CN101054593A - Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system - Google Patents

Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system Download PDF

Info

Publication number
CN101054593A
CN101054593A CNA2007100920742A CN200710092074A CN101054593A CN 101054593 A CN101054593 A CN 101054593A CN A2007100920742 A CNA2007100920742 A CN A2007100920742A CN 200710092074 A CN200710092074 A CN 200710092074A CN 101054593 A CN101054593 A CN 101054593A
Authority
CN
China
Prior art keywords
nucleic acid
pts
sequence
protein
corynebacterium glutamicum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100920742A
Other languages
Chinese (zh)
Inventor
M·波姆佩朱斯
B·克雷格尔
H·施雷德尔
O·策尔德
G·哈贝豪尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN101054593A publication Critical patent/CN101054593A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Isolated nucleic acid molecules, designated PTS nucleic acid molecules, which encode novel PTS proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing PTS nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated PTS proteins, mutated PTS proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of PTS genes in this organism.

Description

Orynebacterium: the Corynebacterium glutamicum gene of sugar phosphotransferase system proteins
The application is the divisional application for the Chinese patent application 00812165.6 " Orynebacterium: the Corynebacterium glutamicum gene of sugar phosphotransferase system proteins " that the applying date is on June 27th, 2000.
Technical field
The present invention relates to the nucleic acid molecules of the new Corynebacterium glutamicum pts protein of the coding of separation.The present invention also relates to antisense nucleic acid molecule, the recombinant expression carrier containing PTS nucleic acid molecules, and imported the host cell of expression vector.The present invention is also further to isolated pts protein, PTS mutain, fused protein, Antigenic Peptide, and the method for improving the required production of chemicals carried out by the organism based on Corynebacterium glutamicum PTS gene genetic engineering.
Background technique
Specific product and by-product in cell in naturally occurring metabolic process have purposes, including food, feed, cosmetics and pharmaceutical industries in many industries.These molecules are collectively referred to as " fine chemical ", including organic acid, protein sources and amino acid, nucleotide and the nucleosides in non-protein source, lipid and fatty acid, glycol, carbohydrate, aromatic compound, vitamin and co-factor and enzyme.The bacterium of a large amount of specific required molecules can be generated and secreted by large-scale culture, and most convenient prepares these products.A kind of particularly useful organism for this purpose is exactly Corynebacterium glutamicum (Corynebacterium glutamicum), a kind of Gram-positive nonpathogenic bacteria.By bacterial strain screening, there are many mutant strains for generating large quantities of required compounds.However, the bacterial strain screening carried out to improve particular molecule production, is the process an of time-consuming and difficulty.
Summary of the invention
The present invention provides new bacterial nucleic acid molecule, these molecules serve many purposes.These purposes include that identification can produce the microorganism of fine chemical, the generation for adjusting Corynebacterium glutamicum or the fine chemical in relationship bacterium, the parting of Corynebacterium glutamicum or relationship bacterium and identification, as the reference point for drawing Corynebacterium glutamicum gene group map.These new nucleic acid molecule encoding protein, referred to herein as phosphoenolpyruvate: sugar phosphotransferase system (PTS) protein.
Corynebacterium glutamicum is a kind of Gram-positive aerobic bacterium, usually be used to that various fine chemicals be mass produced in the industry, is also used for degradation of hydrocarbon (such as in Oil spills) and oxidation terpineol.Therefore, PTS nucleic acid molecules of the invention can be used to identify the microorganism that can be used to produce fine chemical, such as pass through fermentation process.Adjust the expression of PTS nucleic acid molecules of the present invention, or the sequence of modification PTS nucleic acid molecules of the present invention, it can be used for adjusting the production (for example, the generation for improving one or more kinds of fine chemicals in bar bacterium or brevibacterium) of one or more kinds of fine chemicals in microorganism.
PTS nucleic acid molecules of the present invention can be used for identifying a kind of microorganism whether be Corynebacterium glutamicum perhaps its relationship bacterial strain or identification microorganism population mixture Glutamic Acid bar bacterium or its relationship bacterial strain presence.The present invention provides the nucleic acid sequences of many Corynebacterium glutamicum genes;Under strict conditions, the genomic DNA extracted from single microorganism or mixed microorganism culturing in groups object is detected with probe, which covers the distinctive one section of region of Corynebacterium glutamicum gene, may determine whether with the presence of the microorganism.Although Corynebacterium glutamicum itself be it is non-pathogenic, it is related with the pathogen species in human body, such as Corynebacterium diphtheriae bacterium (Corynebacterium diphtheriae) (diphtheria cause a disease original);This microorganism is detected with great Clinical practicability.
PTS nucleic acid molecules of the present invention are also used as drawing the reference point of Corynebacterium glutamicum gene group map, or draw the reference point of its relationship strain gene group map.Similar, perhaps its variant or part thereof may be used as the genetic marker of genetic engineering bar bacterium or brevibacterium to these molecules.
It, can be seeming that high-energy carbon-containing molecules as glucose are transported into Corynebacterium glutamicum, or participate in the Cellular Signaling Transduction Mediated in the microorganism for example, the pts protein of novel nucleic acids molecule encoding of the present invention.In view of the practicability for the cloning vector that can be used in corynebacterium glutamicum, such as in Sinskey et al., US patent number No.4,649, disclosed in 119, and consider Genetic Manipulative Technology (Yashihama the et al, J.Bacteriol.162:591-597 (1985) of Corynebacterium glutamicum and relationship brevibacterium strain (such as brevibacterium);Katsumata et al., J.Bacteriol.159:306-311 (1984);And Santamaria et al., J.Gen.Microbiol.130:2237-2246 (1984)), nucleic acid molecules of the invention can be used for the genetic engineering of the organism, make that one or more kinds of fine chemicals are better or the more effective producer.
PTS molecule of the invention can be modified, so that yield, production and/or the production efficiency of one or more kinds of fine chemicals are improved.For example, by modifying a kind of pts protein for participating in glucose uptake its activity can be optimized, so that the rate that glucose uptake quantity or glucose are transported into cell is improved.Glucose inside cells or other carbohydrate degradations can provide energy, the biochemical reaction that these energy can be used for pushing energy unfavorable, such as those are related to the reaction of fine chemical biosynthesis.Degradation also provides intermediate or precursor molecule necessary to certain fine chemical biosynthesis, such as amino acid, vitamin and co-factor.By modifying PTS molecule of the present invention to increase the quantity of intracellular high energy carbon molecules, not only it can increase the energy supply of metabolic pathway necessary to completing to produce one or more kinds of fine chemicals, but also endocellular metabolism substance library required for this production can be increased.
In addition, PTS molecule of the present invention can participate in one or more of Cellular Signaling Transduction Mediated approach, these signal transduction paths can influence the yield and/or throughput rate of one or more kinds of fine chemicals in Corynebacterium glutamicum.Such as, once there is sufficient amount of carbohydrate into the cell, from inputted in extracellular medium protein necessary to one or more kinds of carbohydrates (such as, HPr, Enzyme I, or one of Enzyme II complex ingredient) be often translated after modify, to prevent them from sugar is input into the cell again.The quantity of sugar when movement system is closed, for maintain may be for cell normal function it is enough, this may limit the excessive production of required chemical substance.Therefore, it modifies pts protein of the present invention and it is made to be very worthwhile there is no reaction to this negative regulator, so, intracellular one or more kinds of sugar are allowed to reach higher concentration, and extended through reaction, it, can significantly more efficient production or the one or more kinds of fine chemicals of more large-tonnage acquisition from the organism containing this pts protein mutant.
The present invention provides the nucleic acid molecules of new coding protein, this protein is referred to herein as phosphoenolpyruvate: sugar phosphotransferase system (PTS) protein, they participate in high energy carbon molecules (such as, glucose, fructose, sucrose) input Corynebacterium glutamicum, and/or participate in one or more of Corynebacterium glutamicum Cellular Signaling Transduction Mediated approach.The example of these protein, the protein including those coded by said gene listed in table 1.
Therefore, one aspect of the present invention is related to, separate containing a kind of one section of nucleic acid molecules for encoding pts protein or the nucleic acid sequence of its biologically-active moiety (such as, cDNA, DNA, perhaps RNA) and separation be suitable as detect or expand PTS code nucleic acid (such as DNA or RNA) primer or hybridization probe nucleic acid fragment.In particularly preferred embodiments, isolated nucleic acid molecules include one section of Serial No. odd number being listed in sequence table nucleic acid sequence (such as, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) an either this nucleotide sequence coding region or its complementary series.In other particularly preferred embodiments, the nucleic acid molecules of the present invention of separation include with the nucleotide sequence of the Serial No. odd number in sequence table (such as, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) or its part have at least about 50% homology, preferably there is at least about 60% homology, more preferably there is at least about 70%, 80%, or 90% homology, even more preferably have at least about 95%, 96%, 97%, 98%, 99% or higher homology.In other preferred embodiments, separated nucleic acid molecule encoding is listed in the even order amino acid sequence (for example, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8) in sequence table.Currently preferred pts protein is it is also preferred that have at least one PTS activity described herein.
In another embodiment, a kind of protein of separated nucleic acid molecule encoding or its part, protein therein or its part include one section of amino acid sequence, the sequence and amino acid sequence of the invention (such as, the sequence of even order number in sequence table) there is sufficient homology, for example, having sufficient homology with amino acid sequence of the invention and making the protein or its part that there is PTS activity.It is preferred that, the protein of nucleic acid molecule encoding or its part, with the ability participated in high energy carbon molecules (for example, glucose, fructose, sucrose) input Corynebacterium glutamicum, and/or participate in the ability of one or more of Corynebacterium glutamicum Cellular Signaling Transduction Mediated approach.In one embodiment, a kind of protein of nucleic acid molecule encoding and amino acid sequence (for example, the complete amino acid sequence selected from the even order sequence in sequence table) of the invention have at least about 50% homology, preferably there is at least about 60% homology, more preferably have at least about 70%, 80%, 90% homology most preferably has at least about 95%, 96%, 97%, 98%, 99% or higher homology.In another preferred embodiment, protein is the Corynebacterium glutamicum protein of overall length, the protein and full length amino acid sequence of the invention (by be shown in corresponding sequence table odd serial numbers nucleic acid sequence (such as, SEQ ID NO:1, SEQ ID NO:3, SEQ IDNO:5, SEQ ID NO:7) open reading frame coding) sufficiently homologous.
In another preferred embodiment, isolated nucleic acid molecules come from Corynebacterium glutamicum, and encode a kind of a kind of protein (such as PTS fusion protein), the protein includes one section of bioactivity region, the region and a kind of amino acid sequence of the invention (such as, a sequence in sequence table even order sequence) there are at least about 50% or higher homology, and the protein can participate in a high energy carbon molecules (such as, glucose, fructose, sucrose) input Corynebacterium glutamicum, and/or participate in one or more of Corynebacterium glutamicum Cellular Signaling Transduction Mediated approach, or possess one or more kinds of activity being listed in Table 1, and the protein also includes the heterologous nucleic acid sequence of one section of encoding heterologous polypeptide or adjustment region.
In another embodiment, the length of at least 15 nucleotide of isolated nucleic acid molecules, and under strict conditions with contain nucleotide sequence of the present invention (for example, the odd serial numbers sequence in sequence table) making nucleic acid molecular hybridization.It is preferred that isolated nucleic acid molecules are consistent with naturally occurring nucleic acid molecules.More preferably, the naturally occurring Corynebacterium glutamicum pts protein of isolated nucleic acid molecule encoding or its biologically-active moiety.
Another aspect of the present invention is related to carrier, such as the recombinant expression carrier containing nucleic acid molecules of the present invention, and be introduced into the host cell of this carrier.In one embodiment, by being cultivated in suitable culture medium, this host cell be used to produce pts protein.Then the pts protein can be separated from culture medium or host cell.
In addition, another aspect of the present invention is related to a kind of microorganism by being genetically changed, PTS gene has been incorporated into wherein or has changed.In one embodiment, by introducing as the encoding wild type of transgenosis or the nucleic acid molecules of the present invention of saltant type PTS sequence, the genome of the microorganism is changed.In another embodiment, the endogenous PTS gene in the microbial genome is changed, for example, carrying out homologous recombination by using the PTS gene having changed and carrying out functional destruction.In another embodiment, endogenous or introducing PTS gene is changed by one or more point mutation, missing or inversion in the microorganism, but still can encoding function pts protein.In another embodiment, one or more adjustment region (for example, promoter, repressor or inducer) for changing microorganism PTS gene, to adjust the expression of PTS gene.In preferred embodiments, microorganism belongs to rod strain or quarter butt strain, particularly preferably Corynebacterium glutamicum.In preferred embodiments, also using compound needed for micro-organisms, such as amino acid, particularly preferably lysine.
On the other hand, the present invention provides corynebacterium diphtheriae presence or active methods in a kind of identification subject.This method include to one or more kinds of nucleic acid or amino acid sequence of the invention in subject (such as, be listed in the sequence of SEQ ID NO 1 to 34 in sequence table) detection, so as to detect the presence or activity of subject's Glutamic Acid bar bacterium.
In addition, another aspect of the present invention is related to separated pts protein or its part, such as its biologically-active moiety out.In a preferred embodiment, isolated pts protein or its part can participate in a high energy carbon molecules (such as, glucose, fructose, sucrose) input Corynebacterium glutamicum, and one or more of Corynebacterium glutamicum Cellular Signaling Transduction Mediated approach can also be participated in.In another preferred embodiment, separated pts protein or its part and a kind of amino acid sequence of the invention (such as, sequence table even order number a: sequence in sequence) there is sufficiently high homology, so that the protein or its part may participate in a high energy carbon molecules (such as, glucose, fructose, sucrose) ability of Corynebacterium glutamicum is inputted, and/or also assist in the ability of one or more of Corynebacterium glutamicum Cellular Signaling Transduction Mediated approach.
Present invention provides the Separation Products of pts protein.In preferred embodiments, pts protein includes amino acid sequence of the invention (for example, sequence table even order number: a sequence in sequence).In another preferred embodiment, the present invention is related with isolated full length protein, and the protein and all aminoacid sequence (sequence table even order number a: sequence in sequence) of the invention (being encoded by the open reading frame for the Serial No. odd number being shown in corresponding sequence table) have quite high homology.In addition, in another embodiment, protein and all aminoacid sequence of the invention (such as, even order sequence in sequence table) there is at least about 50% homology, preferably there is at least about 60% homology, more preferably there is at least about 70%, 80%, or 90% homology, most preferably have at least about 95%, 96%, 97%, 98% or 99% or higher homology.In another embodiment, amino acid sequence that isolated pts protein includes and an amino acid sequence of the invention (such as, an even order sequence in sequence table) there are at least about 50% or higher homology, and can participate in a high energy carbon molecules (such as, glucose, fructose, sucrose) input Corynebacterium glutamicum, with/and one or more of Corynebacterium glutamicum Cellular Signaling Transduction Mediated approach are participated in, or with the one or more activity listed in table 1.
In addition, isolated pts protein can contain the amino acid sequence by nucleic acid sequence encoding, one nucleic acid array hybridizing of the nucleic acid sequence and the even order number being listed in sequence table, such as hybridize under strict conditions, or have with the nucleic acid sequence at least about 50% homology, preferably there is at least about 60% homology, more preferably have at least about 70%, 80% or 90% homology even more preferably has at least about 95%, 96%, 97%, 98% or 99% or higher homology.The preferred form of pts protein equally has one or more kinds of bioactivity described herein, and preferred.
PTS polypeptide or its biologically-active moiety can effectively be connected on non-PTS polypeptide and form fused protein.In preferred embodiments, which has the activity different from independent pts protein itself.In other preferred embodiment, which causes required Corynebacterium glutamicum fine chemical yield, production and/or the increase of production efficiency.In particularly preferred embodiments, which is integrated into host cell, the production of required compound in adjustable cell.
On the other hand, the present invention provides the methods for screening the adjustable active molecule of pts protein.The molecule is by the way that perhaps substrate interaction is active to adjust pts protein perhaps in conjunction with the gametophyte of pts protein or through the transcription or translation of adjusting PTS nucleic acid molecules of the present invention with protein molecule itself.
Another aspect of the present invention is related to the method for producing fine chemical.This method is related to the cell that culture contains a kind of carrier, the expression of vectors direct PTS nucleic acid molecules of the present invention, to generate fine chemical.In a preferred embodiment, this method also includes in this step, to transfect cell using the carrier that PTS nucleic acid molecules can be instructed to express the step of acquisition containing the carrier cell.In another preferred embodiment, this method also includes the step of recycling fine chemical from culture medium.In an especially preferred embodiment, cell is rod strain perhaps quarter butt strain or selected from those of being listed in Table 3 bacterial strain.
Another aspect of the present invention relates to adjust the method that molecule generates in microorganism.This method includes using the medicament exposing cell for adjusting pts protein activity or PTS expression of nucleic acid, so that the related activity of cell is changed relative to activity when lacking this medicament.In a preferred embodiment, in order to absorb one or more kinds of carbohydrates, cell is adjusted, so that this Institute of Micro-biology needs the yield of fine chemical or generation efficiency to be improved.The active medicament of pts protein is adjusted, can be the medicament of stimulation pts protein activity or PTS expression of nucleic acid.The example for stimulating the medicament of pts protein activity or PTS expression of nucleic acid has imported the nucleic acid of the pts protein of cell including small molecule, active pts protein and coding.The example for inhibiting the medicament of pts protein activity or expression includes small molecule and antisense PTS nucleic acid molecules.
Another aspect of the present invention, the method for being related to adjusting required compound production in cell, including perhaps the saltant type PTS gene into cells gene is perhaps retained on individual plasmid or is integrated into host cell gene group wild type.If be integrated into host cell gene group, this integration can be arbitrary, or occurred by homologous recombination, so that the copy introduced replaces natural gene, the generation of required compound in cell is caused to be adjusted.In a preferred embodiment, which is increased.In another preferred embodiment, described fine chemical is amino acid.In an especially preferred embodiment, described amino acid is L-lysine.
Specific embodiment
The present invention provides PTS nucleic acid and protein molecules, they participate in Corynebacterium glutamicum intake high energy carbon molecules (for example, glucose, fructose, sucrose), and can also participate in one or more of Cellular Signaling Transduction Mediated approach in the microorganism.Molecule of the invention can be used for adjusting the production of fine chemical in microorganism.This adjusting, it may be possible to due to the increase of high energy species level generated needed for intracellular, for example, ATP, GTP and other for push seem the unfavorable biochemical reaction of energy as fine chemical biosynthesis molecule.The adjusting of fine chemical production is also likely to be due to this fact, i.e., the catabolite of many carbohydrates is used as the intermediate or precursor of other biological route of synthesis, the biosynthesis pathway including certain fine chemicals.Additionally, it is known that pts protein participates in certain Cellular Signaling Transduction Mediated approach, they, which may have the metabolic pathway of one or more of fine chemicals, adjusts activity;By utilizing these pts proteins, the biosynthesis pathway of fine chemical can be activated or inhibit its chemical degradation route.Various aspects of the invention are further described as follows.
I. fine chemical
" fine chemical " this word is well known in the art, the molecule used in various industries including organism generation, such as but is not limited solely to, pharmacy, agricultural and cosmetic industry.This compound includes organic acid, such as tartaric acid, itaconic acid and diaminopimelic acid, protein source and nonprotein source amino acid, purine bases and pyrimidine bases, nucleosides, and nucleotide (is such as description in Kuninaka, A. (1996) Nucleotides and related compounds, p.561-612, in Biotechnology vol.6, Rehm et al., in eds.VCH:Weinheim and its contained bibliography), lipid, saturation and unsaturated fatty acid (such as arachidonic acid), glycol (such as, propane diol and butanediol), aromatic compound (such as, aromatic amine, vanillic aldehyde and indigo), vitamin and Co-factor (referring to Ullmann ' s Encyclopedia of IndustrialChemistry, vol.A27, " Vitamins ", p.443-613 (1996) VCH:Weinheim and referencestherein;And Ong, A.S., Niki, E.& Packer, L. (1995) " Nutrition, Lipids, Health; andDisease " Proceedings of the UNESCO/Confederation of Scientific and TechnologicalAssociations in Malaysia, and the Society for Free Radical Research-Asia, held Sept.1-3,1994 at Penang, Malaysia, AO CS Press, (1995)), enzyme, polyketide (ployketides) (Cane et al., (1998) Science 282:63-68), and all chemical substances described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN:0818805086 and its bibliography.The metabolism of these certain fine chemicals and purposes are further described as follows.
A. the metabolism and purposes of amino acid
Amino acid includes the basic structural unit of all proteins, also necessary to all organism normal cell biological functions." amino acid " this word is well known in the art.The amino acid of protein source has 20 kinds, it is the structural unit of protein, it is connected between each other by peptide bond, rather than proteinogenic amino acids (known to have several hundred kinds) are not appeared in protein under normal conditions (referring to Ulmann ' s Encyclopedia of Industrial Chemistry, vol.A2, p.57-97VCH:Weinheim (1985)).Although l-amino acid is usually the unique type in naturally occurring protein, amino acid can be D- L- optical configuration.The biosynthesis of each in 20 kinds of proteinogenic amino acids perhaps degradation pathway all have the characteristics that in prokaryotic cell or eukaryocyte it is respective (for example, see Stryer, L.Biochemistry, 3rdEdition, pages 578-590 (1988)).Why " required " amino acid (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine) is named in this way, it is because the complicated nutritional condition being generally necessary of these amino acid bios synthesis, they can be converted into remaining 11 kinds of " nonessential " amino acid (alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, tyrosine) by simple biosynthesis pathway.Although higher organism has the ability for synthesizing some this amino acid really, in order to which the synthesis of normal protein must supplement essential amino acid from diet.
They are in addition to the function in protein synthesizes, these amino acid are interesting chemical substance for its own, and many of which has various applications in food, feed, chemistry, cosmetics, agricultural and pharmaceutical industries.Lysine is a kind of important amino acid not only for the mankind in terms of nutrition, and for seeming that poultry and the such nonruminant of pig are also important.Glutamic acid is most common flavor additives useful (monosodium glutamate, MSG), and is widely used in entire food industries, as aspartic acid, glycine, cysteine.Glycine, l-methionine and tryptophan are completely used for pharmaceutical industries.Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are all applied in pharmaceutical industries and cosmetic industry.Threonine, tryptophan and D/L- methionine are common feed addictive (Leuchtenberger, W. (1996) Amino aids-technical production and use, p.466-502 in Rehm et al. (eds.) Biocemistry vol.6, chapter 14a, VCH:Weinheim).In addition, these amino acid are also very useful as the precursor that synthesizing amino acid and protein synthesize, such as N-acetylcystein, S- carboxymethyl-L-cysteine, (S) -5-hydroxyryptophan and other in Ulmann ' s Encyclopedia of Industrial Chemistry, vol.A2, p.57-97 VCH:Weinheim, molecule described in 1985.
In the organism that can generate natural amino acid, such as bacterium, the biosynthesis of these natural amino acids has solved very sufficiently (biosynthesis and its adjusting of bacterial amino acid, referring to Umbarger, H.E. (1978) Ann.Rev.Biochem.47:533-606).Aspartic acid is synthesized by α-ketoglutaric acid reduced form ammonification, and the latter is the intermediate of citrate cycle.Glutamine, proline and arginine are sequentially generated by glutamic acid.The biosynthesis of serine is the process of three steps, starts from 3-phoshoglyceric acid (intermediate of glycolysis), after peroxidation, transamination, each step of hydrolysis, terminates at the amino acid.Cysteine and glycine are all generated by serine;The former is condensed by homocysteine and serine, and the latter is that side chain beta carbon is transferred to what tetrahydrofolic acid obtained, which be catalyzed by serine hydroxymethylase.Phenylalanine and tyrosine are synthesized in the biosynthesis pathway of 9 steps by erythrose-4-phosphate and phosphoenolpyruvate, they are the precursors of glycolytic pathway and pentose phosphate pathway, this two approach are only different after synthesizing prephenic acid.Tryptophan can also be generated by both initial moleculars, but its synthesis is the approach of 11 steps.Tyrosine can also be synthesized by phenylalanine, and reaction is catalyzed by phenylalanine hydroxylase.Alanine, valine and leucine are all the biosynthetic products of glycolysis end product pyruvic acid.Aspartic acid is synthesized by oxaloacetic acid, and the latter is the intermediate of citrate cycle.Asparagine, methionine, threonine and lysine are all transformed by aspartic acid.Isoleucine is formed by threonine.By the approach of a 9 complicated steps, histidine can be generated from a kind of activity sugar, ribose 5-phosphate -1- pyrophosphoric acid.
It cannot be stored beyond amino acid needed for cell protein synthesis, but provide intermediate after being degraded for cell main metabolic pathway and (comment on referring to Stryer, L.Biochemistry 3rd ed.Ch.21"Amino Acid Degradation and the Urea Cycle"p.495-516(1988)).Although it is useful Metabolic Intermediate that cell, which can convert extra amino acid, many energy, precursor molecule will be consumed and synthesize required enzyme by generating amino acid.Therefore it is not astonishing for the biosynthesis of amino acid being adjusted with feedback inhibition, the presence of special acid can slow down or stop completely the generation (comment for amino acid biosynthetic pathway feedback mechanism of its own, referring to Stryer, L.Biochemistry 3rd ed.Ch.24"Biosynthesis of Amino Acid and Heme"p.575-600(1988)).Therefore, the yield of any specific amino acids is all limited by intracellular existing amino acid quantity.
B. the metabolism and purposes of vitamin, co-factor and dietetic product
Vitamin, co-factor and dietetic product include another group of molecule, although other biological, such as bacterium, these molecules can be synthesized, higher mammal loses their ability of synthesis and can only absorb.These molecules perhaps itself are the intermediates that bioactive substance or the precursor of the bioactive substance bioactive substance can be electron carrier or various metabolic pathways.In addition to its nutritive value, these compounds also have great industrial value as pigment, antioxidant and catalyst or other processing aids.(the commentary for these compound structures, activity and industrial application, see, for example, Ullmann ' s Encyclopedia of Industrial Chemistry, " Vitamins " vol.A27, p.443-613 VCH:Weinheim 1996.) " vitamin " this word be it is well known in the art, contain needed for organism normal function but again cannot itself synthesis nutrient.Vitamin may include co-factor and dietetic product compound.Non-protein compound needed for term " co-factor " contains the normal enzymatic activity of progress.These compounds can be inorganic or organic;Co-factor molecule of the invention is preferably organic." dietetic product " this word contains the dietary supplement beneficial to plant and animal, especially human body.The example of these molecules is vitamin, antioxidant and certain lipids (such as more saturated fatty acids).
In the organism that can generate these molecules, for example, in bacterium these molecules biosynthesis, most of (Ullman ' s Encyclopedia of Industrial Chemistry that has been accredited, " Vitamins " vol.A27, p.443-613, VCH:Weinheim, 1996;Michal, G. (1999) BiochemicalPathways:An Atlas of Biochemistry and Molecular Biology, John Wiley&Sons;Ong, A.S., Niki, E.& Packer, L. (1995) " Nutrition, Lipids, Health; and Disease " Proceedings of the UNESCO/Confederation of Scientific and TechnologicalAssociations in Malaysia, and the Society for Free Radical Research-Asia, held Sept.1-3,1994 at Penang, Malaysia, AOCS Press:Champaign, IL X, 374 S)
Thiamine (vitamin B1) is by pyrimidine and thiazole through being connected chemically generation.Riboflavin (vitamin B2) is synthesized by 5 '-triphosphoric acid guanosines and 5 '-ribose phosphates.Riboflavin is orderly used to synthesis flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) (FAD).The one group of compound (for example, pyridoxol, pyridoxamine, pyridoxime 5'-phosphate, and pyridoxal hydrochloride of commercialization) for being collectively referred to as " vitamin B6 " is all the derivative of common structural unit 5- hydroxyl -6- picoline.Pantothenate (pantothenic acid, (R)-(+)-N- (2,4- dihydroxy -3,3- dimethyl -1- oxo butyl)-Beta-alanine) can be obtained by chemical synthesis or fermentation.The final step of pantothenate biosynthesis includes the condensation of the Beta-alanine and pantoic acid of ATP driving.It is responsible for being converted to pantoic acid and Beta-alanine enzyme, and it is all known for being condensed into the enzyme of pantothenate.The metabolic activity form of pantothenate is coacetylase, and biosynthetic process is 5 enzymatic steps.Pantothenate, pyridoxime 5'-phosphate, cysteine and ATP are the precursors of coacetylase.These enzymes are not only catalyzed the formation of pantothenate, are also catalyzed (R)-pantoic acid, (R)-pantolacton, the generation of (R)-panthenol (dexpanthenol) pantetheine (and its derivative).
Study very detailed by the biosynthesis of precursor molecule heptanedioyl coacetylase to biotin in microorganism, and related several genes have been accredited.Many corresponding protein are also found to take part in the synthesis of iron cluster (Fe-cluster), and are nifS family protein members.Lipoic acid is used as coenzyme from octanoic acid in energetic supersession, can become a part of pyruvate dehydrogenase complex and ketoglurate dehydrogenase compound.Folate is the derivative of one group of folic acid, successively comes from Pidolidone, p-aminobenzoic acid and 6- methylpterin.The biosynthesis for originating in the folic acid and its derivative of Metabolic Intermediate 5 '-triphosphoric acid guanine (GTP), Pidolidone and p-aminobenzoic acid, there is detailed research in certain micro-organisms.
Corrinoid (such as cobalamin, and especially vitamin B12) and porphyrin belong to the chemical substance characterized by tetrapyrrole ring system.The biosynthesis of vitamin B12 is such complexity, so that its feature is thoroughly understood not yet, but many enzymes being related to and substrate are currently known.Niacin (nicotinate) and nicotine are pyridine bottom derivative, also referred to as " niacin usp ".Niacin usp is important coenzyme NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide-adenine dinucleotide phosphate) and its precursor for restoring form.
Although some such compounds can also be produced with Large-scale microbial culture, such as riboflavin and vitamin B6, pantothenic acid and biotin, these compounds are mass produced and largely also rely on acellular chemical system.Only vitamin B12 can only use fermenting and producing due to the complexity of its synthesis.In-vitro method needs considerable substance and time investment, often spends very big.
C. the metabolism and purposes of purine, pyrimidine, nucleosides and nucleotide
Purine and pyrimidine metabolic gene and its corresponding protein are tumor disease therapeutic and the important object for the treatment of of viral infections.Term " purine " and " pyrimidine " contain the nitrogenous base as nucleic acid, coenzyme and nucleotide composition.Term " nucleotide " includes nucleic acid molecules basic structural unit, and by nitrogenous base, pentose, (for RNA, which is ribose to nucleic acid molecules;For DNA, which is deoxyribose) and phosphoric acid composition.Term " nucleosides " contains the molecule as nucleotide precursor, but is the absence of phosphate portion possessed by nucleotide.It by inhibiting the biosynthesis of these molecules, or is suppressed to synthetic nucleic acid molecule and the movement that carries out, the synthesis of RNA and DNA may be inhibited;Inhibit the activity by way of orienting tumour cell, the energy of tumour cell division and duplication may be inhibited.In addition, some nucleotide is not used in form nucleic acid, and it is used as energy storage (such as AMP) or coenzyme (such as FAD and NAD).
Some publications describe the metabolism by influencing purine and/or pyrimidine, these chemical substances as these Medical indications use (such as, Christopherson, R.I.and Lyons, S.D. (1990) " Potent inhibitors of de novo pyrimidine and purine biosynthesis aschemotherapeutic agents. " Med.Res.Reviews 10:505-548).It is related to the research of purine and pyrimidine metabolic enzyme, it concentrates on above the new drug development that can be used, such as, as immunosuppressor or anti-proliferative agent (Smith, J.L., (1995) " Enzyme in nucleotidesynthesis. " Curr.Opin.Struct.Biol.5:752-757;(1995) Biochem Soc.Transact.23:877-902).However, purine and pyrimidine bases, nucleosides and nucleotide also have the function of other: as many fine chemical biosynthesis intermediate (such as, thiamine, S-adenosylmethionine, folic acid, or riboflavin), as cellular energy carrier (such as ATP or GTP), and as chemical substance itself, be typically used as flavour enhancer (such as IMP or GMP) or several medical applications (referring to, such as, Kuninaka, A. (1996) Nucleotidesand Related Compounds in Biotechnology vol.6, Rehm et al., eds.VCH:Weinheim, , p.561-612).Equally, it is related to the enzyme of purine, pyrimidine, nucleosides or nucleotide metabolism, increasingly becomes the effect target for the chemical substance for being used as protection crops developed, these chemical substances include fungicide, herbicide and insecticide.
In bacterium the metabolism of these compounds have feature (comment referring to, such as Zalkin, H.andDixon, J.E. (1992) " de novo purine nucleotide biosynthesis ", in:Progress in NucleicAcid Research and Molecular Biology, vol.42, Academic Press:, p.259-287;AndMichal, G. (1999) " Nucleotides and Nucleosides ", 8 in:BiochemicalPathways:An Atlas of Biochemistry and Molecular Biology, Wiley:New York of Chapter).Purine metabolism is always emphasis research topic, and it is necessary to cell normal function.The purine metabolism being damaged in higher mammal can result in serious disease, such as gout.Purine nucleotides is synthesized by 5 '-ribose phosphates, pass through series of steps, by intermediate 5 '-phosphoric acid inosine (IMP), it is final to generate 5 '-monophosphate guanines (GMP) and 5 '-monophosphate adenines (AMP), and the triphosphate forms as nucleotide are formed by them.These compounds also serve as energy storage, are degraded to a variety of different biochemical processes in cell and provide energy.The biosynthesis of pyrimidine is by forming 5 '-phosphoric acid uridines (UMP) by 5 '-ribose phosphates.Next UMP is transformed into 5 '-triphosphoric acid cytimidines (CTP).The deoxy forms of all these nucleotide are generated by a step reduction reaction, by nucleotide diphosphonic acid ribose form to nucleotide diphosphonic acid deoxyribose form.One is phosphorylated, these molecules can participate in the synthesis of DNA.
D. the metabolism and purposes of trehalose
Trehalose includes two glucose molecules, is connected by α, α -1,1.Usually it is used as sweetener in food industries, in dried foods or frozen food additive and beverage.Moreover, it is also employed in pharmacy, cosmetics and biotechnology industry (see, e.g. Nishimoto et al., (1998) U.S.Patent No.5,759,610;Singer, M.A.and Lindquist, S. (1998) Trends Biotech.16:460-467;Paiva, C.L.A.and Panek, A.D. (1996) Biotech.Ann.Rev.2:293-314;And Shiosaka, M. (1997) J.Japan 172:97-102).Enzyme in many microorganisms can produce trehalose, and it is naturally discharged into surrounding media, and the technically well known method that can be used therefrom is collected.
II. phosphoenolpyruvate: sugar phosphotransferase system
Cell fast-growth in the medium and division are largely dependent upon cellular uptake and the degree using high energy species, such as glucose or other carbohydrates.There are different transport proteins, they transport different carbohydrates in cell.There are carbohydrate transport protein matter, such as transhipment glucose, fructose, mannose, galactolipin, ribose, sorbose, ribulose, lactose, maltose, sucrose or gossypose, also there is the transport protein matter of starch and cellulose degradation product.Other movement systems are responsible for inputting alcohol (such as methanol or ethyl alcohol), alkane, fatty acid, and the organic acid as acetic acid or lactic acid.In bacterium, by various mechanism, carbohydrate can be transported into cell through cell membrane.Other than with the cotransporting of proton, most-often used carbohydrate capture process first is that phosphoenolpyruvate: sugar phosphotransferase system (PTS).The system is not only catalyzed the transhipment (with phosphorylation) of carbohydrate and hexitol, but also adjusts the cell metabolism for being adapted to carbohydrate validity.The PTS system exists only in bacterium, and is not present in archeobacteria and eukaryocyte.
In terms of function, PTS system includes two kinds of cytoplasm proteins, and (every kind is all referred to as and specifically descends target " enzyme II ", such as " enzyme II with carbohydrate for the special integration of the carbohydrate of enzyme I and HPr and indefinite number and peripheral membrane protein transhipment complexGlu" indicate to combine the enzyme II complex of glucose).It is known to monosaccharide, disaccharides or the special enzyme II of trisaccharide, seem to glucose, fructose, mannose, galactolipin, ribose, sorbose, ribulose, lactose, maltose, sucrose or gossypose.Phosphate group is transferred to phosphocarrier protein HPr from phosphoenolpyruvate (PEP) by enzyme I.Then phosphate group is transferred to different enzyme II again and transports complex by HPr.Although the amino acid sequence of enzyme I and HPr be in all bacteriums it is very similar, PTS transfer body can be divided into the incoherent several families of structure.In addition, the number and homology of these genes are also different in different bacteriums.Genome of E.coli encodes 38 different pts proteins, wherein 33 are the subunits for belonging to 22 different transfer bodies.Mycoplasma genitalium (M.genitalium) genome contains enzyme I and HPr gene each one, and only there are two PTS to shift body gene.T.palladium and chlamydia trachomatis (C.trachomatis) contain enzyme I and HPr similar protein gene, but shift body gene without PTS.
All PTS transfer bodies include 3 functional units, IIA, IIB and IIC, their protein subunits either in complex are (for example, IIAGlcIICBGlc) either single polypeptide chain structural region (for example, IICBAGlcNAc).IIA and IIB is successively transmitted to phosphate group from HPr the carbohydrate being transported.IIC contains carbohydrate-binding sites, and crosses over inner membrance 6 or 8 times.The transient phosphorylation in carbohydrate transfer and the region IIB is coupling.In its histidine residues phosphorylation occurs for enzyme I, HPr and IIA, and IIB subunit is that phosphorylation occurs in histidine residues or cysteine residues, this depends on related specific transporter.The phosphorylation of carbohydrate, has the advantage that after input, it can prevents carbohydrate from spreading cell membrane and return in culture medium, because electrically charged phosphate group cannot pass through the hydrophobic core of cell membrane.
Some pts proteins also play a significant role in signal transduction in the cell other than active carbohydrate transport function.These subunits adjust their purpose object by allosteric or phosphorylation.Their adjusting activity changes with phosphorylation degree (for example, ratio of unphosphorylated form and phosphorylation form), and the latter changes as sugar dependence dephosphorylation and phosphoenolpyruvate rely on the ratio of phosphorylation again.The example of this pts protein adjusted into the cell includes passing through IIA in Escherichia coliGlcDephosphorylation inhibits glycerokinase, and passes through its phosphorylation form activated adenyl cyclase.Moreover, in these microorganisms some transporters the region HPr and IIB, gene expression is adjusted by the reversible phosphorylation of transcription antitermination.In gram-positive bacterium, the activity of HPr is by HPr special serine kinase and phosphoric acid enzyme adjustment.For example, the HPr of -46 phosphorylation of serine, function is the co-repressor as the sub- CcpA of Transcription inhibition.Finally, it was found that unphosphorylated enzyme I inhibits the sensor kinase c heA in bacterium chemotactic device, the kinases provides directly connection (Sonenshein between bacterial saccharides binding transport system and the system of control bacteria motility, A.L., etal., eds.Bacillus subtilis and other gram-positive bacteria.ASM:Washington, D.C.;Neidhardt, F.C., et al., eds. (1996) Escherichia coli and Salmonella.ASM Press:Washington, D.C;Lengeler et al., (1999) .Biology of Prokaryotes.Section II, pp.68-87, Thieme Verlag:Stuttgart)
III. element of the invention and method
The present invention is at least partly built upon on the basis of discovery recruit, PTS nucleic acid and protein molecule are called it as herein, they participate in Corynebacterium glutamicums to high energy carbon molecules (such as, glucose, fructose, sucrose) intake, and one or more of Cellular Signaling Transduction Mediated approach in these microorganisms can also be participated in.In one embodiment, PTS molecule exercises the function of high energy carbon molecules being transferred to cell, the biochemical reaction energy supply that energy provided by these molecular degradations can be unfavorable for energy in cell, moreover, their catabolite may be used as the intermediate or precursor of a lot of other metabolic pathways.In another embodiment, PTS molecule can participate in one or more of Cellular Signaling Transduction Mediated approach, wherein the presence of PTS molecular modification form (for example, phosphorylation PTS molecule), signal transduction cascade reaction can be participated in, which adjusts one or more cell processes.In a preferred embodiment, the activity of PTS molecule of the present invention, has an impact for the fine chemical needed for the micro-organisms.In an especially preferred embodiment, the activity of PTS molecule of the present invention is regulated so that yield, production and the production efficiency of one or more kinds of fine chemicals in Corynebacterium glutamicum are also adjusted.
Term " pts protein " or " PTS polypeptide " contain those participate in from extracellular medium to cell interior absorb one or more kinds of energy-rich compounds (such as, monosaccharide, disaccharides or oligosaccharides seem fructose, mannose, sucrose, glucose, gossypose, galactolipin, ribose, lactose, maltose and sorbose) protein.These pts proteins can also participate in one or more of Cellular Signaling Transduction Mediated approach, such as but be not limited solely to, those control different carbohydrates and absorb approach into cell.The example of pts protein includes the protein that those are encoded by the PTS gene for being listed in Serial No. odd number in sequence table.About the comprehensive reference document of PTS system, referring to: Stryer, L. (1998) Biochemistry, Chapter 37: " Membrane Transport ", W.H.Freeman:New York, p.959-961;Darnell, J.et al. (1990) Molecular Cell BiologyScientific American Books:New York, p.552-553, and Michal, G., ed. (1999) Biochemical Pathway;An Atlas of Biochemistry and Molecular Biology, Chapter 15 " Special Bacterial Metabolism ".Term " PTS gene " or " PTS nucleic acid sequence " contain the nucleic acid sequence of coding pts protein, and the latter includes 5 ' and 3 ' sequence areas of coding region and corresponding untranslated.The example of PTS gene includes the gene that those are listed in Table 1.Term " production " or " productivity " be it is well known in the art, contain within given time and given fermentation volume, the concentration of tunning (for example, required fine chemical) (for example, product kg per liter per hour).Term " production efficiency " contains, the time needed for reaching specific production level (for example, it is desired to how long just cell can be made to reach specific fine chemical).Term " income " " product/carbon income " be it is well known in the art, contain the efficiency for carbon source being converted to product (such as fine chemical).For example, often writing every kilogram of carbon source of product kg.By improving the income or production of compound, the quantity of recycling molecule can be increased, or increase the quantity of the useful recycling molecule of the compound in the culture for giving quantity within given time.Term " biosynthesis " or " biosynthesis pathway " be it is well known in the art, contain in cell, from intermediate compound by may be multistep and be highly regulated process, synthesize compound, especially organic compound.Term " degradation " or one " degradation pathway " are well known in the art, it contains in cell, by may be multistep and be highly regulated process, compound, preferably organic compound, it is decomposed into catabolite (in general, being smaller or the smaller molecule of complexity).Term " metabolism " be it is well known in the art, contain the whole of the biochemical reaction occurred in organism.Thus, the metabolism (for example, seeming amino acid metabolism as glycine) of special compound includes all biological synthesis relevant to the compound, modification and degradation pathway in cell.Term " transhipment " and " input " be it is well known in the art, contain one or more kinds of compounds across cell membrane easyization movement, and these compounds pass through cannot pass through cell membrane otherwise.
In another embodiment, PTS molecule of the invention can be adjusted in microorganism, such as in Corynebacterium glutamicum, the generation of required compound such as fine chemical.One or more kinds of PTS molecules of the invention can be operated using recombinant genetic technology, to adjust its activity.For example, the PTS system that a kind of protein for participating in the glucose input that PTS is mediated can be adjusted, and make its activity optimization, and input glucose, can transport greater number of glucose into cell.Because glucose molecule serves not only as energy to push the unfavorable biochemical reaction of energy, such as fine chemical biosynthesis, and it can be used as the precursor and intermediate of many biological fine chemical biosynthesis pathways (for example, synthesizing serine from 3-phoshoglyceric acid).In each example, the total output or production efficiency that can perhaps increase these required fine chemicals by compound supply needed for increasing production generation are perhaps provided by energy needed for increasing production generation.
In addition, many known pts proteins play a crucial role in signal transduction path in the cell, these approach adjust the cell metabolism for maintaining carbon source supply and carbohydrate intake.For example, as it is known that the increase of intracellular fructose 1,6-diphosphate (compound generated in glycolysis) level, can lead to the phosphorylation of HPr serine residue, to prevent the protein in any PTS carbohydrate transport process as phosphate group donor.Prevent its serine residue from being phosphorylated by mutagenesis HPr, it can be with the activation HPr of composition, to increase the carbohydrate in transporte to cells, may then ensure that intracellular for more energy storages and intermediate/precursor molecule needed for fine chemical biosynthesis needed for one or more.
The nucleic acid sequence of the present invention of separation, included in the genome of Corynebacterium glutamicum strain, which can be obtained by American type culture collection, deposit number ATCC 13032.Isolated Corynebacterium glutamicum PTS DNA nucleic acid sequence, and the Corynebacterium glutamicum pts protein amino acid sequence of prediction, are listed respectively with odd serial numbers and even order number in sequence table.
It has carried out computer analysis, and these nucleic acid sequences has been classified and/or be accredited as the sequence of encoding metabolic pathway proteins matter.
The present invention is also related with such protein, and the amino acid sequence of the protein and amino acid sequence of the invention have sufficient homology the sequence of even order number (for example, in sequence table).As used herein, have has the protein of the amino acid sequence of abundant homology to have at least about 50% homology with the amino acid sequence picked out, such as the overall amino acid sequence picked out with the amino acid sequence picked out.Protein with the amino acid sequence for having very big homology with the amino acid sequence picked out, there can also be at least about 50-60% with the amino acid sequence picked out, preferably there is at least about 60% homology, more preferably there is at least about 70%, 80%, 90% homology, most preferably have at least about 95%, 96%, 97%, 98%, 99% or higher homology.
Pts protein of the invention or its biologically-active moiety or its segment, can participate in transhipment seems that high energy carbon-containing molecules as glucose enter Corynebacterium glutamicum, perhaps the Cellular Signaling Transduction Mediated in the microorganism is participated in or with the one or more activity listed in table 1.
Various aspects of the invention are described in more detail in following each section:
A. the nucleic acid molecules separated
One aspect of the present invention is related to the coding PTS polypeptide of separation or the nucleic acid molecules of its biologically-active moiety, and be used as enough hybridization probe perhaps these segments of the nucleic acid molecule fragment of primer for identifying or the nucleic acid of amplification coding PTS (such as PTS DNA).As used herein, term " nucleic acid molecules " is meant comprising DNA molecular (for example, cDNA perhaps genomic DNA) and RNA molecule (such as mRNA) and by DNA the RNA analog of nucleotide analog generation.The term also includes the non-translated sequence positioned at the end of gene coding region 3 ' and 5 ': at least 20 nucleotide of 3 ' the end downstream sequence of at least 100 nucleotide and gene coding region of 5 ' end upstream sequence of coding region.Nucleic acid molecules can be it is single-stranded or double-strand, it is preferred that being double-stranded DNA." separation " nucleic acid molecules refer to those nucleic acid molecules being separated from each other with other nucleic acid molecules being present in nucleic acid natural origin.It is preferred that " separation " nucleic acid is without containing the natural sequence (for example, the sequence for being located at the end of nucleic acid 5 ' and 3 ') positioned at organism genomic DNA amplifying nucleic acid two sides, nucleic acid is exactly to obtain from the organism.Such as, in various embodiments, isolated PTS nucleic acid molecules can be containing less than about 5kb, 4kb, 3kb, 2kb, the nucleotide sequence of 1kb, 0.5kb or 0.1kb, the sequence are naturally located at the two sides of cell genomic dna nucleic acid molecules, nucleic acid is exactly to obtain from these cells (for example, Corynebacterium glutamicum cell).In addition, " separation " nucleic acid molecules, such as DNA molecular, when producing with recombinant technique precursor or other chemical substances can be free of when perhaps culture medium is when chemical synthesis essentially free of other cellular materials.
Nucleic acid molecules of the present invention, such as the nucleotide sequence of odd serial numbers or its part in sequence table, can be isolated by standard molecular biological technique and sequence information provided herein.Such as, Corynebacterium glutamicum PTS DNA can be from Corynebacterium glutamicum library, the whole for using in sequence table in odd serial numbers sequence a sequence or its part are as hybridization probe, and standard hybridisation methods are (for example, seem description in Sambrook, J., Fritsh, E.F., and Maniatis, T.Molecular Cloning:A Laboratory Manual.2nd, in ed.Cold Spring HarborLaboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and isolated.In addition, comprising a nucleic acid sequence of the present invention (such as, the nucleotide sequence of odd serial numbers in sequence table) all or part nucleic acid molecules, polymerase chain reaction can be passed through, use the oligonucleotide primer based on the sequence design, isolated (such as, comprising a nucleic acid sequence of the present invention (such as, the nucleotide sequence of odd serial numbers in sequence table) all or part nucleic acid molecules, polymerase chain reaction can be passed through, it is isolated using the oligonucleotide primer based on the identical sequence design).Such as, mRNA can it is isolated from normal endothelial cell (such as, use the guanidine thiocyanate extracting method in Chirgwin et al. (1979) Biochemistry 18:5294-5299), DNA can by reverse transcriptase (such as, Gibco/BRL, the Moloney MLV reverse transcriptase that Bethesda, MD are provided;Or SeikagakuAmerica, Inc., the AMV reverse transcriptase that St.Peterburg, FL are provided) preparation.It, can be based on the nucleotide sequence design listed in sequence table for the oligonucleotide primer of polymerase chain reaction synthesis.Nucleic acid of the invention, can be used cDNA or genomic DNA as template alternatively, and suitable oligonucleotide primer is expanded according to standard PCR amplification technology.The nucleic acid amplified in this way can be cloned into suitable carrier, and distinguish its feature with DNA sequence analysis.In addition, oligonucleotide corresponding with PTS nucleotide sequence, can be prepared, such as use automatic dna synthesizer with Standard synthetic techniques.
In a preferred embodiment, the nucleic acid molecules of the present invention of separation include the nucleotide sequence listed in sequence table.Nucleic acid sequence of the invention is consistent as those of listing in sequence table with Corynebacterium glutamicum PTS DNA of the invention.These DNA include the sequence (i.e. " coding region " of coding pts protein, it is shown in odd serial numbers in every sequence table: in sequence), and 5 ' non-coding sequence and 3 ' non-coding sequences, it is also shown in odd serial numbers in every sequence table: in sequence.Alternatively, nucleic acid molecules can only include the coding region of sequence table more control sequences.
For the purpose of this application, it is possible to understand that the every nucleic acid and amino acid sequence listed in sequence table have a RXA for identification, RXN, RXS or RXC coding, indicates " RXA ", " RXN ", " RXS ", or " RXC " has 5 numbers (that is, RXA01503, RXN01299 below, RXS00315 or RXC00953).Every nucleic acid sequence contains up to three parts: 5 ' upstream regions, coding region, downstream area.Trizonal each part is all obscured with identical RXA, RXN, RXS or RXC number determination with eliminating.Then narration " sequence of the odd number coding in sequence table " refers to that any nucleic acid sequence in sequence table, these sequences can also mutually be distinguished with their different RXA, RXN, RXS or RXC numbers.The coding region of every this sequence is all translated into corresponding amino acid sequence, these sequences are also listed in sequence table, to follow even order number after corresponding nucleic sequence closely:.For example, the coding region of RXA02229 is listed in SEQ ID NO:1, and the amino acid sequence that it is encoded is listed in SEQ ID NO:2.Sequence of nucleic acid molecules of the invention, the amino acid molecular encoded with it, with identical RXA, RXN, RXS or RXC number are indicated, so that they are easy to connect each other.For example, being appointed as RXA01503, the amino acid sequence of RXN01299, RXS00315 and RXC00953 are RXA01503, RXN01299, the translation in the nucleotide sequence coded region of RXS00315 and RXC00953 nucleic acid molecules respectively.RXA of the present invention, RXN, correspondence and their appointed sequence numbers between RXS and RXC nucleotide and amino acid sequence are listed in Table 1.For example, seem the nucleotide sequence RXN01299 being listed in Table 1 being SEQ ID NO:7, corresponding amino acid sequence is SEQ ID NO:8.
Several genes of the invention are " genes that F- is indicated ".The gene that F- is indicated includes the gene that those are listed in Table 1 and have " F " before RXA, RXN, RXS or RXC are indicated.For example, SEQ ID NO:3, as being indicated in table 1, it is designated as " F RXA00315 ", the gene that an exactly F- is indicated, same there are also SEQ ID NO:9,11 and 13 (are marked as " F RXA01229 ", F RXA01883 in table 1 respectively " and " F RXA01889 ").
In one embodiment, nucleic acid molecules of the invention, which do not include, those of is compiled in table 2 Corynebacterium glutamicum molecule.For dapD gene, the sequence of the gene is published in Wehrmann, A., et al. (1998) J.Bacteriol.180 (12): 3159-3165.However, the present application person it is obtained it is longer than the version delivered very much.It has been said that the version delivered has used the codon in fact of mistake, and therefore only it is demonstrated by a part of true coding region.
In another preferred embodiment, the nucleic acid molecules of the invention of separation are the nucleic acid molecules of nucleotide sequence of the present invention (for example, odd serial numbers in sequence table: sequence) or the complementary molecule of its part comprising those.The nucleic acid molecules complementary with a nucleotide sequence of the invention, refer to listed in the molecule and sequence table a nucleotide sequence (such as, odd serial numbers: sequence) it is sufficiently complementary, therefore it can with a nucleotide sequence hybridization of the invention, to form stable double helix.
Equally in another preferred embodiment, the nucleic acid molecules of the invention of separation, include such nucleotide sequence, the sequence and nucleotide sequence of the invention (such as, odd serial numbers in sequence table: sequence) or its part, have at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60% homology, preferably have at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70% homology, more preferably have at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 8 7%, 88%, 88%, 89% perhaps 90% or 91%, 92%, 93%, 94%, and even more preferably have at least about 95%, 96%, 97%, 98%, 99% or higher homology.Range (for example, 70-90% consistency or 80-95% consistency) referenced above intermediate range and consistency value, are also included in the present invention.For example, containing such consistency value range, these ranges are the combinations of the above-cited upper limit and/or lower limit value.In another preferred embodiment, the nucleic acid molecules that the present invention separates include such nucleotide sequence, the sequence can with a nucleotide sequence of the invention (such as, odd serial numbers in sequence table: sequence) or its part hybridized, for example, hybridizing under strict conditions.
In addition, nucleic acid molecules of the present invention only may include a part of odd serial numbers sequences encoding regions in sequence table, for example, may be used as the probe perhaps segment of primer or the segment of coding pts protein biologically-active moiety.The nucleotide sequence gone out by Corynebacterium glutamicum PTS gene cloning, allow to generate probe and primer, the design of these probes and primer is for identifying and/or cloning the PTS homologue in PTS homologue and other bar bacteriums or affinity species of other cell types perhaps in other organisms.Probe/primer is typically include the oligonucleotide quite purified.Oligonucleotide is typically include the region of such one section of nucleotide sequence, the region is under stringent hybridization conditions, with nucleotide sequence of the present invention (such as, odd serial numbers sequence in sequence table) sense strand, at least about 12 of the antisense sequences of these sequences or its naturally occurring mutant, preferably about 25, preferred about 40,50 or 75 continuous nucleotides hybridization.Based on the primer of nucleotide sequence of the present invention, it can be used for cloning the PCR reaction of PTS homologue.Based on the probe of PTS nucleotide sequence, it can be used for detecting identical or homologous protein transcription or genome sequence.In a preferred embodiment, probe includes even more other attachment labelling groups, such as labelling groups can be the co-factor of radioactive isotope, fluorescent chemicals, enzyme or enzyme.This probe may be used as a part of diagnostic test kits, the kit is used to identify the cell of false demonstration pts protein, it seem the level by PTS code nucleic acid in measurement sample cell, such as, the level of PTS mRNA is detected, either measures whether genome PTS gene is mutated or is lacked.
In one embodiment, a kind of protein of nucleic acid molecule encoding of the present invention or its part, the protein or the amino acid sequence of its part and amino acid sequence of the invention (such as, even order sequence in sequence table) there is sufficient homology, so that the protein or its part have the ability high energy carbon molecules (such as glucose) to input Corynebacterium glutamicum, one or more of Cellular Signaling Transduction Mediated approach can also be participated in.As used herein, term " sufficient homology " refers to protein or the amino acid sequence of its part, containing minimal amount with it is consensus amino acid sequence of the present invention or of equal value (such as, with the amino acid residue with the amino acid residue similar side chain in sequence table even order sequence) amino acid residue, so that the protein or its part, the one or more of Cellular Signaling Transduction Mediated approach in the microorganism can also be participated in seeming the input Corynebacterium glutamicum of high energy carbon molecules as glucose.The Protein members of this metabolic pathway, as described herein, function is that handle seems the input Corynebacterium glutamicum of high energy carbon molecules as glucose, can also participate in the one or more of Cellular Signaling Transduction Mediated approach in the microorganism.This active example is also described.Thus, " function of pts protein " contributes the repertoire of the one or more of carbohydrate transporting pathway based on phosphoenolpyruvate and/or adjusting, and/or directly or indirectly contributes to the yield of one or more kinds of fine chemicals, production and/or production efficiency.The active example of pts protein is listed in table 1.
In another embodiment, protein and whole amino acid sequences of the invention have at least about homology of 50-60%, preferably there is at least about homology of 60-70%, more preferably there is at least about 70-80%, 80-90%, the homology of 90-95%, most preferably have at least about 96%, 97%, 98%, 99% or higher homology (for example, even order number in sequence table: sequence).
The part of PTS nucleic acid molecule encoding protein of the present invention, the preferably biologically-active moiety of pts protein.As used herein, term " biologically-active moiety of pts protein " is meant comprising part as pts protein, such as structural domain/primitive, the part or can participate in the one or more of Cellular Signaling Transduction Mediated approach in the microorganism seeming the input Corynebacterium glutamicum of high energy carbon molecules as glucose.It can carry out a kind of enzyme activity assay, to determine perhaps whether its biologically-active moiety takes part in seeming the input Corynebacterium glutamicum of high energy carbon molecules as glucose or take part in one or more of Cellular Signaling Transduction Mediated approach in the microorganism pts protein.This analysis method for be familiar with for ordinary skill be it is well known, be described later in detail in the example 8 of example.
Encode the additional nucleic acid fragment of pts protein biologically-active moiety, it can be prepared by the following method, separation amino acid sequence of the present invention (such as, even order number in sequence table: sequence) a part, express pts protein or polypeptide coded portion (such as, pass through in-vitro recombination expression), and estimate the activity of pts protein or peptide coding part.
Because of the degeneracy of genetic codon, and it is possible thereby to encode to obtain pts protein identical with nucleotide sequence encoding protein matter of the present invention, so the present invention further includes the nucleic acid molecules different from nucleotide sequence of the present invention (for example, odd serial numbers in sequence table: sequence) (and its part).In another embodiment, the nucleic acid molecules of the invention of separation have such nucleotide sequence, which has the protein for the amino acid sequence (for example, even order number :) listed in sequence table.Equally in another embodiment, the Corynebacterium glutamicum protein of nucleic acid molecule encoding overall length of the present invention, the protein and amino acid sequence of the invention (by odd serial numbers in sequence table: open reading frame encodes) have sufficient homology.
In one embodiment, sequence of the invention is not meant to include sequence known in the art in the past, for example, those be listed in table 2 or table 4 before the present invention with regard to effective Genbank sequence, this will be understood by for ordinary skill for being familiar with.In one embodiment, the present invention includes such nucleotide sequence and amino acid sequence, the sequence and nucleotide sequence of the invention and amino acid sequence have the consistency of certain percentage, the percentage is greater than the percentage of sequence (for example, the Genbank sequence (or protein of the sequential coding) listed in table 2 or table 4) and nucleotide sequence and Amino acid sequence identity of the invention known in the art.Such as, the present invention includes to show to be greater than and/or the nucleotide sequence of at least 44% consistency with the nucleotides sequence for being marked as RXA01503 (SEQ ID NO:5), it shows and is greater than and/or the nucleotide sequence of at least 41% consistency with the nucleotides sequence for being marked as RXA00951 (SEQ ID NO:15), and show with the nucleotides sequence for being marked as RXA01300 (SEQ ID NO:21) and to be greater than and/or the nucleotide sequence of at least 38% consistency.It is familiar with ordinary skill, Percent Identity is calculated by the GPA- met for 3 highests that each particular sequence provides listed in inspection table 4, and Percent Identity is calculated by subtracting highest GPA- from 100 percent, the low side thresholding of any particular sequence Percent Identity of the present invention can be calculated.Being familiar with ordinary skill may also be appreciated that, its Percent Identity be greater than so calculated low side thresholding (such as, at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60%, preferred at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 88%, 89% or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or higher consistency) nucleic acid and amino acid sequence, be also included in the present invention.
Being familiar with ordinary skill can be appreciated that, other than the Corynebacterium glutamicum PTS nucleotide sequence listed in sequence table with odd serial numbers, the DNA polymorphism for causing pts protein amino acid sequence to change can exist in certain group (such as Corynebacterium glutamicum group).The genetic polymorphism of this PTS gene, can due to natural conditions variation and exist in the Different Individual of a group.As used herein, term " gene " and " recombination " refer to that preferred pts protein is Corynebacterium glutamicum pts protein containing the nucleic acid molecules for the open reading frame for encoding pts protein.The variation of this natural conditions can typically cause the variation of PTS gene nucleotide series 1-5%.It is any and all as caused by the variation of natural conditions, and do not change pts protein functional activity, the polymorphism of the variation of this nucleotide and caused PTS amino acid belongs within the scope of the invention.
The nucleic acid molecules of corresponding natural variant, with the non-glutamic acid bar bacterium homologue of Corynebacterium glutamicum PTS DNA of the present invention, it can the homology based on disclosed herein they and Corynebacterium glutamicum PTS nucleic acid molecules, use Corynebacterium glutamicum DNA or its part as hybridization probe, it is isolated according to standard hybridisation methods under stringent hybridization conditions.Therefore, in another embodiment, the length of the nucleic acid molecules of the present invention of separation at least 15 nucleotide, under strict conditions with odd serial numbers containing ordered list: the making nucleic acid molecular hybridization of nucleotide sequence.In other embodiments, the length of nucleic acid molecules at least 30,50,100,250 or more nucleotide.As used herein, term " hybridizing under strict conditions " means the condition of description such hybridization and cleaning, has the nucleotide sequence of at least 60% homology to keep typically hybridizing between each other each other under this condition.It is preferred that this condition is that have at least about 65% between sequence, more preferably there is at least about 70%, and even more preferably have at least about 75 or higher homology, keeps typical hybridization between each other.This stringent condition for be familiar with ordinary skill be it is known, can be found in Ausubel et al., Current Protocols in Molecular Biology, JohnWiley & Sons, N.Y. (1989), 6.3.1-6.3.6.Stringent hybridization condition that is a kind of preferred but not being limitation is hybridized for about 45 DEG C in 6X sodium chloride/sodium citrate (SSC), then uses 0.2X SSC, and 0.1%SDS is primary or repeatedly in 50-65 DEG C of cleaning.It is preferred that the nucleic acid molecules of the invention of separation are equivalent to obtain naturally occurring nucleic acid molecules under stringent hybridization conditions with nucleotide sequence hybridization of the invention.As used herein, " naturally occurring " nucleic acid molecules refer to RNA or DNA molecular with nucleotide sequence present in nature (for example, coding native protein).In one embodiment, nucleic acid encode natural glutamate bar bacterium pts protein.
Being familiar with ordinary skill will be further appreciated that, other than the naturally occurring PTS sequence variants present in the group, change can be introduced into nucleotide sequence of the present invention by mutation, the function so as to cause the change of the amino acid sequence of pts protein encoded, without changing pts protein.For example, can be in nucleotide sequence of the present invention, progress can cause the nucleotide of the amino acid substitution of " nonessential " amino acid residue to replace." nonessential " amino acid residue refers to such residue, the residue can pts protein wild-type sequence (such as, even order number in sequence table: sequence) in change, activity without changing pts protein, and " required " amino acid residue is necessary to pts protein activity.However, other amino acid residues (for example, those non-conservative in PTS active structure domain or only semi-conservative amino acid residues) may be not required activity, therefore can also be changed in the case where not changing the active situation of PTS.
Therefore, another aspect of the present invention is related to encoding the nucleic acid molecules of such pts protein, which contains the variation of the amino acid residue nonessential to PTS activity.The amino acid sequence of these protein is different from even order number in sequence table: sequence, but still keeps at least one PTS activity described herein.In one embodiment, isolated nucleic acid molecules include the nucleotide sequence of one section of coding protein, wherein the amino acid sequence of the protein and amino acid sequence of the invention have at least about 50% homology, and it can be seeming that high-energy carbon-containing molecules as glucose are transported into Corynebacterium glutamicum, perhaps the Cellular Signaling Transduction Mediated in the microorganism is participated in or with the one or more activity listed in table 1.It is preferred that, odd serial numbers amino acid sequence in the protein of nucleic acid molecule encoding and sequence table, there is at least about homology of 50-60%, more preferably has at least about homology of 60-70% with this sequence, even more preferably have at least about 70-80% with this sequence, 80-90%, the homology of 90-95% most preferably has at least about 96%, 97% with amino acid sequence of the invention, 98% or 99% homology.
In order to determine two kinds of amino acid sequences (such as, a kind of amino acid sequence of the invention and its mutant forms) or two kinds of nucleic acid sequences percent homology, the purpose compared for optimum, to sequence carry out alignment (such as, in order to which perhaps the optimum alignment of nucleic acid progress can introduce gap in the sequence of a kind of protein or nucleic acid with other protein).Then the nucleotide of the amino acid residue of more corresponding amino acid position or nucleic acid position.When a sequence (such as, an amino acid sequence of the invention) in a position by with other sequences (such as, the mutant forms of amino acid sequence) the identical amino acid residue in corresponding position or nucleotide is when occupying, the molecule is homologous (that is, " consistency " of amino acid or nucleic acid " homology " and amino acid or nucleic acid is identical as used herein) in this position.Percent homology between two sequences is the function (that is, % consistency=same position #/whole position #x100) that a same position number is divided equally by sequence.
Separation with present protein sequence (such as, even order number in sequence table: sequence) homologous coding pts protein matter nucleic acid molecules, it is generated and being replaced by introducing one or more nucleotide into nucleotide sequence of the present invention, be inserted into, lack, to introduce one or more amino acid substitution, insertion, missing in coding protein.Standard technique, such as the mutagenesis that direct mutagenesis and PCR are mediated can be used, mutation is introduced in nucleotide sequence of the present invention.It is preferred that conservative amino acid substitution is that non-essential amino acid residues expected from one or more carry out." conservative amino acid substitution " refers to amino acid residue replaced the amino acid residue with similar side chain.Amino acid residue families with similar side chain, technically there is regulation.These families include, with basic side chain amino acid (such as, lysine, arginine, histidine), with acid side-chain amino acid (such as, aspartic acid, glutamic acid), with no charge polarity side chain amino acid (such as, glycine, aspartic acid, glutamine, serine, threonine, tyrosine, cysteine), with non-polar sidechain amino acid (such as, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), with β-branched side chains amino acid (such as, threonine, valine, isoleucine), and with fragrance group side chain amino acid (such as, tyrosine, phenylalanine, tryptophan, histidine).Therefore, it is contemplated that pts protein in non-essential amino acid residues, preferably by other amino acid substitutions in same side chain family.In addition, in another embodiment, it can be in PTS coded sequence overall length or part, random introducing mutation, such as by saturation mutagenesis, there is the PTS activity of PTS active mutant, the mutant filtered out according to identification described herein.In a sequence table after odd serial numbers nucleotide sequence mutagenesis, protein encoded can be recombinantly expressed, and protein active can also be with, such as using analysis (referring to the example 8 of example) described herein, is determined.
Other than the nucleic acid molecules of coding pts protein matter described above, another aspect of the present invention is also related with isolated antisense nucleic acid molecule." antisense " nucleic acid includes the nucleotide sequence with " ariyoshi " complementary nucleic acid of coding protein, such as complementary with double chain DNA molecule coding strand or complementary with mRNA sequence.Therefore, antisense nucleic acid can be by hydrogen bond and having phosphorothioate odn connection.Antisense nucleic acid can be complementary with whole PTS coding strands, can also only with its partial complementarity.In one embodiment, antisense nucleic acid molecule, " coding region " antisense with the nucleotide sequence coded chain of coding pts protein.Term " coding region " refers to the nucleotide sequence region (for example, whole coding regions of SEQ ID NO.5 (RAX 01503) include 1 to 249 nucleotide) of the codon comprising translating into amino acid residue.In another embodiment, antisense nucleic acid molecule, the antisense with the nucleotide sequence coded chain of coding PTS.Term " non-coding region " refers to that coding region two sides do not translate into 5 ' and 3 ' sequences (i.e. 5 ' and 3 ' untranslated regions) of amino acid.
In view of the coding strand sequence (for example, the odd serial numbers sequence listed in sequence table) of the coding PTS announced herein, antisense nucleic acid of the present invention can be designed according to the base pairing rules of Watson and Crick.Antisense nucleic acid molecule can be complementary with whole coding regions of PTS mRNA, but more preferably such oligonucleotide, which is only antisense with the part of the coding region of PTS mRNA or non-coding region.For example, antisense oligonucleotide can be complementary with the region near PTS mRNA translation initiation position.For example, the length of antisense oligonucleotide can be 5,10,15,20,25,30,35,40,45 or 50 nucleotide.Program known in the art can be used in antisense nucleic acid molecule of the invention, passes through chemical synthesis or enzymatic connection reaction building.Naturally occurring nucleotide or the various nucleotide by modification can be used, chemical synthesis antisense nucleic acid (such as antisense oligonucleotide), those pass through the nucleotide of modification, it is the biological stability in order to increase molecule, or designed to increase antisense nucleic acid and have the physical stability for forming double helix between phosphorothioate odn, the nucleotide that phosphorothioate analogue and acridine replace can be used for example.The example that can be used for generating the modified nucleotide of antisense nucleic acid includes, 5 FU 5 fluorouracil, 5-bromouracil, 5- chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4- acetylcytosine, 5- (carboxy hydroxy methyl) uracil, 5- carboxymethylamino methyl -2- thiouracil, 5- carboxymethylamino methyluracil, dihydrouracil, beta-D- galactosyl inosine, N6- isopentyl adenine, 1- methyl guanine, 1-methylinosine, 2, 2- dimethylguanine, 2- methyl adenine, 2- methyl guanine, 3- methylcystein, 5-methylcytosine, N6- adenine, 7- methyl guanine, 5- Methylaminomethyl uracil, 5- Methoxyamino methyluracil -2- paper substrate, beta-D- is sweet Reveal glycosyl queosine, 5 '-methoxycarbonyloxymethyl uracils, 5- methoxyuracil, 2- methyl thio-N6- isopentyl adenine, uracil -5- (V) containing fluoroacetic acid, wybutoxosine, pseudouracil, queosine, the thio cytimidine of 2-, 5- methyl -2- paper substrate, 2- paper substrate, 4- paper substrate, methyl uracil, the oxygen-containing methyl acetate of uracil -5-, uracil -5- (v) containing fluoroacetic acid, 5- methyl -2- paper substrate, 3- (3- amino -3-N-2- carboxypropyl) uracil, (acp3) w, and 2, 6- diaminopurine.In addition, expression vector biosynthesis can be used in antisense nucleic acid, amplifying nucleic acid is subcloned into expression vector (that is, by the RNA of insertion transcribed nucleic acid, the purpose nucleic acid relative to insertion is antisense orientation, is partially further discussed below below) by antisense orientation.
Antisense nucleic acid molecule of the invention is typically applied to cell and is perhaps generated in situ so that they and then can inhibit the expression of protein, for example, inhibiting transcription and/or translation with the cell mRNA and/or genomic DNA hybridization or combination of coding pts protein.Hybridization can form stable double helix by the way that common nucleotides are complementary, alternatively, for example, when antisense nucleic acid molecule combination DNA double spiral, the major groove generation Specific Interactions of it and double helix.Antisense molecule can be modified, so that the molecule can be with receptor perhaps in conjunction with the antigentic specificity of specific cells surface expression for example, the perhaps combination of the antibody antibody and cell surface receptor or the antigen binding of antisense nucleic acid molecule and polypeptide.Vehicle delivery described herein also can be used to cell in antisense nucleic acid molecule.Intracellular sufficient concentrations of antisense molecule, such carrier are preferably that is, in the carrier, antisense nucleic acid molecule is placed under the control of protokaryon, virus or eukaryotic promoter in order to obtain.
And in another embodiment, antisense nucleic acid molecule of the invention is a kind of α-anomeric nucleic acid molecule.α-anomeric nucleic acid molecule forms special double-stranded hybrid with complementary RNA, two strands of chains move towards parallel to each other in hybrid, this (Gaultier et al. (1987) Nucleic Acids.Res.15:6625-6641) opposite with common β-unit.Antisense nucleic acid molecule also may include 2 '-o- methyl ribonucleotides (Inoue et al. (1987) Nucleic Acids.Res.15:6131-3148) or chemistry RNA-DNA analog (Inoue et al. (1987) FEBS Lett.215:327-330).
And in another embodiment, antisense nucleic acid molecule of the invention is ribozyme.Ribozyme is catalytic type RNA molecule, has ribonuclease activity, can cutting single-chain nucleic acid, such as mRNA, it has the region complementary with single-chain nucleic acid.Therefore, ribozyme (for example, hammerhead ribozyme (being described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used for catalysis cutting PTS mRNA transcript, to inhibit the translation of PTS mRNA.There is the ribozyme of specificity for PTS coding nucleic acid molecule, can be designed based on the PTS DNA nucleotide sequence (i.e. SEQID NO:5 (RAX 01503)) announced herein.For example, the derivative of tetrahymena L-19 IVS RNA can be constructed, the nucleotide sequence of active site is complementary with the nucleotide sequence of the PTS- coding mRNA cut.See, e.g., Cech et al.U.S.Patent No.4,987,071 and Cech et al.U.S.Patent No.5,116,742.In addition, PTS mRNA, which can be used for screening in RNA molecule library, has the active catalytic type RNA of Specific ribozyme.See, e.g., Bartel, D.and Szostak, J.W. (1993) Science 261:1411-1418.
In addition, by the handle nucleotide sequence complementary with PTS nucleotide sequence adjustment region (for example, PTS promoter and/or enhancer) as target, triple-helix structure is formed, it can inhibit the expression of PTS gene, which can prevent transcription of the PTS gene in aim cell.Referring generally to Helene, C. (1991) Anticancer Drug Des.6 (6): 569-84;Helene, C.etal. (1992) Ann.N.Y.Acad.Sci.660:27-36;And Maher, L.J. (1992) Bioassays 14 (12): 807-15.
B. recombinant expression carrier and host cell
Another aspect of the present invention relates to carriers, preferably the expression vector containing coding pts protein (or its part) nucleic acid.As used herein, term " carrier " is to refer to connect other nucleic acid, and the nucleic acid molecules for transporting it.A type of carrier is " plasmid ", and plasmid refers to circular double-stranded DNA ring, wherein being connected with additional DNA fragmentation.Another type of carrier is viral vectors, wherein additional DNA fragmentation may be coupled in viral genome.Certain carriers can independently be replicated (for example, bacteria carrier and episomal mammalian vectors with bacterial origin of replication) in the host cell that they are introduced into.Other carriers (for example, non-add type mammalian vector) are once being introduced into the genome that host cell will be integrated into host cell, to replicate together with host genome.In addition, certain carriers can instruct the expression of connected gene.These carriers are here referred to as " expression vector ".In short, the expression vector that recombinant DNA technology uses is often plasmid form.In the present note, " plasmid " and " carrier " can be used interchangeably, because plasmid is most-often used carrier format.However, the present invention includes the other forms of these expression vectors, such as viral vectors (for example, replication defect type retrovirus, adenovirus and adeno-associated virus), their functions having the same intentionally.
Recombinant expression carrier of the present invention includes nucleic acid of the invention, the nucleic acid exists in the form of being suitble to expression of nucleic acid in host cell, this means that recombinant expression carrier contains one or more of adjusting sequences, these sequences are selected based on the host cell for being used as expression, they are connected in the nucleic acid sequence to be expressed by feasible.In recombinant expression carrier, " feasible connection " is meant that, it nucleotide sequence interested and adjusts sequence and is attached (for example, in vitro in transcription/translation system, or in the host cell that carrier is introduced into) in a manner of allowing nucleotide sequence to express.Term " adjusting sequence " is meant including promoter, enhancer and other expression control element (for example, polyadenylation signal).This adjusting sequence exists, for example, Goeddel;It is described in GeneExpression Technology:Methods in Enzymology 185, Academic Press, SanDiego, CA (1990).Adjust sequence include, those in many host cell types, instruct nucleotide sequence constitutive expression sequence and those in certain host cells, instruct nucleotide sequence express sequence.The preferred sequence that adjusts is, for example, seeming cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacIq, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny-, SPO2-, λ-PROr λ PLSuch promoter, these promoters preferably use in bacterium.In addition adjusting sequence is, for example, the promoter of yeast and fungi, such as ADC1, MF α, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, the promoter of plant, for example, CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, no or ubiquitin- or phaseolin- promoter.Also artificial promoter can be used.These can be appreciated that the i.e. design of expression vector depends on these factors: the selection of the host cell for conversion, the expression etc. of required protein for being familiar with ordinary skill.Expression vector of the invention can introduce host cell, to generate the protein of encoded by nucleic acid described herein, perhaps polypeptide includes fused protein or polypeptide (for example, the mutant form of pts protein, pts protein, fused protein etc.).
Recombinant expression carrier of the invention can be designed, for expressing pts protein in protokaryon or eukaryocyte.Such as, PTS gene can express in following cell, it seem bacterial cell as Corynebacterium glutamicum, insect cell (uses rhabdovirus expression vector), yeast and other fungal cells are (referring to Romanos, M.A.et al. (1992) " Foreign gene expression in yeast:areview ", Yeast 8:423-488;Van den Hondel, C.A.M.J.J.et al. (1991) " Heterologousgene expression in filamentous fungi " in:More Gene Manipulations in Fungi, J.W.Bennet&L.L.Lasure, eds., p.396-428:Academic Press:San Diego;And van denHondel, C.A.M.J.J.& Punt, P.J. (1991) " Gene transfer systems and vectordevelopment for filamentous fungi; in:Applied Molecular Genetics of Fungi, Peberdy, J.F.et al.; eds.; p.1-28, Cambridge University Press:Cambridge) algae or metaphyte cell be (referring to Schmidt, R.and Willmitze R, L. (1998) High efficiencyAgrobacterium tumefaciens-mediated transformation of Arabidopsisthaliana leaf and cotyledon explants " Plant Cell Rep.:583-586) or mammalian cell.Host cell appropriate is discussed further in Goeddel, Gene Expression Technology:Methods in Enzymology 185, Academic Press, San Diego, CA (1990).In addition, recombinant expression carrier can transcription and translation in vitro, such as T7 promoter is used to adjust sequence and T7 polymerase.
Protein expression in prokaryotic cell often instructs the expression of fused protein or non pregnant women matter by these promoters that the carrier containing composing type perhaps inducible promoter carries out.Fusion vector adds the amino acid of certain amount in coding protein, usually in the amino terminal of recombinant protein.This fusion vector has 3 typical uses: 1) increasing the expression of recombinant protein;2) increase the dissolubility of recombinant protein;Aglucon with affinity purification 3) is used as, helps fusion protein purification.In fusion expression vector, protein cleavage site is often introduced into the junction of fusion part and recombinant protein, so that after being purified into fused protein, recombinant protein can be partially separated open with merging.This enzyme and their cognate recognition sequence, including Xa factor, fibrin ferment and enterokinase.
Typical fusion expression vector includes pGEX (Pharmacia Biotech Inc;Smith, D.B.and Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly,) and pRIT5 (Pharmacia MA, Piscataway, NJ), they respectively with target recombinant protein Glutathione S-transferase (GST), maltose E binding protein or a-protein.In one embodiment, pts protein coded sequence is cloned into pGEX expression vector, generates the carrier of an encoding fusion protein, which includes GST- thrombin cleavage site-X protein matter from the end N- to the end C-.Glutathione-agarose resin can be used in fusion protein, passes through affinitive layer purification.The recombination pts protein separated with GST, can be by being obtained with fibrin ferment splitting fused protein.
The example of suitable Escherichia coli inducible non-fusion expression vector includes pTrc (Amann etal., (1988) Gene 69:301-315), pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pSH1, pSH2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113-B1, λ gt11, pBdC1, with pET 11d (Studier et al., Gene ExpressionTechnology:Methods in Enzymology 185, Acad Emic Press, San Diego, California (1990) 60-89;And Pouwels et al., eds. (1985) Cloning Vectors.Elsevier:New York IBSN 0 444 904018).The target gene of pTrc carrier is expressed, the transcription of the host RNA polymerase dependent on hybrid trp-lac fusion promoter.The target gene of pET 11d carrier is expressed, the transcription for the T7gn10-lac promoter, fusion that the viral rna polymerase (T7gn1) dependent on coexpression mediates.The varial polymerases are provided by the λ bacteriophage being resident in host strain BL21 (DE3) or HMS174 (DE3), which contains the T7gn1 gene under the control of 5 promoter transcription of lacUV.Conversion for other bacterial species can choose suitable carrier.For example, as it is known that plasmid pIJ101, pIJ364, pIJ702 and pIJ361 conversion streptomycete are effective, and plasmid pUB110, pC194 or pBD214 are suitble to convert rod-shaped strain.Several plasmids for helping hereditary information to be transferred to corynebacteria include pHM1519, pBL1, (Pouwels et al., eds. (1985) Cloning Vectors, Elsevier:NewYork IBSN 0 444 is 904018) by pSA77 or pAJ667.
It is a kind of to greatest extent increase recombinant protein expression scheme be, such protein is expressed in host cell, the protein has the ability (Gottesman for the proteolytic cleavage recombinant protein that will not weaken, S., Gene Expression Technology:Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128).Another scheme is to change the nucleic acid sequence of insertion expression vector amplifying nucleic acid, so that the codon of each amino acid is that the selected bacterium for expression preferentially uses, such as Corynebacterium glutamicum (Wada et al. (1992) Nucleic Acids Res.20:2111-2118).This change of nucleic acid sequence of the present invention can be carried out by standard DNA synthesis technique.
In another embodiment, pts protein expression vector is Yeast expression carrier.The example of carrier of the yeast S.cerivisae for expression include, pYepSec1 (Baldari, et al., (1987) Embo is J.6:229-234), 2 μ, pAG-1, Yep6, Yep13, pEMBK Ye23, pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), with pYES2 (Invitrogen Corporation, San Diego, CA).It is suitble in other fungies for constructing, such as in filamentous fungi, the carrier and method of the carrier used, it is specified in following documents including those: van den Hondel, C.A.M.J.J.&Punt, P.J. (1991) " Gene transfer systems and vector development forfilamentous fungi; in:Applied Molecular Genetics of Fungi; J.F.Peberdy; etal.; eds., p.1-28, Cambridge University Press:Cambr Idge, and Pouwels et al., eds. (1985) Cloning Vectors, Elsevier:New York IBSN 0 444 is 904018).
It is expressed in insect cell in addition, rhabdovirus expression vector can be used in pts protein of the present invention.In the insect cell (such as Sf9 cell) of culture, baculovirus vector for expressing protein includes that pAC series (Smith et al. (1983) Mol.Cell Biol.3:2156-2165) and pVL are serial (Lucklow and Summer (1989) Virology 170:31-39).
In another embodiment, pts protein of the present invention can express in unicellular plant cells (such as algae), or express in the plant cell of higher plant (such as seed plant, seem crop plants).The example of plant expression vector includes that those are specified in following documents: Becker, D., Kemper, E., Schell, J.and Masterson, R. (1992) " New plant binaryvectors with selectable markers located proximal to the left border ", Plant Mol.Biol.20:1195-1197;And Bevan, M.W. (1984) " Binary Agrobacterium vectors for planttransformation ", Nucl.Acid.Res.12:8711-8721, including pLGV23, pGHlac+, pBIN19, pAK2004 and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors.Elsevier:New York IBSN 0 444 904018).
It is also in another embodiment, nucleic acid of the present invention is expressed in mammalian cells using mammalian expression vector.The example of mammalian expression vector includes pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO is J.6:187-195).The control function of expression vector when using in mammals at that time, is often provided by viral regulatory elements.For example, usually used promoter comes from polyoma, adenovirus 2, cytomegalovirus and simian virus 40.Other are for prokaryotic cell and all suitable expression system of eukaryocyte, referring to Sambrook, J., Fritsh, E.F., and Maniatis, T.Molecular Cloning:ALaboratory Manual.2nd, ed.Cold Spring Harbor Laboratory, Cold SpringHarbor Laboratory Press, 16 chapters and 17 chapters of Cold Spring Harbor, NY, 1989.
In another embodiment, the mammalian expression vector of recombination can instruct the expression (being used to express nucleic acid for example, tissue specificity adjusts element) of preferred nucleic acid in particular cell types.It is technically known that tissue specificity, which adjusts element,.The example of suitable tissue-specific promoter includes but is not limited to that (liver is special for albumin promoter;Pinkert et al. (1987) Gene Dev.1:268-277), lymph specific promoter (Calame and Eaton (1988) Adv.Immunol.43:235-275), special promoter (Banerji et al. (1983) Cell 33:729-740 of special promoter (Winoto and Baltimore (1989) EMBO is J.8:729-933) and immunoglobulin of T-cell receptors;Queen and Baltimore (1983) Cell 33:741-748), the promoter of neuron-specific (such as neurofilament promoter;Byrne and Ruddle (1989) PANS86:5473-5477), the special promoter of pancreas (Edlund et al. (1985) Science 230:912-916) and the special promoter of mammary gland (such as milk whey promoter;U.S.Patent No.4,873,316 and European Application Publication No.264,166).It also include the promoter of growth adjustment, such as muroid hox promoter (Kessel and Gruss (1990) Science249:374-379) and α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev.3:537-546).
Present invention further provides the recombinant expression carrier for containing DNA molecular of the present invention, which is cloned in expression vector with antisense orientation.That is, DNA molecular can be adjusted in sequence with being connected in the following manner for operability, that is, by way of allowing to express (passing through the transcription of DNA molecular) with the RNA molecule of PTS mRNA antisense.It can choose those adjusting sequences that antisense rna molecule continuous expression is instructed in various cell types, such as viral promotors and/or enhancer, it either can choose the adjusting sequence of continuous, organizing specific or that cell type the is special antisense RNA expression of guidance, as adjusting sequence.Antisense expression vector can exist in the form of recombinant plasmid, phasmid or attenuated virus, generate under control of the wherein antisense nucleic acid in high efficiency regulatory region domain, and activity can be determined by introducing the cell type of carrier.About using antisense gene to adjust gene expression, Weintraub, H.et al., Antisense RNA as amolecular tool for genetics analysis, Review-Trends in Genetics, Vol.1 (1) 1986 may refer to.
Another aspect of the present invention is related to being introduced into the host cell of recombinant expression carrier of the present invention.Term " host cell " and " recombinant host cell " can be used alternatingly here.The term is construed as, and refers not only to the specific cells being selected, and refers to the offspring or possible offspring of these cells.Because mutation or environment influence meeting so that certain modifications occur in successful passage, these progeny cells are also contained within the scope of term used herein it is practically impossible to identical with mother cell.
Host cell can be any protokaryon or eukaryocyte.For example, pts protein can seem in bacterial cell as Corynebacterium glutamicum, in insect cell, in yeast cells or expression in mammalian cell (such as Chinese rat ovary cell (CHO) or COS cell).Other suitable host cells are well known for being familiar with for ordinary skill.The Corynebacterium glutamicum relationship microorganism that may be used as nucleic acid and protein molecule host cell of the present invention, lists in table 3.
Carrier DNA can perhaps rotaring dyeing technology introduces protokaryon or eukaryocyte by routine transformation.As used herein, being meant that for term " conversion " and " transfection " is various well known in the art, exogenous nucleic acid (such as, linear DNA or RNA (such as, the independent gene structure of linear carrier or not carrier)) or with nucleic acid existing for carrier format (such as, plasmid, bacteriophage, phasmid, phasmid, transposons or other DNA) it is transferred to the technology of host cell, including calcium phosphate or calcium chloride co-percipitation, the transfection that DEAE- dextran mediates, lipofection or fax hole.The appropriate method of conversion or transfection host cell, it can be in Sambrook, et al. (Molecular Cloning:A Laboratory Manual.2nd, ed.., ColdSpring Harbor Laboratory, Cold Spring Harbor Laboratory Press, ColdSpring Harbor, NY, 1989) it and on other laboratory manuals finds.
It is known that, by the expression vector and rotaring dyeing technology used, only sub-fraction can be integrated into exogenous DNA in its own genome for stable transfection mammalian cell.In order to identify and screen these intergrants, the gene of coding selection markers (for example, to resistance of antibiotic) is usually introduced into host cell with interested gene.Preferred selection markers include the label that those can assign drug resistance, such as G418, hygromycin and amethopterin.The nucleic acid for encoding selection markers, can be introduced into host cell, or introduce host cell on individual carrier with pts protein on the same carrier.It is introduced into the cell of nucleic acid stability transfection, drug screening identification can be used (for example, the cell merged with riddled basins can survive, and other cells are then died).
In order to create homologous recombination microorganism, carrier of the preparation containing at least partly PTS gene, the gene is with missing, addition or replaces, to change, such as functional destruction, PTS gene.Preferably this is Corynebacterium glutamicum PTS gene, but it is also possible to the homologue from relationship bacterium, even from mammal, yeast or insect.In a preferred embodiment, design vector, so that endogenous PTS gene is destroyed by functionality (that is, a yard functional protein of not being on the permanent staff according to homologous recombination;Also referred to as " knock out " carrier).Furthermore it is possible to design vector, so that endogenous PTS gene is mutated or is changed according to homologous recombination, but still encoding function protein (for example, changing upstream regulatory domains, to change the expression of endogenous PTS gene).In homologous recombination vector, the PTS Gene Partial being changed is connected with extra PTS nucleic acid in its 5 ' and 3 ' end profile, and homologous recombination is occurred between the endogenous PTS gene of external source PTS gene and microorganism that carrier carries.The PTS nucleic acid of extra side connection has enough length, homologous recombination can successfully occur with endogenous gene.Typically, in carrier containing thousands of a bases side chain DNA (5 ' and 3 ' end) (referring to, such as, Thomas, K.R., and Capecchi, M.R. (1987) Cell 51:503 for a description of homologous recombinationvectors).The carrier in microorganism (such as fax hole) and cell, the PTS gene for selecting those wherein to introduce and endogenous PTS gene are introduced, it can be with homologous recombination using technology known in the art.
In another embodiment, it can produce the recombinant microorganism containing the system that is allowed a choice, which allows to adjust the expression for introducing gene.For example, comprising PTS gene be under the control of lac operon in the carrier so that PTS gene can only express in the presence of IPTG.What this regulating system was well known.
In another embodiment, the endogenous PTS gene in host cell is destroyed (for example, by known genetic method in homologous recombination or other technologies), prevent the expression of its protein product is from occurring.In another embodiment, the PTS gene of the endogenous perhaps introducing in host cell changes through one or more point mutation, missing or inversion, but still encoding function pts protein.And in another embodiment, microorganism PTS gene one or more adjustment region (such as, promoter, repressor or elicitor) it is changed (for example, by missing, shearing, inversion or point mutation), so that the expression of PTS gene is adjusted.Ordinary skill is familiar with it is to be appreciated that the host cell containing PTS gene and protein modification described in more than one, can easily be generated, these cells are also included in the present invention using method of the invention.
Host cell of the present invention, such as the protokaryon or eukaryotic host cell of culture can be used for generating (such as expression) pts protein.Therefore, invention further provides the methods for generating pts protein using host cell of the present invention.In one embodiment, this method includes cultivating host cell of the invention in suitable culture medium (wherein to introduce the recombinant expression carrier of coding pts protein, the gene of the pts protein of encoding wild type or change is either introduced in its genome), until generating pts protein.In another embodiment, this method further comprises separating pts protein from culture medium or host cell.
C. the pts protein separated
Another aspect of the present invention relates to isolated pts protein and its biologically-active moieties." separation " perhaps " purifying " albumen or its biologically-active moiety, there is no cellular material when being produced using recombinant DNA technology, there is no precursor or other chemical substances when chemical synthesis.Term " substantially free of cellular material " includes such pts protein preparation, and wherein protein is isolated from the cellular component for the cell that natural or recombination generates the protein.In one embodiment, term " substantially free of cellular material " includes the pts protein that preparation contains at least about 30% (dry weight) non-pts protein (" contaminating protein matter " here also called), the preferred non-pts protein containing less than about 20%, even more preferably containing the non-pts protein less than about 10%, the most preferred non-pts protein containing less than about 5%.When pts protein or its biologically-active moiety are generated through recombination, preferably substantially free of culture medium, i.e. culture medium is most preferably less than about 5% less than preparing about the 20%, preferably less than 10% of protein volume.Term " substantially free of precursor perhaps other chemical substances " include such pts protein preparation wherein protein by from participating in precursor that protein synthesizes or isolated in other chemical substances.In one embodiment, term " substantially free of precursor or other chemical substances " includes pts protein of the preparation containing at least about 30% (dry weight) precursor or non-PTS chemical substance, the preferred precursor containing less than about 20% or non-PTS chemical substance, even more preferably containing the precursor less than about 10%, perhaps non-PTS chemical substance most preferably contains precursor or non-PTS chemical substance less than about 5%.In a preferred embodiment, isolated protein or its biologically-active moiety, without containing the contaminating protein matter from the same organism for obtaining pts protein.This protein is typically generated by recombinant expression, such as the recombinant expression of the Corynebacterium glutamicum pts protein in the such microorganism of Corynebacterium glutamicum.
The pts protein of the invention or its biologically-active moiety of separation, can participate in handle seems that high-energy carbon-containing molecules as glucose are transported into Corynebacterium glutamicum, perhaps the activity for participating in the Cellular Signaling Transduction Mediated in the microorganism or being listed in Table 1 with one or more.In a preferred embodiment, such amino acid sequence is contained in protein or its part, the sequence and amino acid sequence of the invention (such as, sequence table even order number a: sequence in sequence) there is sufficient homology, so that the protein or its biologically-active moiety, it has the ability to participate in handle to seem that high-energy carbon-containing molecules as glucose are transported into Corynebacterium glutamicum, or participate in the Cellular Signaling Transduction Mediated in the microorganism.The part of protein preferably refers to biologically-active moiety described herein.In another preferred embodiment, pts protein of the invention has in sequence table with even order number: the amino acid sequence listed.In another preferred embodiment, pts protein has by nucleotide sequence coded amino acid sequence, the nucleotide sequence hybridizes with nucleotide sequence (for example, sequence table odd serial numbers: a sequence in sequence) of the invention, such as hybridizes under strict conditions.In another preferred embodiment, pts protein has by such nucleotide sequence coded amino acid sequence, the nucleotide sequence and a nucleic acid sequence of the invention or its part, have at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60% homology, preferably have at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70% homology, more preferably have at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 88%, 89 % perhaps 90% or 91%, 92%, 93%, 94%, and even more preferably have at least about 95%, 96%, 97%, 98%, 99% or higher homology.Range or consistency value (for example, consistency of the consistency of 70-90% or 80-95%) between above-cited value, also intentional includes in the present invention.For example, intentional contains such consistency value range, these ranges are the combinations of the above-cited upper limit and/or lower limit value.Currently preferred pts protein it is also preferred that there is at least one PTS activity described herein.Such as, a kind of currently preferred pts protein includes such nucleotide sequence coded amino acid sequence, the nucleotide sequence and nucleotide sequence hybridization of the invention, such as hybridize under strict conditions, and it seems that high-energy carbon-containing molecules as glucose are transported into Corynebacterium glutamicum that the sequence, which can participate in handle, perhaps the activity for participating in the Cellular Signaling Transduction Mediated in the microorganism or being listed in Table 1 with one or more.
In other embodiments, pts protein and amino acid sequence of the invention (such as, sequence table even order number a: sequence in sequence) there is sufficient homology, and the functional activity with amino acid sequence protein of the present invention, as as being described in detail the above part I, amino acid sequence is different due to naturally change or being mutated.Therefore, in another embodiment, pts protein is such protein, the amino acid sequence and all aminoacid sequence of the invention that it has, have at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60% homology, preferably have at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70% homology, more preferably have at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 88%, 89% or 90%, or 91%, 92%, 93%, 94%, and even more preferably have at least about 95%, 96%, 97%, 98%, 99% or higher homology, and there is at least one PTS activity described herein.Range or consistency value (for example, consistency of the consistency of 70-90% or 80-95%) between above-cited value, also intentional includes in the present invention.For example, intentional contains such consistency value range, these ranges are the combinations of the above-cited upper limit and/or lower limit value.In another embodiment, the present invention is related with such overall length Corynebacterium glutamicum protein, and the protein and amino acid sequence of the invention have sufficient homology.
The biologically-active moiety of pts protein includes such polypeptide, the polypeptide contains the amino acid sequence from pts protein amino acid sequence, such as, sequence table even order number: amino acid sequence or amino acid sequence with pts protein homologous protein, amino acid more less than overall length pts protein or overall length pts protein homologous protein is contained in the part, and shows at least one pts protein activity.Typical biologically-active moiety (peptide, for example, amino acid length be seem 5,10,15,20,30,35,36,37,38,39,40,50,100 or more peptides) include one there is the active structural domain of at least one pts protein or primitive.In addition, other biological activities part, wherein the other parts of protein have been deleted, and can be prepared by recombinant technique, and identify its one or more kinds of activity described herein.The biologically-active moiety of preferred pts protein, the biologically active structural domain/primitive selected containing one or more or its part.
Pts protein is produced preferably through recombinant DNA technology.For example, expression vector is introduced into host cell (as described above) and expresses pts protein in host cell by the cloned nucleic acid molecule of coding protein into expression vector (as described above).Then pts protein is separated from cell using standard protein purification technique according to suitable purification schemes.In addition to recombinant expression, standard peptide synthesis methods chemical synthesis pts protein, polypeptide or peptide can be used.In addition, natural pts protein can be separated from cell (such as endothelial cell), such as using anti-PTS antibody, which can be used pts protein or its part of the invention and passes through standard technique generation.
Present invention provides PTS chimeric protein or fusion proteins.As used herein, PTS " chimeric protein " or " fusion protein " contain the PTS polypeptide being operatively connected on non-PTS polypeptide." PTS polypeptide " refers to the polypeptide containing PTS related amino acid sequence, and " non-pts protein " refers to the polypeptide containing such protein related amino acid sequence, the protein and the not basic homology of pts protein, for example, the protein different from pts protein from same or different organism.In fused protein, term " operability connection " is meant that pts protein is in-frame merge between each other with non-pts protein.Non- PTS polypeptide can be fused to the end N- or the end C- of PTS polypeptide.For example, in one embodiment, fused protein is DST-PTS fusion protein, wherein PTS sequence is fused to the end C- of GST sequence.The fused protein helps to recombinate the purifying of pts protein.In another embodiment, fused protein is the pts protein for having Heterologous signal sequences in its end N-.In certain host cells (such as mammalian host cell), the expression and/or secretion of pts protein can be increased by using Heterologous signal sequences.
It is preferred that chimeric protein or fusion protein of the invention is generated by standard recombinant dna technology.Such as, it is linked together according to the DNA fragmentation that routine techniques encodes different polypeptide sequences by in-frame, such as, it is connected using the end of blunt end or staggered end, it is digested using restriction enzyme to provide suitable end, use cohesive end filling-in as suitable end, using alkaline phosphatase treatment to avoid undesirable connection, and is connected using enzymatic.In another embodiment, it includes automatic dna synthesizer synthesis fusion that routine techniques, which can be used,.In addition, the PCR amplification that anchor primer carries out genetic fragment can be used, anchor primer can increase the complementary jag between two consecutive gene fragments, consecutive gene can then carry out annealing and expand again and generate chimeric gene sequence (referring to, such as, Current Protocols in MolecularBiology, eds.Ausubel et al.John Wiley&Sons:1992).In addition, the expression vector of many encoded fusion parts (such as gst polypeptide) is that business provides.PTS- code nucleic acid can be cloned into this expression vector, so that merging, part is in-frame to be connected on pts protein.
The homologue of pts protein can be generated by mutation, such as the discontinuity point mutation or shearing of pts protein.As used herein, term " homologue " refers to the variant form of pts protein, they may be used as the active agonist of pts protein or antagonist.The bioactivity that the agonist of pts protein substantially can have pts protein identical or partial.The antagonist of pts protein can inhibit the one or more activity of the naturally occurring form of pts protein, for example, passing through downstream with the PTS system comprising pts protein or upstream member's competitive binding.Therefore, Corynebacterium glutamicum pts protein and its homologue of the invention, the activity of adjustable one or more of carbohydrate transporting pathway, or adjust the activity for the Cellular Signaling Transduction Mediated approach that pts protein plays a role in the microorganism.
In a further embodiment, the homologue of pts protein can pass through the combinatorial libraries of screening pts protein mutant, such as shearing mutant, Lai Jianding pts protein agonist or antagonist activities.In one embodiment, the diverse libraries of PTS variant generate and associativity is mutated in nucleic acid level, and are encoded by diversity gene library.The diverse libraries of PTS variant can pass through, such as, the oligonucleotide cocktail enzymatic of synthesis is connected in gene order, so that the degeneracy set of potential PTS sequence is as single polypeptide, or the wherein set of the bigger fused protein (such as phage display) containing PTS arrangement set, it can express.There are various methods to can be used for generating potential PTS homologue library from degeneracy oligonucleotide sequences.The chemical synthesis of degeneracy gene order can be carried out with automatic dna synthesizer, then synthesized gene and be connected in suitable expression vector.The use of gene degeneracy set, the full sequence of potential PTS arrangement set needed for the offer for allowing to mix encodes.The method for synthesizing degeneracy oligonucleotide is technically known (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3;Itakura et al. (1984) Annu.Rev.Biochem.53:323;Itakura et al. (1984) Science 198:1056;Ike et al. (1983) Nucleic Acid Res.11:477).
In addition, the library of coding pts protein segment, can be used for generating the diverse populations of PTS segment, which is used to screen and select the homologue of pts protein.In one embodiment, the library of coding sequence fragment can generate in this way, i.e. under conditions of about per molecule only generates a notch, with the double stranded PCR fragment of nucleic acid enzymatic treatment PTS coded sequence, denatured double stranded dna, for renaturation DNA to form double-stranded DNA, which may include the sense/antisense pair that the product for having notch from difference is formed, single stranded portion is removed by S1 nucleic acid enzymatic treatment in the double helix re-formed, and the frag-ment libraries finally obtained are connected in expression vector.In this way, the expression library of the available coding end N-, the end C- and different size pts protein intermediate segment.
The technology with institute's picking up characteristics gene product in many technologies of the gene product in the combinatorial libraries obtained by point mutation or shearing, and screening cDNA library is screened, is all technically known.These technologies are suitable for the quick screening of the gene library obtained by PTS homologue combinatorial mutagenesis.Screen the most widely used technology of large-scale gene pool, it can be used in high throughput analysis, including genomic libraries of clones into reproducible expression vector, with obtained vector library conversion carrier library, and combination gene is expressed under certain condition, required active detection helps to encode the separation of the carrier of detected product gene under this condition.Assemblage mutation (REM) is returned, a kind of new technology increasing function mutation body frequency in library can be with screening analysis together for identifying PTS homologue (Arkin and Yourvan (1992) PANS 89:7811-7815;Delgrave et al. (1993) Protein Engineering 6 (3): 327-331).
In another embodiment, using method known in the art, the analysis based on cell can be used for analyzing the library diversity PTS.
D. application and method of the invention
Nucleic acid molecules, protein, protein homology object, fused protein, primer, carrier and host cell described herein can be applied in following one or more kinds of methods: identification Corynebacterium glutamicum and relationship microorganism;Draw the Genome Atlas of Corynebacterium glutamicum relationship organism;The sequence interested of identification and positioning Corynebacterium glutamicum;Study on Evolution;Determine the required region of the function of pts protein;Pts protein Active Regulation;PTS pathway activities are adjusted;Required compound, for example, fine chemical cell production adjusting.
PTS nucleic acid molecules of the present invention have various uses.Firstly, they can be used for identifying whether a kind of organism is Corynebacterium glutamicum or its close relative organism.They can be used for identification mixed microorganism group Glutamic Acid bar bacterium or the presence of its relationship organism.The present invention provides the nucleic acid sequences of many Corynebacterium glutamicum genes;Under strict conditions, using across the probe to Corynebacterium glutamicum specific gene, the genomic DNA extracted from single or mixed microorganism culture is detected, can determine that the organism whether there is.
Although Corynebacterium glutamicum itself is non-pathogenic, it is related to pathogenic type, such as corynebacterium diphtheriae.Corynebacterium diphtheriae is the etiology of diphtheria, and diphtheria is a kind of infection quickly grow, is acute, having a fever, it is related to local symptom and system symptom.When obtaining this disease, local patholoic change occurs for the upper respiratory tract, and including epithelial cell necrotic injury;Bacteria secrete toxins, toxin spread to the distal tissues of body susceptible from lesion.These tissue include heart, muscle, peripheral nerve, adrenal gland, kidney, liver and spleen, wherein as protein synthesis be suppressed and caused by go bad sexually revise, will lead to the system symptom of the disease.Diphtheria keeps high incidence in many areas in the world, these areas include the independent state in Africa, Asia, Eastern Europe and the former Soviet Union.From nineteen ninety, in the continued popularity of latter two regional diphtheria, at least 5 are resulted in, 000 people is dead.
In one embodiment, the present invention exists with corynebacterium diphtheriae in identification subject or active method is related.This method includes identifying in subject one or more of nucleic acid of the invention or amino acid sequence (for example, the odd number being listed in sequence table respectively perhaps even order sequence) to detect the presence or activity of corynebacterium diphtheriae in subject.Corynebacterium glutamicum and corynebacterium diphtheriae are akin bacteriums, and many nucleic acid and protein molecule in Corynebacterium glutamicum are the homologue of corynebacterium diphtheriae amplifying nucleic acid and protein molecule, therefore can be used for the corynebacterium diphtheriae in detection subject.
Nucleic acid and protein molecule of the invention is also used as the label of specific genome area.This is not only useful when drawing Genome Atlas, but also can be used for the research of Corynebacterium glutamicum protein function.For example, Corynebacterium glutamicum gene group can be digested in order to identify specific Corynebacterium glutamicum DNA binding protein genome area in combination, segment and DNA binding protein are incubated for.Segment in conjunction with protein can be further with nucleic acid molecules detection of the invention, it is preferable to use easily detection marks;The combination of these nucleic acid molecules and genomic fragment can position position of the segment on Corynebacterium glutamicum gene group map, moreover, helping quickly to determine protein nucleic acid sequence in combination when carrying out multi-pass operation using different enzymes.In addition, nucleic acid molecules of the present invention can have sufficient homology with relationship type, so that these nucleic acid molecules can be used as the label of building relationship bacterial genomes map, such as brevibacterium.
PTS nucleic acid molecules of the invention can be used for evolving again and protein structure research.The carbohydrate capturing system that molecule of the present invention participates in, is used by various bacteriums;The sequence of nucleic acid molecules of similar enzyme is encoded in other organisms with those by comparing sequence of nucleic acid molecules of the present invention, can be evaluated whether the evolution correlation of organism.Similar, this comparison allows to estimate conserved sequence region and non-conserved sequences region, this can contribute to determine in protein for region necessary to enzyme function.Such determination is valuable for protein engineering research, and can indicate that those protein can endure mutation without losing function.
The operation of PTS nucleic acid molecules of the present invention can cause with the generation with the pts protein of wild type pts protein different function.The efficiency or activity that these protein can be improved can be allowed to either reduce its efficiency or activity to appear in cell than usual more numbers.
The present invention provides the methods for screening the adjustable active molecule of pts protein, these molecules or by with protein itself or substrate interaction, perhaps active to adjust pts protein in conjunction with the gametophyte of pts protein or through the transcription or translation of adjusting PTS nucleic acid molecules of the present invention.In the method, the microorganism for expressing one or more kinds of pts proteins, contacts with one or more kinds of test compounds, and assesses effect of the every kind of test compound for pts protein activity or expression.
PTS molecule of the present invention can be modified, so that yield, production and/or the production efficiency of one or more kinds of chemical substances are improved.For example, optimize its activity by the pts protein that modification participates in glucose uptake, it can increase glucose uptake amount or glucose is transported rate into cell.The degradation of glucose inside cells and other carbohydrates provides the biochemical reaction that energy pushes energy unfavorable, such as those are related to the reaction of fine chemical biosynthesis.Degradation also provides intermediate or precursor molecule necessary to the certain fine chemicals of biosynthesis, such as amino acid, vitamin and co-factor.By modifying PTS molecule of the present invention to increase the quantity of intracellular high energy carbon molecules, the energy of metabolic pathway is executed necessary to producing one or more kinds of fine chemicals so as to not only increase, but also endocellular metabolism object library required for this production can be increased.Opposite, the catabolite of some carbohydrates contains a kind of compound, the compound is served only for such metabolic pathway, the approach is vied each other because of enzyme, co-factor or intermediate with the approach for generating required fine chemical is used as, it, can be with the negative regulator approach by reducing the input of these carbohydrates.
In addition, PTS molecule of the invention can participate in one or more kinds of Cellular Signaling Transduction Mediated approach, these approach can influence the yield and/or production efficiency of one or more kinds of fine chemicals in Corynebacterium glutamicum.Such as, once there is sufficient amount of carbohydrate into the cell, from inputted in extracellular medium protein necessary to one or more kinds of carbohydrates (such as, HPr, Enzyme I, or one of Enzyme II complex ingredient) be often translated after modify, to prevent them from sugar is input into the cell again.Such a example appears in Escherichia coli, and the high level of intracellular fructose 1,6-diphosphate leads to the phosphorylation of HPr serine -46, prevents the molecule from participating in the transhipment of any carbohydrate again.However, horizontal in this intracellular carbohydrate that movement system is closed, for maintain the normal function of cell be it is enough, this may limit the excessive production of required fine chemical.Therefore, it is desirable for modifying pts protein of the invention in this way, i.e. so that they are no longer effective to this negative regulator, to allow can achieve the higher intracellular concentration of one or more kinds of carbohydrates, and, extending allows to obtain one or more kinds of fine chemicals from the organism containing this mutation pts protein more effectively to produce or higher yield.
The above-mentioned list for leading to the increased PTS mutation scheme of required compound production, is not meant to be limited only to this;The variation of these mutation schemes is known better for person skilled in the art.By these mechanism, nucleic acid of the invention and protein molecule can be used for generating Corynebacterium glutamicum or its relationship bacterial strain of expression mutation PTS nucleic acid and protein molecule, to increase yield, production and/or the production efficiency of required compound.The required compound can be any natural products of Corynebacterium glutamicum, this includes the final product of biosynthesis pathway and the intermediate of naturally occurring metabolic pathway, and is not molecule that is naturally occurring in Corynebacterium glutamicum metabolism but being generated by Corynebacterium glutamicum strain of the present invention.
The present invention is further illustrated by following instance, these examples are not construed as being limited only to this.Content in the application in cited all bibliography, patent application, patent, the patent application delivered, table and sequence list is all merged into bibliography hereby.
Table 1: gene by the invention
Phosphoenolpyruvate: sugar phosphotransferase system
Nucleotide SEQ ID NO Amino acid SEQ ID NO Number Contig NT starting NT is terminated Function
  1   2   RXS00315 PTS system, sucrose-specificity IIABC ingredient (EIIABC-SCR) (sucrose-permease IIABC ingredient (phosphotransferase II, ABC ingredient) (EC 2.7.1.69)
  3   4   F RXA00315   GR00053   6537   5452 PTS system, BETA- glucosides-specificity IIABC ingredient (EIIABC-BGL) (BETA- glucosides-permease IIABC ingredient) (phosphotransferase II, ABC ingredient) (EC 2.7.1.69)
  5   6   RXA01503   GR00424   10392   10640 PTS system, BETA- glucosides-specificity IIABC ingredient (EIIABC-BGL) (BETA- glucosides-permease IIABC ingredient) (phosphotransferase II, ABC ingredient) (EC 2.7.1.69)
  7   8   RXN01299   VV0068   11954   9891 PTS system, fructose-specificity IIBC ingredient (EC 2.7.1.69)
  9   10   F RXA01299   GR00375   6   446 PTS system, fructose-specificity IIBC ingredient (EC 2.7.1.69)
  11   12   F RXA01883   GR00538   2154   2633 PTS system, fructose-specificity IIBC ingredient (EC 2.7.1.69)
  13   14   F RXA01889   GR00540   77   631 PTS system, fructose-specificity IIBC ingredient (EC 2.7.1.69)
  15   16   RXA00951   GR00261   564   172 PTS system, mannitol (secret)-specificity IIA ingredient (EIIA- (C) MTL) (mannitol (secret)-permease IIA ingredient) (phosphotransferase II, A ingredient) (EC 2.7.1.69)
  17   18   RXN01244   VV0068   14141   15844 Phosphoenolpyruvate-protein phosphotransferase (EC 2.7.3.9)
  19   20   F RXA01244   GR00359   4837   3329 Phosphoenolpyruvate-protein phosphotransferase (EC 2.7.3.9)
  21   22   RXA01300   GR00375   637   903 Phosphocarrier protein HPR
  23   24   RXN03002   VV0236   1437   1844 PTS system, mannitol (secret)-specificity IIA ingredient (EIIA- (C) MTL) (mannitol (secret)-permease IIA ingredient) (phosphotransferase II, A ingredient) (EC 2.7.1.69)
  25   26   RXC00953   VV0260   1834   1082 Transmembrane protein in PTS system
  27   28   RXC03001 Transmembrane protein in PTS system
  29   30   RXN01943   VV0120   4326   6374 PTS system, glucose-specificity IIABC ingredient (EC 2.7.1.69)
  31   32   F RXA02191   GR00642   3395   4633 Phosphoenolpyruvate carbohydrate phosphotransferase
  33   34   F RXA01943   GR00557   3944   3540 Crr gene;Phosphotransferase system glucose-enzyme-specific III
The gene of table 2:GENBANK identification
  GenBankTMSearching number Gene Name Gene function Bibliography
  A09073   ppg Phosphoric acid enol pyruvic acid carboxylase Bachmann, B.et al. " DNA fragment coding for phosphoenolpyruvat corboxylase; recombinant DNA carrying said fragment; strains carrying the recombinant DNA and method for producing L-aminino acids using said strains, " Patent:EP 0358940-A 303/21/90
A45579, A45581, A45583, A45585 A45587 Threonine dehydratase Moeckel, B.et al. " Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase, " Patent:WO 9519442-A 507/20/95
  AB003132   murC;ftsQ;ftsZ Kobayashi, M.et al. " Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria; " Biochem.Biophys.Res.Commun., 236 (2): 383-388 (1997)
  AB015023   murC;ftsQ Wachi, M.et al. " A murC gene from Coryneform bacteria, " Appl.Microbiol. Biotechnol., 51 (2): 223-228 (1999)
  AB018530   dtsR Kimura, E.et al. " Molecular cloning of a novel gene; dtsR; which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum; " Biosci.Biotechnol.Biochem., 60 (10): 1565-1570 (1996)
  AB018531   dtsR1;dtsR2
  AB020624   murI D-Glu racemase
  AB023377   tkt Transketolase
  AB024708   gltB;gltD Glutamine 2-oxoglutaric acid transaminase is big and small subunit
  AB025424   acn Aconitase
  AB027714   rep Replication protein
  AB027715   rep;aad Replication protein;Aminoglycoside adenyl transferase
  AF005242   argC N- acetyl aspartate -5- semialdehyde dehydrogenase
  AF005635   glnA Glutamine synthelase
  AF030405   hisF Cyclase
  AF030520   argG Argininosuccinate synthetase
  AF031518   argF Ornithine transcarbamylase
  AF036932   aroD 3- dehydroquinate dehydratase
  GenBankTM Gene Name Gene function Bibliography
Searching number
  AF038548   pyc Pyruvate carboxylase
  AF038651   dciAE;apt;rel Two peptide-binding proteins;Adenine phosphoribosyl transferase;GTP pyrophosphokinase Wehmeier, L.et al. " The role of the Corvnebacterium glutamicum rel gene in (p) ppGpp metabolism, " Microbiology, 144:1853-1862 (1998)
  AF041436   argR Arginine repressor
  AF045998   impA Inositol monophosphate phosphorylase
  AF048764   argH Argininosuccinate lyase
  AF049897   argC;argJ;argB;  argD;argF;argR;  argG;argH N- acetylglutamyl reductase;Ornithine acetyltransferase;N-acetylglutamat kinases;Acetylornithice transminase;Ornithine transcarbamylase;Arginine repressor;Argininosuccinate synthase;Argininosuccinate lyase
  AF050109   inhA Alkene acyl-acyl carrier protein reductase
  AF050166   hisG ATP phosphoribosyltransferase
  AF051846   hisA Phosphoribosyl formimino group -5- amino-ribose 1-phosphate -4- imidazoles carbamyl isomerase
  AF052652   metA Homoserine O- transacetylase Park, S.et al. " Isolation and analysis of metA; a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum; " Mol. Cells., 8 (3): 286-294 (1998)
  AF053071   aroB Dehydroquinate synthase
  AF060558   hisH Glutamine amide transferase
  AF086704   hisE Phosphoribosyl-ATP- pyrophosphohydrolase
  AF114233   aroA 5- enolpyruvylshikimate 3- phosphate synthase
  AF116184   panD L-Aspartic acid-alpha- decarboxylation enzyme precursor Dusch, N.et al. " Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli; " Appl.Environ.Microbiol., 65 (4) 1530- 1539 (1999)
  GenBankTMSearching number Gene Name Gene function Bibliography
  AF124518   aroD;aroE 3-dehydroquinase;Shikimate dehydrogenase
  AF124600   aroC;aroK;aroB; Chorismate synthase;Shikimate kinase;3- dehydroquinic acid
  pepQ Synthase;The cytosolic peptidase of supposition
  AF145897   inhA
  AF145898   inhA
  AJ001436   ectP Ectoine, glycinebetaine, proline transport Peter, H.et al. " Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes:Identification; sequencing; and characterization of the proline/ectoine uptake system; ProP; and the ectoine/proline/glycine betaine carrier, EctP, " J. Bacteriol., 180 (22): 6005-6012 (1998)
  AJ004934   dapD Tetrahydro 2, dipicolimic acid 2 succinyl enzyme (imperfect i) Wehrmann, A.et al. " Different modes of diaminopimelate synthesis and their role in cell wall integrity:A study with Corynebacterium glutamicum; " J. Bacteriol., 180 (12): 3159-3165 (1998)
  AJ007732   ppc;secG;amt;ocd;  soxA Phosphoenolpyruvate-carboxylase;;High-affinity ammonia absorbs albumen;The ornithine of supposition-ring decarboxylase;Sarcosine oxidase
  AJ010319 FtsY, glnB, glnD;srp;  amtP Participate in cell division;PII albumen;Uridyltransferase (uridine acyl-elimination enzyme);Signal recognition particle;Low-affinity ammonia absorbs albumen Jakoby, M.et al. " Nitrogen regulation in Corynebacterium glutamicum;Isolation of genes involved in biochemical characterization of corresponding proteins, " FEMS Microbiol., 173 (2): 303-310 (1999)
  AJ132968   cat Chloramphenicol acetyltransferase
  AJ224946   mqo L MALIC ACID: quinone oxidoreductase Molenaar, D.et al. " Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacteriun glutamicum; " Eur.J.Biochem., 254 (2): 395-403 (1998)
  AJ238250   ndh Nadh dehydrogenase
  AJ238703   porA Porin Lichtinger, T.et al. " Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum:The channel is formed by a low molecular mass polypeptide; " Biochemistry, 37 (43): 15024-15032 (1998)
  D17429 Transposable element IS31831 Vertes, A.A.et al. " Isolation and characterization of IS31831; a transposable element from Corynebacterium glutamicum, " Mol.Microbiol., 11 (4): 739-746 (1994)
  GenBankTMSearching number Gene Name Gene function Bibliography
  D84102   odhA OdhA Usuda, Y.et al. " Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase; " Microbiology, 142:3347-3354 (1996)
  E01358   hdh;hk Homoserine dehydrogenase;Homoserine kinase Katsumata, R.et al. " Production of L-thereonine and L-isoleucine, " Patent:JP 1987232392-A 1 10/12/87
  E01359 Homoserine kinase gene upstream from start codon Katsumata, R.et al. " Production of L-thereonine and L-isoleucine, " Patent:JP 1987232392-A 2 10/12/87
  E01375 Tryptophan operon
  E01376   trpL;trpE Leader peptide;Anthranilate synthase Matsui, K.et al. " Tryptophan operon; peptide and protein coded thereby; utilization of tryptophan operon gene expression and production of tryptophan, " Patent:JP 1987244382-A 1 10/24/87
  E01377 Tryptophan operon promoter and operator region Matsui, K.et al. " Tryptophan operon; peptide and protein coded thereby; utilization of tryptophan operon gene expression and production of tryptophan, " Patent:JP 1987244382-A 1 10/24/87
  E03937 Biotin-synthase Hatakeyama, K.et al. " DNA fragment containing gene capable of coding biotin synthetase and its utilization, " Patent:JP 1992278088-A 1 10/02/92
  E04040 Diaminopelargonic acid transaminase Kohama, K.et al. " Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization, " Patent:JP 1992330284-A 1 11/18/92
  E04041 Dethiobiotin synthetase Kohama, K.et al. " Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization, " Patent:JP 1992330284-A 1 11/18/92
  E04307 Flavum Aspartase Kurusu, Y.et al. " Gene DNA coding aspartase and utilization thereof, " Patent:JP 1993030977-A 1 02/09/93
  E04376 Isocitratase Katsumata, R.et al. " Gene manifestation controlling DNA, " Patent:JP 1993056782-A 3 03/09/93
  E04377 Isocitratase N- terminal fragment Katsumata, R.et al. " Gene manifestation controlling DNA, " Patent:JP 1993056782-A 3 03/09/93
  E04484 Prephenate dehydratase Sotouchi, N.et al. " Production of L-phenylalanine by fermentation, " Patent:JP 1993076352-A 2 03/30/93
  E05108 Aspartokinase Fugono, N.et al. " Gene DNA coding Aspartokinase and its use, " Patent:JP 1993184366-A 1 07/27/93
  E05112 Dihydro-dipichorinate synzyme Hatakeyama, K.et al. " Gene DNA coding dihydrodipicolinic acid synthetase and its use, " Patent:JP 1993184371-A 1 07/27/93
  GenBankTMSearching number Gene Name Gene function Bibliography
  E05776 Diaminopimelate dehydrogenase Kobayashi, M.et al. " Gene DNA coding Diaminopimelic acid dehydrogenase and its use, " Patent:JP 1993284970-A 1 11/02/93
  E05779 Threonine synthase Kohama, K.et al. " Gene DNA coding threonine synthase and its use, " Patent:JP 1993284972-A 1 11/02/93
  E06110 Prephenate dehydratase Kikuchi, T.et al. " Production of L-phenylalanine by fermentation method, " Patent:JP 1993344881-A 1 12/27/93
  E06111 It is mutated prephenate dehydratase Kikuchi, T.et al. " Production of L-phenylalanine by fermentation method, " Patent:JP 1993344881-A 1 12/27/93
  E06146 Acetohydroxy acid synthetase Inui, M.et al. " Gene capable of coding Acetohydroxy acid synthetase and its use, " Patent:JP 1993344893-A 1 12/27/93
  E06825 Aspartokinase Sugimoto, M.et al. " Mutant aspartokinase gene, " patent:JP 1994062866-A 1 03/08/94
  E06826 It is mutated aspartokinase alpha subunit Sugimoto, M.et al. " Mutant aspartokinase gene, " patent:JP 1994062866-A 1 03/08/94
  E06827 It is mutated aspartokinase alpha subunit Sugimoto, M.et al. " Mutant aspartokinase gene, " patent:JP 1994062866-A 1 03/08/94
  E07701   secY Honno, N.et al. " Gene DNA participating in integration of membraneous protein to membrane, " Patent:JP 1994169780-A 1 06/21/94
  E08177 Aspartokinase Sato, Y.et al. " Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization, " Patent:JP 1994261766-A 1 09/20/94
E08178, E08179, E08180, E08181, E08182 Feedback inhibition-release aspartokinase Sato, Y.et al. " Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization, " Patent:JP 1994261766-A 1 09/20/94
  E08232 Acetohydroxy acid isomeroreductase Inui, M.et al. " Gene DNA coding acetohydroxy acid isomeroreductase, " Patent:JP 1994277067-A 1 10/04/94
  E08234   secE Asai, Y.et al. " Gene DNA coding for translocation machinery of protein, " Patent:JP 1994277073-A 1 10/04/94
  E08643 FT transaminase and dethiobiotin synthetase promoter region Hatakeyama, K.et al. " DNA fragment having promoter function in coryneform bacterium, " Patent:JP 1995031476-A 1 02/03/95
  E08646 Biotin synzyme Hatakeyama, K.et al. " DNA fragment having promoter function in coryneform bacterium, " Patent:JP 1995031476-A 1 02/03/95
  GenBankTMSearching number Gene Name Gene function Bibliography
  E08649 Aspartase Kohama, K.et al " DNA fragment having promoter function in coryneform bacterium, " Patent:JP 1995031478-A 1 02/03/95
  E08900 Dihydro 2, dipicolimic acid 2 reductase Madori, M.et al. " DNA fragment containing gene coding Dihydrodipicolinate acid reductase and utilization thereof, " Patent:JP 1995075578-A 103/20/95
  E08901 Diaminapimelate decarboxylase Madori, M.et al. " DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof, " Patent:JP 1995075579-A 1 03/20/95
  E12594 Serine hydroxymethylase Hatakeyama, K.et al. " Production of L-trypophan, " Patent:JP 1997028391-A 1 02/04/97
E12760, E12759, E12758 Transposase Moriya, M.et al. " Amplification of gene using artificial transposon, " Patent:JP 1997070291-A 03/18/97
  E12764 Arginyl-tRNA synthetase;Diaminapimelate decarboxylase Moriya, M.et al. " Amplification of gene using artificial transposon, " Patent:JP 1997070291-A 03/18/97
  E12767 Dihydro 2, dipicolimic acid 2 synzyme Moriya, M.et al. " Amplification of gene using artificial transposon, " Patent:JP 1997070291-A 03/18/97
  E12770 Aspartokinase Moriya, M.et al. " Amplification of gene using artificial transposon, " Patent:JP 1997070291-A 03/18/97
  E12773 Dihydro 2, dipicolimic acid 2 reductase Moriya, M.et al. " Amplification of gene using artificial transposon, " Patent:JP 1997070291-A 03/18/97
  E13655 Glucose-6-phosphate dehydrogenase (G6PD) Hatakeyama, K, et al. " Glucose-6-phosphate dehydrogenase and DNA capable of coding the same, " Patent:JP 1997224661-A 1 09/02/97
  L01508   IlvA Threonine dehydratase Moeckel, B.et al. " Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum, " J.Bacteriol., 174:8065-8072 (1992)
  L07603   EC 4.2.1.15 3- deoxidation-D-arabinose heptanone saccharic acid -7- phosphate synthase Chen, C.et al. " The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene; " FEMS Microbiol.Lett., 107:223-230 (1993)
  L09232   IlvB;ilvN;ilvC Acetohydroxy acid synthase large subunit;Acetohydroxy acid synthase small subunit;Acetohydroxy acid isomeroreductase Keilhauer, C.et al. " Isoleucine synthesis in Corynebacterium glutamicum:molecular analysis of the ilvB-ilvN-ilvC operon; " J.Bacteriol, 175 (17): 5595- 5603 (1993)
  GenBankTMSearching number Gene Name Gene function Bibliography
  L18874   PtsM Phosphoenolpyruvate sugar phosphotransferase Fouet, A et al. " Bacillus subtilis sucrose-specific enzyme II of the
Phosphotransferase system:expression in Escherichia coli and homology to enzymes II from enteric bacteria, " PNAS USA, 84 (24): 8773-8777 (1987);Lee, J.K.et al. " Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence; " FEMS Microbiol.Lett., 119 (1-2): 137-145 (1994)
  L27123   aceB Malate synthase Lee, H-S.et al. " Molecular characterization of aceB; a gene encoding malate synthase in Corynebacterium glutamicum, " J.Microbiol.Biotechnol., 4 (4): 256-263 (1994)
  L27126 Pyruvate kinase Jetten, M.S.et al. " Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum; " Appl.Environ.Microbiol., 60 (7): 2501-2507 (1994)
  L28760   aceA Isocitratase
  L35906   dtxr Diphtheria toxin repressor Oguiza, J.A.et al. " Molecular cloning; DNA sequence analysis; and characterization of the Corynebacterium diphtheriae dtxR from Brevibacterium lactofermentum; " J.Bacteriol., 177 (2): 465-467 (1995)
  M13774 Prephenate dehydratase Follettie, M.T.et al. " Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene, " J.Bacteriol., 167:695-702 (1986)
  M16175   5S rRNA Park, Y-H.et al. " 56 rRNA sequences of Phylogenetic analysis of the coryneform bacteria by, " J.Bacteriol., 169:1801-1806 (1987)
  M16663   trpE Anthranilate synthase, 5 ' ends Sano, K.et al. " Structure and function of the trp operon control regions of Brevibacterium lactofermentum; a glutamic-acid-producing bacterium, " Gene, 52:191-200 (1987)
  M16664   trpA Tryptophan synthetase, 3 ' ends Sano, K.et al. " Structure and function of the trp operon control regions of Brevibacterium lactofermentum; a glutamic-acid-producing bacterium, " Gene, 52:191-200 (1987)
  M25819 Phosphoenolpyruvate carboxylase O ' Regan, M.et al. " Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032; " Gene, 77 (2): 237-251 (1989)
  M85106 23S rRNA gene inserts Roller, C.et al. " Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes; " J.Gen. Microbiol., 138:1167-1175 (1992)
 GenBankTMSearching number Gene Name Gene function Bibliography
M85107, 23S rRNA gene inserts Roller, C.et al. " Gram-positive bacteria with a high DNA G+C content are
  M85108 Characterized by a common insertion within their 23S rRNA genes, " J.Gen. Microbiol., 138:1167-1175 (1992)
  M89931   aecD;brnQ;yhbw Beta C-S lyase;Branched-chain amino acid absorbs carrier;The albumen yhbw of presumption Rossol, I.et al. " The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha; beta-elimination activity that degrades aminoethylcysteine; " J.Bacteriol., 174 (9): 2968-2977 (1992);Tauch, A.et al. " 13032 is directed by the brnQ gene product of Isoleucine uptake in Corynebacterium glutamicum ATCC; " Arch.Microbiol., 169 (4): 303-312 (1998)
  S59299   trp Leading gene (promoter) Herry, D.M.et al. " Cloning of the trp gene cluster from a tryptophan- hyperproducing strain of Corynebacterium glutamicum:identification of a mutation in the trp leader sequence; " Appl.Environ.Microbiol., 59 (3): 791-799 (1993)
  U11545   trpD Anthranilate phosphoribosyl transferase O ' Gara, J.P.and Dunican, L.K. 21850 tpD gene. " Thesis of (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC; Microbiology Department; University College Galway, Ireland.
  U13922   cglIM;cglIR;clgIIR The II type 5- cytosine methyltransferase of supposition;The II type restriction enzyme of supposition;The I type or type III restriction enzyme of supposition Schafer, A.et al. " 13032 and analysis of its role in intergeneric conjugation with Escherichia coli of Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC; " J.Bacteriol., 176 (23): 73 09-7319 (1994);Schafer, A.et al. " The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine in an McrBC- deficient Escherichia coli strain; " Gene, 203 (2): 95-101 (1997)
  U14965   recA
  U31224   ppx Ankri, S.et al. " Mutations in the Corynebacterium glutamicumproline biosynthetic pathway:A natural bypass of the proA step; " J.Bacteriol., 178 (15): 4412-4419 (1996)
  U31225   proC L-PROLINE: NADP+5- oxidoreducing enzyme Ankri, S.et al. " Mutations in the Corynebacterium glutamicumproline biosynthetic pathway:A natural bypass of the proA step; " J.Bacteriol., 178 (15): 4412-4419 (1996)
  U31230   obg;proB;unkdh ;Gamma Glutamyl kinase;Similar to the special 2- hydroxy acid dehydrogenase of D- isomers Ankri, S.et al. " Mutations in the Corynebacterium glutamicumproline biosynthetic pathway:A natural bypass of the proA step; " J.Bacteriol., 178 (15): 4412-4419 (1996)
  GenBankTMSearching number Gene Name Gene function Bibliography
  U31281   bioB Biotin synthase Serebriiskii, I.G., " Two new members of the bio B superfamily:Cloning,
Sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum, " Gene, 175:15-22 (1996)
  U35023 thtR;accBC Thiosulfate transsulfurase;Acyl-CoA carboxylase Jager, W.et al. " A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins; " Arch.Microbiol., 166 (2);76-82(1996)
  U43535 cmr Multi-drug resistance albumen Jager, W.et al. " A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli; " J.Bacteriol., 179 (7): 2449-2451 (1997)
  U43536 clpB Heat shock ATP- binding protein
  U53587 aphA-3 3 ' 5 "-aminoglycoside phosphotransferases
  U89648 The Corynebacterium glutamicum for participating in histidine biosynthesis does not identify sequence, partial sequence
  X04960 trpA;trpB;trpC;trpD;trpE;trpG;trpL Tryptophan operon Matsui, K.et al. " Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon; " Nucleic Acids Res., 14 (24): 10113-10114 (1986)
  X07563 lys A DAP decarboxylase (meso-diaminapimelate decarboxylase, EC 4.1.1.20) Yeh, P.et al. " Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression; " Mol. Gen.Genet., 212 (1): 112-119 (1988)
  X14234 EC 4.1.1.31 Phosphoenolpyruvate carboxylase Eikmanns, B.J.et al. " The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum:Molecular cloning; nucleotide sequence; and expression; " Mol.Gen.Genet., 218 (2): 330-339 (1989);Lepiniec, L.et al. " Sorghum Phosphoenolpyruvate carboxylase gene family:structure; function and molecular evolution, " Plant.Mol.Biol., 21 (3): 487-502 (1993)
  X17313 fda Fructose-bisphosphate aldolase Von der Osteu, C.H.et al. " Molecular cloning; nucleotide sequence and fine- structural analysis of the Corynebacterium glutamicum fda gene:structural comparison of C.glutamicum fructose-1; 6-biphosphate aldolase to class I and class II aldolases, " Mol.Micr Obiol.,
  X53993 dapA L-2,3- dihydro 2, dipicolimic acid 2 synzyme (EC 4.2.1.52) Bonnassie, S.et al. " Nucleic sequence of the dapA gene from Corynebacterium glutamicum, " Nucleic Acids Res., 18 (21): 6421 (1990)
  GenBankTMSearching number Gene Name Gene function Bibliography
  X54223 AttB- related locus Cianciotto, N.et al. " DNA sequence homology between att B-related sites of
Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage; " FEMS.Microbiol. Lett., 66:299-302 (1990)
  X54740   argS;lysA Arginyl-tRNA synthetase;Diaminapimelate decarboxylase Marcel, T.et al. " Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene; " Mol.Microbiol., 4 (11): 1819- 1830 (1990)
  X55994   trpL;trpE The leader peptide of supposition;Anthranilate synthase ingredient 1 Heery, D.M.et al. " Nucleotide sequence of the Corynebacterium glutamicum trpE gene, " Nucleic Acids Res., 18 (23): 7138 (1990)
  X56037   thrC Threonine synthase Han, K.S.et al. " The molecular structure of the Corynebacterium glutamicum threonine synthase gene, " Mol.Microbiol., 4 (10): 1693-1702 (1990)
  X56075 AttB- related locus Attachment site Cianciotto, N.et al. " DNA sequence homology between att B-related sites of Corynebacterium diphtheriae; Corynebacterium ulcerans; Corynebacterium glutamicum; and the attP site of lambdacorynephage; " FEMS.Microbiol, Lett., 66:299-302 (1990)
  X57226   lysC-alpha;lysC-beta;  asd Aspartokinase-alpha subunit;Aspartokinase-beta subunit;Aspartic acid beta semialdehyde dehydrogenase Kalinowski, J.et al. " Genetic and biochemical analysis of the Aspartokinase from Corynebacterium glutamicum; " Mol.Microbiol., 5 (5): 1197-1204 (1991);Kalinowski, J.et al. " Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspertate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum; " Mol.Gen.Genet., 224 (3): 317-324 (1990)
  X59403   gap;pgk;tpi Glyceraldehyde-3-phosphate;Phosphoglyceric kinase;Triose-phosphate isomerase Eikmanns, B.J. " Identification; sequence analysis; and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase; 3-phosphoglycerate kinase; and triosephosphate isomeras, " J.Bacteri Ol., 174 (19): 6076-6086 (1992)
  X59404   gdh Glutamte dehydrogenase Bormann, E.R.et al. " Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase; " Mol.Microbiol., 6 (3): 317-326 (1992)
  X60312   lysI L-lysine permease Seep-Feldhaus, A.H.et al. " Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake; " Mol.Microbiol., 5 (12): 2995- 3005 (1991)
  GenBankTMSearching number Gene Name Gene function Bibliography
  X66078   cop1 Ps1 albumen Joliff, G.et al. " Cloning and nucleotide sequence of the csp1 gene encoding
PS1,85 complex of one of the two major secreted proteins of Corynebacterium glutamicum:The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen; " Mol.Microbiol., 6 (16): 2349-2362 (1992)
  X66112   glt Citrate synthase Eikmanns, B.J.et al. " Cloning sequence; expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase; " Microbiol., (1994) 140:1817-1828
  X67737   dapB Dihydro 2, dipicolimic acid 2 reductase
  X69103   csp2 S-layer proteins PS2 Peyret, J.L.et al. " Characterization of the cspB gene encoding PS2; an ordered surface-layer protein in Corynebacterium glutamicum; " Mol.Microbiol., 9 (1): 97-109 (1993)
  X69104 IS3 correlation is inserted into the factor Bonamy, C.et al. " Identification of IS1206; a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis; " Mol.Microbiol., 14 (3): 571-581 (1994)
  X70959   leuA Isopropylmalate synthase Patek, M.et al. " Leucine synthesis in Corynebacterium glutamicum:enzyme activities; structure of leuA; and effect of leuA inactivation on lysine synthesis; " Appl.Environ.Microbiol., 60 (1): 133-140 (1994)
  X71489   icd Isocitric dehydrogenase (NADP+) Eikmanns, B.J.et al. " Cloning sequence analysis; expression; and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme; " J.Bacteriol., 177 (3): 774-782 (1995)
  X72855   GDHA Glutamte dehydrogenase (NADP+)
X75083, X70584   mtrA 5-methyl tryptophan resistance Heery, D.M.et al. " A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan; " Biochem.Biophys.Res.Commun., 201 (3): 1255-1262 (1994)
  X75085   recA Fitzpatrick, R.et al. " Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum; " Appl. Microbiol.Biotechnol., 42 (4): 575-580 (1994)
  X75504   aceA;thiX Part isocitratase; Reinscheid, D.J.et al. " Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme; " J. Bacteriol., 176 (12): 3474-3483 (1994)
  X76875 ATP enzyme beta- subunit Ludwig, W.et al. " Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes; " Antonie Van Leeuwenhoek, 64:285-305 (1993)
  GenBankTMSearching number Gene Name Gene function Bibliography
  X77034   tuf Extension factor T u Ludwig, W.et al. " Phylogenetic relationships of bacteria based on comparative
Sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes, " Antonie Van Leeuwenhoek, 64:285-305 (1993)
  X77384   recA Billman-Jacobe, H. " Nucleotide sequence of a recA gene from Corynebacterium glutamicum, " DNA Seq., 4 (6): 403-404 (1994)
  X78491   aceB Malate synthase Reinscheid, D.J.et al. " Malate synthase from Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase:sequence analysis; " Microbiology, 140:3099-3108 (1994)
  X80629   16S rDNA 16S rRNA Rainey, F.A.et al. " Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia within the radiation of Rhodococcus species; " Microbiol., (1995) 141:523-528
  X81191   gluA;gluB;gluC;  gluD Glutamic acid absorption system Kronemeyer, W.et al. " Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum; " J.Bacteriol., 177 (5): 1152-1158 (1995)
  X81379   dapE Succinyldiaminopimelate desuccinylase Wehrmann, A.et al. " Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli; " Microbiology, 40:3349-56 (1994)
  X82061   16S rDNA 16S rRNA Ruimy, R.et al. " Phylogeny of the genus Corynebacterium dednced from analyses of small-subunit ribosomal DNA sequences; " Int.J.Syst.Bacteriol., 45 (4): 740-746 (1995)
  X82928   asd;lysC Aspartate-semialdehyde dehydrogenase; Serebrijski, I.et al. " Multicopy suppression by asd gene and osmotic stress- dependent complementation by heterologous proA in proA mutants; " J. Bacteriol., 177 (24): 7255-7260 (1995)
  X82929   proA Gamma- glutamyl phosphate reductase Serebrijski, I.et al. " Multicopy suppression by asd gene and osmotic stress- dependent complementation by heterologous proA in proA mutants; " J. Bacteriol., 177 (24): 7255-7260 (1995)
  X84257   16S rDNA 16S rRNA Pascual, C.et al. " Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences; " Int.J.Syst.Bacteriol., 45 (4): 724-728 (1995)
  X85965   aroP;dapE Aromatic amino acid permease; Wehrmann, A.et al. " Functional analysis of sequences abjacent to dapE of Corynebacterium glutamicumproline reveals the presence of aroP; which encodes the aromatic amino acid transporter; " J.Bacteriol., 177 (20): 5991- 5993 (1995)
  GenBankTMSearching number Gene Name Gene function Bibliography
  X86157   argB;argC;argD;  argF;argJ Acetylglutamate kinase;N- acetyl-gamma- glutamy-phosphoric acid reduction enzyme;Acetyl-ornithine transaminase;Ornithine transcarbamylase;Glutamic acid N-transacetylase Sakanyan, V.et al. " Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum:enzyme evolution in the early steps of the arginine pathway; " Microbiology, 142:99-108 (1996)
  X89084   pta;ackA Phosphate acetyltransferase;Acetokinase Reinscheid, D.J.et al. " Cloning; sequence analysis; expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase; " Microbiology, 145:503-513 (1999)
  X89850   attB Attachment site Le Marrec, C.et al. " Genetic characterization of site-specific integration functions of phi AAU2 infecting " Arthrobacter aureus C70; " J.Bacteriol., 178 (7): 1996-2004 (1996)
  X90356 Promoter fragment F1 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90357 Promoter fragment F2 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90358 Promoter fragment F10 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90359 Promoter fragment F13 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90360 Promoter fragment F22 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90361 Promoter fragment F34 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90362 Promoter fragment F37 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  GenBankTMSearching number Gene Name Gene function Bibliography
  X90363 Promoter fragment F45 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90364 Promoter fragment F64 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90365 Promoter fragment F75 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90366 Promoter fragment PF101 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90367 Promoter fragment PF104 Pate k, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X90368 Promoter fragment PF109 Patek, M.et al. " Promoters from Corynebacterium glutamicum:cloning; molecular analysis and search for a consensus motif, " Microbiology, 142:1297-1309 (1996)
  X93513   amt Ammonia movement system Siewe, R.M.et al. " Functional and genetic characterization of the (methyl) ammonium uptake carrier of Corynebacterium glutamicum; " J.Biol.Chem., 271 (10): 5398-5403 (1996)
  X93514   betP Glycinebetaine movement system Peter, H.et al. " Isolation; characterization; and expression of the Corynebacterium glutamicum betP gene; encoding the transport system for the compatible solute glycine betaine; " J.Bacteriol., 178 (17): 5229-5234 (1996)
  X95649   orf4 Patek, M.et al. " Identification and transcriptional analysis of the dapB-ORF2- dapA-ORF4 operon of Corynebacterium glutamicum; encoding two enzymes involved in L-lysine synthesis; " Biotechnol.Lett., (1997) 19:1113-1117
  X96471   lysE;lysG Lysine exports albumen;Lysine exports regulatory protein Vrljic, M.et al. " A new type of transporter with a new type of cellular function:L-lysine export from Corynebacterium glutamicum; " Mol. Microbiol., 22 (5): 815-826 (1996)
  GenBankTMSearching number Gene Name Gene function Bibliography
  X96580   panB;panC;xylB 3- methyl -2- oxy butyrate hydroxymethyl transferases;Pantothenic acid-beta- alanine ligase;Xylulokinase Sahm, H.et al. " D-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction; " Appl.Environ.Microbiol., 65 (5): 1973-1979 (1999)
  X96962 Insetion sequence IS1207 and transposase
  X99289 Elongation factors P Ramos, A.et al. " Cloning; sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacterium glutamicum ATCC 13869); " Gene, 198:217-222 (1997)
  Y00140  thrB Homoserine kinase Mateos, L.M.et al. " Nucleotide sequence of the homoserine kinase (thrB) gene of the Brevibacterium lactofermentum; " Nucleic Acids Res., 15 (9): 3922 (1987)
  Y00151  ddh Meso-diaminopimelic acid D- dehydrogenase (EC 1.4.1.16) Ishino, S.et al. " Nucleotide sequence of the meso-diaminopimelate D- dehydrogenase gene from Corynebacterium glutamicum; " Nucleic Acids Res., 15 (9): 3917 (1987)
  Y00476  thrA Homoserine dehydrogenase Mateos, L.M.et al. " Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the Brevibacterium lactofermentum; " Nucleic Acids Res., 15 (24): 10598 (1987)
  Y00546  hom;thrB Homoserine dehydrogenase;Homoserine kinase Peoples, O.P.et al. " Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon; " Mol.Microbiol., 2 (1): 63-72 (1988)
  Y08964  murC;ftsQ/divD;ftsZ UPD-N- acetylmuramic acid-alanine ligase;Division starting albumen or Cyclin;Cyclin Honrubia, M.P.et al. " Identification; characterization; and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum; " Mol. Gen.Genet., 259 (1): 97-104 (1998)
  Y09163  putP High-affinity proline transporter systems Peter, H.et al. " Isolation of the putP gene of Corynebacterium glutamicumproline and characterization of a low-affinity uptake system for compatible solutes; " Arch.Microbiol., 168 (2): 143-151 (1997)
  Y09548  pyc Pyruvate carboxylase Peters-Wendisch, P.G.et al. " Pyruvate carboxylase from Corynebacterium glutamicum:characterization; expression and inactivation of the pyc gene; " Microbiology, 144:915-927 (1998)
  Y09578  leuB 3-Isopropylmalate dehydrogenase Patek, M.et al. " Analysis of the leuB gene from Corynebacterium glutamicum, " Appl.Microbiol.Biotechnol., 50 (1): 42-47 (1998)
  Y12472 Bacteriophage Phi-16 attachment site Moreau, S.et al. " Site-specific integration of corynephage Phi-16:The construction of an integration vector, " Microbiol., 145:539-548 (1999)
  GenBankTMSearching number Gene Name Gene function Bibliography
  Y12537   proP Proline/ectoine absorption system albumen Peter, H.et al. " Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes:Identification; sequencing; and characterization of the proline/ectoine uptake system; ProP, and the ectoine/proline/glycine
Betaine carrier, EctP, " J.Bacteriol., 180 (22): 6005-6012 (1998)
  Y13221   glnA Glutamine synthelase I Jakoby, M.et al. " Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I, " FEMS Microbiol.Lett., 154 (1): 81-88 (1997)
  Y16642   lpd Dihydrolipoamide dehydrogenase
  Y18059 Bar bacterium bacteriophage 304L attachment site Moreau, S.et al. " Analysis of the integration functions of φ304L:An integrase module among corynephages, " Virology, 255 (1): 150-159 (1999)
  Z21501   argS;lysA Arginyl-tRNA synthetase;Diaminapimelate decarboxylase (part) Oguiza, J.A.et al. " A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum:Regulation of argS-lysA cluster expression by arginine; " J. Bacteriol., 175 (22): 7356-7362 (1993)
  Z21502   dapA;dapB Dihydro 2, dipicolimic acid 2 synthase;Dihydro 2, dipicolimic acid 2 reductase Pisabarro, A.et al. " A cluster of three genes (dapA; orf2; and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate reductase; and a third polypeptide of unknown function; " J.Bacteriol., 175 (9): 2743-2749 (1993)
  Z29563   thrC Threonine synthase Malumbres, M.et al. " Analysis and expression of the thrC gene of the encoded threonine synthase, " Appl.Environ.Microbiol., 60 (7) 2209-2219 (1994)
  Z46753   16S rDNA 16S ribosomal RNA gene
  Z49822   sigA The SigA sigma factor Oguiza, J.A.et al " Multiple sigma factor genes in Brevibacterium lactofermentum:Characterization of sigA and sigB; " J.Bacteriol., 178 (2): 550- 553 (1996)
  Z49823   galE;dtxR UDP- galactolipin 4- epimerase catalytic activity;Diphtheria toxin regulatory protein Oguiza, J.A.et al " The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene; " Gene, 177:103-107 (1996)
  Z49824   orf1;sigB ;The SigB sigma factor Oguiza, J.A.et al " Multiple sigma factor genes in Brevibacterium lactofermentum:Characterization of sigA and sigB; " J.Bacteriol., 178 (2): 550- 553 (1996)
  Z66534 Transposase Correia, A.et al. " Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869; " Gene, 170 (1): 91-94 (1996)
1The gene order has disclosed in listed bibliography.But the sequence that the present invention obtains is obviously long compared with sequence is disclosed.Speculate disclosed ATG code of sequence mistake, therefore a segment in only actual coding area.
Table 3: it can be used for implementing bar bacterium and Brevibacterium flavum strain of the invention
Generic name Kind name   ATCC   FERM   NRRL   CECT  NCIMB   CBS NCTC   DSMZ
Brevibacterium Brevibacterium ammoniagene   21054
Brevibacterium Brevibacterium ammoniagene   19350
Brevibacterium Brevibacterium ammoniagene   19351
Brevibacterium Brevibacterium ammoniagene   19352
Brevibacterium Brevibacterium ammoniagene   19353
Brevibacterium Brevibacterium ammoniagene   19354
Brevibacterium Brevibacterium ammoniagene   19355
Brevibacterium Brevibacterium ammoniagene   19356
Brevibacterium Brevibacterium ammoniagene   21055
Brevibacterium Brevibacterium ammoniagene   21077
Brevibacterium Brevibacterium ammoniagene   21553
Brevibacterium Brevibacterium ammoniagene   21580
Brevibacterium Brevibacterium ammoniagene   39101
Brevibacterium   butanicum   21196
Brevibacterium Branch brevibacterium   21792   P928
Brevibacterium Brevibacterium flavum   21474
Brevibacterium Brevibacterium flavum   21129
Brevibacterium Brevibacterium flavum   21518
Brevibacterium Brevibacterium flavum   B11474
Brevibacterium Brevibacterium flavum   B11472
Brevibacterium Brevibacterium flavum   21127
Brevibacterium Brevibacterium flavum   21128
Brevibacterium Brevibacterium flavum   21427
Brevibacterium Brevibacterium flavum   21475
Brevibacterium Brevibacterium flavum   21517
Brevibacterium Brevibacterium flavum   21528
Brevibacterium Brevibacterium flavum   21529
Brevibacterium Brevibacterium flavum   B11477
Brevibacterium Brevibacterium flavum   B11478
Brevibacterium Brevibacterium flavum   21127
Brevibacterium Brevibacterium flavum   B11474
Brevibacterium Xi Shi brevibacterium   15527
Brevibacterium Ketoglutaric acid brevibacterium   21004
Brevibacterium Ketoglutaric acid brevibacterium   21089
Brevibacterium   ketosoreductum   21914
Brevibacterium Brevibacterium   70
Brevibacterium Brevibacterium   74
Brevibacterium Brevibacterium   77
Brevibacterium Brevibacterium   21798
Brevibacterium Brevibacterium   21799
Brevibacterium Brevibacterium   21800
Brevibacterium Brevibacterium   21801
Brevibacterium Brevibacterium   B11470
Brevibacterium Brevibacterium   B11471
Brevibacterium Brevibacterium   21086
Brevibacterium Brevibacterium   21420
Brevibacterium Brevibacterium   21086
Brevibacterium Brevibacterium   31269
Brevibacterium Extension brevibacterium   9174
Brevibacterium Extension brevibacterium   19391
Brevibacterium Extension brevibacterium   8377
Brevibacterium Solve paraffin brevibacterium   11160
Brevibacterium Kind   717.73
Brevibacterium Kind   717.73
Brevibacterium Kind   14604
Brevibacterium Kind   21860
Brevibacterium Kind   21864
Brevibacterium Kind   21865
Brevibacterium Kind   21866
Brevibacterium Kind   19240
Bar bacterium Corynebacterium acctoacidophlum   21476
Bar bacterium Corynebacterium acctoacidophlum   13870
Bar bacterium Vinegar paddy bar bacterium   B11473
Bar bacterium Vinegar paddy bar bacterium   B11475
Bar bacterium Vinegar paddy bar bacterium   15806
Bar bacterium Vinegar paddy bar bacterium   21491
Bar bacterium Vinegar paddy bar bacterium   31270
Bar bacterium Thermophilic acetyl bar bacterium   B3671
Bar bacterium Corynebacterium ammoniagenes   6872   2399
Bar bacterium Corynebacterium ammoniagenes   15511
Bar bacterium   fujiokense   21496
Bar bacterium Corynebacterium glutamicum   14067
Bar bacterium Corynebacterium glutamicum   39137
Bar bacterium Corynebacterium glutamicum   21254
Bar bacterium Corynebacterium glutamicum   21255
Bar bacterium Corynebacterium glutamicum   31830
Bar bacterium Corynebacterium glutamicum   13032
Bar bacterium Corynebacterium glutamicum   14305
Bar bacterium Corynebacterium glutamicum   15455
Bar bacterium Corynebacterium glutamicum   13058
Bar bacterium Corynebacterium glutamicum   13059
Bar bacterium Corynebacterium glutamicum   13060
Bar bacterium Corynebacterium glutamicum   21492
Bar bacterium Corynebacterium glutamicum   21513
Bar bacterium Corynebacterium glutamicum   21526
Bar bacterium Corynebacterium glutamicum   21543
Bar bacterium Corynebacterium glutamicum   13287
Bar bacterium Corynebacterium glutamicum   21851
Bar bacterium Corynebacterium glutamicum   21253
Bar bacterium Corynebacterium glutamicum   21514
Bar bacterium Corynebacterium glutamicum   21516
Bar bacterium Corynebacterium glutamicum   21299
Bar bacterium Corynebacterium glutamicum   21300
Bar bacterium Corynebacterium glutamicum   39684
Bar bacterium Corynebacterium glutamicum   21488
Bar bacterium Corynebacterium glutamicum   21649
Bar bacterium Corynebacterium glutamicum   21650
Bar bacterium Corynebacterium glutamicum   19223
Bar bacterium Corynebacterium glutamicum   13869
Bar bacterium Corynebacterium glutamicum   21157
Bar bacterium Corynebacterium glutamicum   21158
Bar bacterium Corynebacterium glutamicum   21159
Bar bacterium Corynebacterium glutamicum   21355
Bar bacterium Corynebacterium glutamicum   31808
Bar bacterium Corynebacterium glutamicum   21674
Bar bacterium Corynebacterium glutamicum   21562
Bar bacterium Corynebacterium glutamicum   21563
Bar bacterium Corynebacterium glutamicum   21564
Bar bacterium Corynebacterium glutamicum   21565
Bar bacterium Corynebacterium glutamicum   21566
Bar bacterium Corynebacterium glutamicum   21567
Bar bacterium Corynebacterium glutamicum   21568
Bar bacterium Corynebacterium glutamicum   21569
Bar bacterium Corynebacterium glutamicum   21570
Bar bacterium Corynebacterium glutamicum   21571
Bar bacterium Corynebacterium glutamicum   21572
Bar bacterium Corynebacterium glutamicum   21573
Bar bacterium Corynebacterium glutamicum   21579
Bar bacterium Corynebacterium glutamicum   19049
Bar bacterium Corynebacterium glutamicum   19050
Bar bacterium Corynebacterium glutamicum   19051
Bar bacterium Corynebacterium glutamicum   19052
Bar bacterium Corynebacterium glutamicum   19053
Bar bacterium Corynebacterium glutamicum   19054
Bar bacterium Corynebacterium glutamicum   19055
Bar bacterium Corynebacterium glutamicum   19056
Bar bacterium Corynebacterium glutamicum   19057
Bar bacterium Corynebacterium glutamicum   19058
Bar bacterium Corynebacterium glutamicum   19059
Bar bacterium Corynebacterium glutamicum   19060
Bar bacterium Corynebacterium glutamicum   19185
Bar bacterium Corynebacterium glutamicum   13286
Bar bacterium Corynebacterium glutamicum   21515
Bar bacterium Corynebacterium glutamicum   21527
Bar bacterium Corynebacterium glutamicum   21544
Bar bacterium Corynebacterium glutamicum   21492
Bar bacterium Corynebacterium glutamicum   B8183
Bar bacterium Corynebacterium glutamicum   B8182
Bar bacterium Corynebacterium glutamicum   B12416
Bar bacterium Corynebacterium glutamicum   B12417
Bar bacterium Corynebacterium glutamicum   B12418
Bar bacterium Corynebacterium glutamicum   B11476
Bar bacterium Corynebacterium glutamicum   21608
Bar bacterium Lily bar bacterium   P973
Bar bacterium  nitrilophilus   21419   11594
Bar bacterium Kind   P4445
Bar bacterium Kind  P4446
Bar bacterium Kind   31088
Bar bacterium Kind   31089
Bar bacterium Kind   31090
Bar bacterium Kind   31090
Bar bacterium Kind   31090
Bar bacterium Kind   15954   20145
Bar bacterium Kind   21857
Bar bacterium Kind   21862
Bar bacterium Kind   21863
ATCC: American type culture collection, Rockville, MD, USA
FERM: fermentation research institute, Chiba, Japan
NRRL: agricultural research institute's collection, northern areas research laboratory, Peoria, IL, USA
CECT: Spain's Type Tissue Collection, Valencia, Spain
NCIMB: state-run industry and Marine Bacteria center, Aberdeen, UK
CBS: fungi strain collection, Baarn, NL
NCTC: state-run Type Tissue Collection, London, UK
DSMZ: Mikroorganismen collection, Braunschweig, Germany
It can be found in Sugawara, H.et al. (1993) World directory of collections of cultures of microorganisms:Bacteria, fungi and yeasts (4thEdn), World federation for culture collections world data center onmicroorganisms, Saimata, Japen.
Table 4: sequence comparison result
  ID# Genbank hit results (NT) Length Searching number Genbank hit results title Genbank hit results source % homology (GAP) It is put in storage day
  rxa00315     1527 GB_BA1:AB007125 GB_IN1:CELC47D2 GB_HTG2:AC006732   4078   17381  159453    AB007125   U64861  AC006732  Serratia marcescens slaA gene for surface layer protein, completecds, isolate 8000Caenorhabditis elegans cosmid C47D2.Caenorhabditis elegans clone Y32G9,***SEQUENCING INPROGRESS***, 9 unordered pieces.   Serratia marcescens   Caenorhabditis elegans  Caenorhabditis elegans    40,386   36,207  36,436    26-MAR-1998   28-Jul-96  23-Feb-99 
  rxa01503    372 GB_PR3:AC005019 GB_GSS12:AQ390040 GB_GSS5:AQ784231   188362  680   542   AC005019  AQ390040   AQ784231 Homo sapiens BAC clone GS250A16 from 7p21-p22, completeRPCI11-157C9.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-157C9, genomic survey sequence.HS_3087_B1_C10_T7C CIT Approved Human Genomic SpermLibrary D Homo sapiens genomic clone Plate=3087 Col=19Row=F, ge Nomic survey sequence.   Homo sapiens  Homo sapiens Homo sapiens   39,722  43,137 37,643   27-Aug-98  21-MAY-1999 3-Aug-99
  rxa01299      2187 GB_EST38:AW047296 GB_RO:AB004056 GB_RO:AB004056   614   1581   1581    AW047296   AB004056   AB004056  UI-M-BH1-amh-e-03-0-UI.s1 NIH_BMAP_M_S2 Mus musculuscDNA clone UI-M-BH1-amh-e-03-0-UI 3 ', mRNA sequenceRattus norvegicus mRNA for BarH-class homeodomaintranscription factor.complete cds.Rattus norvegicus mRNA for BarH-class homeodomaintranscription factor, c Omplete cds.   Mus musculus   Rattus norvegicus   Rattus norvegicus    41,475   41,031   40,717    18-Sep-99   2-Sep-98   2-Sep-98 
  rxa00951      416 GB_BA1:SCJ21 GB_VI:MCU68299 GB_VI:U93872   31717   230278  133661     AL109747   U68299  U93872   1 complete genomic sequence.Kaposi ' s sarcoma-associated herpesvirus glycoprotein M of Streptomyces coelicclor cosmid J21. Mouse cytomegalovirus, DNAreplication protein, glycoprotein, DNA replication protein, FLICEinhibitory protein and v-cyclin genes, complete cds , and tegument   Streptomyces coelicolor  A3(2)  Mouse cytomegalovirus 1  Kaposi′s sarcoma-  associated herpesvirus    34,913   40,097  36,029     5-Aug-99   04-DEC-1996  9-Jul-97  
  rxa01244      1827 GB_BA1:AFAPHBHI GB_PR3:HSJ836E13 GB_EST24:AI170227   4501   78055   409    M69036   AL050326   AI170227  Alcaligenes eutrophus protein H (phbH) and protein I (phbI) genes, complete cds.Human DNA sequence from clone 836E13 on chromosome 20Contains ESTs, STS and GSSs, complete sequence.EST216152 Normalized rat lung, Banto Soares Rattus sp.cDNAclone RLUCF56 3 ' end, mRNA s Equence.   Ralstonia eutropha   Homo sapiens   Rattus sp.    45,624   37,303   39,098    26-Apr-93   23-Nov-99   20-Jan-99 
  rxa01300   390 GB_PR3:HUMDODDA GB_PAT:140899 GB_PAT:140900   26764  26764  1317   L39874  I40899  I40900 1 from patent US 5622851.Sequence of Homo sapiens deoxycytidylate deaminase gene, complete cds.Sequence, 2 from patent US 5622851.   Homo sapiens  Unknown.  Unknown.   37,644  37,644  37,644   11-Aug-95  13-MAY-1997  13-MAY-1997
  rxa00953      789 GB_BA1:SCJ21 GB_BA1:BLTRP GB_PAT:E01375   31717   7725   7726    AL 109747   X04960   E01375  Streptomyces coelicolor cosmid J21. Brevibacterium lactofermentum tryptophan operon. DNA sequence of tryptophan operon    Streptomyces coelicolor  A3(2)  Corynebacterium  glutamicum  Corynebacterium  glutamicum   39,398   39,610   46,753    5-Aug-99   10-Feb-99   29-Sep-97 
4 (Continued) of table
  rxa01943      2172 GB_BA1:CORPTSMA GB_BA1:BRLPTSG GB_BA2:AF045481   2656   3163   2841    L18874   L18875   AF045481  Corynebacterium glutamicum phosphoenolpyruvate sugar phosphotransferase (ptsM) mRNA, complete cds. Brevibacterium lactofermentum phosphoenolpyruvate sugar phosphotransferase (ptsG) gene.complete cds. Corynebacterium ammoniagenes glucose permease (ptsG) gene , complete cds   Corynebacterium  glutamicum  Brevibacterium  lactofermentum  Corynebacterium  ammoniagenes   100,000   84,963   53,558    24-Nov-94   01-OCT-1993   29-Jul-98 
Embodiment
Embodiment 1: the preparation of 13032 full gene group DNA of Corynebacterium glutamicum ATCC
Corynebacterium glutamicum (ATCC 13032) culture in BHI culture medium (Difco), stay overnight by 30 DEG C of violent shaken cultivations.Cell is collected by centrifugation, abandons supernatant, cell is resuspended in 5ml buffer I (all volumes pointed out of the 5%- of culture original volume are calculated for 100ml culture volume).The composition of buffer I: 140.34g/l sucrose, 2.46g/l MgSO4×7H2O, 10ml/l KH2PO4Solution (100g/l, KOH are adjusted to PH6.7), 50g/l M12 concentrate (10g/l (NH4)2SO4, 1g/l NaCl, 2g/l MgSO4× 7H2O, 0.2g/l CaCl2, 0.5g/l yeast extract (Difco)), 10ml/l trace element mixture (200mg/l FeSO4×H2O, 10mg/l ZnSO4×7H2O, 3mg/l MnCl2×4H2O, 30mg/l H3BO3, 20mg/lCoCl2×6H2O, 1mg/l NiCl2×6H2O, 3mg/l Na2MoO4×2H2O), 500mg/l complexing agent (EDTA or citric acid), 100ml/l vitamin mixtures (0.2mg/l biotin, 0.2mg/l folic acid, 20mg/l p- amino benzoic acid, 20mg/l riboflavin, 40mg/lpanthothenate, 140mg/l niacin, 40mg/l hydrochloric acid Vitamin B6,200mg/l inositol).Lysozyme is added in suspension to final concentration 2.5mg/ml.After 37 DEG C are incubated for about 4 hours, cell wall is degraded, and obtained protoplast is with being collected by centrifugation.Precipitating is washed once with 5ml buffer I, is washed once with 5ml TE buffer (10mM Tris-HCl, 1ml EDTA, pH8).Precipitating is resuspended with 4ml TE buffer, and 0.5ml SDS solution (10%) and 0.5ml NaCl solution (5M) is added.Proteinase K is added to 200 μ g/ml of final concentration, suspension is incubated for about 18 hours at 37 DEG C.DNA phenol, phenol chloroform-isoamyl alcohol, chloroform-isoamyl alcohol are according to standardization program extraction purification.Then, the 3M sodium acetate of 1/50 volume and the ethyl alcohol of 2 times of volumes is added, is incubated for 30 minutes at -20 DEG C, with the supercentrifuge 12 for using SS34 rotary head (Sorvall), 000rpm is centrifuged 30 minutes, precipitates DNA.DNA is dissolved in the 1ml TE buffer containing 20 μ g/ml RNaseA, is dialysed at least 3 hours for 4 DEG C in 1000ml TE buffer.In this period, replace buffer 3 times.In the DNA solution of every 0.4ml dialysis, 0.4ml 2M LiCl and 0.8ml ethyl alcohol is added.After -20 DEG C are incubated for 30 minutes, DNA is collected in centrifugation (13,000rpm, Biofuge Fresco, Heraeus, Hanau, Germany).DNA precipitating is melted in TE buffer.It can be used for all purposes by DNA prepared by the program, the building including southern hybridization and genomic library.
Embodiment 2: in the building of the genomic library of Escherichia coli Glutamic Acid bar bacterium ATCC13032
Use the DNA prepared as described in Example 1, according to method that is known and sufficiently establishing (referring to, such as Sambrook, J.et al. (1989) " Molecular Cloning:ALaboratory Manual " Cold Spring Harbor Laboratory, Cold Spring HarborLaboratory Press, or Ausubel, F.M.et al. (1994) " Current Protocols inMolecular Bilogy ", John Wiley&Sons.), can construct cosmid library and Plasmid library.
Any plasmid and clay can be used.PBR322 plasmid (Sutcliffe, J.G. (1979) Proc.Natl.Acad.Sci.USA, 75:3737-3741);PACY177 (Change&Cohen (1978) J.Bacteriol 134:1141-1156), pBS series plasmids (pBSSK+, pBSSK- and other plasmids;Stratagene, LaJolla, USA), clay SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A.and Waterson, R.H. (1987) Gene53:283-286) it can be used for specific use.The gene library specially used in corynebacterium glutamicum can be constructed with plasmid pSL109 (Lee, H.-S.and A.J.Sinskey (1994) J.Microbiol.Biotechnol.4:256-263).
Embodiment 3:DNA sequencing and computer function analysis
According to standard method, use such as described genomic library in example 2, it can carry out DNA sequencing, especially with using ABI377 sequenator chain termination method (referring to, such as Fleischman, R.D.et al. (1995) " Whole-genome Random Sequencing andAssembly of Haemophilus Influenzae Rd., Science, 269:496-512).Use the sequencing primer with following nucleotide sequence: 5 '-GGAAACAGTATGACCATG-3 ' or 5 '-GTAAAACGACGGCCAGT-3 '.
Embodiment 4: vivo mutations
Can by Escherichia coli or other microorganisms (such as, the certain bacterium of bacillus or seem saccharomyces cerevisiae yeast) plasmid (or other carriers) DNA passage, the vivo mutations of Corynebacterium glutamicum are carried out, wherein these microorganisms keep the ability of its hereditary information globality to be damaged.Typical mutant strain has mutation (for example, mutHLS, mutD, mutT etc. in the gene of DNA repair system;Bibliography is referring to Rupp, W.D. (1996) DNA repair mechanisms, in:Escherichia coli and Salmonella, p.2277-2294, ASM:Washington.).These bacterial strains are well known for the man skilled in the art.The use of these bacterial strains is set forth in, such as Greener, in A.and Callahan, M. (1994) Strategies 7:32-34.
Embodiment 5: the DNA transmitted between Escherichia coli and Corynebacterium glutamicum
Bar bacterium and brevibacterium strain contain the indigenous plasmid (seeming for example, pHM1519 or pBL1) of the spontaneous duplication of energy (comment is see, e.g., Martin, J.F.et al. (1987) Biotechnology, 5:137-146).The shuttle vector of Escherichia coli and Corynebacterium glutamicum, the standard vector that Escherichia coli can be used readily constructs (Sambrook, J.et al. (1989) " Molecular Cloning:A Laboratory Manual " Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press or Ausubel, F.M.et al. (1994) " Current Protocols in Molecular Bilogy ", John Wiley&Sons.), i.e., glutamic acid is added wherein The replication fork starting point of bar bacterium and suitable label.This replication origin, what the indigenous plasmid preferably separated from bar bacterium and brevibacterium strain obtained.That as these strain transformation markers this specific uses is kalamycin resistance gene (such as from those of Tn5 Tn903 transposons kalamycin resistance gene) or chloramphenicol resistance gene (Winnacker, E.L. (1987) " From Genes to Clones-Introduction to Gene Technology; VCH, Weinheim).Constructing many of the document of various wild type shuttle vectors example, these shuttle vectors can replicate in Escherichia coli and Corynebacterium glutamicum, and it can be used for various purposes, including gene overexpression, (bibliography is see, e.g., Yoshihama, M.et al. (1985) J.Bacteriol.162:591-597, Martin J.F.et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J.et a;(1991) Gene, 102:93-98).
Can be interested gene cloning into above-mentioned shuttle vector using standard method, and the hybridization can be carried and be introduced into Corynebacterium glutamicum strain.The conversion of Corynebacterium glutamicum can pass through protoplast transformation (Kastsumata, R.et al. (1984) J.Bacteriol.159306-311), fax hole (Liebl, E.et al. (1989) FEMS Microbiol.Letters, 53:399-303) realize, when using special carrier, it can also be realized by combination (such as in Sch fer, A et al. (1990) J.Bacteriol.172:1663-1666).Shuttle vector can also be transferred to Escherichia coli from Corynebacterium glutamicum by preparing Plasmid DNA (using standard method known in the art) from Corynebacterium glutamicum and being transformed into Escherichia coli.Standard method progress can be used in this step of converting, but Mcr defective escherichia coli bacterial strain, such as NM522 (Gough&Murray (1983) J.Mol.Biol.166:1-19) is used to be advantageous.
Using contain pCG1 (U.S.Patent No.4,617, or the plasmid of its segment 267), and it can choose the kalamycin resistance gene (Grindley from TN903, N.D.and Joyce, C.M. (1980) Proc.Natl.Acad.Sci.USA 77 (12): 7176-7180), so that it may overexpression gene in corynebacterium glutamicum.In addition, can also overexpression gene in corynebacterium glutamicum using plasmid pSL109 (Lee, H.-S.and A.J.Sinskey (1994) J.Microbiol.Biotechnol.4:256-263).
Other than using reproducible plasmid, the overexpression of gene can also be realized by genome conformity.The genome conformity of Corynebacterium glutamicum or other bar bacteriums or brevibacterium strain, it can be realized by well known method, such as the homologous recombination of genome area, restriction endonuclease mediate integration (REMI) (see, for example, DE Patent 19823834), or by using transposons.Can also by modification adjustment region (such as, promoter, repressor and/or enhancer), it is based on sequence modification, insertion or the missing of chance event method (such as transposon mutant or REMI), either by using site-directed method (such as homologous recombination) to adjust the activity of gene of interest.Nucleic acid sequence as transcription terminator can also be inserted into the 3 ' of one or more gene coding region of the invention;What such terminator was well known, and describe in such as Winnacker, E.L. (1987) From Genes to Clones-Introduction to Gene Technology.VCH:Weinheim.
Embodiment 6: the estimation of mutein expression
The fact that be converted the active observation of mutein in host cell, depend on, i.e. mutein are expressed in a manner of similar with wild-type protein with similar quantity.Determine mutated gene transcriptional level (quantitative index of the mRNA for gene product translation) the useful method of one kind be carry out Northern hybridization (bibliography referring to, such as, Ausubel et al. (1988) CurrentProtocols in Molecular Biology, Wiley:New York), that wherein designs has detectable label (usually radioactive or chemiluminescent) for the primer mark in conjunction with gene of interest, to, when whole RNA of organism culture are extracted, run gel electrophoresis, it is transferred in stable and is incubated for the probe, the combination of bonding probes and quantity just indicate the presence and quantity of the gene mRNA.The information is the evidence of mutated gene transcription degree.Several method can be used and prepare whole cell RNAs from Corynebacterium glutamicum, what this was well known, such as description is in Bormann, E.R.et al. (1992) Mol.Microbiol.6:317-326.
In order to estimate by the presence and relative populations of the mRNA protein translated, it can be used standard technique, such as Wesstern hybridization (see, e.g., Ausubel et al. (1988) CurrentProtocols in Molecular Biology, Wiley:New York).In the method, whole cell proteins are extracted, are separated by gel electrophoresis, is transferred to and seems on medium as nitrocellulose, and are incubated for altogether with the probe of required protein specific bond, such as antibody.The probe usually marks chemiluminescent or colorimetric the label for having detection.The presence and quantity of the label observed indicate the presence and quantity for appearing in the required mutein in cell.
Embodiment 7: the growth-medium and condition of culture of the Corynebacterium glutamicum of genetic modification
The Corynebacterium glutamicum of genetic modification can be cultivated in synthesis or spontaneous growth culture medium.A variety of different growth mediums for Corynebacterium glutamicum are known and are readily available (Lieb, et al. (1989) Appl.Microbiol.Biotechno., 32:205-210;Von der Ostenet al. (1998) Biotechnology Letters, 11:11-16;Patent DE 4,120,867;Liebl (1992) " The Genus Corynebacterium, in:Procaryotes, Volume II, Balows, A.et al., eds.Springer-Verlag).These culture mediums contain one or more kinds of carbon sources, nitrogen source, inorganic salts, vitamin and microelement.Preferred carbon source is carbohydrate, such as monosaccharide, disaccharides or polysaccharide.For example, glucose, fructose, mannose, galactolipin, ribose, sorbose, ribulose, lactose, maltose, sucrose, gossypose, starch or cellulose, are used as good carbon source.Carbohydrate, such as molasses or the by-product of other carbohydrates refining can also be provided to culture medium by complex compound.The mixture for improving different carbon source is also advantageous.Other available carbon sources have alcohol and organic acid, such as methanol, ethyl alcohol, acetic acid or lactic acid.Nitrogen source is usually organic perhaps inorganic nitrogen compound or the substance containing these compounds.Representative nitrogen source includes ammonia or ammonium salt, such as NH4Cl or (NH4)2SO4、NH4OH, nitrate, urea, amino acid perhaps complexity nitrogen source for example corn steep liquor, soy meal, soybean protein, yeast extract, meat extract or other.
It may include inorganic salt compound in the medium, calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper or iron including hydrochloride, phosphate or sulfate.Chelating agent may be added in culture medium, to maintain the metal ion in solution.Particularly useful chelating agent includes dihydroxy phenol, seems catechol and protocatechuic acid or organic acid, seems citric acid.Culture medium typically also contains growth factor, such as vitamin and growth promoter, their example includes biotin, riboflavin, thiamines, folic acid, niacin, pantothenate and pyridoxol.Growth factor and salt are often from complicated medium component, such as yeast extract, molasses, corn steep liquor and other compositions.The definite composition of culture based compound is strongly dependent upon direct experiment, and for each concrete condition concrete decision.The information optimized about culture medium passes through in textbook " AppliedMicrobiol.Physiology; A Practical Approach " (eds.P.M.Rhodes, P.F.Stanbury, IRL Press (1997) pp.53-73, ISBN 0 19 is 9635773) " in.It can also seem standard 1 (Merck) perhaps BHI (grain heart infusion DIFCO) or others from commercial supplier there selection growth medium.
All nutrient media components will pass through heating (1.5bar, 120 DEG C, 20 minutes) or the sterilizing that is sterile filtered.Component can sterilize together, or if necessary separate individually sterilizing.All nutrient media components can just be added in the beginning of growth, either can choose continuity or be added portionwise.
Condition of culture determines each experiment respectively.Temperature should be within the scope of 15 DEG C to 45 DEG C.Temperature can be kept constant, or be changed in an experiment.The pH of culture medium is in 5 to 8.5 ranges, preferably about 7.0, and can be maintained by the addition of buffer in culture medium.It is kaliumphosphate buffer for the representational buffer of this purpose.Buffer, such as MOPS, HEPES, ACES and others are synthesized, also can replace use or is used simultaneously.Addition NaOH or NH can also be passed through during the growth process4OH, to maintain stable culture pH.If using seeming complexity nutrient media components as yeast extract, it is possible to reduce the necessity of buffer is added, this is because many complex compounds have the fact that very strong buffer capacity.If ammonia control pH also can be used using fermentation tank culture microorganism.
Incubation time is usually within a few houres to several days.The selection of this time is to allow to accumulate the maximum amount of product in liquid medium.The growth experiment of announcement can be to carry out in various containers, for example, microtiter plate, teat glass, glass shaking flask or different size of glass or metal fermentor.In order to screen a large amount of clone, microorganism should be cultivated in having baffle or the not microtiter plate of baffle, teat glass or shaking flask.100ml shaking flask is preferably used, the required culture medium of 10% (volume) is added.Shaking flask should be placed on shake (25 millimeters of amplitude), velocity interval 100-300rpm on shaking table.It can be by keeping wet air to reduce evaporation loss;Alternatively, carrying out mathematics amendment to evaporation loss.
If detecting the clone of genetic modification, it should also detect unmodified control clone or be cloned containing basic plasmid but without the control of any insertion.Use growth 30 DEG C of cells being incubated for, such as CM plate (10g/l glucose, 2.5g/l NaCl, 2g/l urea on a lbmc agar plate, the more peptones of 10g/l, 5g/l yeast extract, 5g/l gravy extract, 22g/l agar, 2M NaOH are adjusted to pH 6.8), inoculation medium to OD600Value is 0.5-1.5.The inoculation of culture medium can be realized by the salt suspensioning liquid of Corynebacterium glutamicum cell of the introducing from CM plate, or the liquid pre-culture by the way that the bacterium is added.
Embodiment 8: the analyzed in vitro of mutein function
The measurement of the activity and kinetic parameter of enzyme has technically established very well.It is any that the given determination of activity by the enzyme changed is tested, it is necessary to be suitble to the sp act of wild-type enzyme, this is completely within the ability of technology skilful person.It, can be for example below with reference to being found in document: Dixon about the Summarizing comment of enzyme, and about structure, dynamics, principle, method, application and the clear details for determining many enzymatic activity examples, M., and Webb, E.C., (1979) Enzymes.Longmans:London;Fersht, (1985) Enzyme Structure and Mechanism.Freeman:NewYork;Walsh, (1979) Enzymatic Reaction Mechanisms.Freeman:San Francisco;Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology.Oxford Univ.Press:Oxford;Boyer, P.D., ed. (1983) The Enzymes, 3rdEd.Academic Press:New York;Bisswanger, H., (1994) Enzymkinetik, 2ndEd.VCH:Weinheim (ISBN 3527300325);Bergmeyer, H.U., Bergmeyer, J., Gra β l, M., eds. (1983-1986) Methods of EnzymaticAnalysis, 3rdEd., vol.I-XII, Verlag Chemie:Weinheim;And Ullmann ' s Encyclopediaof Industrial Chemistry (1987) vol.A9, " Enzymes " .VCH:Weinheim, p.352-363.
It can be measured by several methods known in the art in conjunction with the activity of the protein of DNA, such as DNA band shift analysis (also referred to as gel retardation assay).Effect of these protein to other developed by molecule, can be measured with reporter gene assays (such as description is in Kolmar, H.et al. (1995) EMBO J.14:3895-3904 in, and its bibliography of reference).Reporter gene test systems are known, and the application in protokaryon and eukaryocyte all has been established, using seeming BgaA, enzyme as green fluorescent protein and other several protein.
The active measurement of protein called membrane transporters matter can be according to such as description in Gennis, R.B. (1989) " Pores, Channels and Transporters ", in Biomembrane, Molecular Structureand Function, Springer:Heidelberg, p.85-137;199-234;Technology carries out those of in and 270-322.
Embodiment 9: the analysis for the effect that mutein produces required product
The effect that Corynebacterium glutamicum genetic modification produces required compound (such as amino acid), it can estimate in this way, the microorganism modified is grown by (such as those described above) under appropraite condition, and analyze the culture medium and/or cellular component for increasing required product (for example, amino acid) production.These analytical technologies are well known for skilled ordinary skill, including spectrum analysis, thin-layer chromatography, various colouring methods, enzymatic method and microbial process, it and seem high performance liquid chromatography (Ullman, Encyclopedia of Industrial Chemistry, vol.A2, p.89-90 andp.443-613, VCH:Weinheim (1985);Fallon, A.et al., (1987) " Applications ofHPLC in Biochemistry " in:Laboratory Techniques in Biochemistry and MolecularBiology, vol.17;Rehm et al. (1993) Biotechnology, vol.3, Chapter III: " Productrecovery and purification ", page 469-714, VCH:Weinheim;Belter, P.A.et al. (1988) Bioseparations:downstream processing for biotechnology, John Wiley and Sons;Kennedy, J.F.and Cabral, J.M.S. (1992) Recovery processes for biologicalmaterials, John Wiley and Sons;Shaeiwitz, J.A.and Henry, J.D. (1988) Biochemicalseparations, in:Ulmann ' s Encyclopedia of Industrial Chemistry, vol.B3, Chapter11, page 1-27, VCH:Weinheim;And Dechow, F.J. (1989) Separation and purificationtechniques in biotechnology, Noyes Publications) such analysis chromatography.
In addition to the measurement to final tunning, the other components of the metabolic pathway for required production of chemicals can also be analyzed, such as intermediate and by-product, to determine the production capacity of organism, yield, and/or the production efficiency of compound.Analysis method include nutrient level in culture medium (such as, carbohydrate, hydrocarbon, nitrogen source, phosphoric acid and other ions) measurement, the measurement of biomass composition and growth, the analysis of the production of biosynthesis pathway common metabolic product, and the measurement to gas is generated in fermentation.In Applied MicrobialPhysiology, A Practical Approach, P.M.Rhodes and P.F.Stanbury, eds., IRL Press, p.103-163 the standard method of these measurements outlines;And 165-192 (ISBN:0199635773) and its reference bibliography in.
Embodiment 10: the purifying of required product in Corynebacterium glutamicum culture
Required product is recycled from Corynebacterium glutamicum cell or in the supernatant of above-mentioned culture medium, can be carried out by various methods known in the art.If required product is not that cell is secreted, cell can be collected from culture medium by low-speed centrifugal, with standard technique lytic cell, such as mechanical force or ultrasonic wave.It is centrifuged off cell fragment, retains the supernatant fraction containing soluble protein for required compound to be further purified.If product is secreted from Corynebacterium glutamicum cell, cell is removed from culture medium with low-speed centrifugal, retains supernatant fraction for being further purified.
The supernatant fraction that any purification process obtains is chromatographed with suitable resin, and required molecule is retained by chromatographic resin, and many impurity in sample are not preserved or impurity is retained by resin, and sample is not preserved.Using same or different chromatographic resin, this chromatographic step of repetition can according to need.It is familiar with the suitable chromatographic resin of the selection that ordinary skill can be very skilled, and knows the application most effective for specific molecular to be purified of these resins.The product of purifying can use filtering or ultrafiltration concentration, and be stored at the maximum temperature of product stability.
Purification process known in the art is very more, and purification process above-mentioned is not meant to be limited only to this.The description of these purification process exists, such as in Bailey, J.E.& Ollis, D.F.BiochmicalEngineering Fundamentals, McGraw-Hill:New York (1986).
The characteristic and purity for separating compound, can be estimated with technical standard technique.This includes high performance liquid chromatography (HPLC), light-splitting method, colouring method, thin-layer chromatography, NIRS, enzymatic method or microbial process.These analysis methods have comment in the following documents: Patek et al. (1994) Appl.Environ.Microbiol.60:133-140;Malakhova et al. (1996) Biotekhnologiya 11:27-32;And Schmidt et al. (1998) Bioprocess Engineer.19:67-70.Ulmann ' sEncyclopedia of Industrial Chemistry, (1996) vol.A27, VCH:Weinheim, p.89-90, p.521-540, p.540-547, p.559-566,575-581 and is p.581-587;Michal, G. (1999) Biochemical Pathways:An Atlas of Biochemistry and Molecular Biology, JohnWiley and Sons;Fallon, A.et al. (1987) Applications of HPLC in Biochemistry in:Laboratory Techniques in Biochemistry and Molecular Biology, vol.17.
Embodiment 11: the analysis of gene order of the present invention
Sequence compares the measurement of the percent homology between two sequences, it is technology known in the art, the completion of mathematical operation rule can be used, such as the algorithm in Karlin and Altschul (1990) Proc.Natl.Acad.Sci.USA 87:2264-68, the algorithm have modification in Karlin andAltschul (1993) Proc.Natl.Acad.Sci.USA 90:5873-77.The algorithm is incorporated into Altschul, in NBLAST the and XBLAST program (2.0 editions) in et al. (1990) J.Mol.Biol.215:403-10.BLAST nucleotide searches can be carried out with NBLAST program, score=100, wordlength=12, the available nucleotide sequence with PTS nucleic acid molecule homologous of the present invention.BLAST protein searches can be carried out with XBLAST program, score=50, wordlength=3, the available amino acid sequence with pts protein matter molecule homologous of the present invention.For comparison purposes, in order to obtain the alignment in gap, description can be used in Altschul et al., (1997) Nucleic Acids Res.25 (17): the GappedBLAST in 3389-3402.When using BLAST and Gapped blast program, it is familiar with ordinary skill knows the parameter for how optimizing program (for example, XBLAST and NBLAST) for specific sequence to be analyzed.
Another mathematical operation rule example compared for sequence is Meyers and Miller algorithm ((1998) Comput.Appl.Biosci.4:11-17).The algorithm is incorporated into ALIGN program (2.0 editions), which is a part of GCG sequence nucleotide sequence comparison software packet.When using ALIGN program comparing amino acid sequence, PAM120 weight residue table, gap length punishment 12, gap punishment 4 can be used.Other sequence analytic operation rules are technically also known, including ADVANCE and ADAM, are described in Torelli and Robotti (1994) Comput.Appl.Biosci.10:3-5;And FASTA, it describes in Pearson and Lipman (1998) P.N.A.S.85:2444-8.
The realization of the GAP program in GCG software package (http://www.gcg.com is provided with) also can be used in Percent homology between two amino acid sequences, use 250 matrix of 62 matrix of Blosum or PAM, the perhaps 4 length component 2,3 or 4 of gap component 12,10,8,6.The realization of the GAP program in GCG software package can be used in Percent homology between two nucleic acid sequences, uses standard parameter, such as gap component 50 and length component 3.
Comparative analysis in gene order of the present invention and Genbank between sequence, can be used technology known in the art carry out (referring to, such as, Bexevanis and Ouellette, eds. (1998) Bioinformatics:A Practical Guide to the Analysis of Genes and Proteins.John Wiley and Sons:New York).Gene order of the present invention is compared by the method for three steps with the sequence in Genbank.In the first step, BLASTN analysis (for example, local sequence comparative analysis) is carried out with respect to the nucleotide sequence in Genbank to each sequence of the invention, retains highest 500 matchings and is further analysed.Then FASTA is made to this 500 matchings and searches (for example, local and global composite sequence comparative analysis, is wherein carrying out alignment to the sequence area of restriction).Next, matching to every gene order of the invention with three highests of FASTA, whole world alignment is carried out using the GAP program (using standard parameter) in GCG software package.Correct result in order to obtain, the sequence length selected from Genbank are adjusted to the length of search sequence using technical well known method.The result of the analysis is listed in Table 4.Although the result obtained in this way, obtained result is analyzed with the independent GAP (whole world) carried out is compareed relative to Genbank every to every gene of the invention, it is consistent, but for the GAP of large database concept (whole world) analysis, the required calculating time greatly reduces.The sequence of the present invention for not obtaining the above alignment of cutoff value shows to lack alignment's information in table 4.Being familiar with ordinary skill further can understand, GAP alignment's percent homology under the title " %homology (GPA) " listed in table 4, is to be listed with Digital European format, wherein ', ' represents decimal system point.For example, " 40,345 " represent " 40.345% " to the value in the column.
The building and operation of embodiment 12:DNA microarray
Sequence of the invention can be also used for DNA microarray and (known to the design of DNA array, methods and applications are technically, describe for example, Schena, M.te al. (1995) Science 270:467-470;Wodicka, L.et al. (1997) Nature Biotechnology 15:1359-1367;DeSaizieu, A.et al. (1998) Nature Biotechnology 16:45-48;And DeRisi, J.L.et al. (1997) Science 278:680-686) building and application.
Using solid, perhaps flexible support includes nitrocellulose, nylon, glass, silicon or other materials to DNA microarray.Nucleic acid molecules can be connected to surface in an orderly way.After suitable marker, other nucleic acid or mixtures of nucleic acids can be with fixed making nucleic acid molecular hybridizations, and marking can be used for the individual signal strength that monitoring and measurement determines region hybrid molecule.The opposite or absolute quantity for the whole or selected nucleic acid in nucleic acid samples or mixture that this method allows simultaneous quantitative applicable.Therefore, DNA microarray allows the analysis of a variety of (up to 6800 or more) similar expression of nucleic acid (see, for example, Schena, M. (1996) BioEssays 18 (5): 427-431).
Sequence of the present invention can be used for designing oligonucleotide primer, these primers can expand the determination region of one or more of Corynebacterium glutamicum genes by the nucleic acid amplification reaction as polymerase chain reaction.The selection and design of 5 ' or 3 ' oligonucleotide primers or suitable linker, the surface that the PCR product allowed is covalently attached to above-mentioned supporting dielectric (is also described in, for example, Schena, M.et al. (1995) Science 270:467-470).
Nucleic acid microarray can also be by such as in Wodicka, the synthesis building of original position oligonucleotide described in L.et al. (1997) NatureBiotechnology 15:1359-1367.By photolithography method, region exactly determined in matrix can be exposed in light.Blocking group is photo-labile, to be activated and add through subject nucleotide, but is covered up and can not see the region of light without any modification.Next protection and photoactivation circulation, allow in the synthesis for determining position difference oligonucleotide.Present invention determine that zonule can be synthesized on the micro-array by solid phase oligonucleotide.
The nucleic acid molecules of the present invention in sample or mixture of ribonucleotides are appeared in, it can be with microarray hybridization.These nucleic acid molecules can be marked according to standard method.Briefly, nucleic acid molecules (for example, mRNA molecule or DNA molecular) can be labeled for example, in reverse transcription or DNA synthesis and in conjunction with the isotope perhaps nucleotide of fluorescent marker.Labeling nucleic acid was described (such as in Schena, M.et al. (1995) supra with hybridizing for microarray;Wodicka, L.et al. (1997), supra;In and DeSaizieu A.et al. (1998), supra).The detection of hybrid molecule and to be quantitatively suitble to specific binding marker.Radioactive label can be detected, for example, described in M.at al. (1995) supra, fluorescent marker can also be detected, such as use the method for Shalon etal. (1996) Gemone Research 6:639-645 in Schena.
As described above, application of the sequence of the present invention in DNA microarray, allows the comparative analysis of different Corynebacterium glutamicum strain or other bar bacteriums.For example, the research changed in the bacterial strains based on individual transcription distribution diagrams can be promoted by nucleic acid array methodologies, and promote to it is specific and/or required seem the important gene of strain characteristics as pathogenic, production capacity and pressure tolerance identification.Equally, using nucleic acid array technology, the distribution diagram of gene expression of the present invention during fermentation reaction can also be compared.
Embodiment 13: the analysis (proteomics) of cell protein group dynamics
Gene, composition and method of the invention can be used for studying the interaction and dynamics of protein population, referred to as " proteomics ".Interested protein population includes, but it is not limited to, Corynebacterium glutamicum all protein group (such as, it compares up with the protein population of other organisms), under particular surroundings or metabolic conditions (such as, medium and high temperature of fermenting perhaps low temperature or high pH or low pH) active those protein or in those active protein of particular growth or stage of development.
Protein population, such as gel electrophoresis can be analyzed with various well known technologies.Cell protein can also can be used various electrophoretic techniques and be separated from each other for example, by cracking or extracting acquisition.Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein isolate matter, is based largely on their molecular wt.Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) passes through equal point (this not only reflects amino acid sequence, but also has shown the posttranslational modification of protein) protein isolate matter.Another more preferred protein analysis method is that the continuous combination of IEF-PAGE and SDS-PAGE, referred to as 2-D- gel electrophoresis are (in such as Hermann et al. (1998) Electrophoresis 19:3217-3221;Fountoulakis et al. (1998) Electrophoresis 19:1193-1202;Langen et al. (1997) Electrophoresis 18:1184-1192;It is described in Antelmann et al. (1997) Electrophoresis18:1451-1463).
It can be shown by standard technique with the protein that these methods separate, such as by dyeing or marking.Suitably dyeing is technically known, including Coomassie brilliant blue, silver staining or fluorescent dye, such as Sypro Ruby (Molecular Probes).Include in Corynebacterium glutamicum culture medium radiolabeled amino acid or other protein precursors (for example,35S- methionine,35S- cysteine,14C- labeled amino acid,15N- amino acid,15NO3Or15NH4 +Or13C- labeled amino acid), it can make these cells before its Separation of Proteins with regard to labelled protein.Similar, fluorescent marker also can be used.These labelled proteins can be extracted, are isolated and separated according to aforementioned techniques.
The protein shown with these technologies can be further analysed by measuring dyestuff or label used.Such as optical means can be used in the quantity of specific protein, is quantitatively determined, and can be compared with the quantity of other protein on same gel or on other gels.Can compare for example, by optics, spectrum analysis, gel images analysis and scanning, either by using photographic film or display, the protein on gel is compared.What these technologies were well known.
In order to determine the characteristic of specific protein, direct sequence measurement or other standards technology can be used.Such as, the sequencing of N- and/or C- end amino acid (such as Edman degradation) can be used, and mass spectral analysis (especially MALDI ESI technology (see, for example, Langen et al. (1997) Electrophoresis 18:1184-1192)).Protein sequence provided herein may be used as the Corynebacterium glutamicum protein identification carried out by these technologies.
The information obtained by these technologies, it can be used for the various modes of the different sample rooms modifications (for example, different organisms, fermentation time point, culture medium condition or biotic environment in other conditions) under comparison protein presence, activity, different biotic factors.The data that these tests obtain, it can be individual, or what is combined with other technologies is used for various applications, such as compare under specific condition the behavior of (such as metabolic condition) various organisms, increase the production capacity of the bacterial strain of production fine chemical, or increases the efficiency of fine chemical production.
Equivalents
Being familiar with ordinary skill will recognize, or can determine and routine experiment is only used only, and specific embodiment of the invention described herein has many equivalents.Following claim is intended to encompass these equivalents.
Sequence table
<110>BASF AG (BASF Aktiengesellschaft)
<120>Orynebacterium: the Corynebacterium glutamicum gene of sugar phosphotransferase system albumen
<130>BGI-122CPPC
<140>PCT/IB00/00973
<141>2000-06-27
<150>US 60/142,691
<151>1999-07-01
<150>US 60/150,310
<151>1999-08-23
<150>DE 19942095.5
<151>1999-09-03
<150>DE 19942097.1
<151>1999-09-03
<160>36
<210>1
<211>1527
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(1504)
<223>RXS00315
<400>1
ctcatggcat ctgcgccgtt cgcgttcttg ccagtgttgg ttggtttcac cgcaaccaag 60
cgtttcggcg gcaatgagtt cctgggcgcc gcgtattggt atg gcg atg gtg ttc   115
                                            Met Ala Met Val Phe
                                              1               5
ccg agc ttg gtg aac ggc tac gac gtg gcc gcc acc atg gct gcg ggc   163
Pro Ser Leu Val Asn Gly Tyr Asp Val Ala Ala Thr Met Ala Ala Gly
                 10                  15                  20
gaa atg cca atg tgg tcc ctg ttt ggt tta gat gtt gcc caa gcc ggt   211
Glu Met Pro Met Trp Ser Leu Phe Gly Leu Asp Val Ala Gln Ala Gly
             25                  30                  35
tac cag ggc acc gtg ctt cct gtg ctg gtg gtt tct tgg att ctg gca    259
Tyr Gln Gly Thr Val Leu Pro Val Leu Val Val Ser Trp Ile Leu Ala
         40                  45                  50
acg atc gag aag ttc ctg cac aag cga ctc aag ggc act gca gac ttc    307
Thr Ile Glu Lys Phe Leu His Lys Arg Leu Lys Gly Thr Ala Asp Phe
     55                  60                  65
ctg atc act cca gtg ctg acg ttg ctg ctc acc gga ttc ctt aca ttc    355
Leu Ile Thr Pro Val Leu Thr Leu Leu Leu Thr Gly Phe Leu Thr Phe
 70                  75                  80                  85
atc gcc att ggc cca gca atg cgc tgg gtg ggc gat gtg ctg gca cac    403
Ile Ala Ile Gly Pro Ala Met Arg Trp Val Gly Asp Val Leu Ala His
                 90                  95                 100
ggt cta cag gga ctt tat gat ttc ggt ggt cca gtc ggc ggt ctg ctc    451
Gly Leu Gln Gly Leu Tyr Asp Phe Gly Gly Pro Val Gly Gly Leu Leu
            105                 110                 115
ttc ggt ctg gtc tac tca cca atc gtc atc act ggt ctg cac cag tcc    499
Phe Gly Leu Val Tyr Ser Pro Ile Val Ile Thr Gly Leu His Gln Ser
        120                 125                 130
ttc ccg cca att gag ctg gag ctg ttt aac cag ggt gga tcc ttc atc    547
Phe Pro Pro Ile Glu Leu Glu Leu Phe Asn Gln Gly Gly Ser Phe Ile
    135                 140                 145
ttc gca acg gca tct atg gct aat atc gcc cag ggt gcg gca tgt ttg    595
Phe Ala Thr Ala Ser Met Ala Asn Ile Ala Gln Gly Ala Ala Cys Leu
150                 155                 160                 165
gca gtg ttc ttc ctg gcg aag agt gaa aag ctc aag ggc ctt gca ggt    643
Ala Val Phe Phe Leu Ala Lys Ser Glu Lys Leu Lys Gly Leu Ala Gly
                170                 175                 180
gct tca ggt gtc tcc gct gtt ctt ggt att acg gag cct gcg atc ttc    691
Ala Ser Gly Val Ser Ala Val Leu Gly Ile Thr Glu Pro Ala Ile Phe
            185                 190                 195
ggt gtg aac ctt cgc ctg cgc tgg ccg ttc ttc atc ggt atc ggt acc    739
Gly Val Asn Leu Arg Leu Arg Trp Pro Phe Phe Ile Gly Ile Gly Thr
        200                 205                 210
gca gct atc ggt ggc gct ttg att gca ctc ttt aat atc aag gca gtt    787
Ala Ala Ile Gly Gly Ala Leu Ile Ala Leu Phe Asn Ile Lys Ala Val
    215                 220                 225
gcg ttg ggc gct gca ggt ttc ttg ggt gtt gtt tct att gat gct cca    835
Ala Leu Gly Ala Ala Gly Phe Leu Gly Val Val Ser Ile Asp Ala Pro
230                 235                 240                 245
gat atg gtc atg ttc ttg gtg tgt gca gtt gtt acc ttc ttc atc gca    883
Asp Met Val Met Phe Leu Val Cys Ala Val Val Thr Phe Phe Ile Ala
                250                 255                 260
ttc ggc gca gcg att gct tat ggc ctt tac ttg gtt cgc cgc aac ggc    931
Phe Gly Ala Ala Ile Ala Tyr Gly Leu Tyr Leu Val Arg Arg Asn Gly
            265                 270                 275
agc att gat cca gat gca acc gct gct cca gtg cct gca gga acg acc    979
Ser Ile Asp Pro Asp Ala Thr Ala Ala Pro Val Pro Ala Gly Thr Thr
        280                 285                 290
aaa gcc gaa gca gaa gca ccc gca gaa ttt tca aac gat tcc acc atc    1027
Lys Ala Glu Ala Glu Ala Pro Ala Glu Phe Ser Asn Asp Ser Thr Ile
    295                 300                 305
atc cag gca cct ttg acc ggt gaa gct att gca ctg agc agc gtc agc    1075
Ile Gln Ala Pro Leu Thr Gly Glu Ala Ile Ala Leu Ser Ser Val Ser
310                 315                 320                 325
gat gcc atg ttt gcc agc gga aag ctt ggc tcg ggc gtt gcc atc gtc    1123
Asp Ala Met Phe Ala Ser Gly Lys Leu Gly Ser Gly Val Ala Ile Val
                330                 335                 340
cca acc aag ggg cag tta gtt tct ccg gtg agt gga aag att gtg gtg    1171
Pro Thr Lys Gly Gln Leu Val Ser Pro Val Ser Gly Lys Ile Val Val
            345                 350                 355
gca ttc cca tct ggc cat gct ttc gca gtt cgc acc aag gct gag gat    1219
Ala Phe Pro Ser Gly His Ala Phe Ala Val Arg Thr Lys Ala Glu Asp
        360                 365                 370
ggt tcc aat gtg gat atc ttg atg cac att ggt ttc gac aca gta aac    1267
Gly Ser Asn Val Asp Ile Leu Met His Ile Gly Phe Asp Thr Val Asn
    375                 380                 385
ctc aac ggc acg cac ttt aac ccg ctg aag aag cag ggc gat gaa gtc    1315
Leu Asn Gly Thr His Phe Asn Pro Leu Lys Lys Gln Gly Asp Glu Val
390                 395                 400                 405
aaa gca ggg gag ctg ctg tgt gaa ttc gat att gat gcc att aag gct    1363
Lys Ala Gly Glu Leu Leu Cys Glu Phe Asp Ile Asp Ala Ile Lys Ala
                410                 415                 420
gca ggt tat gag gta acc acg ccg att gtt gtt tcg aat tac aag aaa  1411
Ala Gly Tyr Glu Val Thr Thr Pro Ile Val Val Ser Asn Tyr Lys Lys
            425                 430                 435
acc gga cct gta aac act tac ggt ttg ggc gaa att gaa gcg gga gcc  1459
Thr Gly Pro Val Asn Thr Tyr Gly Leu Gly Glu Ile Glu Ala Gly Ala
        440                 445                 450
aac ctg ctc aac gtc gca aag aaa gaa gcg gtg cca gca aca cca      1504
Asn Leu Leu Asn Val Ala Lys Lys Glu Ala Val Pro Ala Thr Pro
    455                 460                 465
taagttgaaa ccttgagtgt tcg                                        1527
<210>2
<211>468
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>2
Met Ala Met Val Phe Pro Ser Leu Val Asn Gly Tyr Asp Val Ala Ala
  1               5                  10                  15
Thr Met Ala Ala Gly Glu Met Pro Met Trp Ser Leu Phe Gly Leu Asp
             20                  25                  30
Val Ala Gln Ala Gly Tyr Gln Gly Thr Val Leu Pro Val Leu Val Val
         35                  40                  45
Ser Trp Ile Leu Ala Thr Ile Glu Lys Phe Leu His Lys Arg Leu Lys
     50                  55                  60
Gly Thr Ala Asp Phe Leu Ile Thr Pro Val Leu Thr Leu Leu Leu Thr
 65                  70                  75                  80
Gly Phe Leu Thr Phe Ile Ala Ile Gly Pro Ala Met Arg Trp Val Gly
                 85                  90                  95
Asp Val Leu Ala His Gly Leu Gln Gly Leu Tyr Asp Phe Gly Gly Pro
            100                 105                 110
Val Gly Gly Leu Leu Phe Gly Leu Val Tyr Ser Pro Ile Val Ile Thr
        115                 120                 125
Gly Leu His Gln Ser Phe Pro Pro Ile Glu Leu Glu Leu Phe Asn Gln
    130                 135                 140
Gly Gly Ser Phe Ile Phe Ala Thr Ala Ser Met Ala Asn Ile Ala Gln
145                 150                 155                 160
Gly Ala Ala Cys Leu Ala Val Phe Phe Leu Ala Lys Ser Glu Lys Leu
                165                 170                 175
Lys Gly Leu Ala Gly Ala Ser Gly Val Ser Ala Val Leu Gly Ile Thr
            180                 185                 190
Glu Pro Ala Ile Phe Gly Val Asn Leu Arg Leu Arg Trp Pro Phe Phe
        195                 200                 205
Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly Ala Leu Ile Ala Leu Phe
    210                 215                 220
Asn Ile Lys Ala Val Ala Leu Gly Ala Ala Gly Phe Leu Gly Val Val
225                 230                 235                 240
Ser Ile Asp Ala Pro Asp Met Val Met Phe Leu Val Cys Ala Val Val
                245                 250                 255
Thr Phe Phe Ile Ala Phe Gly Ala Ala Ile Ala Tyr Gly Leu Tyr Leu
            260                 265                 270
Val Arg Arg Asn Gly Ser Ile Asp Pro Asp Ala Thr Ala Ala Pro Val
        275                 280                 285
Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu Ala Pro Ala Glu Phe Ser
    290                 295                 300
Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu Thr Gly Glu Ala Ile Ala
305                 310                 315                 320
Leu Ser Ser Val Ser Asp Ala Met Phe Ala Ser Gly Lys Leu Gly Ser
                325                 330                 335
Gly Val Ala Ile Val Pro Thr Lys Gly Gln Leu Val Ser Pro Val Ser
            340                 345                 350
Gly Lys Ile Val Val Ala Phe Pro Ser Gly His Ala Phe Ala Val Arg
        355                 360                 365
Thr Lys Ala Glu Asp Gly Ser Asn Val Asp Ile Leu Met His Ile Gly
    370                 375                 380
Phe Asp Thr Val Asn Leu Asn Gly Thr His Phe Asn Pro Leu Lys Lys
385                 390                 395                 400
Gln Gly Asp Glu Val Lys Ala Gly Glu Leu Leu Cys Glu Phe Asp Ile
                405                 410                 415
Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val Thr Thr Pro Ile Val Val
            420                 425                 430
Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn Thr Tyr Gly Leu Gly Glu
        435                 440                 445
Ile Glu Ala Gly Ala Asn Leu Leu Asn Val Ala Lys Lys Glu Ala Val
    450                 455                 460
Pro Ala Thr Pro
465
<210>3
<211>1109
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(1)..(1086)
<223>FRXA00315
<400>3
tat gat ttc ggc ggt cca gtc ggc ggt ctg ctc ttc ggt ctg gtc tac  48
Tyr Asp Phe Gly Gly Pro Val Gly Gly Leu Leu Phe Gly Leu Val Tyr
  1               5                  10                  15
tca cca atc gtc atc act ggt ctg cac cag tcc ttc ccg cca att gag  96
Ser Pro Ile Val Ile Thr Gly Leu His Gln Ser Phe Pro Pro Ile Glu
             20                  25                  30
ctg gag ctg ttt aac cag ggt gga tcc ttc atc rtc gca acg gca tct  144
Leu Glu Leu Phe Asn Gln Gly Gly Ser Phe Ile Phe Ala Thr Ala Ser
         35                  40                  45
atg gct aat atc gcc cag ggt gcg gca tgt ttg gca gtg ttc ttc ctg  192
Met Ala Asn Ile Ala Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu
     50                  55                  60
gcg aag agt gaa aag ctc aag ggc ctt gca ggt gct tca ggt gtc tcc  240
Ala Lys Ser Glu Lys Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser
 65                  70                  75                  80
gct gtt ctt ggt att acg gag cct gcg atc ttc ggt gtg aac ctt cgc    288
Ala Val Leu Gly Ile Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg
                 85                  90                  95
ctg cgc tgg ccg ttc ttc atc ggt atc ggt acc gca gct atc ggt ggc    336
Leu Arg Trp Pro Phe Phe Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly
            100                 105                 110
gct ttg att gca ctc ttt aat atc aag gca gtt gcg ttg ggc gct gca    384
Ala Leu Ile Ala Leu Phe Asn Ile Lys Ala Val Ala Leu Gly Ala Ala
        115                 120                 125
ggt ttc ttg ggt gtt gtt tct att gat gct cca gat atg gtc atg ttc    432
Gly Phe Leu Gly Val Val Ser Ile Asp Ala Pro Asp Met Val Met Phe
    130                 135                 140
ttg gtg tgt gca gtt gtt acc ttc ttc atc gca ttc ggc gca gcg att    480
Leu Val Cys Ala Val Val Thr Phe Phe Ile Ala Phe Gly Ala Ala Ile
145                 150                 155                 160
gct tat ggc ctt tac ttg gtt cgc cgc aac ggc agc att gat cca gat    528
Ala Tyr Gly Leu Tyr Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp
                165                 170                 175
gca acc gct gct cca gtg cct gca gga acg acc aaa gcc gaa gca gaa    576
Ala Thr Ala Ala Pro Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu
            180                 185                 190
gca ccc gca gaa ttt tca aac gat tcc acc atc atc cag gca cct ttg    624
Ala Pro Ala Glu Phe Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu
        195                 200                 205
acc ggt gaa gct att gca ctg agc agc gtc agc gat gcc atg ttt gcc    672
Thr Gly Glu Ala Ile Ala Leu Ser Ser Val Ser Asp Ala Met Phe Ala
    210                 215                 220
agc gga aag ctt ggc tcg ggc gtt gcc atc gtc cca acc aag ggg cag    720
Ser Gly Lys Leu Gly Ser Gly Val Ala Ile Val Pro Thr Lys Gly Gln
225                 230                 235                 240
tta gtt tct ccg gtg agt gga aag att gtg gtg gca ttc cca tct ggc    768
Leu Val Ser Pro Val Ser Gly Lys Ile Val Val Ala Phe Pro Ser Gly
                245                 250                 255
cat gct ttc gca gtt cgc acc aag gct gag gat ggt tcc aat gtg gat    816
His Ala Phe Ala Val Arg Thr Lys Ala Glu Asp Gly Ser Asn Val Asp
            260                 265                 270
atc ttg atg cac att ggt ttc gac aca gta aac ctc aac ggc acg cac  864
Ile Leu Met His Ile Gly Phe Asp Thr Val Asn Leu Asn Gly Thr His
         275                 280                 285
ttt aac ccg ctg aag aag cag ggc gat gaa gtc aaa gca ggg gag ctg  912
Phe Asn Pro Leu Lys Lys Gln Gly Asp Glu Val Lys Ala Gly Glu Leu
    290                 295                 300
ctg tgt gaa ttc gat att gat gcc att aag gct gca ggt tat gag gta  960
Leu Cys Glu Phe Asp Ile Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val
305                 310                 315                 320
acc acg ccg att gtt gtt tcg aat tac aag aaa acc gga cct gta aac  1008
Thr Thr Pro Ile Val Val Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn
                325                 330                 335
act tac ggt ttg ggc gaa att gaa gcg gga gcc aac ctg ctc aac gtc  1056
Thr Tyr Gly Leu Gly Glu Ile Glu Ala Gly Ala Asn Leu Leu Asn Val
            340                 345                 350
gca aag aaa gaa gcg gtg cca gca aca cca taagttgaaa ccttgagtgt    1106
Ala Lys Lys Glu Ala Val Pro Ala Thr Pro
        355                 360
tcg                                                              1109
<210>4
<211>362
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>4
Tyr Asp Phe Gly Gly Pro Val Gly Gly Leu Leu Phe Gly Leu Val Tyr
  1               5                  10                  15
Ser Pro Ile Val Ile Thr Gly Leu His Gln Ser Phe Pro Pro Ile Glu
             20                  25                  30
Leu Glu Leu Phe Asn Gln Gly Gly Ser Phe Ile Phe Ala Thr Ala Ser
         35                  40                  45
Met Ala Asn Ile Ala Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu
     50                  55                  60
Ala Lys Ser Glu Lys Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser
 65                  70                  75                  80
Ala Val Leu Gly Ile Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg
                 85                  90                  95
Leu Arg Trp Pro Phe Phe Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly
            100                 105                 110
Ala Leu Ile Ala Leu Phe Asn Ile Lys Ala Val Ala Leu Gly Ala Ala
        115                 120                 125
Gly Phe Leu Gly Val Val Ser Ile Asp Ala Pro Asp Met Val Met Phe
    130                 135                 140
Leu Val Cys Ala Val Val Thr Phe Phe Ile Ala Phe Gly Ala Ala Ile
145                 150                 155                 160
Ala Tyr Gly Leu Tyr Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp
                165                 170                 175
Ala Thr Ala Ala Pro Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu
            180                 185                 190
Ala Pro Ala Glu Phe Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu
        195                 200                 205
Thr Gly Glu Ala Ile Ala Leu Ser Ser Val Ser Asp Ala Met Phe Ala
    210                 215                 220
Ser Gly Lys Leu Gly Ser Gly Val Ala Ile Val Pro Thr Lys Gly Gln
225                 230                 235                 240
Leu Val Ser Pro Val Ser Gly Lys Ile Val Val Ala Phe Pro Ser Gly
                245                 250                 255
His Ala Phe Ala Val Arg Thr Lys Ala Glu Asp Gly Ser Asn Val Asp
            260                 265                 270
Ile Leu Met His Ile Gly Phe Asp Thr Val Asn Leu Asn Gly Thr His
        275                 280                 285
Phe Asn Pro Leu Lys Lys Gln Gly Asp Glu Val Lys Ala Gly Glu Leu
    290                 295                 300
Leu Cys Glu Phe Asp Ile Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val
305                 310                 315                 320
Thr Thr Pro Ile Val Val Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn
                325                 330                 335
Thr Tyr Gly Leu Gly Glu Ile Glu Ala Gly Ala Asn Leu Leu Asn Val
            340                 345                 350
Ala Lys Lys Glu Ala Val Pro Ala Thr Pro
        355                 360
<210>5
<211>372
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(349)
<223>RXA01503
<400>5
gtatcctcaa aggccttcta gctgttgcag ctgcagcgca ctcggtggat acgacatcca 60
cgacctatca aattctttat gctgcaggcg atgccttttc atg ttc ttg gca gtc   115
                                            Met Phe Leu Ala Val
                                              1               5
att ttg gcg att act gcg gct cgt aaa ttc ggt gcc aat gtc ttt aca   163
Ile Leu Ala Ile Thr Ala Ala Arg Lys Phe Gly Ala Asn Val Phe Thr
                 10                  15                  20
tca gtc gca ctc gct ggt gca ttg ctg cac aca cag ctt cag gca gta   211
Ser Val Ala Leu Ala Gly Ala Leu Leu His Thr Gln Leu Gln Ala Val
             25                  30                  35
acc gtg ttg gtt gac ggt gaa ctc cag tcg atg act ctg gtg gct ttc   259
Thr Val Leu Val Asp Gly Glu Leu Gln Ser Met Thr Leu Val Ala Phe
         40                  45                  50
caa aag gct ggt aat gac gtc acc ttc ctg ggc att cca gtg gtg ctg   307
Gln Lys Ala Gly Asn Asp Val Thr Phe Leu Gly Ile Pro Val Val Leu
     55                  60                  65
cag ttg gcg ttg cat gta gcg agt ttg atg aag ttg tcg cga           349
Gln Leu Ala Leu His Val Ala Ser Leu Met Lys Leu Ser Arg
 70                  75                  80
taagaggagg ggcgtgtcgg tct                                         372
<210>6
<211>83
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>6
Met Phe Leu Ala Val Ile Leu Ala Ile Thr Ala Ala Arg Lys Phe Gly
  1               5                  10                  15
Ala Asn Val Phe Thr Ser Val Ala Leu Ala Gly Ala Leu Leu His Thr
             20                  25                  30
Gln Leu Gln Ala Val Thr Val Leu Val Asp Gly Glu Leu Gln Ser Met
         35                  40                  45
Thr Leu Val Ala Phe Gln Lys Ala Gly Asn Asp Val Thr Phe Leu Gly
     50                  55                  60
Ile Pro Val Val Leu Gln Leu Ala Leu His Val Ala Ser Leu Met Lys
 65                  70                  75                  80
Leu Ser Arg
<210>7
<211>2187
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(2164)
<223>RXN01299
<400>7
cgactgcggc gtctcttcct ggcactacca ttcctcgtcc tgaccaactc gccacagctg 60
gtgcaacggt cacccaagtc aaaggattga aagaatcagc atg aat agc gta aat   115
                                            Met Asn Ser Val Asn
                                              1               5
aat tcc tcg ctt gtc cgg ctg gat gtc gat ttc ggc gac tcc acc acg   163
Asn Ser Ser Leu Val Arg Leu Asp Val Asp Phe Gly Asp Ser Thr Thr
                 10                  15                  20
gat gtc atc aac aac ctt gcc act gtt att ttc gac gct ggc cga gct   211
Asp Val Ile Asn Asn Leu Ala Thr Val Ile Phe Asp Ala Gly Arg Ala
             25                  30                  35
tcc tcc gcc gac gcc ctt gcc aaa gac gcg ctg gat cgt gaa gca aag    259
Ser Ser Ala Asp Ala Leu Ala Lys Asp Ala Leu Asp Arg Glu Ala Lys
         40                  45                  50
tcc ggc acc ggc gtt cct ggt caa gtt gct atc ccc cac tgc cgt tcc    307
Ser Gly Thr Gly Val Pro Gly Gln Val Ala Ile Pro His Cys Arg Ser
    55                  60                  65
gaa gcc gta tct gtc cct acc ttg ggc ttt gct cgc ctg agc aag ggt    355
Glu Ala Val Ser Val Pro Thr Leu Gly Phe Ala Arg Leu Ser Lys Gly
 70                  75                  80                  85
gtg gac ttc agc gga cct gat ggc gat gcc aac ttg gtg ttc ctc att    403
Val Asp Phe Ser Gly Pro Asp Gly Asp Ala Asn Leu Val Phe Leu Ile
                 90                  95                 100
gca gca cct gct ggc ggc ggc aaa gag cac ctg aag atc ctg tcc aag    451
Ala Ala Pro Ala Gly Gly Gly Lys Glu His Leu Lys Ile Leu Ser Lys
            105                 110                 115
ctt gct cgc tcc ttg gtg aag aag gat ttc atc aag gct ctg cag gaa    499
Leu Ala Arg Ser Leu Val Lys Lys Asp Phe Ile Lys Ala Leu Gln Glu
        120                 125                 130
gcc acc acc gag cag gaa atc gtc gac gtt gtc gat gcc gtg ctc aac    547
Ala Thr Thr Glu Gln Glu Ile Val Asp Val Val Asp Ala Val Leu Asn
    135                 140                 145
cca gca cca aaa acc acc gag cca gct gca gct ccg gct gcg gcg gcg    595
Pro Ala Pro Lys Thr Thr Glu Pro Ala Ala Ala Pro Ala Ala Ala Ala
150                 155                 160                 165
gtt gct gag agt ggg gcg gcg tcg aca agc gtt act cgt atc gtg gca    643
Val Ala Glu Ser Gly Ala Ala Ser Thr Ser Val Thr Arg Ile Val Ala
                170                 175                 180
atc acc gca tgc cca acc ggt atc gca cac acc tac atg gct gcg gat    691
Ile Thr Ala Cys Pro Thr Gly Ile Ala His Thr Tyr Met Ala Ala Asp
            185                 190                 195
tcc ctg acg caa aac gcg gaa ggc cgc gat gat gtg gaa ctc gtt gtg    739
Ser Leu Thr Gln Asn Ala Glu Gly Arg Asp Asp Val Glu Leu Val Val
        200                 205                 210
gag act cag ggc tct tcc gct gtc acc cca gtc gat ccg aag atc atc    787
Glu Thr Gln Gly Ser Ser Ala Val Thr Pro Val Asp Pro Lys Ile Ile
    215                 220                 225
gaa gct gcc gac gcc gtc atc ttc gcc acc gac gtg gga gtt aaa gac    835
Glu Ala Ala Asp Ala Val Ile Phe Ala Thr Asp Val Gly Val Lys Asp
230                 235                 240                 245
cgc gag cgt ttc gct ggc aag cca gtc att gaa tcc ggc gtc aag cgc    883
Arg Glu Arg Phe Ala Gly Lys Pro Val Ile Glu Ser Gly Val Lys Arg
                250                 255                 260
gcg atc aat gag cca gcc aag atg atc gac gag gcc atc gca gcc tcc    931
Ala Ile Asn Glu Pro Ala Lys Met Ile Asp Glu Ala Ile Ala Ala Ser
            265                 270                 275
aag aac cca aac gcc cgc aag gtt tcc ggt tcc ggt gtc gcg gca tct    979
Lys Asn Pro Asn Ala Arg Lys Val Ser Gly Ser Gly Val Ala Ala Ser
        280                 285                 290
gct gaa acc acc ggc gag aag ctc ggc tgg ggc aag cgc atc cag cag    1027
Ala Glu Thr Thr Gly Glu Lys Leu Gly Trp Gly Lys Arg Ile Gln Gln
    295                 300                 305
gca gtc atg acc ggc gtg tcc tac atg gtt cca ttc gta gct gcc ggc    1075
Ala Val Met Thr Gly Val Ser Tyr Met Val Pro Phe Val Ala Ala Gly
310                 315                 320                 325
ggc ctc ctg ttg gct ctc ggc ttc gca ttc ggt gga tac gac atg gcg    1123
Gly Leu Leu Leu Ala Leu Gly Phe Ala Phe Gly Gly Tyr Asp Met Ala
                330                 335                 340
aac ggc tgg caa gca atc gcc acc cag ttc tct ctg acc aac ctg cca    1171
Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe Ser Leu Thr Asn Leu Pro
            345                 350                 355
ggc aac acc gtc gat gtt gac ggc gtg gcc atg acc ttc gag cgt tca    1219
Gly Asn Thr Val Asp Val Asp Gly Val Ala Met Thr Phe Glu Arg Ser
        360                 365                 370
ggc ttc ctg ttg tac ttc ggc gca gtc ctg ttc gcc acc ggc caa gca    1267
Gly Phe Leu Leu Tyr Phe Gly Ala Val Leu Phe Ala Thr Gly Gln Ala
    375                 380                 385
gcc atg ggc ttc atc gtg gca gcc ctg tct ggc tac acc gca tac gca    1315
Ala Met Gly Phe Ile Val Ala Ala Leu Ser Gly Tyr Thr Ala Tyr Ala
390                 395                 400                 405
ctt gct gga cgc cca ggc atc gcg ccg ggc ttc gtc ggt ggc gcc atc    1363
Leu Ala Gly Arg Pro Gly Ile Ala Pro Gly Phe Val Gly Gly Ala Ile
                410                 415                 420
tcc gtc acc atc ggc gct ggc ttc att ggt ggt ctg gtt acc ggt atc    1411
Ser Val Thr Ile Gly Ala Gly Phe Ile Gly Gly Leu Val Thr Gly Ile
            425                 430                 435
ttg gct ggt ctc att gcc ctg tgg att ggc tcc tgg aag gtg cca cgc    1459
Leu Ala Gly Leu Ile Ala Leu Trp Ile Gly Ser Trp Lys Val Pro Arg
        440                 445                 450
gtg gtg cag tca ctg atg cct gtg gtc atc atc ccg cta ctt acc tca    1507
Val Val Gln Ser Leu Met Pro Val Val Ile Ile Pro Leu Leu Thr Ser
    455                 460                 465
gtg gtt gtt ggt ctc gtc atg tac ctc ctg ctg ggt cgc cca ctc gca    1555
Val Val Val Gly Leu Val Met Tyr Leu Leu Leu Gly Arg Pro Leu Ala
470                 475                 480                 485
tcc atc atg act ggt ttg cag gac tgg cta tcg tca atg tcc gga agc    1603
Ser Ile Met Thr Gly Leu Gln Asp Trp Leu Ser Ser Met Ser Gly Ser
                490                 495                 500
tcc gcc atc ttg ctg ggt atc atc ttg ggc ctc atg atg tgt ttc gac    1651
Ser Ala Ile Leu Leu Gly Ile Ile Leu Gly Leu Met Met Cys Phe Asp
            505                 510                 515
ctc ggc gga cca gta aac aag gca gcc tac ctc ttt ggt acc gca ggc    1699
Leu Gly Gly Pro Val Asn Lys Ala Ala Tyr Leu Phe Gly Thr Ala Gly
        520                 525                 530
ctg tct acc ggc gac caa gct tcc atg gaa atc atg gcc gcg atc atg    1747
Leu Ser Thr Gly Asp Gln Ala Ser Met Glu Ile Met Ala Ala Ile Met
    535                 540                 545
gca gct ggc atg gtc cca cca atc gcg ttg tcc att gct acc ctg ctg    1795
Ala Ala Gly Met Val Pro Pro Ile Ala Leu Ser Ile Ala Thr Leu Leu
550                 555                 560                 565
cgc aag aag ctg ttc acc cca gca gag caa gaa aac ggc aag tct tcc    1843
Arg Lys Lys Leu Phe Thr Pro Ala Glu Gln Glu Asn Gly Lys Ser Ser
                570                 575                 580
tgg ctg ctt ggc ctg gca ttc gtc tcc gaa ggt gcc atc cca ttc gcc    1891
Trp Leu Leu Gly Leu Ala Phe Val Ser Glu Gly Ala Ile Pro Phe Ala
            585                 590                 595
gca gct gac cca ttc cgt gtg atc cca gca atg atg gct ggc ggt gca    1939
Ala Ala Asp Pro Phe Arg Val Ile Pro Ala Met Met Ala Gly Gly Ala
        600                 605                 610
acc act ggt gca atc tcc atg gca ctg ggc gtc ggc tct cgg gct cca   1987
Thr Thr Gly Ala Ile Ser Met Ala Leu Gly Val Gly Ser Arg Ala Pro
    615                 620                 625
cac ggc ggt atc ttc gtg gtc tgg gca atc gaa cca tgg tgg ggc tgg   2035
His Gly Gly Ile Phe Val Val Trp Ala Ile Glu Pro Trp Trp Gly Trp
630                 635                 640                 645
ctc atc gca ctt gca gca ggc acc atc gtg tcc acc atc gtt gtc atc   2083
Leu Ile Ala Leu Ala Ala Gly Thr Ile Val Ser Thr Ile Val Val Ile
                650                 655                 660
gca ctg aag cag ttc tgg cca aac aag gcc gtc gct gca gaa gtc gcg   2131
Ala Leu Lys Gln Phe Trp Pro Asn Lys Ala Val Ala Ala Glu Val Ala
            665                 670                 675
aag caa gaa gca caa caa gca gct gta aac gca taatcggacc ttgacccgat 2184
Lys Gln Glu Ala Gln Gln Ala Ala Val Asn Ala
        680                 685
gtc                                                               2187
<210>8
<211>688
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>8
Met Asn Ser Val Asn Asn Ser Ser Leu Val Arg Leu Asp Val Asp Phe
  1               5                  10                  15
Gly Asp Ser Thr Thr Asp Val Ile Asn Asn Leu Ala Thr Val Ile Phe
             20                  25                  30
Asp Ala Gly Arg Ala Ser Ser Ala Asp Ala Leu Ala Lys Asp Ala Leu
         35                  40                  45
Asp Arg Glu Ala Lys Ser Gly Thr Gly Val Pro Gly Gln Val Ala Ile
     50                  55                  60
Pro His Cys Arg Ser Glu Ala Val Ser Val Pro Thr Leu Gly Phe Ala
 65                  70                  75                  80
Arg Leu Ser Lys Gly Val Asp Phe Ser Gly Pro Asp Gly Asp Ala Asn
                 85                  90                  95
Leu Val Phe Leu Ile Ala Ala Pro Ala Gly Gly Gly Lys Glu His Leu
            100                 105                 110
Lys Ile Leu Ser Lys Leu Ala Arg Ser Leu Val Lys Lys Asp Phe Ile
        115                 120                 125
Lys Ala Leu Gln Glu Ala Thr Thr Glu Gln Glu Ile Val Asp Val Val
    130                 135                 140
Asp Ala Val Leu Asn Pro Ala Pro Lys Thr Thr Glu Pro Ala Ala Ala
145                 150                 155                 160
Pro Ala Ala Ala Ala Val Ala Glu Ser Gly Ala Ala Ser Thr Ser Val
                165                 170                 175
Thr Arg Ile Val Ala Ile Thr Ala Cys Pro Thr Gly Ile Ala His Thr
            180                 185                 190
Tyr Met Ala Ala Asp Ser Leu Thr Gln Asn Ala Glu Gly Arg Asp Asp
        195                 200                 205
Val Glu Leu Val Val Glu Thr Gln Gly Ser Ser Ala Val Thr Pro Val
    210                 215                 220
Asp Pro Lys Ile Ile Glu Ala Ala Asp Ala Val Ile Phe Ala Thr Asp
225                 230                 235                 240
Val Gly Val Lys Asp Arg Glu Arg Phe Ala Gly Lys Pro Val Ile Glu
                245                 250                 255
Ser Gly Val Lys Arg Ala Ile Asn Glu Pro Ala Lys Met Ile Asp Glu
            260                 265                 270
Ala Ile Ala Ala Ser Lys Asn Pro Asn Ala Arg Lys Val Ser Gly Ser
        275                 280                 285
Gly Val Ala Ala Ser Ala Glu Thr Thr Gly Glu Lys Leu Gly Trp Gly
    290                 295                 300
Lys Arg Ile Gln Gln Ala Val Met Thr Gly Val Ser Tyr Met Val Pro
305                 310                 315                 320
Phe Val Ala Ala Gly Gly Leu Leu Leu Ala Leu Gly Phe Ala Phe Gly
                325                 330                 335
Gly Tyr Asp Met Ala Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe Ser
            340                 345                 350
Leu Thr Asn Leu Pro Gly Asn Thr Val Asp Val Asp Gly Val Ala Met
        355                 360                 365
Thr Phe Glu Arg Ser Gly Phe Leu Leu Tyr Phe Gly Ala Val Leu Phe
    370                 375                 380
Ala Thr Gly Gln Ala Ala Met Gly Phe Ile Val Ala Ala Leu Ser Gly
385                 390                 395                 400
Tyr Thr Ala Tyr Ala Leu Ala Gly Arg Pro Gly Ile Ala Pro Gly Phe
                405                 410                 415
Val Gly Gly Ala Ile Ser Val Thr Ile Gly Ala Gly Phe Ile Gly Gly
            420                 425                 430
Leu Val Thr Gly Ile Leu Ala Gly Leu Ile Ala Leu Trp Ile Gly Ser
        435                 440                 445
Trp Lys Val Pro Arg Val Val Gln Ser Leu Met Pro Val Val Ile Ile
    450                 455                 460
Pro Leu Leu Thr Ser Val Val Val Gly Leu Val Met Tyr Leu Leu Leu
465                 470                 475                 480
Gly Arg Pro Leu Ala Ser Ile Met Thr Gly Leu Gln Asp Trp Leu Ser
                485                 490                 495
Ser Met Ser Gly Ser Ser Ala Ile Leu Leu Gly Ile Ile Leu Gly Leu
            500                 505                 510
Met Met Cys Phe Asp Leu Gly Gly Pro Val Asn Lys Ala Ala Tyr Leu
        515                 520                 525
Phe Gly Thr Ala Gly Leu Ser Thr Gly Asp Gln Ala Ser Met Glu Ile
    530                 535                 540
Met Ala Ala Ile Met Ala Ala Gly Met Val Pro Pro Ile Ala Leu Ser
545                 550                 555                 560
Ile Ala Thr Leu Leu Arg Lys Lys Leu Phe Thr Pro Ala Glu Gln Glu
                565                 570                 575
Asn Gly Lys Ser Ser Trp Leu Leu Gly Leu Ala Phe Val Ser Glu Gly
            580                 585                 590
Ala Ile Pro Phe Ala Ala Ala Asp Pro Phe Arg Val Ile Pro Ala Met
        595                 600                 605
Met Ala Gly Gly Ala Thr Thr Gly Ala Ile Ser Met Ala Leu Gly Val
    610                 615                 620
Gly Ser Arg Ala Pro His Gly Gly Ile Phe Val Val Trp Ala Ile Glu
625                 630                 635                 640
Pro Trp Trp Gly Trp Leu Ile Ala Leu Ala Ala Gly Thr Ile Val Ser
                645                 650                 655
Thr Ile Val Val Ile Ala Leu Lys Gln Phe Trp Pro Asn Lys Ala Val
            660                 665                 670
Ala Ala Glu Val Ala Lys Gln Glu Ala Gln Gln Ala Ala Val Asn Ala
        675                 680                 685
<210>9
<211>464
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(1)..(441)
<223>FRXA01299
<400>9
atg gaa atc atg gcc gcg atc atg gca gct ggc atg gtc cca cca atc  48
Met Glu Ile Met Ala Ala Ile Met Ala Ala Gly Met Val Pro Pro Ile
  1               5                  10                  15
gcg ttg tcc att gct acc ctg ctg cgc aag aag ctg ttc acc cca gca  96
Ala Leu Ser Ile Ala Thr Leu Leu Arg Lys Lys Leu Phe Thr Pro Ala
             20                  25                  30
gag caa gaa aac ggc aag tct tcc tgg ctg ctt ggc ctg gca ttc gtc  144
Glu Gln Glu Asn Gly Lys Ser Ser Trp Leu Leu Gly Leu Ala Phe Val
         35                  40                  45
tcc gaa ggt gcc atc cca ttc gcc gca gct gac cca ttc cgt gtg atc  192
Ser Glu Gly Ala Ile Pro Phe Ala Ala Ala Asp Pro Phe Arg Val Ile
     50                  55                  60
cca gca atg atg gct ggc ggt gca acc act ggt gca atc tcc atg gca  240
Pro Ala Met Met Ala Gly Gly Ala Thr Thr Gly Ala Ile Ser Met Ala
 65                  70                  75                  80
ctg ggc gtc ggc tct cgg gct cca cac ggc ggt atc ttc gtg gtc tgg  288
Leu Gly Val Gly Ser Arg Ala Pro His Gly Gly Ile Phe Val Val Trp
                 85                  90                  95
gca atc gaa cca tgg tgg ggc tgg ctc atc gca ctt gca gca ggc acc  336
Ala Ile Glu Pro Trp Trp Gly Trp Leu Ile Ala Leu Ala Ala Gly Thr
            100                 105                 110
atc gtg tcc acc atc gtt gtc atc gca ctg aag cag ttc tgg cca aac  384
Ile Val Ser Thr Ile Val Val Ile Ala Leu Lys Gln Phe Trp Pro Asn
        115                 120                 125
aag gcc gtc gct gca gaa gtc gcg aag caa gaa gca caa caa gca gct  432
Lys Ala Val Ala Ala Glu Val Ala Lys Gln Glu Ala Gln Gln Ala Ala
    130                 135                 140
gta aac gca taatcggacc ttgacccgat gtc                            464
Val Asn Ala
145
<210>10
<211>147
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>10
Met Glu Ile Met Ala Ala Ile Met Ala Ala Gly Met Val Pro Pro Ile
  1               5                  10                  15
Ala Leu Ser Ile Ala Thr Leu Leu Arg Lys Lys Leu Phe Thr Pro Ala
             20                  25                  30
Glu Gln Glu Asn Gly Lys Ser Ser Trp Leu Leu Gly Leu Ala Phe Val
         35                  40                  45
Ser Glu Gly Ala Ile Pro Phe Ala Ala Ala Asp Pro Phe Arg Val Ile
     50                  55                  60
Pro Ala Met Met Ala Gly Gly Ala Thr Thr Gly Ala Ile Ser Met Ala
 65                  70                  75                  80
Leu Gly Val Gly Ser Arg Ala Pro His Gly Gly Ile Phe Val Val Trp
                 85                  90                  95
Ala Ile Glu Pro Trp Trp Gly Trp Leu Ile Ala Leu Ala Ala Gly Thr
            100                 105                 110
Ile Val Ser Thr Ile Val Val Ile Ala Leu Lys Gln Phe Trp Pro Asn
        115                 120                 125
Lys Ala Val Ala Ala Glu Val Ala Lys Gln Glu Ala Gln Gln Ala Ala
    130                 135                 140
Val Asn Ala
145
<210>11
<211>580
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(580)
<223>FRXA01883
<400>11
cgactgcggc gtctcttcct ggcactacca ttcctcgtcc tgaccaactc gccacagctg 60
gtgcaacggt cacccaagtc aaaggattga aagaatcagc atg aat agc gta aat   115
                                            Met Asn Ser Val Asn
                                              1               5
aat tcc tcg ctt gtc cgg ctg gat gtc gat ttc ggc gac tcc acc acg   163
Asn Ser Ser Leu Val Arg Leu Asp Val Asp Phe Gly Asp Ser Thr Thr
                 10                  15                  20
gat gtc atc aac aac ctt gcc act gtt att ttc gac gct ggc cga gct   211
Asp Val Ile Asn Asn Leu Ala Thr Val Ile Phe Asp Ala Gly Arg Ala
             25                  30                  35
tcc tcc gcc gac gcc ctt gcc aaa gac gcg ctg gat cgt gaa gca aag   259
Ser Ser Ala Asp Ala Leu Ala Lys Asp Ala Leu Asp Arg Glu Ala Lys
         40                  45                  50
tcc ggc acc ggc gtt cct ggt caa gtt gct atc ccc cac tgc cgt tcc   307
Ser Gly Thr Gly Val Pro Gly Gln Val Ala Ile Pro His Cys Arg Ser
     55                  60                  65
gaa gcc gta tct gtc cct acc ttg ggc ttt gct cgc ctg agc aag ggt   355
Glu Ala Val Ser Val Pro Thr Leu Gly Phe Ala Arg Leu Ser Lys Gly
 70                  75                  80                  85
gtg gac ttc agc gga cct gat ggc gat gcc aac ttg gtg ttc ctc att  403
Val Asp Phe Ser Gly Pro Asp Gly Asp Ala Asn Leu Val Phe Leu Ile
                 90                  95                 100
gca gca cct gct ggc ggc ggc aaa gag cac ctg aag atc ctg tcc aag  451
Ala Ala Pro Ala Gly Gly Gly Lys Glu His Leu Lys Ile Leu Ser Lys
            105                 110                 115
ctt gct cgc tcc ttg gtg aag aag gat ttc atc aag gct ctg cag gaa  499
Leu Ala Arg Ser Leu Val Lys Lys Asp Phe Ile Lys Ala Leu Gln Glu
        120                 125                 130
gcc acc acc gag cag gaa atc gtc gac gtt gtc gat gcc gtg ctc aac  547
Ala Thr Thr Glu Gln Glu Ile Val Asp Val Val Asp Ala Val Leu Asn
    135                 140                 145
cca gca cca aaa aac cac cga gcc agc tgc agc                      580
Pro Ala Pro Lys Asn His Arg Ala Ser Cys Ser
150                 155                 160
<210>12
<211>160
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>12
Met Asn Ser Val Asn Asn Ser Ser Leu Val Arg Leu Asp Val Asp Phe
  1               5                  10                  15
Gly Asp Ser Thr Thr Asp Val Ile Asn Asn Leu Ala Thr Val Ile Phe
             20                  25                  30
Asp Ala Gly Arg Ala Ser Ser Ala Asp Ala Leu Ala Lys Asp Ala Leu
         35                  40                  45
Asp Arg Glu Ala Lys Ser Gly Thr Gly Val Pro Gly Gln Val Ala Ile
     50                  55                  60
Pro His Cys Arg Ser Glu Ala Val Ser Val Pro Thr Leu Gly Phe Ala
 65                  70                  75                  80
Arg Leu Ser Lys Gly Val Asp Phe Ser Gly Pro Asp Gly Asp Ala Asn
                 85                  90                  95
Leu Val Phe Leu Ile Ala Ala Pro Ala Gly Gly Gly Lys Glu His Leu
            100                 105                 110
Lys Ile Leu Ser Lys Leu Ala Arg Ser Leu Val Lys Lys Asp Phe Ile
        115                 120                 125
Lys Ala Leu Gln Glu Ala Thr Thr Glu Gln Glu Ile Val Asp Val Val
    130                 135                 140
Asp Ala Val Leu Asn Pro Ala Pro Lys Asn His Arg Ala Ser Cys Ser
145                 150                 155                 160
<210>13
<211>631
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(77)..(631)
<223>FRXA01889
<400>13
accgagccag ctgcagctcc ggctgcggcg gccggttgtt aagagtgggg cggcgtcgac 60
aagcgttact cgtatc gtg gca atc acc gca tgc cca acc ggt atc gca cac 112
                  Val Ala Ile Thr Ala Cys Pro Thr Gly Ile Ala His
                    1               5                  10
acc tac atg gct gcg gat tcc ctg acg caa aac gcg gaa ggc cgc gat   160
Thr Tyr Met Ala Ala Asp Ser Leu Thr Gln Asn Ala Glu Gly Arg Asp
         15                  20                  25
gat gtg gaa ctc gtt gtg gag act cag ggc tct tcc gct gtc acc cca   208
Asp Val Glu Leu Val Val Glu Thr Gln Gly Ser Ser Ala Val Thr Pro
     30                  35                  40
gtc gat ccg aag atc atc gaa gct gcc gac gcc gtc atc ttc gcc acc   256
Val Asp Pro Lys Ile Ile Glu Ala Ala Asp Ala Val Ile Phe Ala Thr
 45                  50                  55                  60
gac gtg gga gtt aaa gac cgc gag cgt ttc gct ggc aag cca gtc att   304
Asp Val Gly Val Lys Asp Arg Glu Arg Phe Ala Gly Lys Pro Val Ile
                 65                  70                  75
gaa tcc ggc gtc aag cgc gcg atc aat gag cca gcc aag atg atc gac  352
Glu Ser Gly Val Lys Arg Ala Ile Asn Glu Pro Ala Lys Met Ile Asp
             80                  85                  90
gag gcc atc gca gcc tcc aag aac cca aac gcc cgc aag gtt tcc ggt  400
Glu Ala Ile Ala Ala Ser Lys Asn Pro Asn Ala Arg Lys Val Ser Gly
         95                 100                 105
tcc ggt gtc gcg gca tct gct gaa acc acc ggc gag aag ctc ggc tgg  448
Ser Gly Val Ala Ala Ser Ala Glu Thr Thr Gly Glu Lys Leu Gly Trp
    110                 115                 120
ggc aag cgc atc cag cag gca gtc atg acc ggc gtg tcc tac atg gtt  496
Gly Lys Arg Ile Gln Gln Ala Val Met Thr Gly Val Ser Tyr Met Val
125                 130                 135                 140
cca ttc gta gct gcc ggc ggc ctc ctg ttg gct ctc ggc ttc gca ttc  544
Pro Phe Val Ala Ala Gly Gly Leu Leu Leu Ala Leu Gly Phe Ala Phe
                145                 150                 155
ggt gga tac gac atg gcg aac ggc tgg caa gca atc gcc acc cag ttc  592
Gly Gly Tyr Asp Met Ala Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe
            160                 165                 170
tct ctg acc aac ctg cca ggc aac acc gtc gat gtt gac              631
Ser Leu Thr Asn Leu Pro Gly Asn Thr Val Asp Val Asp
        175                 180                 185
<210>14
<211>185
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>14
Val Ala Ile Thr Ala Cys Pro Thr Gly Ile Ala His Thr Tyr Met Ala
  1               5                  10                  15
Ala Asp Ser Leu Thr Gln Asn Ala Glu Gly Arg Asp Asp Val Glu Leu
             20                  25                  30
Val Val Glu Thr Gln Gly Ser Ser Ala Val Thr Pro Val Asp Pro Lys
         35                  40                  45
Ile Ile Glu Ala Ala Asp Ala Val Ile Phe Ala Thr Asp Val Gly Val
     50                  55                  60
Lys Asp Arg Glu Arg Phe Ala Gly Lys Pro Val Ile Glu Ser Gly Val
 65                  70                  75                  80
Lys Arg Ala Ile Asn Glu Pro Ala Lys Met Ile Asp Glu Ala Ile Ala
                 85                  90                  95
Ala Ser Lys Asn Pro Asn Ala Arg Lys Val Ser Gly Ser Gly Val Ala
            100                 105                 110
Ala Ser Ala Glu Thr Thr Gly Glu Lys Leu Gly Trp Gly Lys Arg Ile
        115                 120                 125
Gln Gln Ala Val Met Thr Gly Val Ser Tyr Met Val Pro Phe Val Ala
    130                 135                 140
Ala Gly Gly Leu Leu Leu Ala Leu Gly Phe Ala Phe Gly Gly Tyr Asp
145                 150                 155                 160
Met Ala Asn Gly Trp Gln Ala Ile Ala Thr Gln Phe Ser Leu Thr Asn
                165                 170                 175
Leu Pro Gly Asn Thr Val Asp Val Asp
            180                 185
<210>15
<211>416
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(1)..(393)
<223>RXA00951
<400>15
atc caa gca atc tta gag aag gca gca gcg ccg gcg aag cag aag gct  48
Ile Gln Ala Ile Leu Glu Lys Ala Ala Ala Pro Ala Lys Gln Lys Ala
  1               5                  10                  15
cct gct gtg gct cct gct gta aca ccc act gac gct cct gca gcc tca  96
Pro Ala Val Ala Pro Ala Val Thr Pro Thr Asp Ala Pro Ala Ala Ser
             20                  25                  30
gtc caa tcc aaa acc cac gac aag atc ctc acc gtc tgt ggc aac ggc  144
Val Gln Ser Lys Thr His Asp Lys Ile Leu Thr Val Cys Gly Asn Gly
         35                  40                  45
ttg ggt acc tcc ctc ttc ctc aaa aac acc ctt gag caa gtt ttc gac  192
Leu Gly Thr Ser Leu Phe Leu Lys Asn Thr Leu Glu Gln Val Phe Asp
     50                  55                  60
acc tgg ggt tgg ggt cca tac atg acg gtg gag gca acc gac act atc  240
Thr Trp Gly Trp Gly Pro Tyr Met Thr Val Glu Ala Thr Asp Thr Ile
 65                  70                  75                  80
tcc gcc aag ggc aaa gcc aag gaa gct gat ctc atc atg acc tct ggt  288
Ser Ala Lys Gly Lys Ala Lys Glu Ala Asp Leu Ile Met Thr Ser Gly
                 85                  90                  95
gaa atc gcc cgc acg ttg ggt gat gtt gga atc ccg gtt cac gtg atc  336
Glu Ile Ala Arg Thr Leu Gly Asp Val Gly Ile Pro Val His Val Ile
            100                 105                 110
aat gac ttc acg agc acc gat gaa atc gat gct gcg ctt cgt gaa cgc  384
Asn Asp Phe Thr Ser Thr Asp Glu Ile Asp Ala Ala Leu Arg Glu Arg
        115                 120                 125
tac gac atc taactacttt aaaaggacga aaa                            416
Tyr Asp Ile
    130
<210>16
<211>131
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>16
Ile Gln Ala Ile Leu Glu Lys Ala Ala Ala Pro Ala Lys Gln Lys Ala
  1               5                  10                  15
Pro Ala Val Ala Pro Ala Val Thr Pro Thr Asp Ala Pro Ala Ala Ser
             20                  25                  30
Val Gln Ser Lys Thr His Asp Lys Ile Leu Thr Val Cys Gly Asn Gly
         35                  40                  45
Leu Gly Thr Ser Leu Phe Leu Lys Asn Thr Leu Glu Gln Val Phe Asp
     50                  55                  60
Thr Trp Gly Trp Gly Pro Tyr Met Thr Val Glu Ala Thr Asp Thr Ile
 65                  70                  75                  80
Ser Ala Lys Gly Lys Ala Lys Glu Ala Asp Leu Ile Met Thr Ser Gly
                 85                  90                  95
Glu Ile Ala Arg Thr Leu Gly Asp Val Gly Ile Pro Val His Val Ile
            100                 105                 110
Asn Asp Phe Thr Ser Thr Asp Glu Ile Asp Ala Ala Leu Arg Glu Arg
        115                 120                 125
Tyr Asp Ile
    130
<210>17
<211>1827
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(1804)
<223>RXN01244
<400>17
gatatgtgtt tgtttgtcaa tatccaaatg tttgaatagt tgcacaactg ttggttttgt 60
ggtgatcttg aggaaattaa ctcaatgatt gtgaggatgg gtg gct act gtg gct   115
                                            Val Ala Thr Val Ala
                                              1               5
gat gtg aat caa gac act gta ctg aag ggc acc ggc gtt gtc ggt gga   163
Asp Val Asn Gln Asp Thr Val Leu Lys Gly Thr Gly Val Val Gly Gly
                 10                  15                  20
gtc cgt tat gca agc gcg gtg tgg att acc cca cgc ccc gaa cta ccc   211
Val Arg Tyr Ala Ser Ala Val Trp Ile Thr Pro Arg Pro Glu Leu Pro
             25                  30                  35
caa gca ggc gaa gtc gtc gcc gaa gaa aac cgt gaa gca gag cag gag   259
Gln Ala Gly Glu Val Val Ala Glu Glu Asn Arg Glu Ala Glu Gln Glu
         40                  45                  50
cgt ttc gac gcc gct gca gcc aca gtc tct tct cgt ttg ctt gag cgc   307
Arg Phe Asp Ala Ala Ala Ala Thr Val Ser Ser Arg Leu Leu Glu Arg
     55                  60                  65
tcc gaa gct gct gaa gga cca gca gct gag gtg ctt aaa gct act gct   355
Ser Glu Ala Ala Glu Gly Pro Ala Ala Glu Val Leu Lys Ala Thr Ala
 70                  75                  80                  85
ggc atg gtc aat gac cgt ggc tgg cgt aag gct gtc atc aag ggt gtc   403
Gly Met Val Asn Asp Arg Gly Trp Arg Lys Ala Val Ile Lys Gly Val
                90                  95                  100
aag ggt ggt cac cct gcg gaa tac gcc gtg gtt gca gca aca acc aag    451
Lys Gly Gly His Pro Ala Glu Tyr Ala Val Val Ala Ala Thr Thr Lys
            105                 110                 115
ttc atc tcc atg ttc gaa gcc gca ggc ggc ctg atc gcg gag cgc acc    499
Phe Ile Ser Met Phe Glu Ala Ala Gly Gly Leu Ile Ala Glu Arg Thr
        120                 125                 130
aca gac ttg cgc gac atc cgc gac cgc gtc atc gca gaa ctt cgt ggc    547
Thr Asp Leu Arg Asp Ile Arg Asp Arg Val Ile Ala Glu Leu Arg Gly
    135                 140                 145
gat gaa gag cca ggt ctg cca gct gtt tcc gga cag gtc att ctc ttt    595
Asp Glu Glu Pro Gly Leu Pro Ala Val Ser Gly Gln Val Ile Leu Phe
150                 155                 160                 165
gca gat gac ctc tcc cca gca gac acc gcg gca cta gac aca gat ctc    643
Ala Asp Asp Leu Ser Pro Ala Asp Thr Ala Ala Leu Asp Thr Asp Leu
                170                 175                 180
ttt gtg gga ctt gtc act gag ctg ggt ggc cca acg agc cac acc gcg    691
Phe Val Gly Leu Val Thr Glu Leu Gly Gly Pro Thr Ser His Thr Ala
            185                 190                 195
atc atc gca cgc cag ctc aac gtg cct tgc atc gtc gca tcc ggc gcc    739
Ile Ile Ala Arg Gln Leu Asn Val Pro Cys Ile Val Ala Ser Gly Ala
        200                 205                 210
ggc atc aag gac atc aag tcc ggc gaa aag gtg ctt atc gac ggc agc    787
Gly Ile Lys Asp Ile Lys Ser Gly Glu Lys Val Leu Ile Asp Gly Ser
    215                 220                 225
ctc ggc acc att gac cgc aac gcg gac gaa gct gaa gca acc aag ctc    835
Leu Gly Thr Ile Asp Arg Asn Ala Asp Glu Ala Glu Ala Thr Lys Leu
230                 235                 240                 245
gtc tcc gag tcc ctc gag cgc gct gct cgc atc gcc gag tgg aag ggt    883
Val Ser Glu Ser Leu Glu Arg Ala Ala Arg Ile Ala Glu Trp Lys Gly
                250                 255                 260
cct gca caa acc aag gac ggc tac cgc gtt cag ctg ttg gcc aac gtc    931
Pro Ala Gln Thr Lys Asp Gly Tyr Arg Val Gln Leu Leu Ala Asn Val
            265                 270                 275
caa gac ggc aac tct gca cag cag gct gca cag acc gaa gca gaa ggc    979
Gln Asp Gly Asn Ser Ala Gln Gln Ala Ala Gln Thr Glu Ala Glu Gly
        280                 285                 290
atc ggc ctg ttc cgc acc gaa ctg tgc ttc ctt tcc gcc acc gaa gag    1027
Ile Gly Leu Phe Arg Thr Glu Leu Cys Phe Leu Ser Ala Thr Glu Glu
    295                 300                 305
cca agc gtt gat gag cag gct gcg gtc tac tca aag gtg ctt gaa gca    1075
Pro Ser Val Asp Glu Gln Ala Ala Val Tyr Ser Lys Val Leu Glu Ala
310                 315                 320                 325
ttc cca gag tcc aag gtc gtt gtc cgc tcc ctc gac gca ggt tct gac    1123
Phe Pro Glu Ser Lys Val Val Val Arg Ser Leu Asp Ala Gly Ser Asp
                330                 335                 340
aag cca gtt cca ttc gca tcg atg gct gat gag atg aac cca gca ctg    1171
Lys Pro Val Pro Phe Ala Ser Met Ala Asp Glu Met Asn Pro Ala Leu
            345                 350                 355
ggt gtt cgt ggc ctg cgt atc gca cgt gga cag gtt gat ctg ctg act    1219
Gly Val Arg Gly Leu Arg Ile Ala Arg Gly Gln Val Asp Leu Leu Thr
        360                 365                 370
cgc cag ctc gac gca att gcg aag gcc agc gaa gaa ctc ggc cgt ggc    1267
Arg Gln Leu Asp Ala Ile Ala Lys Ala Ser Glu Glu Leu Gly Arg Gly
    375                 380                 385
gac gac gcc cca acc tgg gtt atg gct cca atg gtg gct acc gct tat    1315
Asp Asp Ala Pro Thr Trp Val Met Ala Pro Met Val Ala Thr Ala Tyr
390                 395                 400                 405
gaa gca aag tgg ttt gct gac atg tgc cgt gag cgt ggc cta atc gcc    1363
Glu Ala Lys Trp Phe Ala Asp Met Cys Arg Glu Arg Gly Leu Ile Ala
                410                 415                 420
ggc gcc atg atc gaa gtt cca gca gca tcc ctg atg gca gac aag atc    1411
Gly Ala Met Ile Glu Val Pro Ala Ala Ser Leu Met Ala Asp Lys Ile
            425                 430                 435
atg cct cac ctg gac ttt gtt tcc atc ggt acc aac gac ctg acc cag    1459
Met Pro His Leu Asp Phe Val Ser Ile Gly Thr Asn Asp Leu Thr Gln
        440                 445                 450
tac acc atg gca gcg gac cgc atg tct cct gag ctt gcc tac ctg acc    1507
Tyr Thr Met Ala Ala Asp Arg Met Ser Pro Glu Leu Ala Tyr Leu Thr
    455                 460                 465
gat cct tgg cag cca gca gtc ctg cgc ctg atc aag cac acc tgt gac    1555
Asp Pro Trp Gln Pro Ala Val Leu Arg Leu Ile Lys His Thr Cys Asp
470                 475                 480                 485
gaa ggt gct cgc ttt aac acc ccg gtc ggt gtt tgt ggt gaa gca gca  1603
Glu Gly Ala Arg Phe Asn Thr Pro Val Gly Val Cys Gly Glu Ala Ala
                490                 495                 500
gca gac cca ctg ttg gca act gtc ctc acc ggt ctt ggc gtg aac tcc  1651
Ala Asp Pro Leu Leu Ala Thr Val Leu Thr Gly Leu Gly Val Asa Ser
            505                 510                 515
ctg tcc gca gca tcc act gct ctc gca gca gtc ggt gca aag ctg tca  1699
Leu Ser Ala Ala Ser Thr Ala Leu Ala Ala Val Gly Ala Lys Leu Ser
        520                 525                 530
gag gtc acc ctg gaa acc tgt aag aag gca gca gaa gca gca ctt gac  1747
Glu Val Thr Leu Glu Thr Cys Lys Lys Ala Ala Glu Ala Ala Leu Asp
    535                 540                 545
gct gaa ggt gca act gaa gca cgc gat gct gta cgc gca gtg atc gac  1795
Ala Glu Gly Ala Thr Glu Ala Arg Asp Ala Val Arg Ala Val Ile Asp
550                 555                 560                 565
gca gca gtc taaaccactg ttgagctaaa aag                            1827
Ala Ala Val
<210>18
<211>568
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>18
Val Ala Thr Val Ala Asp Val Asn Gln Asp Thr Val Leu Lys Gly Thr
  1               5                  10                  15
Gly Val Val Gly Gly Val Arg Tyr Ala Ser Ala Val Trp Ile Thr Pro
             20                  25                  30
Arg Pro Glu Leu Pro Gln Ala Gly Glu Val Val Ala Glu Glu Asn Arg
         35                  40                  45
Glu Ala Glu Gln Glu Arg Phe Asp Ala Ala Ala Ala Thr Val Ser Ser
     50                  55                  60
Arg Leu Leu Glu Arg Ser Glu Ala Ala Glu Gly Pro Ala Ala Glu Val
 65                  70                  75                  80
Leu Lys Ala Thr Ala Gly Met Val Asn Asp Arg Gly Trp Arg Lys Ala
                 85                  90                  95
Val Ile Lys Gly Val Lys Gly Gly His Pro Ala Glu Tyr Ala Val Val
            100                 105                 110
Ala Ala Thr Thr Lys Phe Ile Ser Met Phe Glu Ala Ala Gly Gly Leu
        115                 120                 125
Ile Ala Glu Arg Thr Thr Asp Leu Arg Asp Ile Arg Asp Arg Val Ile
    130                 135                 140
Ala Glu Leu Arg Gly Asp Glu Glu Pro Gly Leu Pro Ala Val Ser Gly
145                 150                 155                 160
Gln Val Ile Leu Phe Ala Asp Asp Leu Ser Pro Ala Asp Thr Ala Ala
                165                 170                 175
Leu Asp Thr Asp Leu Phe Val Gly Leu Val Thr Glu Leu Gly Gly Pro
            180                 185                 190
Thr Ser His Thr Ala Ile Ile Ala Arg Gln Leu Asn Val Pro Cys Ile
        195                 200                 205
Val Ala Ser Gly Ala Gly Ile Lys Asp Ile Lys Ser Gly Glu Lys Val
    210                 215                 220
Leu Ile Asp Gly Ser Leu Gly Thr Ile Asp Arg Asn Ala Asp Glu Ala
225                 230                 235                 240
Glu Ala Thr Lys Leu Val Ser Glu Ser Leu Glu Arg Ala Ala Arg Ile
                245                 250                 255
Ala Glu Trp Lys Gly Pro Ala Gln Thr Lys Asp Gly Tyr Arg Val Gln
            260                 265                 270
Leu Leu Ala Asn Val Gln Asp Gly Asn Ser Ala Gln Gln Ala Ala Gln
        275                 280                 285
Thr Glu Ala Glu Gly Ile Gly Leu Phe Arg Thr Glu Leu Cys Phe Leu
    290                 295                 300
Ser Ala Thr Glu Glu Pro Ser Val Asp Glu Gln Ala Ala Val Tyr Ser
305                 310                 315                 320
Lys Val Leu Glu Ala Phe Pro Glu Ser Lys Val Val Val Arg Ser Leu
                325                 330                 335
Asp Ala Gly Ser Asp Lys Pro Val Pro Phe Ala Ser Met Ala Asp Glu
            340                 345                 350
Met Asn Pro Ala Leu Gly Val Arg Gly Leu Arg Ile Ala Arg Gly Gln
        355                 360                 365
Val Asp Leu Leu Thr Arg Gln Leu Asp Ala Ile Ala Lys Ala Ser Glu
    370                 375                 380
Glu Leu Gly Arg Gly Asp Asp Ala Pro Thr Trp Val Met Ala Pro Met
385                 390                 395                 400
Val Ala Thr Ala Tyr Glu Ala Lys Trp Phe Ala Asp Met Cys Arg Glu
                405                 410                 415
Arg Gly Leu Ile Ala Gly Ala Met Ile Glu Val Pro Ala Ala Ser Leu
            420                 425                 430
Met Ala Asp Lys Ile Met Pro His Leu Asp Phe Val Ser Ile Gly Thr
        435                 440                 445
Asn Asp Leu Thr Gln Tyr Thr Met Ala Ala Asp Arg Met Ser Pro Glu
    450                 455                 460
Leu Ala Tyr Leu Thr Asp Pro Trp Gln Pro Ala Val Leu Arg Leu Ile
465                 470                 475                 480
Lys His Thr Cys Asp Glu Gly Ala Arg Phe Asn Thr Pro Val Gly Val
                485                 490                 495
Cys Gly Glu Ala Ala Ala Asp Pro Leu Leu Ala Thr Val Leu Thr Gly
            500                 505                 510
Leu Gly Val Asn Ser Leu Ser Ala Ala Ser Thr Ala Leu Ala Ala Val
        515                 520                 525
Gly Ala Lys Leu Ser Glu Val Thr Leu Glu Thr Cys Lys Lys Ala Ala
    530                 535                 540
Glu Ala Ala Leu Asp Ala Glu Gly Ala Thr Glu Ala Arg Asp Ala Val
545                 550                 555                 560
Arg Ala Val Ile Asp Ala Ala Val
                565
<210>19
<211>1629
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(98)..(1606)
<223>FRXA01244
<400>19
agatgtcgat ttctcgagga agaagttaac gccgaagaaa accgtgaatc agagcaggag 60
cgcttcgacg ccgctgcagc cacagtctct tcttcgt ttg ctt gag cgc tcc gaa  115
                                         Leu Leu Glu Arg Ser Glu
                                           1               5
gct gct gaa gga cca gca gct gag gtg ctt aaa gct act gct ggc atg   163
Ala Ala Glu Gly Pro Ala Ala Glu Val Leu Lys Ala Thr Ala Gly Met
             10                  15                  20
gtc aat gac cgt ggc tgg cgt aag gct gtc atc aag ggt gtc aag ggt   211
Val Asn Asp Arg Gly Trp Arg Lys Ala Val Ile Lys Gly Val Lys Gly
         25                  30                  35
ggt cac cct gcg gaa tac gcc gtg gtt gca gca aca acc aag ttc atc   259
Gly His Pro Ala Glu Tyr Ala Val Val Ala Ala Thr Thr Lys Phe Ile
     40                  45                  50
tcc atg ttc gaa gcc gca ggc ggc ctg atc gcg gag cgc acc aca gac   307
Ser Met Phe Glu Ala Ala Gly Gly Leu Ile Ala Glu Arg Thr Thr Asp
 55                  60                  65                  70
ttg cgc gac atc cgc gac cgc gtc atc gca gaa ctt cgt ggc gat gaa   355
Leu Arg Asp Ile Arg Asp Arg Val Ile Ala Glu Leu Arg Gly Asp Glu
                 75                  80                  85
gag cca ggt ctg cca gct gtt tcc gga cag gtc att ctc ttt gca gat   403
Glu Pro Gly Leu Pro Ala Val Ser Gly Gln Val Ile Leu Phe Ala Asp
             90                  95                 100
gac ctc tcc cca gca gac acc gcg gca cta gac aca gat ctc ttt gtg   451
Asp Leu Ser Pro Ala Asp Thr Ala Ala Leu Asp Thr Asp Leu Phe Val
        105                 110                 115
gga ctt gtc act gag ctg ggt ggc cca acg agc cac acc gcg atc atc   499
Gly Leu Val Thr Glu Leu Gly Gly Pro Thr Ser His Thr Ala Ile Ile
    120                 125                 130
gca cgc cag ctc aac gtg cct tgc atc gtc gca tcc ggc gcc ggc atc    547
Ala Arg Gln Leu Asn Val Pro Cys Ile Val Ala Ser Gly Ala Gly Ile
135                 140                 145                 150
aag gac atc aag tcc ggc gaa aag gtg ctt atc gac ggc agc ctc ggc    595
Lys Asp Ile Lys Ser Gly Glu Lys Val Leu Ile Asp Gly Ser Leu Gly
                155                 160                 165
acc att gac cgc aac gcg gac gaa gct gaa gca acc aag ctc gtc tcc    643
Thr Ile Asp Arg Asn Ala Asp Glu Ala Glu Ala Thr Lys Leu Val Ser
            170                 175                 180
gag tcc ctc gag cgc gct gct cgc atc gcc gag tgg aag ggt cct gca    691
Glu Ser Leu Glu Arg Ala Ala Arg Ile Ala Glu Trp Lys Gly Pro Ala
        185                 190                 195
caa acc aag gac ggc tac cgc gtt cag ctg ttg gcc aac gtc caa gac    739
Gln Thr Lys Asp Gly Tyr Arg Val Gln Leu Leu Ala Asn Val Gln Asp
    200                 205                 210
ggc aac tct gca cag cag gct gca cag acc gaa gca gaa ggc atc ggc    787
Gly Asn Ser Ala Gln Gln Ala Ala Gln Thr Glu Ala Glu Gly Ile Gly
215                 220                 225                 230
ctg ttc cgc acc gaa ctg tgc ttc ctt tcc gcc acc gaa gag cca agc    835
Leu Phe Arg Thr Glu Leu Cys Phe Leu Ser Ala Thr Glu Glu Pro Ser
                235                 240                 245
gtt gat gag cag gct gcg gtc tac tca aag gtg ctt gaa gca ttc cca    883
Val Asp Glu Gln Ala Ala Val Tyr Ser Lys Val Leu Glu Ala Phe Pro
            250                 255                 260
gag tcc aag gtc gtt gtc cgc tcc ctc gac gca ggt tct gac aag cca    931
Glu Ser Lys Val Val Val Arg Ser Leu Asp Ala Gly Ser Asp Lys Pro
        265                 270                 275
gtt cca ttc gca tcg atg gct gat gag atg aac cca gca ctg ggt gtt    979
Val Pro Phe Ala Ser Met Ala Asp Glu Met Asn Pro Ala Leu Gly Val
    280                 285                 290
cgt ggc ctg cgt atc gca cgt gga cag gtt gat ctg ctg act cgc cag    1027
Arg Gly Leu Arg Ile Ala Arg Gly Gln Val Asp Leu Leu Thr Arg Gln
295                 300                 305                 310
ctc gac gca att gcg aag gcc agc gaa gaa ctc ggc cgt ggc gac gac    1075
Leu Asp Ala Ile Ala Lys Ala Ser Glu Glu Leu Gly Arg Gly Asp Asp
                315                 320                 325
gcc cca acc tgg gtt atg gct cca atg gtg gct acc gct tat gaa gca    1123
Ala Pro Thr Trp Val Met Ala Pro Met Val Ala Thr Ala Tyr Glu Ala
            330                 335                 340
aag tgg ttt gct gac atg tgc cgt gag cgt ggc cta atc gcc ggc gcc    1171
Lys Trp Phe Ala Asp Met Cys Arg Glu Arg Gly Leu Ile Ala Gly Ala
        345                 350                 355
atg atc gaa gtt cca gca gca tcc ctg atg gca gac aag atc atg cct    1219
Met Ile Glu Val Pro Ala Ala Ser Leu Met Ala Asp Lys Ile Met Pro
    360                 365                 370
cac ctg gac ttt gtt tcc atc ggt acc aac gac ctg acc cag tac acc    1267
His Leu Asp Phe Val Ser Ile Gly Thr Asn Asp Leu Thr Gln Tyr Thr
375                 380                 385                 390
atg gca gcg gac cgc atg tct cct gag ctt gcc tac ctg acc gat cct    1315
Met Ala Ala Asp Arg Met Ser Pro Glu Leu Ala Tyr Leu Thr Asp Pro
                395                 400                 405
tgg cag cca gca gtc ctg cgc ctg atc aag cac acc tgt gac gaa ggt    1363
Trp Gln Pro Ala Val Leu Arg Leu Ile Lys His Thr Cys Asp Glu Gly
            410                 415                 420
gct cgc ttt aac acc ccg gtc ggt gtt tgt ggt gaa gca gca gca gac    1411
Ala Arg Phe Asn Thr Pro Val Gly Val Cys Gly Glu Ala Ala Ala Asp
        425                 430                 435
cca ctg ttg gca act gtc ctc acc ggt ctt ggc gtg aac tcc ctg tcc    1459
Pro Leu Leu Ala Thr Val Leu Thr Gly Leu Gly Val Asn Ser Leu Ser
    440                 445                 450
gca gca tcc act gct ctc gca gca gtc ggt gca aag ctg tca gag gtc    1507
Ala Ala Ser Thr Ala Leu Ala Ala Val Gly Ala Lys Leu Ser Glu Val
455                 460                 465                 470
acc ctg gaa acc tgt aag aag gca gca gaa gca gca ctt gac gct gaa    1555
Thr Leu Glu Thr Cys Lys Lys Ala Ala Glu Ala Ala Leu Asp Ala Glu
                475                 480                 485
ggt gca act gaa gca cgc gat gct gta cgc gca gtg atc gac gca gca    1603
Gly Ala Thr Glu Ala Arg Asp Ala Val Arg Ala Val Ile Asp Ala Ala
            490                 495                 500
gtc taaaccactg ttgagctaaa aag                                      1629
Val
<210>20
<211>503
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>20
Leu Leu Glu Arg Ser Glu Ala Ala Glu Gly Pro Ala Ala Glu Val Leu
  1               5                  10                  15
Lys Ala Thr Ala Gly Met Val Asn Asp Arg Gly Trp Arg Lys Ala Val
             20                  25                  30
Ile Lys Gly Val Lys Gly Gly His Pro Ala Glu Tyr Ala Val Val Ala
         35                  40                  45
Ala Thr Thr Lys Phe Ile Ser Met Phe Glu Ala Ala Gly Gly Leu Ile
     50                  55                  60
Ala Glu Arg Thr Thr Asp Leu Arg Asp Ile Arg Asp Arg Val Ile Ala
 65                  70                  75                  80
Glu Leu Arg Gly Asp Glu Glu Pro Gly Leu Pro Ala Val Ser Gly Gln
                 85                  90                  95
Val Ile Leu Phe Ala Asp Asp Leu Ser Pro Ala Asp Thr Ala Ala Leu
            100                 105                 110
Asp Thr Asp Leu Phe Val Gly Leu Val Thr Glu Leu Gly Gly Pro Thr
        115                 120                 125
Ser His Thr Ala Ile Ile Ala Arg Gln Leu Asn Val Pro Cys Ile Val
    130                 135                 140
Ala Ser Gly Ala Gly Ile Lys Asp Ile Lys Ser Gly Glu Lys Val Leu
145                 150                 155                 160
Ile Asp Gly Ser Leu Gly Thr Ile Asp Arg Asn Ala Asp Glu Ala Glu
                165                 170                 175
Ala Thr Lys Leu Val Ser Glu Ser Leu Glu Arg Ala Ala Arg Ile Ala
            180                 185                 190
Glu Trp Lys Gly Pro Ala Gln Thr Lys Asp Gly Tyr Arg Val Gln Leu
        195                 200                 205
Leu Ala Asn Val Gln Asp Gly Asn Ser Ala Gln Gln Ala Ala Gln Thr
    210                 215                 220
Glu Ala Glu Gly Ile Gly Leu Phe Arg Thr Glu Leu Cys Phe Leu Ser
225                 230                 235                 240
Ala Thr Glu Glu Pro Ser Val Asp Glu Gln Ala Ala Val Tyr Ser Lys
                245                 250                 255
Val Leu Glu Ala Phe Pro Glu Ser Lys Val Val Val Arg Ser Leu Asp
            260                 265                 270
Ala Gly Ser Asp Lys Pro Val Pro Phe Ala Ser Met Ala Asp Glu Met
        275                 280                 285
Asn Pro Ala Leu Gly Val Arg Gly Leu Arg Ile Ala Arg Gly Gln Val
    290                 295                 300
Asp Leu Leu Thr Arg Gln Leu Asp Ala Ile Ala Lys Ala Ser Glu Glu
305                 310                 315                 320
Leu Gly Arg Gly Asp Asp Ala Pro Thr Trp Val Met Ala Pro Met Val
                325                 330                 335
Ala Thr Ala Tyr Glu Ala Lys Trp Phe Ala Asp Met Cys Arg Glu Arg
            340                 345                 350
Gly Leu Ile Ala Gly Ala Met Ile Glu Val Pro Ala Ala Ser Leu Met
        355                 360                 365
Ala Asp Lys Ile Met Pro His Leu Asp Phe Val Ser Ile Gly Thr Asn
    370                 375                 380
Asp Leu Thr Gln Tyr Thr Met Ala Ala Asp Arg Met Ser Pro Glu Leu
385                 390                 395                 400
Ala Tyr Leu Thr Asp Pro Trp Gln Pro Ala Val Leu Arg Leu Ile Lys
                405                 410                 415
His Thr Cys Asp Glu Gly Ala Arg Phe Asn Thr Pro Val Gly Val Cys
            420                 425                 430
Gly Glu Ala Ala Ala Asp Pro Leu Leu Ala Thr Val Leu Thr Gly Leu
        435                 440                 445
Gly Val Asn Ser Leu Ser Ala Ala Ser Thr Ala Leu Ala Ala Val Gly
    450                 455                 460
Ala Lys Leu Ser Glu Val Thr Leu Glu Thr Cys Lys Lys Ala Ala Glu
465                 470                 475                 480
Ala Ala Leu Asp Ala Glu Gly Ala Thr Glu Ala Arg Asp Ala Val Arg
                485                 490                 495
Ala Val Ile Asp Ala Ala Val
            500
<210>21
<211>390
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(367)
<223>RXA01300
<400>21
gatcgacatt aaatcccctc ccttgggggg tttaactaac aaatcgctgc gccctaatcc 60
gttcggatta acggcgtagc aacacgaaag gacactttcc atg gct tcc aag act   115
                                            Met Ala Ser Lys Thr
                                              1               5
gta acc gtc ggt tcc tcc gtt ggc ctg cac gca cgt cca gca tcc atc   163
Val Thr Val Gly Ser Ser Val Gly Leu His Ala Arg Pro Ala Ser Ile
                 10                  15                  20
atc gct gaa gcg gct gct gag tac gac gac gaa atc ttg ctg acc ctg   211
Ile Ala Glu Ala Ala Ala Glu Tyr Asp Asp Glu Ile Leu Leu Thr Leu
             25                  30                  35
gtt ggc tcc gat gat gac gaa gag acc gac gcg tcc tct tcc ctc atg   259
Val Gly Ser Asp Asp Asp Glu Glu Thr Asp Ala Ser Ser Ser Leu Met
         40                  45                  50
atc atg gcg ctg ggc gca gag cac ggc aac gaa gtt acc gtc acc tcc   307
Ile Met Ala Leu Gly Ala Glu His Gly Asn Glu Val Thr Val Thr Ser
     55                  60                  65
gac aac gct gaa gct gtt gag aag atc gct gcg ctt atc gca cag gac   355
Asp Asn Ala Glu Ala Val Glu Lys Ile Ala Ala Leu Ile Ala Gln Asp
 70                  75                  80                  85
ctt gac gct gag taaacaacgc tctgcttgtt aaa                         390
Leu Asp Ala Glu
<210>22
<211>89
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>22
Met Ala Ser Lys Thr Val Thr Val Gly Ser Ser Val Gly Leu His Ala
  1               5                  10                  15
Arg Pro Ala Ser Ile Ile Ala Glu Ala Ala Ala Glu Tyr Asp Asp Glu
             20                  25                  30
Ile Leu Leu Thr Leu Val Gly Ser Asp Asp Asp Glu Glu Thr Asp Ala
         35                  40                  45
Ser Ser Ser Leu Met Ile Met Ala Leu Gly Ala Glu His Gly Asn Glu
     50                  55                  60
Val Thr Val Thr Ser Asp Asn Ala Glu Ala Val Glu Lys Ile Ala Ala
 65                  70                  75                  80
Leu Ile Ala Gln Asp Leu Asp Ala Glu
                 85
<210>23
<211>508
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(508)
<223>RXN03002
<400>23
ggaacttcga ggtgtcttcg tggggcgtac ggagatctag caagtgtggc tttatgtttg 60
accctatccg aatcaacatg cagtgaatta acatctactt atg ttt gta ctc aaa   115
                                            Met Phe Val Leu Lys
                                              1               5
gat ctg cta aag gca gaa cgc ata gaa ctc gac cgc acg gtc acc gat   163
Asp Leu Leu Lys Ala Glu Arg Ile Glu Leu Asp Arg Thr Val Thr Asp
                 10                  15                  20
tgg cgt gaa ggc atc cgc gcc gca ggt gta ctc cta gaa aag aca aac  211
Trp Arg Glu Gly Ile Arg Ala Ala Gly Val Leu Leu Glu Lys Thr Asn
             25                  30                  35
agc att gat tcc gcc tac acc gat gcc atg atc gcc agc gtg gaa gaa  259
Ser Ile Asp Ser Ala Tyr Thr Asp Ala Met Ile Ala Ser Val Glu Glu
         40                  45                  50
aaa ggc ccc tac att gtg gtc gct cca ggt ttc gct ttc gcg cac gcc  307
Lys Gly Pro Tyr Ile Val Val Ala Pro Gly Phe Ala Phe Ala His Ala
     55                  60                  65
cgc ccc agc aga gca gtc cgc gag acc gct atg tcg tgg gtg cgc ctg  355
Arg Pro Ser Arg Ala Val Arg Glu Thr Ala Met Ser Trp Val Arg Leu
 70                  75                  80                  85
gcc tcc cct gtt tcc ttc ggt cac agt aag aat gat ccc ctc aat ctc  403
Ala Ser Pro Val Ser Phe Gly His Ser Lys Asn Asp Pro Leu Asn Leu
                 90                  95                 100
atc gtt gct ctc gct gcc aaa gat gcc acc gca cat acc caa gcg atg  451
Ile Val Ala Leu Ala Ala Lys Asp Ala Thr Ala His Thr Gln Ala Met
            105                 110                 115
gcg gca ttg gct aaa gct tta gga aaa tac cga aag gat ctc gac gag  499
Ala Ala Leu Ala Lys Ala Leu Gly Lys Tyr Arg Lys Asp Leu Asp Glu
        120                 125                 130
gca caa agt                                                      508
Ala Gln Ser
    135
<210>24
<211>136
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>24
Met Phe Val Leu Lys Asp Leu Leu Lys Ala Glu Arg Ile Glu Leu Asp
  1               5                  10                  15
Arg Thr Val Thr Asp Trp Arg Glu Gly Ile Arg Ala Ala Gly Val Leu
             20                  25                  30
Leu Glu Lys Thr Asn Ser Ile Asp Ser Ala Tyr Thr Asp Ala Met Ile
         35                  40                  45
Ala Ser Val Glu Glu Lys Gly Pro Tyr Ile Val Val Ala Pro Gly Phe
     50                  55                  60
Ala Phe Ala His Ala Arg Pro Ser Arg Ala Val Arg Glu Thr Ala Met
 65                  70                  75                  80
Ser Trp Val Arg Leu Ala Ser Pro Val Ser Phe Gly His Ser Lys Asn
                 85                  90                  95
Asp Pro Leu Asn Leu Ile Val Ala Leu Ala Ala Lys Asp Ala Thr Ala
            100                 105                 110
His Thr Gln Ala Met Ala Ala Leu Ala Lys Ala Leu Gly Lys Tyr Arg
        115                 120                 125
Lys Asp Leu Asp Glu Ala Gln Ser
    130                 135
<210>25
<211>789
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(14)..(766)
<223>RXC00953
<400>25
cttgcattcc cca atg gcg cca cca acg gta ggc aac tac atc atg cag tcc 52
               Met Ala Pro Pro Thr Val Gly Asn Tyr Ile Met Gln Ser
                 1               5                  10
ttc act caa ggt ctg cag ttc ggc gtt gca gtt gcc gtg att ctc ttt    100
Phe Thr Gln Gly Leu Gln Phe Gly Val Ala Val Ala Val Ile Leu Phe
     15                  20                  25
ggt gtc cgc acc att ctt ggt gaa ctg gtc ccc gca ttc caa ggt att    148
Gly Val Arg Thr Ile Leu Gly Glu Leu Val Pro Ala Phe Gln Gly Ile
 30                  35                  40                  45
gct gcg aag gtt gtt ccc gga gct atc ccc gca ttg gat gca ccg atc    196
Ala Ala Lys Val Val Pro Gly Ala Ile Pro Ala Leu Asp Ala Pro Ile
                 50                  55                  60
gtg ttc ccc tac gcg cag aac gcc gtt ctc att ggt ttc ttg tct tcc    244
Val Phe Pro Tyr Ala Gln Asn Ala Val Leu Ile Gly Phe Leu Ser Ser
             65                  70                  75
ttc gtc ggt ggc ttg gtt ggc ctg act gtt ctt gca tcg tgg ctg aac    292
Phe Val Gly Gly Leu Val Gly Leu Thr Val Leu Ala Ser Trp Leu Asn
         80                  85                  90
cca gct ttt ggt gtc gcg ttg att ctg cct ggt ttg gtc ccc cac ttc    340
Pro Ala Phe Gly Val Ala Leu Ile Leu Pro Gly Leu Val Pro His Phe
     95                 100                 105
ttc act ggt ggc gcg gcg ggc gtt tac ggt aat gcc acg ggt ggt cgt    388
Phe Thr Gly Gly Ala Ala Gly Val Tyr Gly Asn Ala Thr Gly Gly Arg
110                 115                 120                 125
cga gga gca gta ttt ggc gcc ttt gcc aac ggt ctt ctg att acc ttc    436
Arg Gly Ala Val Phe Gly Ala Phe Ala Asn Gly Leu Leu Ile Thr Phe
                130                 135                 140
ctc cct gct ttc ctg ctt ggt gtg ctt ggt tcc ttc ggg tca gag aac    484
Leu Pro Ala Phe Leu Leu Gly Val Leu Gly Ser Phe Gly Ser Glu Asn
            145                 150                 155
acc act ttc ggt gat gcg gac ttt ggt tgg ttc gga atc gtt gtt ggt    532
Thr Thr Phe Gly Asp Ala Asp Phe Gly Trp Phe Gly Ile Val Val Gly
        160                 165                 170
tct gca gcc aag gtg gaa ggt gct ggc ggg ctc atc ttg ttg ctc atc    580
Ser Ala Ala Lys Val Glu Gly Ala Gly Gly Leu Ile Leu Leu Leu Ile
    175                 180                 185
atc gca gcg gtt ctt ctg ggt ggc gcg atg gtc ttc cag aag cgc gtc    628
Ile Ala Ala Val Leu Leu Gly Gly Ala Met Val Phe Gln Lys Arg Val
190                 195                 200                 205
gtg aat ggg cac tgg gat cca gct ccc aac cgt gag cgc gtg gag aag    676
Val Asn Gly His Trp Asp Pro Ala Pro Asn Arg Glu Arg Val Glu Lys
                210                 215                 220
gcg gaa gct gat gcc act cca acg gct ggg gct cgg acc tac cct aag    724
Ala Glu Ala Asp Ala Thr Pro Thr Ala Gly Ala Arg Thr Tyr Pro Lys
            225                 230                 235
att gct cct ccg gcg ggc gct cct acc cca ccg gct cga agc            766
Ile Ala Pro Pro Ala Gly Ala Pro Thr Pro Pro Ala Arg Ser
        240                 245                 250
taagatctcc aaaaccctga gat                                          789
<210>26
<211>251
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>26
Met Ala Pro Pro Thr Val Gly Asn Tyr Ile Met Gln Ser Phe Thr Gln
  1               5                  10                  15
Gly Leu Gln Phe Gly Val Ala Val Ala Val Ile Leu Phe Gly Val Arg
             20                  25                  30
Thr Ile Leu Gly Glu Leu Val Pro Ala Phe Gln Gly Ile Ala Ala Lys
         35                  40                  45
Val Val Pro Gly Ala Ile Pro Ala Leu Asp Ala Pro Ile Val Phe Pro
     50                  55                  60
Tyr Ala Gln Asn Ala Val Leu Ile Gly Phe Leu Ser Ser Phe Val Gly
 65                  70                  75                  80
Gly Leu Val Gly Leu Thr Val Leu Ala Ser Trp Leu Asn Pro Ala Phe
                 85                  90                  95
Gly Val Ala Leu Ile Leu Pro Gly Leu Val Pro His Phe Phe Thr Gly
            100                 105                 110
Gly Ala Ala Gly Val Tyr Gly Asn Ala Thr Gly Gly Arg Arg Gly Ala
        115                 120                 125
Val Phe Gly Ala Phe Ala Asn Gly Leu Leu Ile Thr Phe Leu Pro Ala
    130                 135                 140
Phe Leu Leu Gly Val Leu Gly Ser Phe Gly Ser Glu Asn Thr Thr Phe
145                 150                 155                 160
Gly Asp Ala Asp Phe Gly Trp Phe Gly Ile Val Val Gly Ser Ala Ala
                165                 170                 175
Lys Val Glu Gly Ala Gly Gly Leu Ile Leu Leu Leu Ile Ile Ala Ala
            180                 185                 190
Val Leu Leu Gly Gly Ala Met Val Phe Gln Lys Arg Val Val Asn Gly
    195                 200                 205
His Trp Asp Pro Ala Pro Asn Arg Glu Arg Val Glu Lys Ala Glu Ala
    210                 215                 220
Asp Ala Thr Pro Thr Ala Gly Ala Arg Thr Tyr Pro Lys Ile Ala Pro
225                 230                 235                 240
Pro Ala Gly Ala Pro Thr Pro Pro Ala Arg Ser
                245                 250
<210>27
<211>553
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(553)
<223>RXC03001
<400>27
cccggttcac gtgatcaatg acttcacgag caccgatgaa atcgatgctg cgcttcgtga 60
acgctacgac atctaactac tttaaaagga cgaaaatatt atg gac tgg tta acc   115
                                            Met Asp Trp Leu Thr
                                              1               5
att cct ctt ttc ctc gtt aat gaa atc ctt gcg gtt ccg gct ttc ctc   163
Ile Pro Leu Phe Leu Val Asn Glu Ile Leu Ala Val Pro Ala Phe Leu
                 10                  15                  20
atc ggt atc atc acc gcc gtg gga ttg ggt gcc atg ggg cgt tcc gtc   211
Ile Gly Ile Ile Thr Ala Val Gly Leu Gly Ala Met Gly Arg Ser Val
             25                  30                  35
ggt cag gtt atc ggt gga gca atc aaa gca acg ttg ggc ttt ttg ctc   259
Gly Gln Val Ile Gly Gly Ala Ile Lys Ala Thr Leu Gly Phe Leu Leu
         40                  45                  50
att ggt gcg ggt gcc acg ttg gtc act gcc tcc ctg gag cca ctg ggt   307
Ile Gly Ala Gly Ala Thr Leu Val Thr Ala Ser Leu Glu Pro Leu Gly
     55                  60                  65
gcg atg atc atg ggt gcc aca ggc atg cgt ggt gtt gtc cca acg aat   355
Ala Met Ile Met Gly Ala Thr Gly Met Arg Gly Val Val Pro Thr Asn
 70                  75                  80                  85
gaa gcc atc gcc gga atc gca cag gct gaa tac ggc gcg cag gtg gcg   403
Glu Ala Ile Ala Gly Ile Ala Gln Ala Glu Tyr Gly Ala Gln Val Ala
                 90                  95                 100
tgg ctg atg att ctg ggc ttc gcc atc tct ttg gtg ttg gct cgt ttc  451
Trp Leu Met Ile Leu Gly Phe Ala Ile Ser Leu Val Leu Ala Arg Phe
            105                 110                 115
acc aac ctg cgt tat gtc ttg ctc aac gga cac cac gtg ctg ttg atg  499
Thr Asn Leu Arg Tyr Val Leu Leu Asn Gly His His Val Leu Leu Met
        120                 125                 130
tgc acc atg ctc acc atg gtc ttg gcc acc gga aga gtt gat gcg tgg  547
Cys Thr Met Leu Thr Met Val Leu Ala Thr Gly Arg Val Asp Ala Trp
    135                 140                 145
atc ttc                                                          553
Ile Phe
150
<210>28
<211>151
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>28
Met Asp Trp Leu Thr Ile Pro Leu Phe Leu Val Asn Glu Ile Leu Ala
  1               5                  10                  15
Val Pro Ala Phe Leu Ile Gly Ile Ile Thr Ala Val Gly Leu Gly Ala
             20                  25                  30
Met Gly Arg Ser Val Gly Gln Val Ile Gly Gly Ala Ile Lys Ala Thr
         35                  40                  45
Leu Gly Phe Leu Leu Ile Gly Ala Gly Ala Thr Leu Val Thr Ala Ser
     50                  55                  60
Leu Glu Pro Leu Gly Ala Met Ile Met Gly Ala Thr Gly Met Arg Gly
 65                  70                  75                  80
Val Val Pro Thr Asn Glu Ala Ile Ala Gly Ile Ala Gln Ala Glu Tyr
                 85                  90                  95
Gly Ala Gln Val Ala Trp Leu Met Ile Leu Gly Phe Ala Ile Ser Leu
            100                 105                 110
Val Leu Ala Arg Phe Thr Asn Leu Arg Tyr Val Leu Leu Asn Gly His
        115                 120                 125
His Val Leu Leu Met Cys Thr Met Leu Thr Met Val Leu Ala Thr Gly
    130                 135                 140
Arg Val Asp Ala Trp Ile Phe
145                 150
<210>29
<211>2172
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(2149)
<223>RXN01943
<400>29
ccgattcttt ttcggcccaa ttcgtaacgg cgatcctctt aagtggacaa gaaagtctct 60
tgcccgcggg agacagaccc tacgtttaga aaggtttgac atg gcg tcc aaa ctg   115
                                            Met Ala Ser Lys Leu
                                              1               5
acg acg aca tcg caa cat att ctg gaa aac ctt ggt gga cca gac aat   163
Thr Thr Thr Ser Gln His Ile Leu Glu Asn Leu Gly Gly Pro Asp Asn
                 10                  15                  20
att act tcg atg act cac tgt gcg act cgc ctt cgc ttc caa gtg aag   211
Ile Thr Ser Met Thr His Cys Ala Thr Arg Leu Arg Phe Gln Val Lys
             25                  30                  35
gat caa tcc att gtt gat caa caa gaa att gac tcc gac cca tca gtt   259
Asp Gln Ser Ile Val Asp Gln Gln Glu Ile Asp Ser Asp Pro Ser Val
         40                  45                  50
ctt ggc gta gta ccc caa gga tcc acc ggt atg cag gtg gtg atg ggt   307
Leu Gly Val Val Pro Gln Gly Ser Thr Gly Met Gln Val Val Met Gly
     55                  60                  65
gga tct gtt gca aac tat tac caa gaa atc ctc aaa ctt gat gga atg   355
Gly Ser Val Ala Asn Tyr Tyr Gln Glu Ile Leu Lys Leu Asp Gly Met
 70                  75                  80                  85
aag cac ttc gcc gac ggt gaa gct aca gag agt tca tcc aag aag gaa   403
Lys His Phe Ala Asp Gly Glu Ala Thr Glu Ser Ser Ser Lys Lys Glu
                 90                  95                 100
tac ggc gga gtc cgt ggc aag tac tcg tgg att gac tac gcc ttc gag    451
Tyr Gly Gly Val Arg Gly Lys Tyr Ser Trp Ile Asp Tyr Ala Phe Glu
            105                 110                  115
ttc ttg tct gat act ttc cga cca atc ctg tgg gcc ctg ctt ggt gcc    499
Phe Leu Ser Asp Thr Phe Arg Pro Ile Leu Trp Ala Leu Leu Gly Ala
        120                 125                 130
tca ctg att att acc ttg ttg gtt ctt gcg gat act ttc ggt ttg caa    547
Ser Leu Ile Ile Thr Leu Leu Val Leu Ala Asp Thr Phe Gly Leu Gln
    135                 140                 145
gac ttc cgc gct cca atg gat gag cag cct gat act tat gta ttc ctg    595
Asp Phe Arg Ala Pro Met Asp Glu Gln Pro Asp Thr Tyr Val Phe Leu
150                 155                 160                 165
cac tcc atg tgg cgc tcg gtc ttc tac ttc ctg cca att atg gtt ggt    643
His Ser Met Trp Arg Ser Val Phe Tyr Phe Leu Pro Ile Met Val Gly
                170                 175                 180
gcc acc gca gct cga aag ctc ggc gca aac gag tgg att ggt gca gct    691
Ala Thr Ala Ala Arg Lys Leu Gly Ala Asn Glu Trp Ile Gly Ala Ala
            185                 190                 195
att cca gcc gca ctt ctt act cca gaa ttc ttg gca ctg ggt tct gcc    739
Ile Pro Ala Ala Leu Leu Thr Pro Glu Phe Leu Ala Leu Gly Ser Ala
        200                 205                 210
ggc gat acc gtc aca gtc ttt ggc ctg cca atg gtt ctg aat gac tac    787
Gly Asp Thr Val Thr Val Phe Gly Leu Pro Met Val Leu Asn Asp Tyr
    215                 220                 225
tcc gga cag gta ttc cca ccg ctg att gca gca att ggt ctg tac tgg    835
Ser Gly Gln Val Phe Pro Pro Leu Ile Ala Ala Ile Gly Leu Tyr Trp
230                 235                 240                 245
gtg gaa aag gga ctg aag aag atc atc cct gaa gca gtc caa atg gtg    883
Val Glu Lys Gly Leu Lys Lys Ile Ile Pro Glu Ala Val Gln Met Val
                250                 255                 260
ttc gtc cca ttc ttc tcc ctg ctg att atg atc cca gcg acc gca ttc    931
Phe Val Pro Phe Phe Ser Leu Leu Ile Met Ile Pro Ala Thr Ala Phe
            265                 270                 275
ctg ctt gga cct ttc ggc atc ggt gtt ggt aac gga att tcc aac ctg    979
Leu Leu Gly Pro Phe Gly Ile Gly Val Gly Asn Gly Ile Ser Asn Leu
        280                 285                 290
ctt gaa gcg att aac aac ttc agc cca ttt att ctt tcc atc gtt atc    1027
Leu Glu Ala Ile Asn Asn Phe Ser Pro Phe Ile Leu Ser Ile Val Ile
    295                 300                 305
cca ttg ctc tac cca ttc ttg gtt cca ctt gga ttg cac tgg cca cta    1075
Pro Leu Leu Tyr Pro Phe Leu Val Pro Leu Gly Leu His Trp Pro Leu
310                 315                 320                 325
aac gcc atc atg atc cag aac atc aac acc ctg ggt tac gac ttc att    1123
Asn Ala Ile Met Ile Gln Asn Ile Asn Thr Leu Gly Tyr Asp Phe Ile
                330                 335                 340
cag gga cca atg ggt gcc tgg aac ttc gcc tgc ttc ggc ctg gtc acc    1171
Gln Gly Pro Met Gly Ala Trp Asn Phe Ala Cys Phe Gly Leu Val Thr
            345                 350                 355
ggc gtg ttc ttg ctc tcc att aag gaa cga aac aag gcc atg cgt cag    1219
Gly Val Phe Leu Leu Ser Ile Lys Glu Arg Asn Lys Ala Met Arg Gln
        360                 365                 370
gtt tcc ctg ggt ggc atg ttg gct ggt ttg ctc ggc ggc att tcc gag    1267
Val Ser Leu Gly Gly Met Leu Ala Gly Leu Leu Gly Gly Ile Ser Glu
    375                 380                 385
cct tcc ctc tac ggt gtt ctg ctc cga ttc aag aag acc tac ttc cgc    1315
Pro Ser Leu Tyr Gly Val Leu Leu Arg Phe Lys Lys Thr Tyr Phe Arg
390                 395                 400                 405
ctc ctg ccg ggt tgt ttg gca ggc ggt atc gtg atg ggc atc ttc gac    1363
Leu Leu Pro Gly Cys Leu Ala Gly Gly Ile Val Met Gly Ile Phe Asp
                410                 415                 420
atc aag gcg tac gct ttc gtg ttc acc tcc ttg ctt acc atc cca gca    1411
Ile Lys Ala Tyr Ala Phe Val Phe Thr Ser Leu Leu Thr Ile Pro Ala
            425                 430                 435
atg gac cca tgg ttg ggc tac acc att ggt atc gca gtt gca ttc ttc    1459
Met Asp Pro Trp Leu Gly Tyr Thr Ile Gly Ile Ala Val Ala Phe Phe
        440                 445                 450
gtt tcc atg ttc ctt gtt ctc gca ctg gac tac cgt tcc aac gaa gag    1507
Val Ser Met Phe Leu Val Leu Ala Leu Asp Tyr Arg Ser Asn Glu Glu
    455                 460                 465
cgc gat gag gca cgt gca aag gtt gct gct gac aag cag gca gaa gaa    1555
Arg Asp Glu Ala Arg Ala Lys Val Ala Ala Asp Lys Gln Ala Glu Glu
470                 475                 480                 485
gat ctg aag gca gaa gct aat gca act cct gca gct cca gta gct gct    1603
Asp Leu Lys Ala Glu Ala Asn Ala Thr Pro Ala Ala Pro Val Ala Ala
                490                 495                 500
gca ggt gcg gga gcc ggt gca ggt gca gga gcc gct gct ggc gct gca    1651
Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala Ala Ala Gly Ala Ala
            505                 510                 515
acc gcc gtg gca gct aag ccg aag ctg gcc gct ggg gaa gta gtg gac    1699
Thr Ala Val Ala Ala Lys Pro Lys Leu Ala Ala Gly Glu Val Val Asp
        520                 525                 530
att gtt tcc cca ctc gaa ggc aag gca att cca ctt tct gaa gta cct    1747
Ile Val Ser Pro Leu Glu Gly Lys Ala Ile Pro Leu Ser Glu Val Pro
    535                 540                 545
gac cca atc ttt gca gca ggc aag ctt gga cca ggc att gca atc caa    1795
Asp Pro Ile Phe Ala Ala Gly Lys Leu Gly Pro Gly Ile Ala Ile Gln
550                 555                 560                 565
cca act gga aac acc gtt gtt gct cca gca gac gct act gtc atc ctt    1843
Pro Thr Gly Asn Thr Val Val Ala Pro Ala Asp Ala Thr Val Ile Leu
                570                 575                 580
gtc cag aaa tct gga cac gca gtg gca ttg cgc tta gat agc gga gtt    1891
Val Gln Lys Ser Gly His Ala Val Ala Leu Arg Leu Asp Ser Gly Val
            585                 590                 595
gaa atc ctt gtc cac gtt gga ttg gac acc gtg caa ttg ggc ggc gaa    1939
Glu Ile Leu Val His Val Gly Leu Asp Thr Val Gln Leu Gly Gly Glu
        600                 605                 610
ggc ttc acc gtt cac gtt gag cgc agg cag caa gtc aag gcg ggg gat    1987
Gly Phe Thr Val His Val Glu Arg Arg Gln Gln Val Lys Ala Gly Asp
    615                 620                 625
cca ctg atc act ttt gac gct gac ttc att cga tcc aag gat cta cct    2035
Pro Leu Ile Thr Phe Asp Ala Asp Phe Ile Arg Ser Lys Asp Leu Pro
630                 635                 640                 645
ttg atc acc cca gtt gtg gtg tct aac gcc gcg aaa ttc ggt gaa att    2083
Leu Ile Thr Pro Val Val Val Ser Asn Ala Ala Lys Phe Gly Glu Ile
                650                 655                 660
gaa ggt att cct gca gat cag gca aat tct tcc acg act gtg atc aag    2131
Glu Gly Ile Pro Ala Asp Gln Ala Asn Ser Ser Thr Thr Val Ile Lys
            665                 670                 675
gtc aac ggc aag aac gag taacctggga tccatgttgc gca                  2172
Val Asn Gly Lys Asn Glu
        680
<210>30
<211>683
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>30
Met Ala Ser Lys Leu Thr Thr Thr Ser Gln His Ile Leu Glu Asn Leu
  1               5                  10                  15
Gly Gly Pro Asp Asn Ile Thr Ser Met Thr His Cys Ala Thr Arg Leu
             20                  25                  30
Arg Phe Gln Val Lys Asp Gln Ser Ile Val Asp Gln Gln Glu Ile Asp
         35                  40                  45
Ser Asp Pro Ser Val Leu Gly Val Val Pro Gln Gly Ser Thr Gly Met
     50                  55                  60
Gln Val Val Met Gly Gly Ser Val Ala Asn Tyr Tyr Gln Glu Ile Leu
 65                  70                  75                  80
Lys Leu Asp Gly Met Lys His Phe Ala Asp Gly Glu Ala Thr Glu Ser
                 85                  90                  95
Ser Ser Lys Lys Glu Tyr Gly Gly Val Arg Gly Lys Tyr Ser Trp Ile
            100                 105                 110
Asp Tyr Ala Phe Glu Phe Leu Ser Asp Thr Phe Arg Pro Ile Leu Trp
        115                 120                 125
Ala Leu Leu Gly Ala Ser Leu Ile Ile Thr Leu Leu Val Leu Ala Asp
    130                 135                 140
Thr Phe Gly Leu Gln Asp Phe Arg Ala Pro Met Asp Glu Gln Pro Asp
145                 150                 155                 160
Thr Tyr Val Phe Leu His Ser Met Trp Arg Ser Val Phe Tyr Phe Leu
                165                 170                 175
Pro Ile Met Val Gly Ala Thr Ala Ala Arg Lys Leu Gly Ala Asn Glu
            180                 185                 190
Trp Ile Gly Ala Ala Ile Pro Ala Ala Leu Leu Thr Pro Glu Phe Leu
        195                 200                 205
Ala Leu Gly Ser Ala Gly Asp Thr Val Thr Val Phe Gly Leu Pro Met
    210                 215                 220
Val Leu Asn Asp Tyr Ser Gly Gln Val Phe Pro Pro Leu Ile Ala Ala
225                 230                 235                 240
Ile Gly Leu Tyr Trp Val Glu Lys Gly Leu Lys Lys Ile Ile Pro Glu
                245                 250                 255
Ala Val Gln Met Val Phe Val Pro Phe Phe Ser Leu Leu Ile Met Ile
            260                 265                 270
Pro Ala Thr Ala Phe Leu Leu Gly Pro Phe Gly Ile Gly Val Gly Asn
        275                 280                 285
Gly Ile Ser Asn Leu Leu Glu Ala Ile Asn Asn Phe Ser Pro Phe Ile
    290                 295                 300
Leu Ser Ile Val Ile Pro Leu Leu Tyr Pro Phe Leu Val Pro Leu Gly
305                 310                 315                 320
Leu His Trp Pro Leu Asn Ala Ile Met Ile Gln Asn Ile Asn Thr Leu
                325                 330                 335
Gly Tyr Asp Phe Ile Gln Gly Pro Met Gly Ala Trp Asn Phe Ala Cys
            340                 345                 350
Phe Gly Leu Val Thr Gly Val Phe Leu Leu Ser Ile Lys Glu Arg Asn
        355                 360                 365
Lys Ala Met Arg Gln Val Ser Leu Gly Gly Met Leu Ala Gly Leu Leu
    370                 375                 380
Gly Gly Ile Ser Glu Pro Ser Leu Tyr Gly Val Leu Leu Arg Phe Lys
385                 390                 395                 400
Lys Thr Tyr Phe Arg Leu Leu Pro Gly Cys Leu Ala Gly Gly Ile Val
                405                 410                 415
Met Gly Ile Phe Asp Ile Lys Ala Tyr Ala Phe Val Phe Thr Ser Leu
            420                 425                 430
Leu Thr Ile Pro Ala Met Asp Pro Trp Leu Gly Tyr Thr Ile Gly Ile
        435                 440                 445
Ala Val Ala Phe Phe Val Ser Met Phe Leu Val Leu Ala Leu Asp Tyr
    450                 455                 460
Arg Ser Asn Glu Glu Arg Asp Glu Ala Arg Ala Lys Val Ala Ala Asp
465                 470                 475                 480
Lys Gln Ala Glu Glu Asp Leu Lys Ala Glu Ala Asn Ala Thr Pro Ala
                485                 490                 495
Ala Pro Val Ala Ala Ala Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala
            500                 505                 510
Ala Ala Gly Ala Ala Thr Ala Val Ala Ala Lys Pro Lys Leu Ala Ala
        515                 520                 525
Gly Glu Val Val Asp Ile Val Ser Pro Leu Glu Gly Lys Ala Ile Pro
    530                 535                 540
Leu Ser Glu Val Pro Asp Pro Ile Phe Ala Ala Gly Lys Leu Gly Pro
545                 550                 555                 560
Gly Ile Ala Ile Gln Pro Thr Gly Asn Thr Val Val Ala Pro Ala Asp
                565                 570                 575
Ala Thr Val Ile Leu Val Gln Lys Ser Gly His Ala Val Ala Leu Arg
            580                 585                 590
Leu Asp Ser Gly Val Glu Ile Leu Val His Val Gly Leu Asp Thr Val
        595                 600                 605
Gln Leu Gly Gly Glu Gly Phe Thr Val His Val Glu Arg Arg Gln Gln
    610                 615                 620
Val Lys Ala Gly Asp Pro Leu Ile Thr Phe Asp Ala Asp Phe Ile Arg
625                 630                 635                 640
Ser Lys Asp Leu Pro Leu Ile Thr Pro Val Val Val Ser Asn Ala Ala
                645                 650                 655
Lys Phe Gly Glu Ile Glu Gly Ile Pro Ala Asp Gln Ala Asn Ser Ser
            660                 665                 670
Thr Thr Val Ile Lys Val Asn Gly Lys Asn Glu
        675                 680
<210>31
<211>1339
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(101)..(1339)
<223>FRXA02191
<400>31
ccgattcttt ttcggcccaa ttcgtaacgg cgatcctctt aagtggacaa gaaagtctct 60
tgcccgcggg agacagaccc tacgtttaga aaggtttgac atg gcg tcc aaa ctg   115
                                            Met Ala Ser Lys Leu
                                              1               5
acg acg aca tcg caa cat att ctg gaa aac ctt ggt gga cca gac aat   163
Thr Thr Thr Ser Gln His Ile Leu Glu Asn Leu Gly Gly Pro Asp Asn
                 10                  15                  20
att act tcg atg act cac tgt gcg act cgc ctt cgc ttc caa gtg aag   211
Ile Thr Ser Met Thr His Cys Ala Thr Arg Leu Arg Phe Gln Val Lys
             25                  30                  35
gat caa tcc att gtt gat caa caa gaa att gac tcc gac cca tca gtt   259
Asp Gln Ser Ile Val Asp Gln Gln Glu Ile Asp Ser Asp Pro Ser Val
         40                  45                  50
ctt ggc gta gta ccc caa gga tcc acc ggt atg cag gtg gtg atg ggt   307
Leu Gly Val Val Pro Gln Gly Ser Thr Gly Met Gln Val Val Met Gly
     55                  60                  65
gga tct gtt gca aac tat tac caa gaa atc ctc aaa ctt gat gga atg   355
Gly Ser Val Ala Asn Tyr Tyr Gln Glu Ile Leu Lys Leu Asp Gly Met
 70                  75                  80                  85
aag cac ttc gcc gac ggt gaa gct aca gag agt tca tcc aag aag gaa   403
Lys His Phe Ala Asp Gly Glu Ala Thr Glu Ser Ser Ser Lys Lys Glu
                 90                  95                 100
tac ggc gga gtc cgt ggc aag tac tcg tgg att gac tac gcc ttc gag   451
Tyr Gly Gly Val Arg Gly Lys Tyr Ser Trp Ile Asp Tyr Ala Phe Glu
            105                 110                 115
ttc ttg tct gat act ttc cga cca atc ctg tgg gcc ctg ctt ggt gcc   499
Phe Leu Ser Asp Thr Phe Arg Pro Ile Leu Trp Ala Leu Leu Gly Ala
         120                 125                 130
tca ctg att att acc ttg ttg gtt ctt gcg gat act ttc ggt ttg caa   547
Ser Leu Ile Ile Thr Leu Leu Val Leu Ala Asp Thr Phe Gly Leu Gln
    135                 140                 145
gac ttc cgc gct cca atg gat gag cag cct gat act tat gta ttc ctg    595
Asp Phe Arg Ala Pro Met Asp Glu Gln Pro Asp Thr Tyr Val Phe Leu
150                 155                 160                 165
cac tcc atg tgg cgc tcg gtc ttc tac ttc ctg cca att atg gtt ggt    643
His Ser Met Trp Arg Ser Val Phe Tyr Phe Leu Pro Ile Met Val Gly
                170                 175                 180
gcc acc gca gct cga aag ctc ggc gca aac gag tgg att ggt gca gct    691
Ala Thr Ala Ala Arg Lys Leu Gly Ala Asn Glu Trp Ile Gly Ala Ala
            185                 190                 195
att cca gcc gca ctt ctt act cca gaa ttc ttg gca ctg ggt tct gcc    739
Ile Pro Ala Ala Leu Leu Thr Pro Glu Phe Leu Ala Leu Gly Ser Ala
        200                 205                 210
ggc gat acc gtc aca gtc ttt ggc ctg cca atg gtt ctg aat gac tac    787
Gly Asp Thr Val Thr Val Phe Gly Leu Pro Met Val Leu Asn Asp Tyr
    215                 220                 225
tcc gga cag gta ttc cca ccg ctg att gca gca att ggt ctg tac tgg    835
Ser Gly Gln Val Phe Pro Pro Leu Ile Ala Ala Ile Gly Leu Tyr Trp
230                 235                 240                 245
gtg gaa aag gga ctg aag aag atc atc cct gaa gca gtc caa atg gtg    883
Val Glu Lys Gly Leu Lys Lys Ile Ile Pro Glu Ala Val Gln Met Val
                250                 255                 260
ttc gtc cca ttc ttc tcc ctg ctg att atg atc cca gcg acc gca ttc    931
Phe Val Pro Phe Phe Ser Leu Leu Ile Met Ile Pro Ala Thr Ala Phe
            265                 270                 275
ctg ctt gga cct ttc ggc atc ggt gtt ggt aac gga att tcc aac ctg    979
Leu Leu Gly Pro Phe Gly Ile Gly Val Gly Asn Gly Ile Ser Asn Leu
        280                 285                 290
ctt gaa gcg att aac aac ttc agc cca ttt att ctt tcc atc gtt atc    1027
Leu Glu Ala Ile Asn Asn Phe Ser Pro Phe Ile Leu Ser Ile Val Ile
    295                 300                 305
cca ttg ctc tac cca ttc ttg gtt cca ctt gga ttg cac tgg cca cta    1075
Pro Leu Leu Tyr Pro Phe Leu Val Pro Leu Gly Leu His Trp Pro Leu
310                 315                 320                 325
aac gcc atc atg atc cag aac atc aac acc ctg ggt tac gac ttc att    1123
Asn Ala Ile Met Ile Gln Asn Ile Asn Thr Leu Gly Tyr Asp Phe Ile
                330                 335                 340
cag gga cca atg ggt gcc tgg aac ttc gcc tgc ttc ggc ctg gtc acc  1171
Gln Gly Pro Met Gly Ala Trp Asn Phe Ala Cys Phe Gly Leu Val Thr
            345                 350                 355
ggc gtg ttc ttg ctc tcc att aag gaa cga aac aag gcc atg cgt cag  1219
Gly Val Phe Leu Leu Ser Ile Lys Glu Arg Asn Lys Ala Met Arg Gln
        360                 365                 370
gtt tcc ctg ggt ggc atg ttg gct ggt ttg ctc ggc ggc att tcc gag  1267
Val Ser Leu Gly Gly Met Leu Ala Gly Leu Leu Gly Gly Ile Ser Glu
    375                 380                 385
cct tcc ctc tac ggt gtt ctg ctc cga ttc aag aag acc tac ttc cgc  1315
Pro Ser Leu Tyr Gly Val Leu Leu Arg Phe Lys Lys Thr Tyr Phe Arg
390                 395                 400                 405
ctc ctg ccg ggt tgt ttg gca gca                                  1339
Leu Leu Pro Gly Cys Leu Ala Ala
                410
<210>32
<211>413
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>32
Met Ala Ser Lys Leu Thr Thr Thr Ser Gln His Ile Leu Glu Asn Leu
  1               5                  10                  15
Gly Gly Pro Asp Asn Ile Thr Ser Met Thr His Cys Ala Thr Arg Leu
             20                  25                  30
Arg Phe Gln Val Lys Asp Gln Ser Ile Val Asp Gln Gln Glu Ile Asp
         35                  40                  45
Ser Asp Pro Ser Val Leu Gly Val Val Pro Gln Gly Ser Thr Gly Met
     50                  55                  60
Gln Val Val Met Gly Gly Ser Val Ala Asn Tyr Tyr Gln Glu Ile Leu
 65                  70                  75                  80
Lys Leu Asp Gly Met Lys His Phe Ala Asp Gly Glu Ala Thr Glu Ser
                 85                  90                  95
Ser Ser Lys Lys Glu Tyr Gly Gly Val Arg Gly Lys Tyr Ser Trp Ile
            100                 105                 110
Asp Tyr Ala Phe Glu Phe Leu Ser Asp Thr Phe Arg Pro Ile Leu Trp
        115                 120                 125
Ala Leu Leu Gly Ala Ser Leu Ile Ile Thr Leu Leu Val Leu Ala Asp
    130                 135                 140
Thr Phe Gly Leu Gln Asp Phe Arg Ala Pro Met Asp Glu Gln Pro Asp
145                 150                 155                 160
Thr Tyr Val Phe Leu His Ser Met Trp Arg Ser Val Phe Tyr Phe Leu
                165                 170                 175
Pro Ile Met Val Gly Ala Thr Ala Ala Arg Lys Leu Gly Ala Asn Glu
            180                 185                 190
Trp Ile Gly Ala Ala Ile Pro Ala Ala Leu Leu Thr Pro Glu Phe Leu
        195                 200                 205
Ala Leu Gly Ser Ala Gly Asp Thr Val Thr Val Phe Gly Leu Pro Met
    210                 215                 220
Val Leu Asn Asp Tyr Ser Gly Gln Val Phe Pro Pro Leu Ile Ala Ala
225                 230                 235                 240
Ile Gly Leu Tyr Trp Val Glu Lys Gly Leu Lys Lys Ile Ile Pro Glu
                245                 250                 255
Ala Val Gln Met Val Phe Val Pro Phe Phe Ser Leu Leu Ile Met Ile
            260                 265                 270
Pro Ala Thr Ala Phe Leu Leu Gly Pro Phe Gly Ile Gly Val Gly Asn
        275                 280                 285
Gly Ile Ser Asn Leu Leu Glu Ala Ile Asn Asn Phe Ser Pro Phe Ile
    290                 295                 300
Leu Ser Ile Val Ile Pro Leu Leu Tyr Pro Phe Leu Val Pro Leu Gly
305                 310                 315                 320
Leu His Trp Pro Leu Asn Ala Ile Met Ile Gln Asn Ile Asn Thr Leu
                325                 330                 335
Gly Tyr Asp Phe Ile Gln Gly Pro Met Gly Ala Trp Asn Phe Ala Cys
            340                 345                 350
Phe Gly Leu Val Thr Gly Val Phe Leu Leu Ser Ile Lys Glu Arg Asn
        355                 360                 365
Lys Ala Met Arg Gln Val Ser Leu Gly Gly Met Leu Ala Gly Leu Leu
    370                 375                 380
Gly Gly Ile Ser Glu Pro Ser Leu Tyr Gly Val Leu Leu Arg Phe Lys
385                 390                 395                 400
Lys Thr Tyr Phe Arg Leu Leu Pro Gly Cys Leu Ala Ala
                405                 410
<210>33
<211>428
<212>DNA
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<220>
<221>CDS
<222>(1)..(405)
<223>FRXA01943
<400>33
cct gac cca atc ttt gca gca ggc aag ctt gga cca ggc att gca atc  48
Pro Asp Pro Ile Phe Ala Ala Gly Lys Leu Gly Pro Gly Ile Ala Ile
  1               5                  10                  15
caa cca act gga aac acc gtt gtt gct cca gca gac gct act gtc atc  96
Gln Pro Thr Gly Asn Thr Val Val Ala Pro Ala Asp Ala Thr Val Ile
             20                  25                  30
ctt gtc cag aaa tct gga cac gca gtg gca ttg cgc tta gat agc gga  144
Leu Val Gln Lys Ser Gly His Ala Val Ala Leu Arg Leu Asp Ser Gly
         35                  40                  45
gtt gaa atc ctt gtc cac gtt gga ttg gac acc gtg caa ttg ggc ggc  192
Val Glu Ile Leu Val His Val Gly Leu Asp Thr Val Gln Leu Gly Gly
     50                  55                  60
gaa ggc ttc acc gtt cac gtt gag cgc agg cag caa gtc aag gcg ggg  240
Glu Gly Phe Thr Val His Val Glu Arg Arg Gln Gln Val Lys Ala Gly
 65                  70                  75                  80
gat cca ctg atc act ttt gac gct gac ttc att cga tcc aag gat cta  288
Asp Pro Leu Ile Thr Phe Asp Ala Asp Phe Ile Arg Ser Lys Asp Leu
                 85                  90                  95
cct ttg atc acc cca gtt gtg gtg tct aac gcc gcg aaa ttc ggt gaa  336
Pro Leu Ile Thr Pro Val Val Val Ser Asn Ala Ala Lys Phe Gly Glu
            100                 105                 110
att gaa ggt att cct gca gat cag gca aat tct tcc acg act gtg atc  384
Ile Glu Gly Ile Pro Ala Asp Gln Ala Asn Ser Ser Thr Thr Val Ile
        115                 120                 125
aag gtc aac ggc aag aac gag taacctggga tccatgttgc gca            428
Lys Val Asn Gly Lys Asa Glu
    130                 135
<210>34
<211>135
<212>PRT
<213>Corynebacterium glutamicum (Corynebacterium glutamicum)
<400>34
Pro Asp Pro Ile Phe Ala Ala Gly Lys Leu Gly Pro Gly Ile Ala Ile
  1               5                  10                  15
Gln Pro Thr Gly Asn Thr Val Val Ala Pro Ala Asp Ala Thr Val Ile
             20                  25                  30
Leu Val Gln Lys Ser Gly His Ala Val Ala Leu Arg Leu Asp Ser Gly
         35                  40                  45
Val Glu Ile Leu Val His Val Gly Leu Asp Thr Val Gln Leu Gly Gly
     50                  55                  60
Glu Gly Phe Thr Val His Val Glu Arg Arg Gln Gln Val Lys Ala Gly
 65                  70                  75                  80
Asp Pro Leu Ile Thr Phe Asp Ala Asp Phe Ile Arg Ser Lys Asp Leu
                 85                  90                  95
Pro Leu Ile Thr Pro Val Val Val Ser Asn Ala Ala Lys Phe Gly Glu
            100                 105                 110
Ile Glu Gly Ile Pro Ala Asp Gln Ala Asn Ser Ser Thr Thr Val Ile
        115                 120                 125
Lys Val Asn Gly Lys Asn Glu
    130                 135
<210>35
<211>18
<212>DNA
<213>artificial sequence
<220>
<223>artificial sequence note: primer
<400>35
ggaaacagta tgaccatg                                                  18
<210>36
<211>17
<212>DNA
<213>artificial sequence
<220>
<223>artificial sequence note: primer
<400>36
gtaaaacgac ggccagt                                                   17

Claims (35)

1. the isolated nucleic acid molecules or its complementary series of the nucleotide sequence comprising SEQ ID NO:21.
2. the isolated nucleic acid molecules or its complementary series of the polypeptide of amino acid sequence of the coding comprising SEQ ID NO:22.
3. the isolated nucleic acid molecules or its complementary series of the naturally occurring allelic variant of the polypeptide of amino acid sequence of the coding comprising SEQ ID NO:22.
4. isolated nucleic acid molecules, comprising having at least nucleotide sequence of 50% identity or its complementary series with the whole nucleotide sequence of SEQ ID NO:21.
5. isolated nucleic acid molecules, it includes the segments or its complementary series of at least 15 continuous nucleotides of the nucleotide sequence of SEQ ID NO:21.
6. isolated nucleic acid molecules, coding has at least polypeptide of the amino acid sequence of 50% identity or its complementary series comprising the complete amino acid sequence with SEQ ID NO:22.
7. isolated nucleic acid molecules, the nucleotide sequence of the nucleic acid molecules comprising any one of claim 1-6 and encoding heterologous polypeptide.
8. the carrier of the nucleic acid molecules comprising any one of claim 1-7.
9. the carrier of claim 8, which is expression vector.
10. the host cell that the expression vector of claim 9 transfects.
11. the host cell of claim 10, wherein the cell is microorganism.
12. the host cell of claim 11, wherein the cell belongs to Corynebacterium or brevibacterium.
13. the host cell of claim 10, wherein the expression of described nucleic acid molecules, the adjusting for causing the cell fine chemical to produce.
14. the host cell of claim 14, wherein described fine chemical is selected from following substance: organic acid, proteinogenic amino acids, nonprotein source amino acid, purine bases and pyrimidine bases, nucleosides, nucleotide, lipid, saturation and unsaturated fatty acid, glycol, carbohydrate, aromatic compound, vitamin, co-factor, polyketide and enzyme.
15. the method for producing polypeptide, including cultivating the host cell of claim 10 in suitable culture medium, to produce polypeptide.
16. isolated polypeptide, the amino acid sequence comprising SEQ ID NO:22.
17. isolated polypeptide, the naturally occurring allelic variant of the polypeptide comprising the amino acid sequence containing SEQ ID NO:22.
18. isolated polypeptide, by a kind of nucleic acid molecule encoding, which includes the nucleotide sequence for having at least 50% identity with the whole nucleotide sequence of SEQ ID NO:21.
19. isolated polypeptide, comprising there is the amino acid sequence of at least 50% identity with the complete amino acid sequence of SEQ ID NO:22.
20. isolated polypeptide, the segment of the polypeptide comprising the amino acid sequence containing SEQ ID NO:22, wherein the polypeptide fragment keeps the biological activity of the polypeptide of the amino acid sequence containing SEQ ID NO:22.
21. isolated polypeptide, the amino acid sequence comprising the nucleic acid molecule encoding by the nucleotide sequence comprising SEQ ID NO:21.
22. the isolated polypeptide of any one of claim 16-21, further includes heterologous amino acid sequence.
23. the method for producing fine chemical, the cell including cultivating claim 10, to generate fine chemical.
24. the method for claim 23, wherein described method also comprises the step of recycling fine chemical from described culture.
25. the method for claim 23, wherein described cell belongs to Corynebacterium or brevibacterium.
26. the method for claim 23, wherein described cell is selected from the group: Corynebacterium glutamicum, Corynebacterium herculis, lily bar bacterium, Corynebacterium acctoacidophlum, vinegar paddy bar bacterium, thermophilic acetyl bar bacterium, corynebacterium ammoniagenes, Corynebacterium fujiokense, Corynebacteriumnitrilophilus, brevibacterium ammoniagene, Brevibacterium butanicum, disagreement brevibacterium, brevibacterium flavum, Xi Shi brevibacterium, ketoglutaric acid brevibacterium, Brevibacteriumketosoreductum, brevibacterium, extension brevibacterium, solve bacterial strain listed by paraffin brevibacterium and table 3.
27. the method for claim 23, wherein the expression of the nucleic acid molecules of described carrier, the adjusting for causing the cell fine chemical to produce.
28. the method for claim 23, wherein described fine chemical is selected from following substance: organic acid, proteinogenic amino acids, nonprotein source amino acid, purine bases and pyrimidine bases, nucleosides, nucleotide, lipid, saturation and unsaturated fatty acid, glycol, carbohydrate, aromatic compound, vitamin, co-factor, polyketide and enzyme.
29. the method for claim 23, wherein described fine chemical is amino acid.
30. the method for claim 29, wherein described amino acid is selected from following amino acid: lysine, glutamic acid, glutamine, alanine, aspartic acid, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, tryptophan.
31. the method for producing fine chemical, including such cell is cultivated, the genomic DNA of the cell has been inserted into the nucleic acid molecules of any one of claim 1-6 and has changed.
32. diagnosing the presence or active method of corynebacterium diphtheriae in subject, the presence of the peptide molecule of at least one nucleic acid molecules or claim 16-21 including claim 1-6 in detection subject, to diagnose the presence or activity of corynebacterium diphtheriae in subject.
33. the host cell of the nucleic acid molecules containing SEQ ID NO:21, wherein the nucleic acid molecules are destroyed.
34. the host cell of the nucleic acid molecules containing SEQ ID NO:21, nucleic acid molecules therein, which contain one or more, modifies the nucleic acid for listing sequence in SEQ ID NO:21.
35. the host cell of the nucleic acid molecules containing SEQ ID NO:21, wherein the nucleic acid molecules adjustment region is modified relative to the molecule wild type adjustment region.
CNA2007100920742A 1999-07-01 2000-06-27 Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system Pending CN101054593A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14269199P 1999-07-01 1999-07-01
US60/142691 1999-07-01
US60/150310 1999-08-23
DE19942095.5 1999-09-03
DE19942097.1 1999-09-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN00812165A Division CN1371420A (en) 1999-07-01 2000-06-27 Orynebacterium glutamicum genes encoding phosphoenolpyruvate sugar phosphotransferase system proteins

Publications (1)

Publication Number Publication Date
CN101054593A true CN101054593A (en) 2007-10-17

Family

ID=34078497

Family Applications (3)

Application Number Title Priority Date Filing Date
CNA2007100920738A Pending CN101130778A (en) 1999-07-01 2000-06-27 Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system
CNA2007100920742A Pending CN101054593A (en) 1999-07-01 2000-06-27 Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system
CNA2007100920723A Pending CN101054592A (en) 1999-07-01 2000-06-27 Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2007100920738A Pending CN101130778A (en) 1999-07-01 2000-06-27 Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2007100920723A Pending CN101054592A (en) 1999-07-01 2000-06-27 Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system

Country Status (2)

Country Link
CN (3) CN101130778A (en)
ZA (1) ZA200200816B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015807A (en) * 2018-08-31 2021-06-22 新加坡科技研究局 Method for producing terpenoid
CN115746110A (en) * 2021-09-02 2023-03-07 中国科学院天津工业生物技术研究所 Mutant of transcriptional regulatory factor LysG and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3456833A1 (en) * 2017-09-18 2019-03-20 Evonik Degussa GmbH Method for the fermentative production of l-amino acids
CN109652490B (en) * 2019-02-25 2019-09-03 内蒙古拜克生物有限公司 A kind of fermentation of L-Leu and isolation and purification method
CN113249286B (en) * 2021-05-25 2023-12-08 洛阳华荣生物技术有限公司 Method for constructing L-sarcosine producing strain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015807A (en) * 2018-08-31 2021-06-22 新加坡科技研究局 Method for producing terpenoid
CN115746110A (en) * 2021-09-02 2023-03-07 中国科学院天津工业生物技术研究所 Mutant of transcriptional regulatory factor LysG and application thereof

Also Published As

Publication number Publication date
ZA200200816B (en) 2004-10-27
CN101054592A (en) 2007-10-17
CN101130778A (en) 2008-02-27

Similar Documents

Publication Publication Date Title
CN101078016A (en) Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
SK18862001A3 (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins
EP2292763A1 (en) Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism and energy production
US20050153402A1 (en) Corynebacterium glutamicum genes encoding regulatory proteins
US7410766B2 (en) Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
AU2001223903B2 (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins
SK18882001A3 (en) Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
SK18912001A3 (en) Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CN1680559A (en) Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
SK18902001A3 (en) Corynebacterium glutamicum genes encoding proteins involved in homeostasis and adaptation
US20060269975A1 (en) Corynebacterium glutamicum genes encoding proteins involved in DNA replication, protein synthesis, and pathogenesis
CN101054593A (en) Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system
CN1451047A (en) Corynebacterium glutamicum genes encoding stress resistance and tolerance proteins
AU2007202317A1 (en) Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
CA2590625A1 (en) Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phospho-transferase system proteins
EP1702980A1 (en) Corynebacterium glutamicum gene encoding Hpr of phosphoenolpyruvate:sugar phosphotransferase system
AU2006200800A1 (en) Corynebacterium Glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
AU2007202378A1 (en) Coryneracterium glutamicum genes encoding metabolic pathway proteins
AU2007202397A1 (en) corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20071017