CN101034965B - Protocol data unit transmission method and system in high-speed downlink packet access - Google Patents
Protocol data unit transmission method and system in high-speed downlink packet access Download PDFInfo
- Publication number
- CN101034965B CN101034965B CN200610024454A CN200610024454A CN101034965B CN 101034965 B CN101034965 B CN 101034965B CN 200610024454 A CN200610024454 A CN 200610024454A CN 200610024454 A CN200610024454 A CN 200610024454A CN 101034965 B CN101034965 B CN 101034965B
- Authority
- CN
- China
- Prior art keywords
- data unit
- protocol data
- transmission block
- mac
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及高速下行分组接入技术,公开了一种高速下行分组接入中协议数据单元传输方法及其系统,使得无线网络资源能被有效利用,并且提高了每个小区的VoIP等小分组业务用户的容量。本发明中,在物理层中将来自MAC-hs层的同一个UE组内不同UE的MAC-hs PDU复用在一个TTI的数据传输块内,并通过该UE组的组标识将该数据传输块发送给该UE组内所有的UE。利用数据传输块的头部字段指示该数据传输块内所复用的MAC-hs PDU所属的UE、头部与净荷的定界、以及该MAC-hs PDU的定界和解复用。UE根据所接收到的数据传输块内的头部字段判断其是否包含属于本UE的MAC-hs PDU,如果有,则对该数据传输块解复用,得到自己的MAC-hs PDU。
The present invention relates to high-speed downlink packet access technology, and discloses a protocol data unit transmission method and system in high-speed downlink packet access, so that wireless network resources can be effectively utilized, and small packet services such as VoIP in each cell are improved user capacity. In the present invention, the MAC-hs PDUs of different UEs in the same UE group from the MAC-hs layer are multiplexed in a data transmission block of a TTI in the physical layer, and the data is transmitted through the group identifier of the UE group The block is sent to all UEs in the UE group. The header field of the data transmission block is used to indicate the UE to which the multiplexed MAC-hs PDU in the data transmission block belongs, the delimitation of the header and payload, and the delimitation and demultiplexing of the MAC-hs PDU. The UE judges whether it contains the MAC-hs PDU belonging to the UE according to the header field in the received data transmission block, and if so, demultiplexes the data transmission block to obtain its own MAC-hs PDU.
Description
技术领域technical field
本发明涉及高速下行分组接入技术,特别涉及高速下行分组接入中协议数据单元传输。The invention relates to high-speed downlink packet access technology, in particular to protocol data unit transmission in high-speed downlink packet access.
背景技术Background technique
通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)由于其强大的多媒体通信能力、高速的数据传输速率和高效的频谱利用率等许多优点而倍受青睐,并成为未来移动通信的发展目标。UMTS技术R5版本的重要特性之一就是高速下行分组接入(High Speed DownlinkPacket Access,简称“HSDPA”),即通过自适应调制和编码(AdaptiveModulation and Coding,简称“AMC”)、混合重传(HybridAutomatic-Repeat-reQuest,简称“HARQ”),以及基站节点(Node B)的快速调度等一系列关键技术,实现了下行的高速数据传输。Universal Mobile Telecommunication System ("UMTS") is popular due to its powerful multimedia communication capabilities, high-speed data transmission rate and efficient spectrum utilization, and has become the development goal of future mobile communications. . One of the important features of the R5 version of UMTS technology is High Speed Downlink Packet Access (High Speed Downlink Packet Access, referred to as "HSDPA"), that is, through Adaptive Modulation and Coding (Adaptive Modulation and Coding, referred to as "AMC"), hybrid retransmission (Hybrid Automatic -Repeat-reQuest, referred to as "HARQ"), and a series of key technologies such as fast scheduling of base station nodes (Node B), realize downlink high-speed data transmission.
熟悉本领域的技术人员都知道,空中接口技术是各种移动通信标准的相当重要的部分,具体就表现在按功能划分形成的物理通道以及与之相映射的传输信道上。UMTS基本版本就划分了七种传输信道和与之相映射或者独立的十几种物理信道。Those skilled in the art know that the air interface technology is a very important part of various mobile communication standards, which is specifically reflected in the physical channels formed by functional division and the transmission channels mapped thereto. The basic version of UMTS divides seven kinds of transmission channels and more than ten kinds of physical channels that are mapped or independent with them.
HSDPA下行包括两个物理信道,一个是高速物理下行共享信道(HighSpeed Physical Downlink Shared Channel,简称“HS-PDSCH”),用于承载用户的数据信息,另一个是高速共享控制信道(High Speed Shared ControlChannel,简称“HS-SCCH”),用于承载解调伴随数据信道HS-PDSCH所需的信令。另外,HSDPA在上行增加了一个高速专用物理控制信道(HighSpeed-Dedicated Physical Control Channel,简称“HS-DPCCH”),该信道用于承载反馈下行数据帧通过HS-PDSCH接收正确与否的信息,或者用于反馈信道质量指示(Channel Quality Indicator,简称“CQI”)。HSDPA downlink includes two physical channels, one is High Speed Physical Downlink Shared Channel (High Speed Physical Downlink Shared Channel, referred to as "HS-PDSCH"), which is used to carry user data information, and the other is High Speed Shared Control Channel (High Speed Shared ControlChannel , referred to as "HS-SCCH"), which is used to carry signaling required for demodulation of the accompanying data channel HS-PDSCH. In addition, HSDPA adds a high-speed dedicated physical control channel (HighSpeed-Dedicated Physical Control Channel, referred to as "HS-DPCCH") in the uplink, which is used to carry feedback on whether the downlink data frame is received correctly or not through the HS-PDSCH, or It is used to feed back a Channel Quality Indicator (CQI for short).
UE通过HS-SCCH获知相应的HS-PDSCH上是否有Node B发送给它的数据,也从HS-SCCH获得解调HS-PDSCH所需的包括并行的码道数及相应的扩频码、传输块大小、调制方案等传输格式和资源信息,Node B则通过HS-DPCCH获知数据是否被正确接收,如果不正确,将发起重传,否则发送新数据。The UE knows whether there is data sent by the Node B on the corresponding HS-PDSCH through the HS-SCCH, and also obtains from the HS-SCCH the number of parallel code channels required for demodulating the HS-PDSCH, the corresponding spreading code, and the transmission Block size, modulation scheme and other transmission format and resource information, the Node B will know whether the data is received correctly through the HS-DPCCH, if it is not correct, it will initiate a retransmission, otherwise it will send new data.
具体地说,在每个传输时间间隔(Transmission Time Interval,简称“TTI”)上,HS-PDSCH只能传输一个UE的数据,UE通过监听HS-SCCH来判断相应的TTI的HS-PDSCH信道承载的是否为属于自己的数据。根据3GPP规范“TS 25.212,Multiplexing and channel coding(FDD)”,HS-SCCH承载的信息包括:7个比特的信道码集信息、1个比特的调制方案信息、6个比特的传输块大小信息、3个比特的HARQ过程信息、3个比特的冗余版本和星座图版本信息、1个比特的新数据指示和16个比特的高速下行共享信道无线网络临时标识(HS-DSCH Radio Network Temporary Identity,简称“H-RNTI”)。UE就是根据HS-SCCH上携带的16个比特的UE标识H-RNTI来判断相应的TTI的HS-PDSCH信道承载的是否为属于自己的数据。Specifically, in each Transmission Time Interval (Transmission Time Interval, referred to as "TTI"), the HS-PDSCH can only transmit the data of one UE, and the UE judges the HS-PDSCH channel bearer of the corresponding TTI by monitoring the HS-SCCH. Whether it belongs to its own data. According to the 3GPP specification "TS 25.212, Multiplexing and channel coding (FDD)", the information carried by HS-SCCH includes: 7-bit channel code set information, 1-bit modulation scheme information, 6-bit transport block size information, 3 bits of HARQ process information, 3 bits of redundancy version and constellation diagram version information, 1 bit of new data indication and 16 bits of HS-DSCH Radio Network Temporary Identity (HS-DSCH Radio Network Temporary Identity, Abbreviated as "H-RNTI"). The UE judges whether the HS-PDSCH channel of the corresponding TTI carries its own data according to the 16-bit UE identifier H-RNTI carried on the HS-SCCH.
与此同时,在UE侧和通用移动通信系统地面无线接入网(UMTSTerrestrial Radio Access Network,简称“UTRAN”)侧的媒体访问控制(MediumAccess Control,简称“MAC”)层也增加了高速媒体访问控制(Medium AccessControl-high speed,简称“MAC-hs”)子层来支持HSDPA的流控,快速调度、优先权管理,HARQ和传输格式资源指示(Transport Format and ResourceIndicator,简称“TFRI”)选择。MAC-hs位于MAC层的另一子层MAC-d(d指专用)之下,物理层之上。图1和图2分别示出了UTRAN侧和UE侧的MAC-hs的结构。At the same time, the Medium Access Control (MAC) layer on the UE side and the Universal Mobile Telecommunications System Terrestrial Radio Access Network (UMTS Terrestrial Radio Access Network, UTRAN) side also adds high-speed media access control. (Medium AccessControl-high speed, referred to as "MAC-hs") sublayer to support HSDPA flow control, fast scheduling, priority management, HARQ and Transport Format and Resource Indicator (Transport Format and ResourceIndicator, referred to as "TFRI") selection. MAC-hs is located under another sublayer MAC-d (d refers to dedicated) of the MAC layer and above the physical layer. Figure 1 and Figure 2 show the structure of the MAC-hs on the UTRAN side and the UE side respectively.
如图1所示,来自无线网络控制器(Radio Network Controller,简称“RNC”)中各UE的MAC-d流进入Node B中的MAC-hs实体后,首先由优先级队列分配单元根据MAC-d流上的MAC-d协议数据单元(Protocol DataUnit,简称“PDU”)的优先级,将数据包分配到不同的优先级队列中缓存,等待Node B调度,得以在高速下行共享信道(High Speed Downlink SharedChannel,简称“HS-DSCH”)上发送。其中,每个优先级队列中的数据包为同一UE的具有相同优先级的MAC-d PDU,其大小各不相同。As shown in Figure 1, after the MAC-d flow from each UE in the Radio Network Controller (Radio Network Controller, referred to as "RNC") enters the MAC-hs entity in the Node B, the priority queue allocation unit first uses the MAC- The priority of the MAC-d Protocol Data Unit (Protocol DataUnit, referred to as "PDU") on the d flow, the data packets are allocated to different priority queues for buffering, and wait for Node B scheduling, so that the high-speed downlink shared channel (High Speed Downlink SharedChannel, referred to as "HS-DSCH"). Among them, the data packets in each priority queue are MAC-d PDUs with the same priority of the same UE, and their sizes are different.
Node B在每个TTI对各UE的各优先级队列的数据发送进行调度,即Node B根据一定的调度算法选择某一UE的某一优先级队列中的一定数量的MAC-d PDU在当前TTI的HS-DSCH信道上传输,所选择的MAC-d PDU将复用形成MAC-hs PDU,再交由HARQ实体通过该UE的某一HARQ过程进行传输,其中,一个UE最多可以有8个独立的HARQ过程。传输格式资源组合(TFRC)选择单元则负责选择在HS-DSCH上传输所使用的包括并行的码道数及相应的扩频码、传输块大小、调制方案等传输格式和资源。The Node B schedules the data transmission of each priority queue of each UE in each TTI, that is, the Node B selects a certain number of MAC-d PDUs in a certain priority queue of a certain UE according to a certain scheduling algorithm in the current TTI The selected MAC-d PDU will be multiplexed to form a MAC-hs PDU, and then handed over to the HARQ entity for transmission through a certain HARQ process of the UE. A UE can have up to 8 independent The HARQ process. The transport format resource combination (TFRC) selection unit is responsible for selecting the transmission formats and resources used for transmission on the HS-DSCH, including the number of parallel code channels and corresponding spreading codes, transmission block sizes, and modulation schemes.
其中,MAC-hs PDU的格式如图3所示,MAC-hs PDU的头部包括版本标志(VF)、队列号(Queue ID)、传输序号(TSN)、MAC-d PDU长度指示(SID)、MAC-d PDU数目N与标志F等字段。其中,VF字段长度为1比特,用于标识MAC-hs PDU的版本,当前协议的版本号为0;Queue ID字段长度为3比特,用于标识同一优先级队列的MAC-hs PDU;TSN字段长度为6比特,用于标识MAC-hs PDU的序号,从而使接收端能够根据序号恢复原有的MAC-hs PDU顺序;SID字段长度为3比特,用于指示同一大小的顺序级联在一起的MAC-d PDU的长度;N字段长度为7比特,表示同一大小的顺序级联在一起的MAC-d PDU的个数。MAC-hs PDU的净荷部分由多个MAC-hs SDU,即MAC-d PDU,复用而成,由于同一优先级队列中优先级相同但大小不同的MAC-d PDU可能有多种,因此复用在MAC-hs PDU上的MAC-d PDU可能有多种不同的长度。在MAC-hs PDU的净荷部分,同一长度的MAC-d PDU顺序级联在一起,其大小以及顺序级联在一起的MAC-dPDU的个数则由MAC-hs PDU头部相应的SID和N字段标识。而长度为1比特的F字段则指示后续是否是另外一个大小的MAC-d PDU所对应的SID和N字段标识,其中,若F字段为“0”,则表示后续是另外一个大小的MAC-dPDU所对应的SID和N字段标识,若字段为“1”则表示MAC-hs PDU头部的结束,即后续为该MAC-hs PDU的净荷部分。Among them, the format of the MAC-hs PDU is shown in Figure 3. The header of the MAC-hs PDU includes a version flag (VF), a queue number (Queue ID), a transmission sequence number (TSN), and a MAC-d PDU length indication (SID). , MAC-d PDU number N and flag F and other fields. Among them, the length of the VF field is 1 bit, which is used to identify the version of the MAC-hs PDU, and the version number of the current protocol is 0; the length of the Queue ID field is 3 bits, which is used to identify the MAC-hs PDU of the same priority queue; the TSN field The length is 6 bits, which is used to identify the sequence number of the MAC-hs PDU, so that the receiving end can restore the original MAC-hs PDU sequence according to the sequence number; the length of the SID field is 3 bits, which is used to indicate that the sequence of the same size is concatenated together The length of the MAC-d PDU; the length of the N field is 7 bits, indicating the number of MAC-d PDUs of the same size that are concatenated together. The payload part of the MAC-hs PDU is multiplexed by multiple MAC-hs SDUs, that is, MAC-d PDUs. Since there may be multiple MAC-d PDUs with the same priority but different sizes in the same priority queue, therefore MAC-d PDUs multiplexed on MAC-hs PDUs may have various lengths. In the payload part of the MAC-hs PDU, MAC-d PDUs of the same length are sequentially concatenated together, and the size and the number of concatenated MAC-dPDUs are determined by the corresponding SID and N field identifier. The F field with a length of 1 bit indicates whether the follow-up is the SID and N field identifier corresponding to another size of MAC-d PDU, wherein, if the F field is "0", it means that the follow-up is another size of MAC-d PDU. The SID and N field identification corresponding to the dPDU, if the field is "1", it means the end of the MAC-hs PDU header, that is, the follow-up is the payload part of the MAC-hs PDU.
Node B在一个TTI,将某个UE指定优先级队列中的多个MAC-d PDU按照MAC-hs PDU的格式复用形成MAC-hs PDU,再交由HARQ实体,通过该UE的某一HARQ过程传输到该UE。In one TTI, the Node B multiplexes multiple MAC-d PDUs in the priority queue specified by a certain UE according to the format of the MAC-hs PDU to form a MAC-hs PDU, and then hands it over to the HARQ entity, through a certain HARQ of the UE. The procedure is transmitted to the UE.
在UE侧,如图2所示,UE侧的MAC-hs实体将来自HS-DSCH信道的MAC-hs PDU首先送至HARQ实体,UE侧的HARQ实体是UTRAN侧的HARQ实体的接收方,负责完成产生正确应答(ACK)/错误应答(NACK)、HARQ软合并等操作.经过HARQ处理后,重排序队列单元根据MAC-hs PDU头部的Queue ID字段将该MAC-hs PDU分配到相应的重排序队列,而在重排序队列中,根据各MAC-hs PDU头部的TSN字段对各MAC-hs PDU重新排序,从而恢复原有的数据包顺序,最后,已恢复原有顺序的MAC-hs PDU被送入分拆单元,分拆单元根据MAC-hs PDU头部的SID、N及F字段从MAC-hs PDU的净荷部分分拆出各个MAC-d PDU并送往MAC-d实体。On the UE side, as shown in Figure 2, the MAC-hs entity on the UE side sends the MAC-hs PDU from the HS-DSCH channel to the HARQ entity first, and the HARQ entity on the UE side is the receiver of the HARQ entity on the UTRAN side, responsible for Complete operations such as generating correct acknowledgment (ACK)/wrong acknowledgment (NACK), HARQ soft combining, etc. After HARQ processing, the reordering queue unit allocates the MAC-hs PDU to the corresponding MAC-hs PDU header according to the Queue ID field Reordering queue, and in the reordering queue, each MAC-hs PDU is reordered according to the TSN field of each MAC-hs PDU header, thereby restoring the original data packet order, and finally, the MAC-hs PDU that has restored the original order The hs PDU is sent to the disassembly unit, and the disassembly unit disassembles each MAC-d PDU from the payload part of the MAC-hs PDU according to the SID, N and F fields of the MAC-hs PDU header and sends them to the MAC-d entity .
由于下行传输速率大、传输时延小等明显的优势,HSDPA被越来越多的业务所使用,基于网际协议多媒体核心网子系统(IP Multimedia Subsystem,简称“IMS”)的分组语音(Voice over IP,简称“VoIP”)技术就是其中的典型应用。Due to the obvious advantages of high downlink transmission rate and small transmission delay, HSDPA is used by more and more businesses. Voice over packet (Voice over IP, referred to as "VoIP") technology is one of the typical applications.
目前,根据3GPP的规范“TS 25.212,Multiplexing and channel coding”,网络侧将根据一定的调度算法选择出的某一UE的某一优先级队列中的一定数量的MAC-d PDU,在MAC-hs层复用形成MAC-hs PDU,并在该MAC-hsPDU进入到物理层后,附加一个24比特的循环冗余校验(Cyclic RedundancyCheck,简称“CRC”),然后再进行信道编码、交织和星座图映射等操作,如图4所示;或者,在MAC-hs层中将该MAC-hs PDU与该UE的其他优先级队列的MAC-hs PDU再次复用成一个MAC-hs PDU,相同的,在该MAC-hs PDU进入到物理层后,附加一个24比特的CRC,然后再进行信道编码、交织和星座图映射等操作。网络侧将在物理层最终形成的数据传输块通过一个TTI发送给该UE。At present, according to the 3GPP specification "TS 25.212, Multiplexing and channel coding", the network side will select a certain number of MAC-d PDUs in a certain priority queue of a certain UE according to a certain scheduling algorithm, and send them to the MAC-hs Layer multiplexing forms a MAC-hs PDU, and after the MAC-hsPDU enters the physical layer, a 24-bit cyclic redundancy check (Cyclic Redundancy Check, referred to as "CRC") is added, and then channel coding, interleaving and constellation Map mapping and other operations, as shown in Figure 4; or, in the MAC-hs layer, the MAC-hs PDU and the MAC-hs PDU of other priority queues of the UE are multiplexed into a MAC-hs PDU again, the same , after the MAC-hs PDU enters the physical layer, a 24-bit CRC is attached, and then channel coding, interleaving, and constellation map mapping are performed. The network side sends the data transmission block finally formed on the physical layer to the UE through one TTI.
当UE接收到网络侧所发送的数据传输块后,进行解调、信道解码等接收处理,并在物理层对解码完的数据传输块进行CRC校验,将校验结果通知UE的MAC-hs层的HARQ实体,该HARQ实体根据该CRC校验结果决定是否要求网络侧重传该数据传输块并控制相应的HARQ软合并,除非HARQ重传超过一定的次数,否则,只有当CRC的校验正确时,UE的物理层才将正确解码的MAC-hs PDU送至该UE的MAC-hs层。After the UE receives the data transmission block sent by the network side, it performs reception processing such as demodulation and channel decoding, and performs CRC check on the decoded data transmission block at the physical layer, and notifies the MAC-hs of the UE of the check result Layer HARQ entity, the HARQ entity determines whether to request the network side to retransmit the data transmission block and control the corresponding HARQ soft combination according to the CRC check result, unless the HARQ retransmission exceeds a certain number of times, otherwise, only when the CRC check is correct , the physical layer of the UE sends the correctly decoded MAC-hs PDU to the MAC-hs layer of the UE.
在实际应用中,上述方案存在以下问题:无线网络资源无法得到充分的利用。In practical application, the above solution has the following problem: wireless network resources cannot be fully utilized.
造成这种情况的主要原因在于,在现有技术中,HSDPA在一个TTI内只能传输一个UE中的MAC-hs PDU,而由于VoIP在不同的MAC-hs优先级队列上的数据流速率非常低,即使该MAC-hs PDU是经过不同优先级队列的PDU复用后形成的,仍然可能不能充分利用HSDPA的传输带宽,从而导致大量的剩余传输带宽不能被利用,而同时该小区内却还有许多其它正在使用VoIP业务的UE等待传输数据的问题。The main reason for this situation is that in the prior art, HSDPA can only transmit the MAC-hs PDU in one UE in one TTI, and because the data flow rate of VoIP on different MAC-hs priority queues is very high Low, even if the MAC-hs PDU is formed after multiplexing PDUs of different priority queues, it may still not be able to fully utilize the transmission bandwidth of HSDPA, resulting in a large amount of remaining transmission bandwidth that cannot be used, and at the same time, there are still There are many other problems with UEs using VoIP services waiting to transmit data.
发明内容Contents of the invention
有鉴于此,本发明的主要目的在于提供一种高速下行分组接入中协议数据单元传输方法及其系统,使得无线网络资源能被有效利用,并且提高了每个小区的VoIP等小分组业务用户的容量。In view of this, the main purpose of the present invention is to provide a protocol data unit transmission method and system in high-speed downlink packet access, so that wireless network resources can be effectively used, and improve the VoIP and other small packet service users in each cell. capacity.
为实现上述目的,本发明提供了一种高速下行分组接入中协议数据单元传输方法,包含以下步骤:In order to achieve the above object, the present invention provides a protocol data unit transmission method in high-speed downlink packet access, comprising the following steps:
A将至少两个用户设备设置为一个用户设备组,为其分配一个组标识;A sets at least two user equipments as a user equipment group, and assigns a group identifier to it;
B网络侧将属于同一用户设备组的至少两个高速媒体访问控制层的协议数据单元复用在共享物理信道的一个传输时间间隔的数据传输块中下发,并以所述组标识指示该传输时间间隔中数据的归属;The B network side multiplexes the protocol data units of at least two high-speed media access control layers belonging to the same user equipment group in a data transmission block of a transmission time interval of the shared physical channel, and indicates the transmission with the group identifier Attribution of data in time intervals;
C所述用户设备根据所述组标识从所述共享物理信道收取相应传输时间间隔中的数据传输块,对其解复用后从中获取属于本用户设备的协议数据单元.C. The user equipment receives the data transmission block in the corresponding transmission time interval from the shared physical channel according to the group identifier, and obtains the protocol data unit belonging to the user equipment after demultiplexing it.
其中,所述数据传输块包含头部和净荷部分;Wherein, the data transmission block includes a header and a payload part;
所述净荷中包含属于同一用户设备组的各所述协议数据单元;The payload includes each of the protocol data units belonging to the same user equipment group;
所述头部中包含指示所述净荷内各协议数据单元所属的用户设备的信息、该头部与净荷的定界信息、以及该净荷内各协议数据单元的定界和解复用信息。The header includes information indicating the user equipment to which each protocol data unit in the payload belongs, the delimitation information between the header and the payload, and the delimitation and demultiplexing information of each protocol data unit in the payload .
此外在所述方法中,所述净荷中还包含各所述协议数据单元的循环冗余校验码,用于在用户设备侧检测该协议数据单元的正确性,各所述协议数据单元及其循环冗余校验码以级联方式存在于所述净荷中。In addition, in the method, the payload also includes a cyclic redundancy check code of each of the protocol data units, which is used to detect the correctness of the protocol data units at the user equipment side, and each of the protocol data units and Its cyclic redundancy check code exists in the payload in a concatenated manner.
此外在所述方法中,所述头部还包含循环冗余校验码,用于在用户设备侧检测该头部的正确性。In addition, in the method, the header further includes a cyclic redundancy check code, which is used to check the correctness of the header at the user equipment side.
此外在所述方法中,所述头部使用冗余编码。Also in the method, the header uses redundant coding.
此外在所述方法中,所述共享物理信道为高速物理下行共享信道;In addition, in the method, the shared physical channel is a high-speed physical downlink shared channel;
传输所述组标识的信道为高速共享控制信道。The channel for transmitting the group identifier is a high-speed shared control channel.
此外在所述方法中,所述组标识为高速下行链路共享信道无线网络临时标识。In addition, in the method, the group identifier is a temporary identifier of the high-speed downlink shared channel wireless network.
此外在所述方法中,所述用户设备组内的所有用户设备向网络侧上传接收所述数据传输块以及分解出的属于本用户设备的协议数据单元是否正确的应答消息及信道质量指示;In addition, in the method, all user equipments in the user equipment group upload and receive the data transmission block and whether the decomposed protocol data unit belonging to the user equipment is correct or not and a channel quality indication to the network side;
如果所述网络侧接收到了不确认应答消息,则网络侧持续重传该数据传输块,直至接收到该用户设备组内的所有用户设备的确认应答消息;If the network side receives a non-confirmation response message, the network side continues to retransmit the data transmission block until receiving confirmation response messages from all user equipments in the user equipment group;
所述网络侧根据同一用户设备组内各用户设备反馈的信道质量指示中,指示最低速率的信道质量指示值来调度和分配无线资源。The network side schedules and allocates radio resources according to the channel quality indication value indicating the lowest rate among the channel quality indications fed back by each user equipment in the same user equipment group.
此外在所述方法中,如果所述用户设备收到了重传的数据传输块,且该数据传输块及其内属于本用户设备的协议数据单元此前已被正确接收,则忽略对该重传的数据传输块的处理。In addition, in the method, if the user equipment receives a retransmitted data transmission block, and the data transmission block and the protocol data unit belonging to the user equipment in the data transmission block have been correctly received before, then ignore the retransmission Processing of data transfer blocks.
本发明还提供了一种高速下行分组接入中协议数据单元传输系统,网络侧与用户设备中分别包含物理层与媒体接入层,所述网络侧的物理层包含:The present invention also provides a protocol data unit transmission system in high-speed downlink packet access, the network side and the user equipment respectively include a physical layer and a media access layer, and the physical layer on the network side includes:
复用模块,用于将属于同一用户设备组的至少两个高速媒体访问控制层的协议数据单元复用在共享物理信道的一个传输时间间隔的数据传输块中;The multiplexing module is used to multiplex the protocol data units of at least two high-speed media access control layers belonging to the same user equipment group in a data transmission block of a transmission time interval of the shared physical channel;
发送模块,用于在共享物理信道发送所述复用模块生成的数据传输块,并以所述组标识指示该传输时间间隔中数据的归属;A sending module, configured to send the data transmission block generated by the multiplexing module on the shared physical channel, and use the group identifier to indicate the ownership of the data in the transmission time interval;
所述用户设备的物理层包含:The physical layer of the user equipment includes:
接收模块,用于根据所述组标识从所述共享物理信道收取相应传输时间间隔中的数据传输块,a receiving module, configured to receive a data transmission block in a corresponding transmission time interval from the shared physical channel according to the group identifier,
解复用模块,用于对所述接收模块接收的数据传输块进行解复用后从中获取属于本用户设备的协议数据单元。The demultiplexing module is configured to demultiplex the data transmission block received by the receiving module and obtain the protocol data unit belonging to the user equipment therefrom.
其中,所述数据传输块包含头部和净荷部分;所述净荷中包含属于同一用户设备组的各所述协议数据单元;所述头部中包含指示所述净荷内各协议数据单元所属的用户设备的信息、该头部与净荷的定界信息、以及该净荷内各协议数据单元的定界和解复用信息。Wherein, the data transmission block includes a header and a payload part; the payload includes each of the protocol data units belonging to the same user equipment group; the header includes an indication of each protocol data unit in the payload The information of the user equipment to which it belongs, the delimitation information of the header and the payload, and the delimitation and demultiplexing information of each protocol data unit in the payload.
通过比较可以发现,本发明的技术方案与现有技术的主要区别在于,在物理层中将来自MAC-hs层的同一个UE组内不同UE的MAC-hs PDU复用在一个TTI的数据传输块内,并通过该UE组的组标识将该数据传输块发送给该UE组内所有的UE。利用数据传输块的头部字段指示该数据传输块内所复用的MAC-hs PDU所属的UE、头部与净荷的定界、以及该MAC-hs PDU的定界和解复用,使得UE能够根据所接收到的数据传输块内的头部字段判断其是否包含属于本UE的MAC-hs PDU,如果有,则进一步对该数据传输块解复用,得到属于其自身的MAC-hs PDU。通过对头部字段以及每一个UE的MAC-hs PDU附加CRC,保证了UE能够从接收到的数据传输块中成功分解出属于其自身的MAC-hs PDU,并得到正确的MAC-hs PDU,从而实现了多UE在HSDPA信道上的复用。By comparison, it can be found that the main difference between the technical solution of the present invention and the prior art is that in the physical layer, the MAC-hs PDUs of different UEs in the same UE group from the MAC-hs layer are multiplexed in the data transmission of one TTI block, and send the data transmission block to all UEs in the UE group through the group identifier of the UE group. Use the header field of the data transmission block to indicate the UE to which the MAC-hs PDU multiplexed in the data transmission block belongs, the delimitation of the header and the payload, and the delimitation and demultiplexing of the MAC-hs PDU, so that the UE It can judge whether it contains the MAC-hs PDU belonging to the UE according to the header field in the received data transmission block, and if so, further demultiplex the data transmission block to obtain its own MAC-hs PDU . By adding CRC to the header field and the MAC-hs PDU of each UE, it is ensured that the UE can successfully decompose its own MAC-hs PDU from the received data transmission block, and obtain the correct MAC-hs PDU. Thus, the multiplexing of multiple UEs on the HSDPA channel is realized.
进一步地,可以先在MAC-hs层中将同一UE不同优先级队列中的PDU复用到该UE的一个MAC-hs PDU中,再在物理层中将来自MAC-hs层的同一个UE组内不同UE的MAC-hs PDU复用在一个数据传输块内,从而实现多用户、多队列的PDU复用,有效地解决了由于VoIP等低速率小分组业务在不同的MAC-hs优先级队列上的数据流速率低而导致不能充分利用HSDPA的传输带宽问题,从而提高了HSDPA中传输VoIP等低速率小分组业务时的无线网络资源利用率,并进一步扩大了每个小区的VoIP等小分组业务用户的容量。Further, the PDUs in different priority queues of the same UE can be multiplexed into one MAC-hs PDU of the UE in the MAC-hs layer, and then the same UE group from the MAC-hs layer can be multiplexed in the physical layer The MAC-hs PDUs of different UEs are multiplexed in one data transmission block, so as to realize the PDU multiplexing of multiple users and multiple queues, and effectively solve the problem of low-rate small packet services such as VoIP in different MAC-hs priority queues. The HSDPA transmission bandwidth cannot be fully utilized due to the low data flow rate on the Internet, thus improving the utilization rate of wireless network resources when transmitting VoIP and other low-rate small packet services in HSDPA, and further expanding the VoIP and other small packets of each cell. Capacity for business users.
同一UE组的不同UE独立地通过各自的HS-DPCCH信道反馈CQI和ACK/NACK,Node B将持续重传直到收到该UE组的所有的UE的ACK应答为止;同一UE组的UE在接收到正确的数据传输块并分解出该UE的正确的MAC-hs PDU后,忽略此后相同的重传数据传输块。Node B接收UE组中所有UE的HS-DPCCH信道上的CQI,并根据指示最低速率的CQI值来调度和分配无线资源,从而保证该UE组中的所有UE均能够有效接收。Different UEs in the same UE group independently feed back CQI and ACK/NACK through their respective HS-DPCCH channels, and the Node B will continue to retransmit until receiving ACK responses from all UEs in the UE group; UEs in the same UE group are receiving After arriving at the correct data transmission block and decomposing the correct MAC-hs PDU of the UE, ignore the subsequent retransmission of the same data transmission block. Node B receives the CQI on the HS-DPCCH channel of all UEs in the UE group, and schedules and allocates radio resources according to the CQI value indicating the lowest rate, so as to ensure that all UEs in the UE group can receive it effectively.
附图说明Description of drawings
图1是现有技术中UTRAN侧MAC-hs实体的结构示意图;FIG. 1 is a schematic structural diagram of a MAC-hs entity on the UTRAN side in the prior art;
图2是现有技术中UE侧MAC-hs实体的结构示意图;FIG. 2 is a schematic structural diagram of a UE-side MAC-hs entity in the prior art;
图3是现有技术中同一优先级队列的MAC-hs PDU的结构示意图;Fig. 3 is the structural representation of the MAC-hs PDU of same priority queue in the prior art;
图4是现有技术中网络侧的物理层处理MAC-hs PDU的流程图;Fig. 4 is the flowchart of the physical layer processing MAC-hs PDU of network side in the prior art;
图5是根据本发明第一实施方式的HSDPA中PDU传输系统结构图;Fig. 5 is a PDU transmission system structural diagram in HSDPA according to the first embodiment of the present invention;
图6是根据本发明第一实施方式的HSDPA中PDU传输方法流程图;FIG. 6 is a flow chart of a PDU transmission method in HSDPA according to a first embodiment of the present invention;
图7是根据本发明第一实施方式的HSDPA中PDU传输方法的数据传输块的结构图;Fig. 7 is the structural diagram of the data transmission block of the PDU transmission method in HSDPA according to the first embodiment of the present invention;
图8根据本发明第一实施方式的HSDPA中PDU传输方法的MAC-hsPDU复用流程图;FIG. 8 is a flowchart of MAC-hsPDU multiplexing of the PDU transmission method in HSDPA according to the first embodiment of the present invention;
图9是根据本发明第二实施方式的HSDPA中PDU传输方法的级联MAC-hs PDU的结构图。FIG. 9 is a structural diagram of concatenated MAC-hs PDUs of the PDU transmission method in HSDPA according to the second embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明的核心在于,对UE进行编组,每个UE组内至少包含两个UE并为该UE组分配组标识,网络侧在物理层中将来自MAC-hs层的同一个UE组内不同UE的MAC-hs PDU复用在共享物理信道的一个TTI的数据传输块内,并通过UE组的组标识指示该TTI中数据的归属,从而使得该UE组内的所有UE能够从共享物理信道收取相应TTI中的数据传输块,对其解复用后从中获取属于本UE的PDU.The core of the present invention is to group UEs. Each UE group contains at least two UEs and assigns a group identifier to the UE group. In the physical layer, the network side combines different UEs in the same UE group from the MAC-hs layer. The MAC-hs PDU of the shared physical channel is multiplexed in the data transmission block of a TTI of the shared physical channel, and the attribution of the data in the TTI is indicated through the group identifier of the UE group, so that all UEs in the UE group can receive data from the shared physical channel The data transmission block in the corresponding TTI is demultiplexed to obtain the PDU belonging to the UE.
以上对本发明的核心进行了介绍,下面对本发明第一实施方式的HSDPA中PDU传输系统结构进行说明。The core of the present invention has been introduced above, and the structure of the PDU transmission system in HSDPA according to the first embodiment of the present invention will be described below.
如图5所示,网络侧与UE侧分别包含物理层与MAC层。As shown in FIG. 5 , the network side and the UE side respectively include a physical layer and a MAC layer.
在网络侧的物理层中还包含复用模块与发送模块。其中,复用模块用于将属于同一UE组的至少两个MAC-hs PDU复用在共享物理信道的一个TTI的数据传输块中,发送模块用于在共享物理信道发送该复用模块生成的数据传输块,并以该UE组标识指示该TTI中数据的归属,即该TTI中所传输的数据是属于哪一个UE组的。The physical layer on the network side also includes a multiplexing module and a sending module. Wherein, the multiplexing module is used to multiplex at least two MAC-hs PDUs belonging to the same UE group in a data transmission block of one TTI of the shared physical channel, and the sending module is used to send the data generated by the multiplexing module on the shared physical channel The data transmission block, and indicates the attribution of the data in the TTI with the UE group identifier, that is, which UE group the data transmitted in the TTI belongs to.
UE侧的物理层中还包含接收模块与解复用模块。其中,接收模块用于根据该UE所属UE组的组标识从共享物理信道收取相应TTI中的数据传输块,解复用模块用于对该接收模块接收的数据传输块进行解复用后从中获取属于本UE的PDU,并将所获取的PDU送至该UE的MAC层。The physical layer on the UE side also includes a receiving module and a demultiplexing module. Wherein, the receiving module is used for receiving the data transmission block in the corresponding TTI from the shared physical channel according to the group identifier of the UE group to which the UE belongs, and the demultiplexing module is used for demultiplexing the data transmission block received by the receiving module and obtaining therefrom PDUs belonging to the UE, and send the obtained PDUs to the MAC layer of the UE.
本发明第一实施方式的HSDPA中PDU传输方法如图6所示。The PDU transmission method in HSDPA according to the first embodiment of the present invention is shown in FIG. 6 .
在步骤610中,网络侧设置UE组,并为其分配组标识。具体地说,当UE与网络侧建立无线链路时,网络侧将至少两个UE设置为一个UE组,并为每个UE组分配一个组标识。也就是说,对于一个至少属于一个UE组的UE而言,将获得系统分配的至少一个组标识以及用于标识该UE自身的H-RNTI,如果该组标识也是H-RNTI,那么,对于该UE而言,则将至少获得系统分配的两个H-RNTI,一个用于标识该UE所属的UE组,另一个用于标识该UE自身。In
接着,进入步骤620,网络侧将UE组内各UE的MAC-hs PDU复用在一个数据传输块内下发。具体地说,网络侧将属于同一UE组的至少两个MAC-hs PDU复用在共享物理信道的一个TTI的数据传输块中下发,并以在步骤610中为该UE组所设置的组标识来指示该TTI中所传输的数据是属于哪一个UE组的。本实施方式中,数据传输块通过HS-PDSCH下发,该UE组的组标识通过HS-SCCH传输。Then, enter
其中,数据传输块的结构如图7所示,包含头部以及净荷部分。净荷部分用于包含属于同一UE组的各PDU以及该PDU的CRC,使得UE侧检测该PDU的传输正确性,各PDU及其CRC以级联方式存在于净荷部分中。头部部分用于包含指示该净荷内各PDU所属的UE的信息、头部与净荷的定界信息、该净荷内各PDU的定界和解复用信息,以便UE在接收到该数据传输块后能成功分解出属于该UE的PDU以及该PDU的CRC,并且,该头部部分还需包含该头部信息的CRC,使得UE侧能够检测该头部内信息的传输正确性。Wherein, the structure of the data transmission block is shown in FIG. 7 , which includes a header and a payload. The payload part is used to include each PDU belonging to the same UE group and the CRC of the PDU, so that the UE side can detect the correctness of the transmission of the PDU, and each PDU and its CRC exist in the payload part in a concatenated manner. The header part is used to contain information indicating the UE to which each PDU in the payload belongs, the delimitation information of the header and the payload, and the delimitation and demultiplexing information of each PDU in the payload, so that the UE receives the data After the transmission block, the PDU belonging to the UE and the CRC of the PDU can be successfully decomposed, and the header part also needs to include the CRC of the header information, so that the UE side can detect the correctness of the information in the header.
网络侧将属于同一UE组的至少两个MAC-hs PDU复用在共享物理信道的一个TTI的数据传输块中的流程如图8所示。The process of multiplexing at least two MAC-hs PDUs belonging to the same UE group in the data transmission block of one TTI of the shared physical channel on the network side is shown in Figure 8.
在步骤810中,网络侧的物理层为来自MAC-hs层的同一UE组内各UE的PDU附加该PDU的CRC,以保证在UE侧能够检测出所分解得到的PDU是否在传输过程中出现错误。In
接着,在步骤820中,网络侧的物理层生成头部信息,其中包括用于指示各PDU所属的UE的信息、头部与净荷的定界信息、以及该净荷内各PDU的定界和解复用信息。Next, in
在步骤830中,网络侧的物理层对头部信息附加CRC并进行冗余编码。这是因为,如果采用在物理层复用MAC-hs PDU的方式,则对复用后的头部字段有较高的准确性要求,否则将会由于头部字段的传输错误而无法对其净荷部分进行解复用,但是,HSDPA物理层传输的误块率本身又比较高,因此,需要对头部信息附加CRC后,再进行冗余编码,优选地,可以采用分组编码或者重复编码的方式,以提高头部信息的正确性.In
接着,在步骤840中,对复用后的数据传输块进行信道编码、交织和星座图映射等操作,并送至扩频调制单元。Next, in
网络侧将UE组内各UE的MAC-hs PDU复用在一个数据传输块内下发后,进入步骤630,UE判断接收到的数据传输块头部是否正确。具体地说,如果网络侧是通过HS-PDSCH下发数据传输块,那么,UE侧的各UE根据HS-SCCH上指示该TTI内数据传输块归属的组标识接收相应的数据传输块。并在该数据传输块经过解调、信道解码等处理后,对该数据传输块的头部进行CRC的验证,检测该数据传输块是否在传输过程中出现错误。如果验证成功,即该数据传输块的头部传输正确,则进入步骤640,否则进入步骤650。After the network side multiplexes the MAC-hs PDUs of each UE in the UE group into a data transmission block and delivers it, it enters
在步骤640中,接收该数据传输块的UE进一步判断分解出的属于本UE的PDU是否传输正确。具体地说,UE侧的各UE根据其所属的组标识接收到相应的数据传输块且该数据传输块的头部传输正确时,根据该头部所包含的信息分解出属于自己的PDU以及该PDU的CRC后,对属于自己的PDU进行CRC的验证,检测属于自己的PDU是否在传输过程中出现错误。如果验证成功,则将正确解码的PDU送至该UE的MAC-hs层并进入步骤660,或者,如果UE通过该头部信息发现该数据传输块中不包含属于自己的PDU,则直接进入步骤660,否则,进入步骤650。In step 640, the UE receiving the data transmission block further judges whether the decomposed PDU belonging to the UE is transmitted correctly. Specifically, when each UE on the UE side receives the corresponding data transmission block according to the group identifier it belongs to and the header of the data transmission block is transmitted correctly, it decomposes its own PDU and the PDU according to the information contained in the header. After the CRC of the PDU, perform CRC verification on its own PDU to detect whether there is an error in the transmission process of its own PDU. If the verification is successful, send the correctly decoded PDU to the MAC-hs layer of the UE and enter
在步骤650中,即当UE接收到的数据传输块头部或者从该数据传输块中分解出的属于自己的PDU不正确时,向网络侧上传由该UE的MAC-hs层HARQ实体产生的NACK应答以请求重传该数据传输块,以及相应的CQI。In step 650, that is, when the header of the data transmission block received by the UE or its own PDU decomposed from the data transmission block is incorrect, the UE uploads the PDU generated by the MAC-hs layer HARQ entity of the UE to the network side. A NACK replies to request retransmission of the data transport block, along with the corresponding CQI.
在步骤660中,即当UE接收到的数据传输块头部正确,且从该数据传输块中分解出的属于自己的PDU也正确或该数据传输块中不包含属于自己的PDU时,向网络侧上传由该UE的MAC-hs层HARQ实体产生的ACK应答以及相应的CQI。In
接着,进入步骤670,网络侧根据各UE返回的CQI中指示最低速率的CQI值来调度和分配无线资源,并判断是否接收到该数据传输块所属UE组内的所有UE的ACK应答。如果没有,则进入步骤680。Then, enter
在步骤680中,网络侧重传该数据传输块,直至接收到该数据传输块所属UE组内的所有UE的ACK应答,从而保证该数据传输块所属UE组内的所有UE均能够有效接收到该数据传输块。对于已正确接收到该数据传输块并成功从中分解出属于自己的PDU或者得知该数据传输块内并不包含属于自己的PDU的UE而言,如果收到了该重传的数据传输块,则忽略对该重传的数据传输块的处理。In
在本实施方式中,网络侧的物理层将来自MAC-hs层的同一个UE组内不同UE的MAC-hs PDU复用在一个数据传输块内,并通过该UE组的组标识将该数据传输块发送给该UE组内所有的UE,实现了在HSDPA信道上的多UE的复用。In this embodiment, the physical layer on the network side multiplexes the MAC-hs PDUs of different UEs in the same UE group from the MAC-hs layer into one data transmission block, and transmits the data through the group identifier of the UE group The transport block is sent to all UEs in the UE group, realizing the multiplexing of multiple UEs on the HSDPA channel.
本发明的第二实施方式与第一实施方式大致相同,其区别仅在于,在第一实施方式中,来自MAC-hs层的PDU是同一UE的同一优先级的PDU,而在本实施方式中,来自MAC-hs层的PDU是同一UE的经不同优先级的PDU复用后的PDU,其结构如图9所示。即将同一UE的多个优先级队列的MAC-hs PDU进行级联,所有可能的填充字段放在所有级联的MAC-hs PDU之后。为了区分填充比特和MAC-hs PDU,在整个级联MAC-hs PDU的尾部增加了一个可选的填充指针字段,指示填充字段的开始位置,并用一个固定的填充指针标识(PF)指示是否存在填充指针字段。在进行级联的过程中,如果需要填充的比特数小于21比特,则不产生填充指针字段而只有填充字段,同时设置填充指针标识指示不存在填充指针字段;如果需要填充的比特数等于或大于21比特,则生成填充指针字段指示填充字段的开始位置,并设置填充指针标识指示存在填充指针字段。The second embodiment of the present invention is roughly the same as the first embodiment, the only difference is that in the first embodiment, the PDUs from the MAC-hs layer are PDUs of the same priority of the same UE, while in this embodiment , the PDUs from the MAC-hs layer are PDUs of the same UE that are multiplexed with PDUs of different priorities, and its structure is shown in FIG. 9 . That is, the MAC-hs PDUs of multiple priority queues of the same UE are concatenated, and all possible padding fields are placed after all concatenated MAC-hs PDUs. In order to distinguish the padding bits from the MAC-hs PDU, an optional padding pointer field is added at the end of the entire concatenated MAC-hs PDU to indicate the start position of the padding field, and a fixed padding pointer (PF) is used to indicate whether it exists Populate the pointer field. In the process of cascading, if the number of bits that needs to be filled is less than 21 bits, then no filling pointer field will be generated but only the filling field, and the filling pointer flag will be set at the same time to indicate that there is no filling pointer field; if the number of bits that needs to be filled is equal to or greater than 21 bits, then generate a padding pointer field to indicate the start position of the padding field, and set the padding pointer flag to indicate the existence of the padding pointer field.
在本实施方式中,通过进一步地先在MAC-hs层中将同一UE不同优先级队列中的PDU复用到该UE的一个MAC-hs PDU中,再在物理层中将来自MAC-hs层的同一个UE组内不同UE的MAC-hs PDU复用在一个TTI的数据传输块内,从而实现多用户、多队列的PDU复用,有效地解决了由于VoIP等低速率小分组业务在不同的MAC-hs优先级队列上的数据流速率低而导致不能充分利用HSDPA的传输带宽问题,从而提高了HSDPA中传输VoIP等低速率小分组业务时的无线网络资源利用率,并进一步扩大了每个小区的VoIP等小分组业务用户的容量。In this embodiment, by further multiplexing the PDUs in different priority queues of the same UE into one MAC-hs PDU of the UE in the MAC-hs layer, and then multiplexing the PDUs from the MAC-hs layer in the physical layer The MAC-hs PDUs of different UEs in the same UE group are multiplexed in one TTI data transmission block, thereby realizing multi-user and multi-queue PDU multiplexing, effectively solving the problem of low-rate small packet services such as VoIP in different The low rate of data flow on the MAC-hs priority queue leads to the problem that the transmission bandwidth of HSDPA cannot be fully utilized, thus improving the utilization rate of wireless network resources when transmitting VoIP and other low-rate small packet services in HSDPA, and further expanding each capacity of VoIP and other small packet service users in a cell.
虽然通过参照本发明的某些优选实施方式,已经对本发明进行了图示和描述,但本领域的普通技术人员应该明白,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。Although the present invention has been illustrated and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the present invention. The spirit and scope of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610024454A CN101034965B (en) | 2006-03-07 | 2006-03-07 | Protocol data unit transmission method and system in high-speed downlink packet access |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610024454A CN101034965B (en) | 2006-03-07 | 2006-03-07 | Protocol data unit transmission method and system in high-speed downlink packet access |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101034965A CN101034965A (en) | 2007-09-12 |
CN101034965B true CN101034965B (en) | 2010-05-12 |
Family
ID=38731289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610024454A Expired - Fee Related CN101034965B (en) | 2006-03-07 | 2006-03-07 | Protocol data unit transmission method and system in high-speed downlink packet access |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101034965B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009044466A1 (en) | 2007-10-03 | 2009-04-09 | Fujitsu Limited | Radio communication device, radio communication control device, radio communication method, radio communication program, radio communication control method, and radio communication control program |
CN103152147B (en) * | 2007-10-03 | 2016-09-14 | 富士通株式会社 | Radio communication device, radio communication control apparatus |
CN103067143B (en) * | 2007-10-03 | 2016-03-30 | 富士通株式会社 | Radio communication device |
CN101442399B (en) * | 2008-12-25 | 2011-12-14 | 北京星河亮点通信软件有限责任公司 | Method and base station for implementing high speed down packet access protocol stack |
CN101990237B (en) * | 2009-07-29 | 2015-05-13 | 中兴通讯股份有限公司 | Relay link data transmission method and system |
WO2014047929A1 (en) | 2012-09-29 | 2014-04-03 | 华为技术有限公司 | Method and related device for resetting high-speed medium access control entity |
CN105281866B (en) * | 2014-06-12 | 2019-04-26 | 中国移动通信集团公司 | Multi-user burst discontinuous low-rate service transmission method and device |
CN107710850B (en) | 2015-06-25 | 2020-06-26 | 华为技术有限公司 | Method and device for uplink data transmission |
CN108173632B (en) * | 2016-12-07 | 2020-12-04 | 华为技术有限公司 | Data processing method, sending device and receiving device |
CN113872736B (en) * | 2020-06-30 | 2023-08-18 | 成都鼎桥通信技术有限公司 | Data transmission method, device, equipment and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1499859A (en) * | 2002-11-08 | 2004-05-26 | �ձ�������ʽ���� | Mobile radio communication system, base station, and mobile radio communication method |
-
2006
- 2006-03-07 CN CN200610024454A patent/CN101034965B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1499859A (en) * | 2002-11-08 | 2004-05-26 | �ձ�������ʽ���� | Mobile radio communication system, base station, and mobile radio communication method |
Non-Patent Citations (3)
Title |
---|
3GPP TR.High Speed Downlink Packet Access |
3GPP TR.High Speed Downlink Packet Access Overall UTRANDescription.3GPP TR 25.855V5.0.0.2001,V5.0.01-28. * |
Overall UTRANDescription.3GPP TR 25.855V5.0.0.2001,V5.0.01-28. |
Also Published As
Publication number | Publication date |
---|---|
CN101034965A (en) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101034965B (en) | Protocol data unit transmission method and system in high-speed downlink packet access | |
CN101030932B (en) | Packet data transmission method and system in high-speed downlink packet access | |
AU2005302888B2 (en) | Method and apparatus for signaling control information of uplink packet data service in mobile communication system | |
KR101516137B1 (en) | Method and apparatus for selecting multiple transport formats and transmitting multiple transport blocks simultaneously with multiple h-arq processes | |
CN103227702B (en) | For receiving wireless transmitter/receiver unit and the method for multiple transmission block | |
EP2731393B1 (en) | Retransmission resource allocation method and apparatus for wireless communication system | |
US6975650B2 (en) | Transport block set segmentation | |
US8208495B2 (en) | Data transmission with supplemental resources | |
CN101636961A (en) | (H)ARQ for semi-persistent scheduling | |
CN102223205A (en) | Radio transmission device and radio transmission method | |
KR20060042858A (en) | Method and apparatus for transmitting and receiving control information of uplink packet data service in mobile communication system | |
US20080159218A1 (en) | Method of efficient state transition in enhanced cell fach | |
CN101018108A (en) | The data transmission method and system and data transmission and receiving device | |
CN101034935B (en) | Data multiplexing method of multi-user device for the mobile communication network and its system | |
CN101018101A (en) | Data transmission method and system and data transmission and receiving device | |
CN101188786B (en) | Multi-user multiplexing transmission method, system and device for high-speed downlink packet access | |
CN101018191A (en) | Multi-queue packet data transmission method and its system | |
KR20030079631A (en) | Algorithm and apparatus for transmitting/receiving transport block size information in communication system using high speed downlink packet access scheme and method thereof | |
US9008016B2 (en) | Data transmission method and system | |
CN118826970A (en) | A method and device in a node for wireless communication | |
CN101242243A (en) | Short bitmap downlink transmission method, system, device and terminal | |
WO2008092303A1 (en) | Transmitting method, receiving method, transmitter and receiver in wireless communication system | |
WO2007090349A1 (en) | A method for multi-queue packet data transmission and a system thereof | |
KR20060066858A (en) | Transmitting / receiving method of conjugated multicasting for efficient multimedia traffic in downlink shared channel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100512 Termination date: 20150307 |
|
EXPY | Termination of patent right or utility model |