CN101051042A - 一种从花卉植物中筛选超积累植物的方法 - Google Patents

一种从花卉植物中筛选超积累植物的方法 Download PDF

Info

Publication number
CN101051042A
CN101051042A CN 200610046259 CN200610046259A CN101051042A CN 101051042 A CN101051042 A CN 101051042A CN 200610046259 CN200610046259 CN 200610046259 CN 200610046259 A CN200610046259 A CN 200610046259A CN 101051042 A CN101051042 A CN 101051042A
Authority
CN
China
Prior art keywords
plant
flower
soil
flower plant
hyperaccumulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200610046259
Other languages
English (en)
Inventor
周启星
刘家女
王晓飞
魏树和
任丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Ecology of CAS
Original Assignee
Institute of Applied Ecology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Ecology of CAS filed Critical Institute of Applied Ecology of CAS
Priority to CN 200610046259 priority Critical patent/CN101051042A/zh
Publication of CN101051042A publication Critical patent/CN101051042A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及植物修复技术,具体地说是从花卉植物中筛选出超积累植物的方法。具体方法为:经初步筛选实验筛选出耐性和积累性强的花卉植物,而后进一步通过盆栽及水培实验验证花卉植物具有超积累植物的特征并且也具有植物修复的潜力。采用本发明的筛选方法筛选出的花卉植物具有治理环境污染的作用,同时亦可以美化环境。

Description

一种从花卉植物中筛选超积累植物的方法
技术领域
本发明涉及植物修复技术,具体的说是从花卉植物中筛选出超积累植物的方法。
背景技术
污染土壤的修复问题已成为环境科学研究日益活跃的领域,同时也是世界性的难题,尤其是对作为主要无机污染源的重金属污染土壤的修复[文献1:顾继光,周启星,王新.2003.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,11(2):143-151;文献2:骆永明.1999.金属污染土壤的植物修复.土壤,(5):261-265]。经过近年来的不断探索,污染土壤的修复技术得到了较快的发展,主要包括物理修复技术、化学修复技术、生物修复,传统修复方法的原理主要是通过减少土壤表层污染物的浓度,或增强土壤中的污染物的稳定性使其水溶性、扩散性和生物有效性降低,从而减轻其危害[文献3:邢前国,潘伟斌,张太平.2003.重金属污染土壤的植物修复技术.生态科学,22(3):275-279],虽然治理效果较好,历时较短,但这些方法往往有许多缺陷,如成本高,难于管理,易造成二次污染,对环境的扰动大等。
植物修复由于能够克服以上这些缺点,它是近20年来发展起来的一项新兴的环境污染治理技术,可应用于环境污染治理的很多方面,既可以净化空气和水体,又可以清除土壤中的污染物。植物修复能够广泛利用绿色植物的新陈代谢活动来固定、降解、提取和挥发污染环境中的污染物质,就像一座“绿色清洁工厂”一样将污染物质加工成可直接去除的物质形态或转化为毒性小甚至无毒的物质。目前世界各国应用与研究植物修复的主要方向:(1)重金属元素的植物吸收与去除;(2)分解石油烃类和有毒痕量有机污染物;(3)水体及空气中污染物质的分解处理等。植物修复作为一种优选生物修复途径已被广泛认可和选用,近几年,基于植物修复在处理污染介质中有害物质的潜力,植物修复有了广阔的市场应用前景,取得了巨大的进展。总之,植物修复技术之所以受到如此高度的重视,最为主要的原因,在于它是一项利用太阳能为动力的处理系统,能够大大减少土壤清洁所需的费用。据估算,采用植物修复技术清洁土壤,每立方米的费用为75200美元。而传统的焚烧和土壤填埋处理技术,每处理1立方米土壤需要200800美元[文献4:Hitchcock DR,Watson C.2003.Using rotiferpopulation demographic parameters to assess impacts of thedegradation product from trinitrotoluence phytoremediation.Ecotoxicology and Environmental Safety,55(2):143-151]。
植物修复对于污染土壤的治理有着非常重要的意义,因此对具备此能力的植物的筛选就显得尤为重要,这就要求植物能够在污染土壤上仍能正常生长才能达到其修复的目的。植物对元素的选择吸收早在一个世纪以前就被人们所发现,但植物提取吸收用作污染土壤的治理也不过十几年的事,这要归功于超积累现象的发现。超积累植物(hyperaccumulator)一词最初是由Brooks等(1977)提出的,当时用以命名茎中Ni含量(干重)大于1000mg/kg的植物[文献5:Brooks RR.1997.Detection of nickeliferousrocks by analysis of herbarium specimens of indicator plants.Geochem.Explor.,7:49-77;文献6:Brown S L,Chaney R L,Angle J S,et al.1995.Zincand cdmiun up take by hyperaccumulator Thlasi caerulescens grown innutrient solution.Soil Sci.,59:125-133]。1983年,Chaney首次提到将超积累植物用于去除受污染土壤中的重金属的可能性。现在超积累植物的概念已扩大到植物对所有重金属元素的超量积累现象,即是指能超量积累一种或同时积累几种重金属元素的植物。目前,世界上已发现超积累植物400多种,其中镍的超积累植物占70%左右,此外还有Cd,Co,Cu,Ni,Pb,Mn,Zn等超积累植物。这些植物涵盖了20多个科,其中十字花科植物较多,世界上研究的最多的植物主要在芸苔属(Brassica)、庭芥属(Alyssums)、及遏蓝菜属(Thlaspi),这些超积累植物大多是在气候温和得欧洲、美国、新西兰及澳大利亚的污染地区发现的。例如Baker等调查发现[文献7:Baker A J M,McGrath S P,Sidoli C M D,et al.1994.Thepossibility of in situ heavy metal decontamination of polluted soilsusing crops of metal-accumulating plants.Resource,Conservation andRecycling,11:41-49],超积累植物遏蓝菜地上部分Zn含量为13000-21000mg/kg,按他们预算,连续种植该植物14茬,污染土壤中Zn含量可从440mg/kg降低到300mg/kg(欧共体规定的标准)。
至今,已报道超积累植物的种类仍然非常有限,有必要寻找更多种类、更为有效的超积累植物来实施污染土壤的植物修复,目前,尚未见关于花卉植物在这方面的系统报道。资料显示,如果能从物种繁多的花卉资源中筛选出对污染土壤修复有作用的花卉如超积累花卉植物,将为植物修复开辟一条新的途径。地球上已发现的植物约50万种,其中1/6具有观赏价值,自从有了人类文明开始,就开始了有意或无意的利用改造这些具观赏价值的植物。花卉植物95%以上是栽培品种,包括变种有40万种以上,可见其资源的丰富。中国不仅是世界上拥有花卉种类最为丰富的国度之一,亦为世界花卉栽培的发源地,有“世界园林之母”的美誉。尤其经过不断引种、驯化,又培育出了许多新品种。近年来,随着生活水平的提高,人们对花卉植物有了更多的需求,如果花卉植物能够在美化环境的同时,与治理环境污染联系起来,尤其是从中筛选超积累花卉植物来修复污染土壤,将是很有意义的事情,也是很值得研究的。
已有报道表明,不同的花卉,可以消除不同的大气污染物[文献8:马艳丽.2003.家庭养花在污染防治中的作用.长春大学学报,13(6):21-29;文献9:郭维明,毛龙生等.2000.观赏园艺概论.北京:中国农业出版社,55-59]。例如,人们发现吊兰、芦荟可以清除居室甲醛污染,长青藤、菊花可以减少苯污染,栀子花叶、石榴杆可以吸收二氧化硫,月季能吸收硫化氢、苯、苯酚、氟化氢、乙醚、氯气等有害有毒气体,金盏菊可吸收氰化物、硫化氢等有毒气体,美人蕉对二氧化硫有很强的抗性,紫藤对氯气和氟化氢有抗性,海桐可吸收光化学烟雾,石竹可吸收二氧化硫和氯气,香豌豆对氟化氢有很强的抗性,杜鹃是抗二氧化硫等污染较理想的花木等等。可见,花卉植物在大气污染监测与防治方面有许多应用。
尤其是,花卉植物通过光合作用,吸收人口密集区空气中的二氧化碳,放出大量氧气,从而使空气保持新鲜,花卉枝繁叶茂可释放一种被人称为空气“维生素”的负离子,可以增加空气新鲜感。负离子可以与空气中的病毒、病菌以及各种阳离子结合,使它们失去活性,达到清洁空气的作用,如玉兰、木槿、女贞等都是理想的防尘花卉,所以有人称花卉为活的“空气净化器”。一些具有香味的花卉,其鲜花都含有抗菌成分,可以消除空气中的细菌、病毒。高大的花卉具有很强的隔音效果,枝叶表面的气孔和绒毛可削弱声波的强度,并有吸收声波的作用,可有效减轻噪音污染。此外,水生花卉如凤眼莲、金鱼藻、浮萍等可吸收五毒(氰、酚、汞、砷和铬)。凤眼莲具有净化水体的功能,特别在富营养化的水体中显示出良好的净化作用。
以花卉植物为筛选超积累植物对象是有根据可言的,花卉类植物除具备一般植物的特点外,还有以下优势:(1)从世界范围来看,花卉资源相当丰富、潜力巨大,既有草本也有木本植物,这就使筛选工作有了坚实的基础;(2)能够在进行土壤修复的同时美化环境,一举两得;(3)花卉属观赏性植物,不会进入食物链,可减少对人体的危害;(4)花卉对人类健康也有着一定的作用如刺激感官、味觉;(5)多数花卉都有多种用途具有一定的经济价值,如鸡冠花、荷花、芍药等它们的根、茎、叶或者花都能入药,是很好的药用植物,米兰、白兰、珠兰等可用来香熏,玫瑰和晚香玉等能提取芳香油、香精等,还有很多种花卉可食用如菊花、百合等,也有的是造纸、制麻的原料,随着社会消费水平的不断提高,花卉的商品价值也越来越大;(6)人类在长期的农业生产中,积累了丰富的花卉栽培与耕作、品种选育与改良以及病、虫害防治等经验,再加上化学强化措施等手段的不断深入,使得花卉植物对于污染土壤修复在实践应用中有了技术保障;由此可见,从花卉中筛选修复植物是完全可行的。
发明内容
本发明的目的在于一种从花卉植物中筛选超积累植物的方法。
为了实现上述目的,本发明采用的技术方案如下:包括以下步骤:
(1)将草本花卉植物以盆栽形式种植于较高浓度的重金属污染土壤中;
(2)从步骤1)中筛选出耐性和积累性强的花卉植物;
(3)将筛选出的花卉植物种植于人为模拟的Cd污染土壤中或将其培养在含有Cd、Pb污染物的营养液中,开花成熟后收获植株;
其中:在人为模拟的Cd污染土壤中加入表面活性剂或螯合剂活化土壤中的重金属;
(4)将收获的植株分成的根、茎、叶、籽实和地上部分,将各部分进行数据分析,即筛选出能够达到超积累植物应达到的临界含量标准100mg/kg的花卉植物以及具有植物修复潜力的花卉植物。
其中:步骤2)中筛选出的耐性和积累性强的花卉植物为紫茉莉、凤仙花、金盏菊和蜀葵。
步骤3)盆栽污染物为分析纯试剂的CdCl2·2.5H2O,土壤类型为草甸棕壤;营养液培养污染物为分析纯试剂的CdCl2·2.5H2O和Pb(NO3)2。所述的表面活性剂为:十二烷基硫酸纳;螯合剂为乙二胺四乙酸和乙二醇双(2-氨基乙基)四乙酸。
本发明具有的优点:
采用本发明筛选超积累植物的方法操作性强、费用低、不破坏土壤理化性质、不引起二次污染,同时具有美化环境的作用,能够在稳定污染土壤及不引起地下水污染的同时,能够美化环境。
附图说明
图1为紫茉莉植株不同部位积累Cd的相对含量。
图2为不同Pb处理对地上部Cd积累量的影响。
图3为不同Pb处理对根部Cd积累量的影响。
具体实施方式
实施例1:对紫茉莉的盆栽浓度梯度实验
Cd是一种对植物生长有毒害作用并且对机体有“三致”作用的生物体非必需元素,是辽宁地区具有代表性和急需治理的污染物。
盆栽实验地点在中国科学院沈阳应用生态研究所的网室内,该场地在沈阳市中心,实验场地周围没有污染源,是重金属未污染区,属温带半湿润大陆性气候,年平均温度5~9℃,年总辐射量520~544KJ/cm2,无霜期127~164d。盆栽试验土壤采自中国科学院沈阳生态站内无污染区的表层土壤,土壤类型为草甸棕壤。
将草本花卉植物以盆栽形式种植于较高浓度的重金属污染土壤中;从中筛选出耐性和积累性强的花卉植物;参照我国国家土壤环境质量标准及盆栽初步筛选实验结果,本实验共设了5个处理,分别为对照(CK,不加入Cd),Cd投加浓度:10mg·kg-1(T1),30mg·kg-1(T2),50mg·kg-1(T3),100mg·kg-1(T4)。实验投加的Cd形态为CdCl2·2.5H2O,为分析纯试剂。2005年4月,取一定量中国科学院沈阳生态站内无污染区的表层土壤,土壤类型为草甸棕壤,将其风干并过4mm筛后,装入型号一致的花盆中,每盆中装土量相同,并分别与想要达到各处理浓度所用的CdCl2·2.5H2O粉末充分混合、同时加入表面活性剂十二烷基硫酸纳活化土壤中的重金属,拌匀,平衡两周待用。同时,进行花卉的育苗,具体方法为:将紫茉莉种子置于预装沙土的育苗盒中,沙∶土为1∶5,一个月后选择生长一致的幼苗(出苗高度大致在10cm左右)分别移栽入各处理的盆中,每盆各栽4棵苗,重复3次。将盆栽实验所收获的植物样分成根、茎、叶和籽实四部分,先后用自来水及去离子水冲洗干净,沥去水分,于105℃下杀青20分钟,之后在70℃下烘至恒重,称量干重后粉碎。土壤样品风干后经研磨并过100目筛。植物及土壤样品均采用HNO3-HClO4法消化,二者体积比为3∶1,原子吸收分光光度计(日立180-80型)测定其中的重金属Cd含量。
实验结果:
直至收获时,紫茉莉的生长情况良好,各处理从外表看无受害现象并且株高呈现无规律的变化,但相互差异不大(表1),说明紫茉莉植株的株高并没有受Cd投加浓度变化的影响,与对照相比,T3处理时的紫茉莉植株最矮,平均株高为32.54cm,而Cd浓度最高时的T4处理植株最高为35.12cm比对照增加了0.87cm。将实验所得数据输入到计算机上,运用DPS3.0数据处理软件进行数据方差分析,结果表明紫茉莉在各浓度处理下的地上部干重与对照相比无明显差异(P>0.05),随着污染物浓度的增加紫茉莉的各个处理生物量并没有减少趋势,而且平均每盆还分别增加了0.1g、0.1g、0.22g及0.63g呈现逐渐增加的趋势;根部干重与对照相比均有所减少,但考察植物对重金属污染土壤的耐性主要看其地上部生物量是否有明显减少现象,而且值得一提的是本实验中随着Cd处理浓度的加大其各处理根部干重却也呈现逐渐增加的趋势。实验表明当土壤中重金属Cd的浓度达到100mg·kg-1时植株的株高及地上部干重与对照相比都不但没有减少反而有所增加,这一现象的机理目前还不十分清楚有待进一步研究,但可以肯定的是紫茉莉对重金属污染物Cd具有很强的耐性,因而具有修复Cd污染土壤的潜力。
            表1  不同Cd处理浓度下紫茉莉的干重及株高
  处理   地上部干重/g·盆-1   根部干重/g·盆-1   株高/cm
  CKT1T2T3T4   5.255.355.355.475.88   10.569.139.219.379.62   34.2535.2833.9632.5435.12
紫茉莉地上部和根部的重金属含量都随着污染物浓度的增加而增加,并且对于地上部在T4处理时Cd含量达到了113.54mg·kg-1(表2)。对于各处理紫茉莉的转移系数均大于1,表现出了极强的转移能力,当土壤中Cd投加浓度为30mg·kg-1时转移系数最大达到了4.02,当土壤中Cd浓度继续增加时,转移系数有所下降,这可能是因为Cd浓度较大抑制了紫茉莉将Cd由根部向地上部转移,但T4处理时的转移系数为2.05,此时的地上部Cd含量仍大于根部Cd含量。
           表2  盆栽实验条件下紫茉莉对Cd的积累特征
  处理   根部/mg·kg-1   地上部/mg·kg-1   转移系数
  CKT1T2T3T4   2.1310.2311.8025.5949.96   3.1510.3247.4369.57113.54   1.481.014.022.722.25
方差分析结果表明紫茉莉在各Cd处理浓度下的根、茎、叶、籽实中重金属含量呈显著差异(P<0.05)。由图1所示的紫茉莉植株在各处理中各器官所积累重金属的相对含量可看出,除T1中茎部的Cd含量比叶部含量稍大外,T2、T3、T4处理中都是叶部的重金属含量最大,当Cd投加浓度为100mg·kg-1时其值达到了148.29mg·kg-1,超过了100mg·kg-1的临界含量;总体上根部的重金属Cd含量比地上部的茎和叶中的含量小。
由以上实验结果可初步推断出紫茉莉的积累特性已经基本符合了超积累植物的标准。
实施例2:对紫茉莉的水培实验
Cd、Pb是环境中主要的重金属污染物,而且在自然界中常常伴随存在,因此将草本花卉植物以盆栽形式种植于较高浓度的重金属污染土壤中,从中筛选出耐性和积累性强的花卉植物;而后采用水培实验的方法,将紫茉莉幼苗培养于Cd-Pb复合污染的环境中。
挑选生长健壮且长相一致的一个月大的幼苗,将其根部浸没于0.1%的KMnO4溶液10分钟,即能消毒杀菌又能促进植物生根,然后用蒸馏水冲洗掉KMnO4后置于300mL锥形瓶中培养,预培养阶段锥形瓶中只含有营养液,为避免离子之间相互干扰本实验只选用了基本的营养物质,其营养液组成为:1.18g·L-1Ca(NO3)2·4H2O、0.51g·L-1KNO3,5天后待幼苗适应了水培环境,准备换溶液正式水培实验。水培溶液组成为营养液和含Cd、Pb污染物的溶液,污染物以CdCl2·2.5H2O和Pb(NO3)2形态添加,实验共设计了9个处理,其中以不加CdCl2·2.5H2O和Pb(NO3)2的营养液为对照处理(CK),Cd、Pb投加浓度(Cd×Pb,mg·L-1):1×50(T1),3×50(T2),5×50(T3),10×50(T4),1×100(T5),3×100(T6),5×100(T7),10×100(T8)每瓶内一棵植株,每个处理3次重复。每5天更换一次溶液,记录植株生长变化情况,室内通风有光照,20天后收获植株。将水培实验所收获的植物样分成地上部和根部两部分,先后用自来水及去离子水冲洗干净,沥去水分,于105℃下杀青20分钟,之后在70℃下烘至恒重,称量干重后粉碎。土壤样品风干后经研磨并过100目筛。植物及土壤样品均采用HNO3-HClO4法消化,二者体积比为3∶1,原子吸收分光光度计(日立180-80型)测定其中的重金属Cd和Pb含量。
实验结果:
由表3可见,紫茉莉在20天内的生长变化情况,它的耐性较强,直至收获植株时只有稍许的萎蔫现象,T4和T8处理中Cd的浓度为最大处理浓度10mg·L-1其叶子顶部有失绿现象可能是因为紫茉莉有一定的转移能力可将重金属运输到地上部,而其它处理时紫茉莉植株通过根部的机械阻留作用将大量重金属离子阻止在根部,限制重金属向地上部位运输,从而使植物免受伤害或减轻伤害。
                  表3  水培实验条件下紫茉莉的生长反应
  第5天   第10天   第15天   第20天
  良好,有新根长出   良好,根部更茂盛   T4和T8处理有萎蔫现象   T4和T8处理植株顶部叶子有失绿现象,其它处理有稍许萎蔫现象
方差分析的结果表明水培条件下紫茉莉在各处理间的重金属积累量存在显著差异(P<0.05)(表4)。此时紫茉莉对Cd也有较强的转移能力,T3、T4、T7、T8时地上部Cd含量都大于根部,当Cd处理浓度小于10mg·L-1时植株对重金属Cd的转移能力随着Cd本身处理浓度的增加而增加即T3和T7时的转移系数最大其值分别为1.32和1.17,当Cd浓度继续增大时转移能力则有所下降;植株对Cd的积累量完全随着Cd处理浓度的增加而显著增加,T4和T8处理时植株地上部Cd含量达到了510.81mg·kg-1和539.87mg·kg-1
对于植株的Pb含量地上部都小于根部,而当Pb处理浓度较大时即100mg·L-1时这种差异程度较小即转移能力相对有所提高。无论对于Pb处理浓度为50mg·L-1还是100mg·L-1,随着Cd浓度的增加紫茉莉植株对Pb的积累量逐渐减小,显然水培条件下Cd抑制了植株对Pb的积累,并且紫茉莉对Pb的积累能力不如对Cd的积累能力强。
          表4  紫茉莉的地上部和根部重金属积累量
  处理   Cd含量/mg·kg-1   Cd转移系数   Pb含量/mg·kg-1
  地上部   根部   地上部   根部
  CKT1T2T3T4T5T6T7T8   21.19101.18203.93299.96510.8191.36273.71327.13539.87   20.65177.56217.53227.68426.88122.95303.18280.01502.76   1.030.570.941.321.200.740.901.171.07   30.33196.66163.40151.46146.11312.18444.09241.27144.37   29.40220.19212.05200.99176.01330.10462.99256.92252.99
如图2所示,对于紫茉莉的地上部,Cd处理浓度为1mg·L-1 Pb浓度为50mg·L-1时的Cd含量大于Pb浓度为100mg·L-1时的Cd含量,而Cd处理浓度为3mg·L-1,5mg·L-1,10mg·L-1 Pb浓度为100mg·L-1时的Cd含量大于Pb浓度为50mg·L-1时的Cd含量,这说明在低浓度Cd处理时增加Pb含量抑制了紫茉莉地上部对Cd的吸收,而在较高Cd浓度处理时,Pb的增加却促进了对Cd的吸收。
如图3所示,对于紫茉莉的根部,与地上部变化趋势相同,这同样说明在低浓度Cd处理时增加Pb含量抑制了紫茉莉根部对Cd的吸收,而在较高Cd浓度处理时,Pb的增加却促进了对Cd的吸收。但Pb对根部促进作用比对地上部明显,这同时也说明了Pb抑制了紫茉莉将Cd由根部向地上部转移,而是将大部分的Cd贮存在了根部。

Claims (3)

1.一种从花卉植物中筛选超积累植物的方法,其特征在于包括以下步骤:
(1)将草本花卉植物以盆栽形式种植于较高浓度的重金属污染土壤中;
(2)从步骤1)中筛选出耐性和积累性强的花卉植物;
(3)将筛选出的花卉植物种植于人为模拟的Cd污染土壤中或将其培养在含有Cd、Pb污染物的营养液中,直至开花成熟后收获植株;
其中:在人为模拟的Cd污染土壤中加入表面活性剂或螯合剂活化土壤中的重金属;
(4)将收获的植株分成的根、茎、叶、籽实和地上部分,将各部分进行数据分析,即筛选出能够达到超积累植物应达到的临界含量标准100mg/kg的花卉植物以及具有植物修复潜力的花卉植物。
2.根据权利要求1所述从花卉植物中筛选超积累植物的方法,其特征在于:步骤2)中筛选出的耐性和积累性强的花卉植物为紫茉莉、凤仙花、金盏菊和蜀葵。
3.根据权利要求1所述从花卉植物中筛选超积累植物的方法,其特征在于:步骤3)中添加的表面活性剂为:十二烷基硫酸纳;螯合剂为乙二胺四乙酸和乙二醇双(2-氨基乙基)四乙酸。
CN 200610046259 2006-04-07 2006-04-07 一种从花卉植物中筛选超积累植物的方法 Pending CN101051042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610046259 CN101051042A (zh) 2006-04-07 2006-04-07 一种从花卉植物中筛选超积累植物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610046259 CN101051042A (zh) 2006-04-07 2006-04-07 一种从花卉植物中筛选超积累植物的方法

Publications (1)

Publication Number Publication Date
CN101051042A true CN101051042A (zh) 2007-10-10

Family

ID=38782559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610046259 Pending CN101051042A (zh) 2006-04-07 2006-04-07 一种从花卉植物中筛选超积累植物的方法

Country Status (1)

Country Link
CN (1) CN101051042A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743905B (zh) * 2008-12-05 2012-12-12 中国科学院沈阳应用生态研究所 一种筛选重金属低积累作物品种的方法
CN103865544A (zh) * 2014-03-31 2014-06-18 天津师范大学 复合化学制剂改善污灌区土壤高羊茅生长的方法
CN103865545A (zh) * 2014-03-31 2014-06-18 天津师范大学 复合修复剂联合高羊茅富集污灌区土壤重金属的方法
CN104698130A (zh) * 2015-02-03 2015-06-10 上海交通大学 菊花镉耐性的评价鉴定方法
CN101497078B (zh) * 2008-02-03 2016-02-10 中国科学院沈阳应用生态研究所 一种利用螯合剂促进金盏菊积累重金属镉的方法
CN105797969A (zh) * 2016-05-10 2016-07-27 中国矿业大学 一种土壤重金属铬修复植物的筛选方法
CN106334709A (zh) * 2015-07-17 2017-01-18 天津市北方绿业生态科技有限公司 一种美人蕉修复土壤重金属污染的方法
CN106944469A (zh) * 2017-05-24 2017-07-14 兰州大学 一种镉污染土壤的植物修复方法
CN106975656A (zh) * 2017-06-01 2017-07-25 广东省科学院 一种利用紫茉莉修复铬污染土壤的方法
CN110201998A (zh) * 2019-06-05 2019-09-06 上海大学 一种苏丹草修复芘与镍复合污染土壤的方法
CN111659348A (zh) * 2020-06-16 2020-09-15 中国科学院南京土壤研究所 一种负载锰的植物基生物炭及其制备方法和应用

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497078B (zh) * 2008-02-03 2016-02-10 中国科学院沈阳应用生态研究所 一种利用螯合剂促进金盏菊积累重金属镉的方法
CN101743905B (zh) * 2008-12-05 2012-12-12 中国科学院沈阳应用生态研究所 一种筛选重金属低积累作物品种的方法
CN103865544B (zh) * 2014-03-31 2017-02-08 天津师范大学 复合化学制剂改善污灌区土壤高羊茅生长的方法
CN103865544A (zh) * 2014-03-31 2014-06-18 天津师范大学 复合化学制剂改善污灌区土壤高羊茅生长的方法
CN103865545A (zh) * 2014-03-31 2014-06-18 天津师范大学 复合修复剂联合高羊茅富集污灌区土壤重金属的方法
CN103865545B (zh) * 2014-03-31 2017-02-15 天津师范大学 复合修复剂联合高羊茅富集污灌区土壤重金属的方法
CN104698130A (zh) * 2015-02-03 2015-06-10 上海交通大学 菊花镉耐性的评价鉴定方法
CN106334709A (zh) * 2015-07-17 2017-01-18 天津市北方绿业生态科技有限公司 一种美人蕉修复土壤重金属污染的方法
CN105797969A (zh) * 2016-05-10 2016-07-27 中国矿业大学 一种土壤重金属铬修复植物的筛选方法
CN105797969B (zh) * 2016-05-10 2017-11-14 中国矿业大学 一种土壤重金属铬修复植物的筛选方法
CN106944469A (zh) * 2017-05-24 2017-07-14 兰州大学 一种镉污染土壤的植物修复方法
CN106975656A (zh) * 2017-06-01 2017-07-25 广东省科学院 一种利用紫茉莉修复铬污染土壤的方法
CN110201998A (zh) * 2019-06-05 2019-09-06 上海大学 一种苏丹草修复芘与镍复合污染土壤的方法
CN111659348A (zh) * 2020-06-16 2020-09-15 中国科学院南京土壤研究所 一种负载锰的植物基生物炭及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN101049603B (zh) 一种利用紫茉莉花卉植物修复重金属污染土壤的方法
CN101051042A (zh) 一种从花卉植物中筛选超积累植物的方法
CN105344708B (zh) 一种盐碱地土壤重金属污染的修复方法
Asaeda et al. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions
CN103350105B (zh) 一种植物-微生物联合富集土壤中重金属镉的方法及其应用
CN101234391B (zh) 一种联合修复铅污染土壤的方法
Asemoloye et al. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq
CN101905237B (zh) 一种利用红苋菜修复治理铯和/或锶污染土壤的方法
Wu et al. Periphyton: an important regulator in optimizing soil phosphorus bioavailability in paddy fields
CN101462119B (zh) 一种利用花卉植物孔雀草修复治理镉污染土壤的方法
CN103191915A (zh) 一种修复镉-多氯联苯复合污染土壤的方法
CN101433905A (zh) 一种利用观赏植物凤仙花修复石油污染土壤的方法
CN101332466B (zh) 修复矿山土壤及污泥中重金属污染的方法
CN102085527A (zh) 一种利用镉超富集植物五色梅修复重金属污染土壤的方法
CN101456029A (zh) 一种利用万寿菊修复治理镉污染土壤的方法
Asemoloye et al. Spent mushroom compost enhances plant response and phytoremediation of heavy metal polluted soil
CN105458000B (zh) 利用副产物硫代硫酸铵联合金盏菊修复汞污染土壤的方法
CN103464454A (zh) 一种利用四季春花卉修复镉、铅和砷多重污染土壤的方法
Shi et al. Growth and efficiency of nutrient removal by Salix jiangsuensis J172 for phytoremediation of urban wastewater
CN102989758A (zh) 一种修复铅-多氯联苯复合污染土壤的方法
CN107716543A (zh) 利用化学强化剂和液体菌剂联合强化湿地植物藨草修复芘‑镍复合污染湿地的方法
CN102441562A (zh) 一种利用柠檬酸促进蚕豆修复治理镉污染土壤的方法
Joseph et al. Effect of nickel uptake on selected growth parameters of Amaranthus viridis L.
CN103817143A (zh) 一种利用野生观赏植物长药八宝修复石油污染土壤的方法
Makhadmeh et al. Treated wastewater as a partial nutrient source for Lily grown in a soil-less system in presence of Arbuscular Mycorrhizal Fungi.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20071010