CN101060290B - 具有能量钳位电路的电流源逆变器及其控制方法 - Google Patents
具有能量钳位电路的电流源逆变器及其控制方法 Download PDFInfo
- Publication number
- CN101060290B CN101060290B CN2006100744619A CN200610074461A CN101060290B CN 101060290 B CN101060290 B CN 101060290B CN 2006100744619 A CN2006100744619 A CN 2006100744619A CN 200610074461 A CN200610074461 A CN 200610074461A CN 101060290 B CN101060290 B CN 101060290B
- Authority
- CN
- China
- Prior art keywords
- current
- diode
- coupled
- output
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Inverter Devices (AREA)
Abstract
本发明揭示一种具有能量钳位电路的电流源逆变器及其控制方法。此电流源逆变器提供电流输出,可直接将其输出并联于市电电源上。且该电流源逆变器包含具有输入电容与输出电感的降压型转换器,用于接收直流输入电压及产生输出电感电流,具有输出电容的直流/交流转换器,用于接收该输出电感电流与产生交流输出电流,耦接于该直流/交流转换器的负载耦接以及耦接于该逆变器的能量钳位电路,耦接用于在该负载关断时提供放电路径,使储存于该输出电感的能量泄放至输出电容与输入电容,且可避免产生冲击电流,该能量钳位电路包括:第一二极管以及第二二极管。由此,本发明大幅降低电流源逆变器中的多个晶体管所需承受的电压应力,且避免产生冲击电流。
Description
技术领域
本发明涉及一种具有能量钳位电路的电流源逆变器及其控制方法,尤其涉及一种包含效果较佳的能量钳位电路的电流源逆变器及其控制方法。
背景技术
一种公知的电流源逆变器(current source inverter)1(如图1所示),其为电流源输出,且可直接并联于市电电源。此电流源逆变器1,包含降压型转换器11以及直流/交流转换器12。该降压型转换器11还包括:输入电容C_in,降压型转换器开关S_buck,缓流二极管D_buck,与输出电感L-o,用于接收直流输入电压V_in并产生输出电感电流I_Lo。该直流/交流转换器12还包括:切换桥电路121,还包括四个单向开关与输出电容C_o,而该四个单向开关为:D1+Q1、D2+Q2、D3+Q3与D4+Q4(其中D1、D2、D3与D4为整流二极管,而Q1、Q2、Q3与Q4为功率晶体管,如Mosfet,IGBT与Transistor)。当该市电电源被断开时,储存于该输出电感L_o的能量会对输出电容C_o充电,造成输出电压过高,而为避免造成晶体管Q1~Q4损毁,需选用更高电压额定的晶体管。
如前所述,图1显示一种公知的电流源逆变器1,其由降压型转换器11及直流/交流转换器12所组成,而该降压型转换器11的主要的功能就是使该电流源逆变器1的输出功率因素(power factor)为1,这个功能利用输出电感电流I_Lo会跟随该市电电源的电压,并依该市电电源的该电压变化而跟着增大或减小的机制来完成。也就是说输出电感电流I_Lo能通过改变降压型转换器开关(S_buck)的占空比(duty cycle),使其成为整流的弦波波形。而直流/交流转换器12的功能为将输出电感电流I_Lo的整流弦波波形切换成为交流弦波波形。
当该电流源逆变器1运行时,输出电感L_o上的电流会追随输出电压的波形而呈现整流的弦波波形,且一般而言输出电感的电感量都很大,因此可 将降压型转换器11等效为电流源(如图2(a)所示)。
请参见图2(a),当输出电压为正半周时,晶体管Q1与Q4导通,输出电感电流I_Lo流经二极管D1与D4,晶体管Q1与Q4将能量回送至市电电源。若此时将市电电源断开(当市电电源端的插头122与插座123分开时),则储存于输出电感L_o的能量会泄放至输出电容C_o,使得输出电压V_o及晶体管Q2与二极管D2上的跨压V1增加。同理,图2(b)所示,当输出电压为负半周时,晶体管Q2与Q3导通,输出电感电流I_Lo流经二极管D2与D3,晶体管Q2与Q3将能量回送至市电电源。若此时将市电电源断开(也就是说,将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量也会泄放至输出电容C_o,使得输出电压V_o及晶体管Q4与二极管D4上的跨压V2增加。为避免此过高的电压造成晶体管损毁,故需选用更高耐压的晶体管,此法虽可解决晶体管损毁的问题,但要增加额外的成本。
如图3(a)所示,图3(a)为一种公知的具有能量钳位电路的电流源逆变器2,除该降压型转换器11以及该直流/交流转换器12具有切换桥电路121与前述图1与图2(a)与图2(b)中这些装置相同外,其能量钳位电路21由第一至第四二极管D_A、D_B、D_C、D_D所组成。在此电流源逆变器正常运行时,由于输入电压大于该市电电源的该电压的峰值,因此第一至第四二极管D_A、D_B、D_C、D_D截止。而当该市电电源被断开时,可通过二极管D_A与D_D或D_B与D_C,将输出电感L_o上所储存的能量回送至输出电容C_o与输入电容C_in。也就是说,当该市电电源断开时,输出电感L_o对输出电容C_o与输入电容C_in放电。而输出电压V_o上升至当输出电容C_o的电压略大于该直流输入电压V_in时,则二极管D_A与D_D或D_B与D_C导通,此时输出电感L_o的能量便可以回送至输入电源端。因此输出电压V_o便会钳位在略大于输入电压V_in的电压,如此将可大幅降低晶体管Q1、Q2、Q3与Q4所需承受的电压应力。
请参见图3(b),当该市电电源的该电压为正半周时,晶体管Q1与Q4导通,输出电感电流I_Lo流经二极管D1与D4,晶体管Q1与Q4将能量回送至市电电源。若此时将市电电源断开(即将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量会泄放至该输出电容 C_o与输入电容C_in,且该正半周放电路径如图3(b)中的电流路径所示(输出电感L_o→二极管D1→晶体管Q1→二极管D_A→输入电容C_in→二极管D_D→二极管D4→晶体管Q4→缓流二极管D_buck→输出电感L_o)。
另,请参见图3(c),当该市电电源的该电压为负半周时,晶体管Q2与Q3导通,输出电感电流I_Lo流经二极管D2与D3,晶体管Q2与Q3将能量回送至市电电源。若此时将市电电源断开(即将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量也会泄放至该输出电容C_o与输入电容C_in,且该负半周放电路径如图3(c)中的电流路径所示(输出电感L_o→二极管D3→晶体管Q3→二极管D_B→输入电容C_in→二极管D_C→二极管D2→晶体管Q2→缓流二极管D_buck→输出电感L_o)。
如图3(a)所示的电流源逆变器2,在直流输入电源V_in尚未建立时,若插入市电电源,则会产生很大的冲击电流(inrush current)经由D_A与D_D或D_B与D_C流至输入电容C_in,此冲击电流除了会使市电电源端的保险丝烧毁,也容易对市电电源端造成谐波干扰。当该市电电源的该电压为正半周时,在该直流输入电源V_in尚未建立,或小于该市电电源的该电压的峰值时,若插入市电电源,则会产生该冲击电流,沿着正半周放电路径流动,也就是说,经该市电电源→输出电容C_o第一端→二极管D_A→输入电容C_in→二极管D_D→输出电容C_o第二端→该市电电源,该正半周放电路径如图4(a)所示。
同理,当该市电电源的电压为负半周时,在输入电源V_in尚未建立,或小于该市电电源的电压的峰值时,若插入市电电源,则会产生该冲击电流,沿着负半周放电路径流动,也就是说经该市电电源→输出电容C_o该第二端→二极管D_B→输入电容C_in→二极管D_C→输出电容C_o该第一端→该市电电源,该负半周放电路径如图4(b)所示。
发明内容
本发明的主要目的在于提供一种效果较佳的包含能量钳位电路的电流源逆变器及其控制方法,在该电流源逆变器的输出端与市电电源断开时,通过能量钳位电路使该电流源逆变器的输出电感所储存的能量对该电流源逆变器所包含的输出电容与输入电容放电,如此将可大幅降低该电流源逆变器中的多个晶体管所需承受的电压应力,且该电流源逆变器在直流输入电压尚未建立,或该直流输入电压小于该市电电源的电压的峰值,而连接该电流源逆变器的输出端和市电电源时,也可避免产生冲击电流。
本发明的另一目的在于提供一种具有能量钳位电路的电流源逆变器,用于将交流输出电流反馈给独立电压源并提供能量于该独立电压源的负载,包含:降压型转换器,用于接收直流输入电压,具有输入电容与输出电感,该降压型转换器并产生具有整流的弦波波形的输出电感电流,直流/交流转换器,耦接于该降压型转换器,用于提供反馈给该独立电压源的该交流输出电流,包括输出电容与切换桥电路,其中该输出电容并联连接于该独立电压源,该切换桥电路包括第一至第四单向开关,且具有第一与第二输入端及第一与第二输出端,耦接于该降压型转换器,以及能量钳位电路,耦接于该降压型转换器与该直流/交流转换器,用于当该直流输入电压尚未建立,或该直流输入电压小于该独立电压源的电压的峰值,而连接该电流源逆变器与该独立电压源时,关断冲击电流,仅包括:第一二极管,其阳极耦接于该切换桥电路的该第二输出端与该输出电容的第二端,该第一二极管的阴极耦接于该降压型转换器,以及第二二极管,其阳极耦接于该切换桥电路的该第一输出端与该输出电容的第一端,该第二二极管的阴极耦接于该第一二极管的该阴极,其中该电流源逆变器利用该直流/交流转换器将该输出电感电流转换为该交流输出电流,该能量钳位电路用于在该输出电容与该独立电压源断开的时候提供放电路径,该电流源逆变器控制该第一至该第四单向开关其中之一的导通,使储存于该输出电感的能量经由该第一与该第二二极管的其中之一而泄放至该输出电容与该输入电容,以减少该直流/交流转换器的电压应力。
根据上述的构想,该输入电容具有第一端与第二端,该输出电感也具有第一端与第二端,该直流/交流转换器耦接于该输出电感的第二端,且该降压型转换器还包括降压型转换器开关与缓流二极管;该降压型转换器开关具有控制端、第一端与第二端,该降压型转换器开关的第一端耦接于该输入电容的第一端;该缓流二极管具有阳极与阴极,该缓流二极管的阳极耦接于该输入电容的第二端,且该缓流二极管的阴极耦接于该降压型转换器开关的第二端与该输出电感的第一端;该切换桥电路的第一输入端耦接于该输出电感的第二端,该切换桥电路的第二输入端耦接于该缓流二极管的阳极,该切换桥 电路用于产生该逆变器的交流输出电流,且包括:该第一单向开关,具有第一与第二端,该第一端耦接于该切换桥电路的第一输入端,且该第二端耦接于该切换桥电路的第一输出端,该第二单向开关,具有第一与第二端,该第一端耦接于该切换桥电路的第一输出端,且该第二端耦接于该切换桥电路的第二输入端,该第三单向开关,具有第一与第二端,该第一端耦接于该第一单向开关的第一端,且该第二端耦接于该切换桥电路的第二输出端,以及该第四单向开关,具有第一与第二端,该第一端耦接于切换桥电路的第二输出端,且该第二端耦接于该第二单向开关的第二端,其中当该直流输入电压尚未建立,或该直流输入电压小于该独立电压源的电压的峰值,而连接该电流源逆变器与该独立电压源时,因该第一至该第四单向开关均未导通,故该电流源逆变器将不会产生该冲击电流。
根据上述的构想,该放电路径还包括正半周放电路径与负半周放电路径,该正半周放电路径从该输出电感、该第一单向开关、该第二二极管、该输入电容至该缓流二极管形成第一回路,且该负半周放电路径从该输出电感、该第三单向开关、该第一二极管、该输入电容至该缓流二极管形成第二回路。
根据上述的构想,当该输出电容与该独立电压源在该交流电压的正半周时被断开,则该输出电感的能量沿着正半周放电路径的该第一回路被泄放至该输入电容,且当该负载在该交流电压的一负半周时被断开,则该输出电感的该能量沿着负半周放电路径的该第二回路被泄放至该输入电容。
本发明的另一主要目的在于提供一种具有能量钳位电路的电流源逆变器的控制方法,用于将交流输出电流反馈给独立电压源并提供能量于该独立电压源的负载,其中该电流源逆变器包含降压型转换器、直流/交流转换器以及能量钳位电路,该降压型转换器用于接收直流输入电压,并具有输入电容与输出电感,该直流/交流转换器耦接于该输出电感,并具有切换桥电路和输出电容,该输出电容用于并联连接于该独立电压源,该切换桥电路包括第一至第四单向开关,该第一至该第四单向开关耦接于该降压型转换器,使该电流源逆变器的输出电容并联连接于该独立电压源,且该能量钳位电路耦接于该降压型转换器与该直流/交流转换器,该能量钳位电路用于在该负载被关断的时候提供放电路径,且该能量钳位电路仅包括第一二极管和第二二极管, 该第一二极管的阳极耦接于该切换桥电路的第二输出端与该输出电容的第二端,该第一二极管的阴极耦接于该降压型转换器,该第二二极管的阳极耦接于该切换桥电路的第一输出端与该输出电容的第一端,该第二二极管的阴极耦接于该第一二极管的该阴极,当该负载被关断时,该电流源逆变器控制该第一至该第四单向开关其中之一的导通且利用该第一与该第二二极管的其中之一而形成该放电路径,该控制方法包含下列的步骤:(a)使该降压型转换器接收该直流输入电压并于该输出电感上产生具有整流的弦波波形的输出电感电流;(b)使该直流/交流转换器接收该电感电流,且将该电感电流做切换以产生该交流输出电流并将该能量反馈给该独立电压源;(c)当该独立电压源与该逆变器该输出电容断开时,经该放电路径使该输出的电感的能量经该放电路径被泄放至该输出电容与该输入电容,以减少该直流/交流转换器的电压应力;以及(d)当该直流输入电压尚未建立,或该直流输入电压小于该独立电压源的电压的峰值,而连接该电流源逆变器的输出电容与该独立电压源时,运用该能量钳位电路以消除冲击电流。
本发明通过下列附图及详细说明,从而得到更深入的了解。
图1显示一种公知的电流源逆变器的电路示意图;
图2(a)显示一种公知的电流源逆变器的等效电路及当交流输出电压为正半周时,断开市电电源所产生的输出电感放电路径的示意图;
图2(b)显示一种公知的电流源逆变器的等效电路及当交流输出电压为负半周时,断开市电电源所产生的输出电感放电路径的示意图;
图3(a)显示一种公知的具有能量钳位电路的电流源逆变器的电路示意图;
图3(b)显示一种公知的具有能量钳位电路的电流源逆变器及当交流输出电压为正半周时,断开市电电源所产生的输出电感放电路径的示意图;
图3(c)显示一种公知的具有能量钳位电路的电流源逆变器及当交流输出电压为负半周时,断开市电电源所产生的输出电感放电路径的示意图;
图4(a)显示一种公知的具有能量钳位电路的电流源逆变器及当直流输入电压为零与交流输出电压为正半周时,插入市电电源所产生的冲击电流路径的示意图;
图4(b)显示一种公知的具有能量钳位电路的电流源逆变器及当直流输 入电压为零与交流输出电压为负半周时,插入市电电源所产生的冲击电流路径的示意图;
图5(a)显示根据本发明构想的较佳的能量钳位电路的电流源逆变器的第一较佳实施例的电路与当交流输出电压为正半周时的冲击电流可能路径的示意图;
图5(b)显示根据本发明构想的较佳的能量钳位电路的电流源逆变器的第二较佳实施例的电路与当交流输出电压为正半周时的冲击电流可能路径的示意图;
图5(c)显示根据本发明构想的较佳的能量钳位电路的电流源逆变器的第三较佳实施例的电路与当交流输出电压为正半周时的冲击电流可能路径的示意图;
图6(a)显示根据本发明构想的具有能量钳位电路的电流源逆变器的第四较佳实施例的电路示意图;以及
图6(b)显示根据本发明构想的具有能量钳位电路的电流源逆变器的第四较佳实施例的电路与当交流输出电压为正半周时,断开市电电源所产生的输出电感放电路径的示意图;以及
图6(c)显示根据本发明构想的具有能量钳位电路的电流源逆变器的第四较佳实施例的电路与当交流输出电压为负半周时,断开市电电源所产生的输出电感放电路径的示意图。
其中,附图标记说明如下:
附图说明
1 电流源逆变器
11 降压型转换器
12 直流/交流转换器
121 切换桥电路
122 插头
123 插座
2 具有能量钳位电路的电流源逆变器
21 能量钳位电路
3 包含效果较佳能量钳位电路的电流源逆变器
31 效果较佳的能量钳位电路
311 多个二极管
312 控制开关
4 包含较佳能量钳位电路的电流源逆变器
41 效果较佳的能量钳位电路
411 多个二极管
412 控制开关
5 包含效果较佳能量钳位电路的电流源逆变器
51 效果较佳的能量钳位电路
511 多个二极管
512 控制开关
6 包含效果较佳能量钳位电路的电流源逆变器
61 效果较佳的能量钳位电路
请参考图5(a),其显示根据本发明构想的具有相对较佳效果效益的包含能量钳位电路的电流源逆变器的第一较佳实施例的电路及其冲击电流的正半周路径的电流的示意图。其中,该较佳效果的包含能量钳位电路的电流源逆变器3除包括:降压型转换器11以及直流/交流转换器12具有切换桥电路121、插头122与插座123(用于提供该市电电源),与前述图3(a)至图3(c)中所述的相同外,还包括能量钳位电路31,该能量钳位电路31包括:多个二极管311(由该第一至第四二极管:D_A、D_B、D_C与D_D所组成,与图3(a)中21相同)以及开关312。而该冲击电流的正半周放电路径与在图4(a)图4(a)中所示的相同,显示若该开关312未关断时,该冲击电流的可能流经路线。该开关串联连接于该第三二极管D_C的阴极与该输出电容C-o的第一端,用于在该交流输出电压为正半周时插入市电电源,且该输入电压V_in尚未建立之际被关断,因该开关312位于该冲击电流流经的路径上,故其适时关断而不产生该冲击电流。同理,该冲击电流的负半周放电路径与在图4(b)中所示的相同,故该开关312也正位于该冲击电流的该负半周放电路径所流经的路线上,因此该开关312若在该交流输出电压为负半周时插入市电电源,且该输入电压V_in尚未建立之际被关断,也可 不产生该冲击电流。至于若将市电电源断开(即将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量也会泄放至该输出电容C_o与输入电容C_in,且因该多个二极管311的结构与在图3(a)中的能量钳位电路21相同,故两者的操作原理与正/负半周放电路径(如图3(a)至图3(b)所示)也相同,在此不再赘述。
请参考图5(b),其显示根据本发明构想的效果较佳的包含能量钳位电路的电流源逆变器的第二较佳实施例的电路及其冲击电流的正半周路径的电流的示意图。其中,该效果较佳的包含能量钳位电路的电流源逆变器4包括:降压型转换器11以及直流/交流转换器12具有切换桥电路121、插头122与插座123(用于提供该市电电源)以及能量钳位电路41,该能量钳位电路41包括:多个二极管411(由该第一至第四二极管:D_A、D_B、D_C与D_D所组成,与图3(a)中21相同)以及开关412,其基本结构与图5(a)相同,仅该开关412的连接位置不同。该开关412串联连接于该第一二极管D_A的阴极与该输入电容C_in的第一端,其正位于该冲击电流的正/负半周放电路径所流经的路线上(该正半周放电路径如图5(b)所示,而该负半周放电路径如图4(b)所示),因此其若在该交流输出电压为正/负半周时插入市电电源,且该输入电压V_in尚未建立之际被适时关断,也可不产生该冲击电流。同样地,若将市电电源断开(即将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量也会泄放至该输出电容C_o与输入电容C_in,且因该多个二极管411的结构与在图3(a)中的能量钳位电路21相同,故两者的操作原理与正/负半周放电路径(如图3(a)至图3(b)所示)也相同,在此不再赘述。
请参考图5(c),其显示根据本发明构想的效果较佳的包含能量钳位电路的电流源逆变器的第三较佳实施例的电路及其冲击电流的正半周路径的电流的示意图。其中,该效果较佳的包含能量钳位电路的电流源逆变器5包括:降压型转换器11以及直流/交流转换器12具有切换桥电路121、插头122与插座123(用于提供该市电电源)以及能量钳位电路51,该能量钳位电路51包括:多个二极管511(由该第一至第四二极管:D_A、D_B、D_C与D_D所组成,与图3(a)中21相同)以及开关512,其基本结构与图5(a)与图5(b)相同,仅该开关512的连接位置不同。该开关512串联连接于该 第三二极管D_C的阳极与该输入电容C_in的第二端,其正好位于该冲击电流的正/负半周放电路径所流经的路线上(该正半周放电路径如图5(c)所示,而该负半周放电路径如图4(b)所示),因此其若在该交流输出电压为正/负半周时插入市电电源,且该输入电压V_in尚未建立之际被适时关断,也同样可不产生该冲击电流。当然,若将市电电源断开(即将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量也会泄放至该输出电容C_o与输入电容C_in,且因该多个二极管511的结构与在图3(a)中的能量钳位电路21相同,故其操作原理及其正/负半周放电路径(如图3(a)至图3(b))也相同,在此也不再细述。
请参考图6(a),其显示根据本发明构想的效果较佳的包含能量钳位电路的电流源逆变器的第四较佳实施例的电路的示意图。此较佳的包含能量钳位电路的电流源逆变器6由电流源逆变器及外加二极管D_A与D_B所组成。其中,该效果较佳的包含能量钳位电路的电流源逆变器6除包括:降压型转换器11以及直流/交流转换器12具有切换桥电路121、插头122与插座123(用于提供该市电电源,详见图6(b)与图6(c)),与前述图3(a)至图3(c)中所述的相同外,还包括能量钳位电路61,耦接于该逆变器,该钳位电路61包括:第一与第二二极管(D_A与D_B),其中该电流源逆变器的运行原理与前述相同,故在此不再细述。
如图6(a)和图6(b)所示,当市电电源断开时,输出电感L_o对输出电容C_o放电,而电压V_o上升至该输出电容C_o的电压略大于输入电压V_in时,则二极管D_A(负半周),或D_B(正半周)导通。此时,输出电感L_o的能量经由降压转换器11中缓流二极管D_buck及D_A(负半周)或D_B(正半周)回送至直流输入电源V_in端。也就是说,当该交流输出电压为正半周时,若此时将市电电源断开(即将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量会泄放至该输出电容C_o与输入电容C_in,且该正半周放电路径如图6(b)中的电流路径所示(输出电感L_o→二极管D1→晶体管Q1→二极管D_B→输入电容C_in→缓流二极管D_buck→输出电感L_o)。另,请参见图6(c),当该交流输出电压为负半周时,若此时将市电电源断开(即将市电电源端的该插头122与该插座123分开),则储存于输出电感L_o的能量也会泄放至该输出电容C_o与 输入电容C_in,且该负半周放电路径如图6(c)中的电流路径所示(输出电感L_o→二极管D3→晶体管Q3→二极管D_A→输入电容C_in→缓流二极管D_buck→输出电感L_o)。
而如图6(a)至6(c)所示的该效果较佳的包含能量钳位电路的电流源逆变器6,在输入电源V_in尚未建立之际,插入市电电源时并不会有前述冲击电流的问题;原因在于此时晶体管Q1、Q2、Q3与Q4均未导通,因此并无路径可产生该冲击电流。
从以上的描述可知,依据本发明构想的较佳的包含能量钳位电路的电流源逆变器及其控制方法,其主要特征是在该电流源逆变器的输出端的市电电源被断开时,通过能量钳位电路使该电流源逆变器的输出电感所储存的能量对该电流源逆变器所包含的输出电容与输入电容放电,如此将可大幅降低该电流源逆变器中的多个晶体管所需承受的电压应力,且该电流源逆变器在直流输入电源尚未建立而被插入该市电电源时,也可用于避免产生冲击电流。
因此,即使本发明已由上述的实施例详细描述而可由本领域技术人员任施匠思而为诸般修饰,然皆不脱离所附权利要求所欲保护的范围。
具体实施方式
Claims (4)
1.一种具有能量钳位电路的电流源逆变器,用于将交流输出电流反馈给独立电压源并提供能量于该独立电压源的负载,包含:
降压型转换器,用于接收直流输入电压,具有输入电容与输出电感,该降压型转换器并产生具有整流的弦波波形的输出电感电流;
直流/交流转换器,耦接于该降压型转换器,用于提供反馈给该独立电压源的交流输出电流,包括输出电容与切换桥电路,其中该输出电容并联连接于该独立电压源,该切换桥电路包括第一至第四单向开关,且具有第一与第二输入端及第一与第二输出端,耦接于该降压型转换器;以及
能量钳位电路,耦接于该降压型转换器与该直流/交流转换器,用于当该直流输入电压尚未建立,或该直流输入电压小于该独立电压源的电压的峰值,而连接该电流源逆变器与该独立电压源时,关断冲击电流,仅包括:
第一二极管,其阳极耦接于该切换桥电路的该第二输出端与该输出电容的第二端,该第一二极管的阴极耦接于该降压型转换器;以及
第二二极管,其阳极耦接于该切换桥电路的该第一输出端与该输出电容的第一端,该第二二极管的阴极耦接于该第一二极管的该阴极,
其中该电流源逆变器利用该直流/交流转换器将该输出电感电流转换为该交流输出电流,该能量钳位电路用于在该输出电容与该独立电压源断开的时候提供放电路径,该电流源逆变器控制该第一至该第四单向开关其中之一的导通,使储存于该输出电感的能量经由该第一与该第二二极管的其中之一而泄放至该输出电容与该输入电容,以减少该直流/交流转换器的电压应力。
2.根据权利要求1的所述的电流源逆变器,其特征在于,
该输入电容具有第一端与第二端,该输出电感也具有第一端与第二端,该直流/交流转换器耦接于该输出电感的第二端,且该降压型转换器还包括降压型转换器开关与缓流二极管;
该降压型转换器开关具有控制端、第一端与第二端,该降压型转换器开关的第一端耦接于该输入电容的第一端;
该缓流二极管具有阳极与阴极,该缓流二极管的阳极耦接于该输入电容的第二端,且该缓流二极管的阴极耦接于该降压型转换器开关的第二端与该输出电感的第一端;
该切换桥电路的第一输入端耦接于该输出电感的第二端,该切换桥电路的第二输入端耦接于该缓流二极管的阳极,该切换桥电路用于产生该逆变器的交流输出电流,且包括:
该第一单向开关,具有第一与第二端,该第一端耦接于该切换桥电路的第一输入端,且该第二端耦接于该切换桥电路的第一输出端;
该第二单向开关,具有第一与第二端,该第一端耦接于该切换桥电路的第一输出端,且该第二端耦接于该切换桥电路的第二输入端;
该第三单向开关,具有第一与第二端,该第一端耦接于该第一单向开关的第一端,且该第二端耦接于该切换桥电路的第二输出端;以及
该第四单向开关,具有第一与第二端,该第一端耦接于切换桥电路的第二输出端,且该第二端耦接于该第二单向开关的第二端,
其中当该直流输入电压尚未建立,或该直流输入电压小于该独立电压源的电压的峰值,而连接该电流源逆变器与该独立电压源时,因该第一至该第四单向开关均未导通,故该电流源逆变器将不会产生该冲击电流。
3.根据权利要求2的所述的电流源逆变器,其特征在于,
该放电路径还包括正半周放电路径与负半周放电路径,该正半周放电路径自该输出电感、该第一单向开关、该第二二极管、该输入电容至该缓流二极管形成第一回路,且该负半周放电路径自该输出电感、该第三单向开关、该第一二极管、该输入电容至该缓流二极管形成第二回路;及
当该负载在该独立电压源的交流电压的正半周时被关断,则该输出电感的能量沿着该正半周放电路径的该第一回路被泄放至该输入电容,且当该负载在该独立电压源的交流电压的负半周时被关断,则该输出电感的能量沿着负半周放电路径的该第二回路被泄放至该输入电容。
4.一种具有能量钳位电路的电流源逆变器的控制方法,用于将该电流源逆变器的输出电流反馈给独立电压源并提供能量于该独立电压源的负载,其中该电流源逆变器包含降压型转换器、直流/交流转换器以及能量钳位电路,该降压型转换器用于接收直流输入电压,并具有输入电容与输出电感,该直流/交流转换器耦接于该输出电感,并具有切换桥电路和输出电容,该输出电容用于并联连接于该独立电压源,该切换桥电路包括第一至第四单向开关,该第一至该第四单向开关耦接于该降压型转换器,使该电流源逆变器的该输出电容并联连接于该独立电压源,且该能量钳位电路耦接于该降压型转换器与该直流/交流转换器,该能量钳位电路用于在该负载被关断的时候提供放电路径,且该能量钳位电路仅包括第一二极管和第二二极管,该第一二极管的阳极耦接于该切换桥电路的第二输出端与该输出电容的第二端,该第一二极管的阴极耦接于该降压型转换器,该第二二极管的阳极耦接于该切换桥电路的第一输出端与该输出电容的第一端,该第二二极管的阴极耦接于该第一二极管的该阴极,当该负载被关断时,该电流源逆变器控制该第一至该第四单向开关其中之一的导通且利用该第一与该第二二极管的其中之一而形成该放电路径,该控制方法包含下列步骤:
(a)使该降压型转换器接收该直流输入电压并于该输出电感上产生具有整流的弦波波形的输出电感电流;
(b)使该直流/交流转换器接收该电感电流,且将该电感电流做一切换以产生该交流输出电流并将该能量反馈给该独立电压源;
(c)当该独立电压源与该逆变器的输出电容断开时,经该放电路径使该输出电感的能量经该放电路径被泄放至该输出电容与该输入电容,以减少该直流/交流转换器的电压应力;以及
(d)当该直流输入电压尚未建立,或该直流输入电压小于该独立电压源的电压的峰值,而连接该电流源逆变器的输出电容与该独立电压源时,运用该能量钳位电路以消除冲击电流。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100744619A CN101060290B (zh) | 2006-04-21 | 2006-04-21 | 具有能量钳位电路的电流源逆变器及其控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100744619A CN101060290B (zh) | 2006-04-21 | 2006-04-21 | 具有能量钳位电路的电流源逆变器及其控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101060290A CN101060290A (zh) | 2007-10-24 |
CN101060290B true CN101060290B (zh) | 2011-04-27 |
Family
ID=38866227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100744619A Expired - Fee Related CN101060290B (zh) | 2006-04-21 | 2006-04-21 | 具有能量钳位电路的电流源逆变器及其控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101060290B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101594053B (zh) * | 2009-03-27 | 2011-08-17 | 广州金升阳科技有限公司 | 一种宽范围电压输入的电源转换器 |
CN101667789B (zh) * | 2009-04-14 | 2012-05-30 | 初萍 | 用于太阳能光伏并网的逆变电路及其装置 |
KR101690355B1 (ko) * | 2009-09-14 | 2016-12-27 | 이에스에이비 아베 | 커뮤테이션 회로를 갖는 인버터 |
CN103973150B (zh) * | 2014-05-21 | 2016-11-09 | 重庆大学 | 电流型逆变电源 |
CN107070284B (zh) | 2017-06-12 | 2019-08-13 | 上海东软医疗科技有限公司 | 逆变电路输入电压的确定方法及装置、磁共振成像系统 |
WO2019053975A1 (ja) * | 2017-09-13 | 2019-03-21 | 日本電産株式会社 | 交直変換回路 |
CN111264023B (zh) * | 2017-10-25 | 2023-10-31 | 东芝三菱电机产业系统株式会社 | 电力转换装置 |
CN110266181B (zh) * | 2018-03-12 | 2022-03-25 | 中兴通讯股份有限公司 | 一种钳位电路及钳位方法 |
CN109470965B (zh) * | 2019-01-15 | 2023-11-10 | 浙江大邦科技有限公司 | 独立式反馈监测系统 |
CN111751775B (zh) * | 2019-03-28 | 2023-03-14 | 深圳市瑞能实业股份有限公司 | 一种电流采样失效的检测方法及装置 |
CN112019077A (zh) * | 2019-05-28 | 2020-12-01 | 湖南工业大学 | 一种基于buck电路的新型单相逆变器及其控制方法 |
CN117254473A (zh) * | 2023-11-20 | 2023-12-19 | 国网天津市电力公司经济技术研究院 | 一种含储能的pwm电流源型潮流转供装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1400728A (zh) * | 2002-08-05 | 2003-03-05 | 浙江大学 | 三电平无源软开关直流变换器电路 |
CN1469537A (zh) * | 2002-06-13 | 2004-01-21 | 台达电子工业股份有限公司 | 具有主动能源泄放槽的柔性切换直流-直流转换器 |
-
2006
- 2006-04-21 CN CN2006100744619A patent/CN101060290B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1469537A (zh) * | 2002-06-13 | 2004-01-21 | 台达电子工业股份有限公司 | 具有主动能源泄放槽的柔性切换直流-直流转换器 |
CN1400728A (zh) * | 2002-08-05 | 2003-03-05 | 浙江大学 | 三电平无源软开关直流变换器电路 |
Non-Patent Citations (2)
Title |
---|
JP平5-3682A 1993.01.08 |
JP平5-56657A 1993.03.05 |
Also Published As
Publication number | Publication date |
---|---|
CN101060290A (zh) | 2007-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101060290B (zh) | 具有能量钳位电路的电流源逆变器及其控制方法 | |
Chen et al. | A cascaded high step-up DC–DC converter with single switch for microsource applications | |
CN101888734B (zh) | 带升/降压功率因数校正dc-dc转换器的电子镇流器 | |
EP2914068B1 (en) | Electronic transformer-controlled two-wire two-way LED (light-emitting diode) lamp string | |
TWI680634B (zh) | 電源管理電路和移動終端 | |
TWI672898B (zh) | 雙向dc-dc轉換器 | |
TWI429176B (zh) | 高升壓比直流轉換器 | |
CN102638164B (zh) | 一种高升压电路、太阳能逆变器与太阳能电池系统 | |
CN213754305U (zh) | 一种开关管驱动电路、关断器及光伏发电系统 | |
US20140071716A1 (en) | High efficient single switch single stage power factor correction power supply | |
CN107453603A (zh) | 一种双输入Sepic变换器 | |
CN103269164A (zh) | 原边恒流控制的准单级高功率因数电路及装置 | |
CN102882410A (zh) | 一种单相七电平逆变器 | |
CN103066841B (zh) | 一种基于电荷泵电容的倍压型直流变换器 | |
Alizadeh et al. | Analysis and simulation of quasi∆-Source with low voltage stress on capacitors and diods | |
TW201724717A (zh) | 高電壓增益電源轉換裝置 | |
CN210629356U (zh) | 一种llc电源控制电路和电源控制装置 | |
CN105529924B (zh) | 一种准z源降压dc-dc变换电路 | |
CN102882412A (zh) | 一种单相七电平逆变器 | |
CN115085520B (zh) | 一种用于电源系统的电容放电电路 | |
CN102882411B (zh) | 一种单相七电平逆变器 | |
CN113993246B (zh) | Led驱动电源 | |
CN214045424U (zh) | 开关电源变换电路和电路设备 | |
CN105337480A (zh) | 一种开关管串联的栅极驱动电路 | |
CN104796016A (zh) | 一种高压功率管及电源模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110427 Termination date: 20170421 |