于辅助翼横向支架的力加到自由杠杆轴上。自由杠杆轴的动态平衡像被制导的推力摆锤一样被转移,于是该轴被迫去寻找平衡作用在自由杠杆轴远端和近端的各个力的新的平衡角。这样,旋翼的向前和向后推力可以在自由杠杆轴接近垂直位置时得到控制,旋翼的向上和向下推力可以在自由杠杆轴接近水平位置时得到控制。辅助翼2708最好是自由翼,因为该机翼将可绕其展向轴线自由地绕枢轴旋转以平衡来自旋翼的垂直气流和与飞行器向前运动相关的水平气流。More specifically, in the third embodiment, the
类似地,辅助腹部动态飞行控制表面将一个力加到它在自由杠杆轴的腹部支架上。而且,自由杠杆轴的动态平衡也像被制导的推力摆锤一样被位移,因而所述轴也被迫去寻找新的平衡角度。这样,旋翼的横向推力(飞行器的横向滚动轴线)可在自由杠杆轴接近于垂直位置时受到控制,而旋翼的偏航运动推力(飞行器的偏航运动轴线)可在自由杠杆轴接近于水平位置时受到控制。横向和腹部控制表面中的任一个或两个的差分位移将横向滚动力加到飞行器上。这样,旋翼的推力可在自由杠杆轴接近于垂直位置时用来控制飞行器的偏航运动轴线,而在自由杠杆轴接近于水平位置时用来控制飞行器的横向滚动轴线。Similarly, the auxiliary belly dynamic flight control surface applies a force to its belly mount on the free lever axis. Also, the dynamic balance of the free-lever shaft is displaced like a guided thrust pendulum, so that the shaft is also forced to find a new equilibrium angle. In this way, the lateral thrust of the rotor (the axis of lateral roll of the aircraft) can be controlled when the free lever axis is close to the vertical position, while the yaw motion thrust of the rotor (the axis of yaw motion of the aircraft) can be controlled when the free lever axis is close to the horizontal position time under control. Differential displacement of either or both of the lateral and ventral control surfaces imparts lateral rolling forces to the aircraft. In this way, the thrust of the rotor can be used to control the yaw motion axis of the aircraft when the free lever axis is close to the vertical position, and the lateral roll axis of the aircraft when the free lever axis is close to the horizontal position.
本发明的改进飞行器解决了与飞行器基本功能性用途有关的一系列问题,并有超越现有技术的如下优点。首先,本创新飞行器在所有飞行模式,不论是水平,垂直或任意过渡飞行模式中都是稳定的。第二,本创新飞行器中的飞行安全性增强了,因为本发明飞行器中的机翼不会失速。第三,本发明飞行器的工作效率提高了,特别是在巡航飞行期间,因为机翼的尺寸可以小一些以产生较小的牵制力和旋翼可取大的尺寸。The improved aircraft of the present invention solves a series of problems related to the basic functional use of aircraft and has the following advantages over the prior art. First of all, the innovative aircraft is stable in all flight modes, whether it is horizontal, vertical or any transitional flight mode. Second, flight safety in the inventive aircraft is enhanced because the wings in the inventive aircraft cannot stall. Third, the operating efficiency of the aircraft of the present invention is improved, especially during cruise flight, because the wings can be smaller in size to create less drag and the rotors can be larger in size.
虽然本发明是以有一定程度特殊性的它的优化形式予以说明的,但可以理解,以所述优选形式给出的本公开内容只是作为示例,而仍可在不偏离本发明精神和范围的前提下对各种零部件的结构,组合和布置的细节作出许多变更。例如,虽然前面描述的实施例采用了一个旋翼作为产生推力的机构,但为改进飞行器提供产生推力的其他机构,例如,一台喷气发动机或多台喷气发动机,也在本发明的范围内。又例如,虽然前面描述的实施例采用了一个自由翼作为产生升力的其它机构,但为改进飞行器提供产生升力的机构,例如,机械枢转机翼,也在本发明的范围内。又例如,可采用计算机系统来确定可平衡推力和牵制力的自由杠杆轴的角度,然后用机械方法使杠杆运动至该角度。因此,这里的意图是本专利权保护应仅由所附权利要求书及其等价物中所包含的定义来限定。While the invention has been described in its preferred form with a certain degree of particularity, it is to be understood that the disclosure in said preferred form is given by way of illustration only and may be made without departing from the spirit and scope of the invention. Under the premise, many changes are made to the details of the structure, combination and arrangement of various parts. For example, while the previously described embodiments employ a rotor as the thrust generating mechanism, it is within the scope of the present invention to provide other thrust generating mechanisms for the modified aircraft, such as a jet engine or jet engines. As another example, while the previously described embodiments employ a free wing as the other lift-generating mechanism, it is within the scope of the invention to provide lift-generating mechanisms for improved aircraft, such as mechanically pivoting wings. As another example, a computer system could be used to determine the angle of the free lever axis that balances thrust and drag forces, and then mechanically move the lever to that angle. Accordingly, it is the intention here that patent protection shall be limited only as defined in the appended claims and their equivalents.
Claims (45)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38843502P | 2002-06-12 | 2002-06-12 | |
US60/388,435 | 2002-06-12 | ||
US10/458,737 | 2003-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101061033A true CN101061033A (en) | 2007-10-24 |
Family
ID=38866621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03813759 Pending CN101061033A (en) | 2002-06-12 | 2003-06-11 | Aircraft and method of controlling it in vertical, horizontal and flight filter modes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101061033A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101939219A (en) * | 2008-02-13 | 2011-01-05 | 贝尔直升机泰克斯特龙公司 | Rotor craft with variable incidence wing |
CN101302969B (en) * | 2007-05-07 | 2013-03-20 | 福特环球技术公司 | System and method for operation of an engine having multiple combustion modes and adjustable balance shafts |
CN104691758A (en) * | 2015-03-01 | 2015-06-10 | 朱幕松 | Rotor wing vertical lift electric unmanned machine of linkage fixed wing |
CN104755373A (en) * | 2012-10-31 | 2015-07-01 | 国立大学法人德岛大学 | Conveyance device and control method for flight vehicle |
CN109407695A (en) * | 2017-08-17 | 2019-03-01 | 贝尔直升机德事隆公司 | The system and method close for rotor craft offshore |
CN113467520A (en) * | 2021-08-17 | 2021-10-01 | 南开大学 | Control method of flight handling system with double-pendulum swinging effect |
-
2003
- 2003-06-11 CN CN 03813759 patent/CN101061033A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101302969B (en) * | 2007-05-07 | 2013-03-20 | 福特环球技术公司 | System and method for operation of an engine having multiple combustion modes and adjustable balance shafts |
CN101939219A (en) * | 2008-02-13 | 2011-01-05 | 贝尔直升机泰克斯特龙公司 | Rotor craft with variable incidence wing |
US8567709B2 (en) | 2008-02-13 | 2013-10-29 | Textron Innovations Inc. | Rotorcraft with variable incident wing |
CN101939219B (en) * | 2008-02-13 | 2014-01-01 | 贝尔直升机泰克斯特龙公司 | Rotorcraft with variable incident wing |
CN104755373A (en) * | 2012-10-31 | 2015-07-01 | 国立大学法人德岛大学 | Conveyance device and control method for flight vehicle |
CN104755373B (en) * | 2012-10-31 | 2017-03-08 | 国立大学法人德岛大学 | Carrying device and the control method of aircraft |
CN104691758A (en) * | 2015-03-01 | 2015-06-10 | 朱幕松 | Rotor wing vertical lift electric unmanned machine of linkage fixed wing |
CN104691758B (en) * | 2015-03-01 | 2016-09-28 | 朱幕松 | Linkage fixed-wing rotor electric vertical lifting unmanned plane |
CN109407695A (en) * | 2017-08-17 | 2019-03-01 | 贝尔直升机德事隆公司 | The system and method close for rotor craft offshore |
CN113467520A (en) * | 2021-08-17 | 2021-10-01 | 南开大学 | Control method of flight handling system with double-pendulum swinging effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10173771B2 (en) | Tiltrotor aircraft having rotatable wing extensions | |
CN110316370B (en) | Layout and control method of a distributed power tilt-wing aircraft | |
US6863241B2 (en) | Control of an aircraft as a thrust-vectored pendulum in vertical, horizontal and all flight transitional modes thereof | |
CN1166527C (en) | Vertical take-off and landing aircraft | |
US10279892B2 (en) | Tiltrotor aircraft having active wing extensions | |
CN108298064B (en) | Unconventional yaw control system | |
US20200086971A1 (en) | Tiltrotor Free-Pivot Wing Extension | |
CN108528692B (en) | A folding-wing dual-rotor aircraft and its control method | |
CN104470800A (en) | wing adjustment mechanism | |
US20100258671A1 (en) | Aircraft having helicopter rotor and front mounted propeller | |
CN103180208A (en) | Vertical take-off and landing of deflection wing rotor | |
US20220363376A1 (en) | Free Wing Multirotor Transitional S/VTOL Aircraft | |
CN112224400B (en) | Novel tilt rotor aircraft and working method thereof | |
CN106915459A (en) | A kind of hybrid tilting rotor wing unmanned aerial vehicle | |
CN205469821U (en) | Perpendicular or short take off and landing fixed wing aircraft | |
CN111891348B (en) | Vertical take-off and landing aircraft with universally-tiltable rotor wings and control method thereof | |
CN107651184B (en) | Non-variable-pitch helicopter | |
US11987350B2 (en) | Winged tiltrotor aircraft | |
CN101061033A (en) | Aircraft and method of controlling it in vertical, horizontal and flight filter modes | |
WO2022113086A1 (en) | Rotorcraft | |
CN108248855A (en) | A kind of fuselage unmanned plane that verts with the design of driving part inclination angle | |
US8944366B2 (en) | Rotorcraft empennage mounting system | |
CN209479966U (en) | An unmanned autogyro capable of vertical take-off and landing | |
CN207843318U (en) | A kind of fuselage unmanned plane that verts with the design of driving part inclination angle | |
RU2456208C1 (en) | Converter plane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |