CN101029968A - Optical perspective helmet display device of addressing light-ray shielding mechanism - Google Patents

Optical perspective helmet display device of addressing light-ray shielding mechanism Download PDF

Info

Publication number
CN101029968A
CN101029968A CN 200710065208 CN200710065208A CN101029968A CN 101029968 A CN101029968 A CN 101029968A CN 200710065208 CN200710065208 CN 200710065208 CN 200710065208 A CN200710065208 A CN 200710065208A CN 101029968 A CN101029968 A CN 101029968A
Authority
CN
China
Prior art keywords
light
system
addressable
real
hmd
Prior art date
Application number
CN 200710065208
Other languages
Chinese (zh)
Inventor
周雅
闫达远
马晋涛
王红
刘宪鹏
高宇
刘伟
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to CN 200710065208 priority Critical patent/CN101029968A/en
Publication of CN101029968A publication Critical patent/CN101029968A/en

Links

Abstract

A new type of optical perspective helmet display is prepared as leading in addressable light shielding mechanism and using grey scale liquid crystal as addressable optical filter as well as embedding in intelligent light modulation mechanism for realizing merged-display of virtual object and real environmental image.

Description

可寻址光线屏蔽机制光学透视式头盔显示器 Addressable light shielding mechanism of the optical see-through HMD

所属技术领域本发明涉及增强现实显示技术领域,适用于增强现实系统中虚实物体融合的研究。 The present invention relates to the art augmented reality display technology for the study of the actual situation of the object reality system integration is enhanced.

背景技术 Background technique

增强现实中的虚实结合问题是实现增强现实的关键问题。 Virtual and Augmented Reality in question is the key issue augmented reality. 增强现实技术与虚拟现实技术的根本区别,就在于计算机生成的虚拟环境和用户周围的现实环境是共存的,用户从感官效果上确信虚拟环境是其周围环境的组成部分。 Enhance the fundamental difference between reality and virtual reality technology, is that the computer-generated virtual reality environment around the user and the environment coexist, the user is confident sensory effects from the virtual environment is an integral part of its surroundings. 增强现实技术是要将计算机生成的虚拟环境和用户周围的现实环境融为一体,使用户从感官效果上确信虚拟环境是其周围环境的组成部分。 Augmented Reality is a virtual reality environment and integrated environment around the user you want computer-generated, assure users that the sensory effects from the virtual environment is an integral part of its surroundings. 因此,在增强现实系统中,虚拟物体和真实场景的混合显示的目标是结合真实和虚拟世界来实现场景的无缝拼合。 Therefore, in an augmented reality system, the target mixed virtual objects and real scene display is a combination of real and virtual worlds to achieve a seamless mosaic scene.

增强现实系统中主要使用透视式头盔显示器来实现虚拟物体与真实环境的混合显示。 Enhanced mixed reality system is mainly used to achieve a perspective-type HMD virtual objects to display the real environment. 在增强现实系统中,佩戴透视式头盔显示器的使用者既可以看到外部的真实环境,又可以看到计算机生成的虚拟景物。 In augmented reality system, the user wears see-through HMD can see both the real external environment, they can see a computer-generated virtual scene. 透视式头盔显示器是将虚拟景物和真实环境融合的重要显示设备,是AR系统中的关键设备。 See-through head-mounted display device is important to show the real environment and the virtual scene integration, AR system is the key equipment. 基于光学原理的光学透视式头盔显示器则是通过一对安装在眼前的半透半反的光学合成器实现对外界真实环境与虚拟信息的融合的,参照图3。 The optical see-through HMD is based on optical principles through a semipermeable mounted in front of the half of the optical combiner to achieve fusion of the real environment and the virtual external information with reference to FIG. 真实场景直接透过半反半透镜呈现给用户,经过光学系统放大的虚拟场景经半反半透镜反射而进入眼睛,真实场景和虚拟场景的融合通过光学合成器来实现。 Rendering real scene directly through the half mirror to the user, through the optical system is amplified by the virtual scene reflected by the half mirror enters the eye, the integration of the real scene and the virtual scene is achieved by an optical combiner. 与视频透视式头盔显示器相比,光学透视式头盔显示器具有结构简单、价格便宜、无视觉偏差和安全等优点。 Compared with the video see-through HMD HMD optical see-type has a simple structure, inexpensive, and no visual deviation safety. 但是光学透视式头盔显示器存在的两个主要缺点影响了虚拟物体与真实环境的融和显示:(一)虚拟物体与真实环境的遮挡关系问题。 However, two major disadvantages of the helmet display optical see affected virtual objects and real environment harmony display :( a) occlusion relationships of the virtual object and the real environmental problems.

遮挡关系是深度信息的有力表征,逼真的遮挡景象是制造令人信服的增强现实环境的重要部分。 Occlusion relationship is characterized by a strong depth information, lifelike picture block is an important part of the manufacturing compelling augmented reality environment. 真实和虚拟物体相互遮挡增强了用户虚拟物体真实地存在于真实世界的感觉。 Real and virtual objects blocking enhance the user feel virtual objects truly exist in the real world of each other. 在传统的光学透视式头盔显示器中,真实场景和虚拟图像的融和是在半透半反的光学组合器。 In the conventional optical see helmet display, and integration of the virtual image of the real scene is half the optical combiner. 系统对真实场景可控制的部分就仅仅是组合器的透光率,很难实现虚拟图像对真实场景的遮挡,虚拟物体看上去是虚的或半透明的,这样就会大大降低虚拟物体的真实感,甚至会使用户对场景混淆,而不能达到增强现实系统的应用目的。 The system control part of the real scene would be merely light transmittance of the combiner, it is difficult to achieve a virtual image of the real scene occlusion, the virtual object appears to be virtual or translucent, this will greatly reduce the real virtual object sense, and even make the user confused the scene, but can not achieve the purpose of application of augmented reality systems.

(二)虚拟物体与真实环境光强度的匹配特性问题。 (B) the matching characteristics of virtual objects with the real problems of light intensity environment.

自然界光照强度的变化范围跨度大,而显示器光强度的变化范围却无法与之匹敌。 Natural light intensity range span, the display range of the light intensity can not match it. 因此光学透视式头盔显示器存在真实与虚拟场景光强度难以达到最佳匹配的缺点。 Thus there is a drawback real and virtual scene light intensity is difficult to achieve the best match for an optical see-through HMD.

发明内容 SUMMARY

为了解决目前光学透视式头盔显示器存在的上述问题,本发明研制了一种新型的可寻址光线屏蔽机制光学透视式头盔显示系统。 To solve the above problems currently exist optical see-through HMD, the present invention develops a new addressable light shielding perspective view of the optical mechanism of Formula helmet display system.

本发明的主要内容为:本发明是由可寻址灰度液晶显示板,虚拟图像显示液晶,倒像棱镜系统,放大率为1的望远系统,测光系统,智能光强调节系统,PC机组成。 The main contents of the present invention are: the present invention is displayed by the liquid crystal panel addressable gray scale, the virtual image of the liquid crystal display, but rather the prism system, the magnification of a telescope system, the metering system, intelligent optical intensity adjustment system, PC machine.

在该显示器的真实环境显示通道中引入了一个放大率为1的望远系统,使深度不确定的外部环境先通过物镜成像在望远系统的分划面上,再通过目镜进入人眼。 Introduced in the real channel of the display displays a magnification of the telescope system 1, so that the depth of uncertain external environment to draw surface of the sub-imaging telescope through the objective lens, then passes into the eye through the eyepiece.

可寻址光线屏蔽模块位于望远系统的分划面上,实现对真实环境被遮挡部分的屏蔽,及与虚拟图像显示通道的光强匹配。 Addressable light shielding module is located in the reticle plane telescope system, to achieve the real environment occluded shielded portion, and the virtual image display matches the intensity of the optical channel.

测光系统实时检测外界环境的光照强度情况,根据光照强度情况控制调节液晶显示板LCD的整体透光率,调节进入头盔显示器的真实环境光强度可寻址光线屏蔽模块和测光系统构成智能光强调节机制,使系统实现自动光强调节功能,达到虚拟物体和真实物体的光强度匹配。 Light intensity metering system where real-time detection of the external environment, the control according to the light intensity adjustment of the overall liquid crystal display panel LCD transmittance, the intensity of light entering the real environment adjustment HMD addressable light shielding and metering module constituting the intelligent optical system He stressed Festival mechanism, allowing the system to achieve automatic light intensity adjustment function, to the virtual object and the real object of light intensity match.

本发明的原理是:传统的光学透视式头盔显示器不具备正确呈现相互遮挡的能力,添加到真实环境中的图像总是半透明的浮在真实场景前。 The principles of the present invention is: a perspective helmet conventional optical display does not have the correct presentation capabilities of each shutter, added to the real environment image is always semi-transparent embossed before the real scene. 为了解决这个问题,我们采取的方案是在头盔显示器中嵌入光线屏蔽机制。 To solve this problem, we adopted a program embedded light shielding mechanism in the helmet display. 在传统的光学透视式显示系统和外面的景色间安放一个液晶显示板作为可寻址的光学滤光器,其目的是有选择地屏蔽来自外部的任意光线。 And inter-view display system is placed outside a liquid crystal display panel as an addressable optical filter in the conventional optical see-through, the purpose of selectively shield any light from outside.

为解决人眼观察液晶显示板和外界景物时眼睛聚焦不同的问题,系统中还引入一个具有放大率为1的望远镜。 To solve the problem of the eye to focus different human eye and the outside scene liquid crystal display panel, also introduces a system 1 having a magnification telescope. 按照此方案,观察者可以同时聚焦外部的景色和LCD板上的图案,实现虚拟物体与真实环境图像的融和显示。 According to this scheme, the observer can simultaneously focusing pattern and external views of the LCD panel, to achieve integration of the virtual object and the real environment image display.

为了解决真实与虚拟图像在光强度上的不匹配这个问题,需要在头盔显示器中嵌入智能光强调节机制,能够根据外界真实环境的光照情况,自动对进入头盔显示器的真实环境光强度进行调节。 In order to address the real and the virtual image does not match the light intensity of the problem, need to embed intelligence in the helmet display light intensity adjustment mechanism, can automatically real ambient light intensity into the HMD be adjusted according to light conditions outside the real environment. 引入测光系统,对外界环境的光照强度情况进行实时检测,根据光照强度情况控制调节液晶显示板的整体透光率,从而实现真实环境与虚拟图像的光强度匹配。 Introducing metering system, where the intensity of ambient light detected in real time, adjusting the liquid crystal display controls the overall transmittance of the plate according to the light intensity, the light intensity in order to achieve matching of the real environment and the virtual image.

与现有技术相比较,本发明具有以下优点:引入的可寻址光线屏蔽机制可以进行自动测光和智能光强调节;能够实现虚实物体的亮度匹配和相互遮挡;解决了传统光学透视式头盔显示器两个光学通道不共焦的问题。 Compared with the prior art, the present invention has the following advantages: the introduction of addressable light shielding mechanism can be automated metering and intelligent optical intensity adjustment; brightness matching the actual situation of the object can be achieved and the mutual occlusion; resolved optical see legacy Helmet display two confocal optical channels not a problem.

附图说明 BRIEF DESCRIPTION

图1-可寻址光线屏蔽机制光学透视式头盔显示系统基本方案示意图,其中:1-可寻址灰度液晶显示板,2-虚拟图像显示液晶,3-倒像棱镜系统,4-放大率为1的望远系统,5-测光系统,6-真实环境,7-智能光强调节系统,8-PC机;图2-可寻址光线屏蔽机制光学透视式头盔显示系统光学设计结构图,其中:9-双面反射镜,10-反射镜1,11-反射镜2,12-光学组合器1,13-光学组合器2,14-反射镜3,15-物镜,16-目镜;图3-光学透视式头盔显示器原理,其中:17-光学组合器,18-中继透镜组;图4-实验测得的LCD透过率曲线及拟合曲线图;图5-虚实遮挡实验结果图。 Figure 1 - addressable optical light shielding mechanism helmet display system perspective schematic view of the basic embodiment, in which: l- gradation addressable liquid crystal display panel, 2 a virtual image of the liquid crystal display, the prism system but rather 3-, 4- magnification for the telescope system 1, 5-metering system, the real environment 6-, 7- intelligent optical intensity adjustment system, 8-PC machine; the optical design of the system configuration diagram of FIG 2- addressable light shielding mechanism helmet display optical see wherein: 9-sided mirror, 10 a mirror reflector 2,12 1,11 1,13 optical combiner optical combiner 2,14- 3,15- mirror objective, eyepiece 16-; Figure 3 - a perspective view of the optical principle helmet display, wherein: 17- optical combiner, the relay lens group 18; Fig. 4 - the experimentally measured curve and LCD transmittance curve fitting; Figure 5- actual situation results occlusion Fig.

具体实施方式 Detailed ways

:下面结合附图和实施例对本发明做进一步说明。 : Drawings and embodiments of the present invention will be further described below in conjunction.

本发明是由可寻址灰度液晶显示板1,虚拟图像显示液晶2,倒像棱镜系统3,放大率为1的望远系统4,测光系统5,智能光强调节系统6,PC机7组成,如图1所示。 The present invention is displayed by the liquid crystal panel addressable gradation 1, the virtual image of the liquid crystal display 2, but rather the prism system 3, the zoom telescope of 1 4, 5 metering system, intelligent optical intensity adjustment system 6, PC machine 7, as shown in Fig.

本发明中的光路是由真实环境显示通道和虚拟图像显示通道两个光路组成,如图2所示。 In the present invention, the light path is a path from the real environment and the image display virtual channel composed of two optical paths, as shown in FIG. 真实环境显示通道的光学设计包括倒像棱镜组的设计和放大率为1的望远系统的设计。 Display the real environment including the design of the optical design of the inversion channel and the prism magnification telescope system 1 is designed. 图3的结构从原理上来说是可行的,但是,如果按照这样的结构设计,该系统会是一个很长的镜筒。 Structure of FIG. 3, it is possible in principle, however, according to this constitution, the system is a long barrel. 这样,人眼观察真实环境的视点会有一个较大的轴向偏移。 Thus, the human eye viewpoint of the real environment have a larger axial offset. 由于系统的轴向尺寸会比较大,还会给头盔的整体结构平衡设计带来较大困难。 Due to the axial size of the system will be relatively large, but also bring greater difficulties to balance the overall structure of the design of the helmet. 因此我们利用反射系统,简化了倒像系统,仅用两个透镜组就同时实现了倒像和望远系统的设计。 We therefore use reflective systems, but rather to simplify the system, while only two lens groups to achieve the design and the inversion of the telescope system. 虚拟环境显示通道与真实环境显示通道共用同一目镜系统,同时由于1和2的位置共轭,使得真实环境与虚拟物体成像于同一焦平面上。 Virtual environment display channel display real environment eyepiece channels share the same system, and because the 1 and 2 positions conjugate, such that the real environment and the virtual object image on the same focal plane.

真实环境光线经双面反射镜1反射后到达反射镜2并被反射至望远系统物镜15,经过物镜的光线被反射镜3反射,通过可寻址LCD 1,到达半透半反镜12。 Real-sided light after reflecting mirror 2 and is reflected to reflector telescope system to the objective lens 15, the light passing through the objective lens 3 is reflected by the mirror, addressable by the LCD 1, reaches the half mirror 12. 该镜使一部分光线透射进入测光系统,另一部分反射至光学组合器(半透半反镜)13。 The mirror portion of the light transmitted into the metering system, the other to a partially reflective optical combiner (half mirror) 13. 经13的光线通过望远系统的目镜16再次被双面反射镜1反射,最终进入人眼。 Through the eyepiece 13 by the light telescope system 16 is a double-sided reflecting mirror again, ultimately into the eye. 另一方面,虚拟图像的光线从液晶显示器2发出后被反射镜14反射进入光学组合器13,透射后与真实环境光线一起经目镜16到达双面反射镜1,进入人眼。 On the other hand, after the light from the virtual image of the liquid crystal display 2 enters the reflecting mirror 14 emits the optical combiner 13, the light transmittance through the real environment together with the eyepiece 16 to the double-sided mirror 1, into the eye.

本发明中的智能光强调节机制由液晶显示板和测光系统构成。 In the present invention, the intelligent optical intensity adjustment mechanism is constituted by a liquid crystal display panel and the metering system. 液晶板位于像面上,不会对成像造成模糊。 A liquid crystal panel located in the image plane, does not obscure the image. 外界环境中的光线受液晶调制,在光学组合器上,一部分光线反射进入人眼,一部分透射进入测光系统。 Light in the external environment by the liquid crystal modulation in the optical combiner, part of the light reflected into the eye, a portion of the transmitted into the metering system. 测光系统实时检测外界环境的光照强度情况,根据光照强度情况控制调节液晶显示板LCD的整体透光率,对进入头盔显示器的真实环境光强度进行调节,从而实现真实环境与虚拟图像的光强度匹配。 Light intensity metering system where real-time detection of the external environment, the control according to the light intensity adjusting the overall light transmittance of the liquid crystal display panel LCD, the real intensity of the ambient light entering the display of the helmet is adjusted, thereby realizing a light intensity of the virtual image of the real environment match. 本发明中,智能光强调节机构使用USB接口的摄像机作为测光系统,对进入人眼的真实环境图像进行分析,根据图像亮度调节液晶板的透过率,直至光强匹配,具体原理如下:由于液晶的显示机理,LCD显示屏的每一个象素点类似一个透过率可变的光阀或者滤光片。 In the present invention, the light intensity adjustment means smart USB interface using the camera as an optical measurement system, the real environment image into the eye is analyzed, the image brightness adjusting transmittance of the liquid crystal panel, until the intensity matching, specifically works as follows: Since the mechanism of the liquid crystal display, each pixel is similar to a dot LCD shutter or variable transmittance filter. LCD象素的透过率会随着输出到LCD上图像的改变而改变。 Transmittance of LCD pixels will change as the output to the LCD image is changed. 一幅图像各像素之间的灰度值往往不同,这就使得LCD在相应位置上的透过率不同。 A gray value between each pixel of the image is often different, which causes the LCD transmittance at corresponding positions different. 根据这一特性我们通过改变输出到LCD上图像的灰度值,来调节LCD的透过率,起到对外界进入人眼的光强进行调节的目的。 According to this characteristic we changed to the gradation value output by the image LCD, the LCD transmissivity adjusting, serve the purpose of ambient light entering the eye for adjusting intensity.

对自动测光系统装置我们采用的方案是:在图2的半透半反的光学组合器12的透射方向上放置USB接口的CCD或CMOS摄像头。 We use scheme of the automatic apparatus is a metering system: CCD or CMOS camera placed USB interface 12 of the transmission direction in FIG. 2 half semipermeable optical combiner. 来自外界真实环境的光线被可寻址屏蔽模块调制后,一部分经过光学组合器反射,通过目镜进入人眼,一部分则透过光学组合器,进入摄像头。 After the light from the outside of the real environment is modulated addressable masking module, through the optical combiner portion is reflected into the eye through the eyepiece, through a portion of the optical combiner into the camera. 进入摄像头的外界环境光强与进入人眼的光强成比例。 Into the camera, ambient light into the eye of the outside world and is proportional to the light intensity. 当光学组合器的反射透射比例已知的前提下,可以根据摄像头所摄图像的亮度情况推算出进入人眼的光强。 When the reflective optical combiner transmission ratio of the known premise, can calculate the intensity of light entering the human eye depending on the brightness of the image pickup camera. 摄像头拍摄到的图像通过USB接口输入计算机。 Camera captured image input to the computer through the USB interface. 对图像亮度进行分析,根据图像的亮度及其分布情况调节可寻址屏蔽模块的整体透过率,从而达到光强匹配的目的。 Analyzing the brightness of the image, adjusting the transmittance of the entire addressable masking module, so as to achieve matching of the intensity and distribution of the luminance image.

经过实际透过率测定实验,拟合出液晶输出灰度与透过率之间的函数曲线多项式为Y=-1.2397×10-7x3+5.2789×10-5x2-2.6676×10-3x+0.31637实验获得的拟合曲线较为平滑(图4),能很好的反映透过率随输出到液晶上的灰度值的递增而递增的关系,可以作为系统光强自动调节的依据,根据实际环境光亮度自动调节,达到光强匹配。 After the actual transmittance measurement experiments, curve fitting function between the liquid crystal and the transmittance output gradation polynomial obtained as Y = -1.2397 × 10-7x3 + 5.2789 × 10-5x2-2.6676 × 10-3x + 0.31637 Experimental a smoother curve fit (FIG. 4), can reflect the relationship between the transmittance with the output gradation value increment on the liquid crystal incremented, the system can be used as basis for automatic adjustment of the light intensity, according to the actual ambient brightness automatic adjustment to achieve the optical intensity match.

针对虚实物体相互遮挡的实施过程:首先根据深度信息计算真实物体和虚拟物体的前后位置关系,如果是实际物体遮挡虚拟物体,可以方便地将LCD 1上虚拟物体被遮挡部分的像素置为黑色,以屏蔽虚拟图像被遮挡部分,其他部分正常渲染,最终合成的图像是实际物体挡住虚拟物体的逼真效果。 For implementation of the actual situation of interconnected object occlusion: First, according to the front and rear positional relationship of the depth information calculating real object and the virtual object, if the actual object that blocks the virtual object, may conveniently be 1 on the LCD virtual object is occluded pixels set portion is black, to shield the virtual image is occluded portion, the other part of the normal rendering the final composite image is blocked by the actual object virtual object realism. 反之,如果是虚拟物体在前,实际物体需要被遮挡,就需要通过控制LCD 1的透过率来实现。 Conversely, if the former virtual object, the actual object to be blocked, it is necessary to implement by controlling the transmittance of LCD 1. 在可寻址控制的LCD 1上,我们将实际物体被遮挡部分的像素透过率适当调低,未被遮挡部分的透过率不变,LCD相当于一个屏蔽机制,使被屏蔽的真实场景图像与虚拟图像合成,达到很好的虚挡实效果。 On the addressable control LCD 1, we will be occluded pixels actual object portion due to lower the transmittance, the transmittance of the same portion is not blocked, the LCD screen is equivalent to a mechanism that allows real scene shielded image and the virtual image synthesis, to achieve good stop virtual real effect.

实验中,我们采用绿色卷尺作为实际物体,三角锥作为虚拟物体。 Experiments, we used green tape as a real object, a triangular pyramid as a virtual object. 将LCD 1上对应虚拟物体的部分透过率调低,通过LCD 1的真实图像如图5-1所示,最终的虚实融合结果图如图5-2所示,卷尺被虚拟三角锥遮挡。 A virtual object corresponding to the 1 LCD transmittance lower part, by a real image of the LCD 1 shown in Figure 5-1, the final result of the actual situation shown in Figure fusion, are virtually triangular pyramid tape occlusion 5-2.

Claims (5)

1.一种可寻址光线屏蔽机制光学透视式头盔显示器,其特征在于,它是由可寻址灰度液晶显示板、虚拟图像显示液晶、倒像棱镜系统、放大率为1的望远系统、测光系统、智能光强调节系统、PC机组成。 1. A light shielding mechanism addressable optical see-through HMD, characterized in that it is addressed by a gray scale display liquid crystal panel, the liquid crystal display a virtual image, but rather the prism system, the amplification of 1 telescope , metering systems, smart light intensity adjustment system, PC machine.
2.根据权利要求1所述的一种可寻址光线屏蔽机制光学透视式头盔显示器,其特征在于:在该显示器的真实环境显示通道中引入了一个放大率为1的望远系统,深度不确定的外部环境先通过物镜成像在望远系统的分划面上,再通过目镜进入人眼。 2. An addressable light shield according to claim 1 optical see-through HMD mechanism, wherein: the introduction of a magnification of the telescope is in a real environment of the display displays the channel, the depth is not determining the external environment through the objective lens to the imaging surface of the sub-classified telescope system, and then passes into the eye through the eyepiece.
3.根据权利要求1所述的一种可寻址光线屏蔽机制光学透视式头盔显示器,其特征在于:可寻址光线屏蔽模块位于望远系统的分划面上,实现对真实环境被遮挡部分的屏蔽,及与虚拟图像显示通道的光强匹配。 1 according to one of the light shielding mechanism addressable optical see-through HMD claim, wherein: the addressable module is in the light shielding partition surface telescope system, to achieve the real environment occluded portion shielding, and light intensity of the virtual image display matching channel.
4.根据权利要求1所述的一种可寻址光线屏蔽机制光学透视式头盔显示器,其特征在于:测光系统实时检测外界环境的光照强度情况,根据光照强度情况控制调节液晶显示板LCD的整体透光率,调节进入头盔显示器的真实环境光强度。 4. An addressable light shield according to claim 1 optical see-through HMD mechanism, wherein: the case of the light intensity metering system real-time detection of the external environment, adjusting the liquid crystal display panel LCD controls light intensity according to the situation overall light transmittance, the intensity of light entering the real environment adjustment HMD.
5.根据权利要求1所述的一种可寻址光线屏蔽机制光学透视式头盔显示器,其特征在于:可寻址光线屏蔽模块和测光系统构成智能光强调节机制,使系统实现自动光强调节功能,达到虚拟物体和真实物体的光强度匹配。 5. An addressable light shield according to claim 1 optical see-through HMD mechanism, wherein: the light shielding addressable module and a smart metering system constituting a light intensity adjustment mechanism, automatic light intensity of the system adjustment function, to match the light intensity of the virtual object and real object.
CN 200710065208 2007-04-06 2007-04-06 Optical perspective helmet display device of addressing light-ray shielding mechanism CN101029968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710065208 CN101029968A (en) 2007-04-06 2007-04-06 Optical perspective helmet display device of addressing light-ray shielding mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710065208 CN101029968A (en) 2007-04-06 2007-04-06 Optical perspective helmet display device of addressing light-ray shielding mechanism

Publications (1)

Publication Number Publication Date
CN101029968A true CN101029968A (en) 2007-09-05

Family

ID=38715414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710065208 CN101029968A (en) 2007-04-06 2007-04-06 Optical perspective helmet display device of addressing light-ray shielding mechanism

Country Status (1)

Country Link
CN (1) CN101029968A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096194A (en) * 2010-12-24 2011-06-15 北京理工大学 Optical transmission projection type three-dimensional helmet display
CN102542921A (en) * 2010-12-22 2012-07-04 王海鹏 HMD (Head Mounted Display) drive control structure under parametrical adaptive control
CN102540466A (en) * 2010-12-08 2012-07-04 微软公司 Sympathetic optic adaptation for see-through display
CN103389579A (en) * 2011-12-23 2013-11-13 微软公司 Pixel opacity for augmented reality
CN103957383A (en) * 2014-04-22 2014-07-30 中国科学院深圳先进技术研究院 Back vision system based on smart glasses
CN104076513A (en) * 2013-03-26 2014-10-01 精工爱普生株式会社 Head-mounted display device, control method of head-mounted display device, and display system
WO2015096145A1 (en) * 2013-12-27 2015-07-02 Intel Corporation Device, method, and system of providing extended display with head mounted display
CN104914582A (en) * 2015-07-07 2015-09-16 吴展雄 Head-mounted wireless virtual reality display device
CN105096794A (en) * 2014-05-22 2015-11-25 深圳创锐思科技有限公司 Display device, control method of display device and display system
CN105247857A (en) * 2013-04-22 2016-01-13 派拉斯科技术公司 Cap analysis technique
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
CN106233187A (en) * 2014-04-25 2016-12-14 微软技术许可有限责任公司 There is the display device of light modulation panel
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US9581820B2 (en) 2012-06-04 2017-02-28 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
CN106773042A (en) * 2016-12-16 2017-05-31 联想(北京)有限公司 Composite display, display control method and Wearable
CN106990532A (en) * 2017-03-29 2017-07-28 张卓鹏 A kind of augmented reality with occlusion effect shows system and display methods
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
CN107076998A (en) * 2016-04-29 2017-08-18 深圳市大疆创新科技有限公司 Wearable device and UAS
CN107065185A (en) * 2017-03-30 2017-08-18 联想(北京)有限公司 A kind of control method and electronic equipment
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
WO2017173799A1 (en) * 2016-04-08 2017-10-12 吕佩剑 Head-mounted display apparatus enabling multiple flight-points-of-view
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
CN107664847A (en) * 2011-11-23 2018-02-06 奇跃公司 Three-dimensional and augmented reality display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
WO2019056409A1 (en) * 2017-09-19 2019-03-28 歌尔科技有限公司 Prismatic ar display apparatus
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US10388073B2 (en) 2012-03-28 2019-08-20 Microsoft Technology Licensing, Llc Augmented reality light guide display
WO2019179162A1 (en) * 2018-03-20 2019-09-26 Boe Technology Group Co., Ltd. Augmented reality display device and method, and head-mounted augmented reality device
US10478717B2 (en) 2017-07-31 2019-11-19 Microsoft Technology Licensing, Llc Augmented reality and physical games

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540466A (en) * 2010-12-08 2012-07-04 微软公司 Sympathetic optic adaptation for see-through display
CN102540466B (en) 2010-12-08 2014-07-09 微软公司 Sympathetic optic adaptation for see-through display
US8988463B2 (en) 2010-12-08 2015-03-24 Microsoft Technology Licensing, Llc Sympathetic optic adaptation for see-through display
CN102542921A (en) * 2010-12-22 2012-07-04 王海鹏 HMD (Head Mounted Display) drive control structure under parametrical adaptive control
CN102096194A (en) * 2010-12-24 2011-06-15 北京理工大学 Optical transmission projection type three-dimensional helmet display
CN102096194B (en) * 2010-12-24 2016-04-13 北京理工大学 An optical transmissive projection stereoscopic head mounted display
CN107664847A (en) * 2011-11-23 2018-02-06 奇跃公司 Three-dimensional and augmented reality display system
CN103389579B (en) * 2011-12-23 2016-03-16 微软技术许可有限责任公司 Pixel opacity for augmented reality
CN103389579A (en) * 2011-12-23 2013-11-13 微软公司 Pixel opacity for augmented reality
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9684174B2 (en) 2012-02-15 2017-06-20 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9807381B2 (en) 2012-03-14 2017-10-31 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US10388073B2 (en) 2012-03-28 2019-08-20 Microsoft Technology Licensing, Llc Augmented reality light guide display
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
US9581820B2 (en) 2012-06-04 2017-02-28 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
CN104076513A (en) * 2013-03-26 2014-10-01 精工爱普生株式会社 Head-mounted display device, control method of head-mounted display device, and display system
CN105247857A (en) * 2013-04-22 2016-01-13 派拉斯科技术公司 Cap analysis technique
WO2015096145A1 (en) * 2013-12-27 2015-07-02 Intel Corporation Device, method, and system of providing extended display with head mounted display
CN105793764B (en) * 2013-12-27 2018-11-30 英特尔公司 For providing equipment, the method and system of extension display equipment for head-mounted display apparatus
US10310265B2 (en) 2013-12-27 2019-06-04 Intel Corporation Device, method, and system of providing extended display with head mounted display
CN105793764A (en) * 2013-12-27 2016-07-20 英特尔公司 Device, method, and system of providing extended display with head mounted display
CN103957383A (en) * 2014-04-22 2014-07-30 中国科学院深圳先进技术研究院 Back vision system based on smart glasses
CN106233187B (en) * 2014-04-25 2019-07-09 微软技术许可有限责任公司 Display equipment with light modulation panel
CN106233187A (en) * 2014-04-25 2016-12-14 微软技术许可有限责任公司 There is the display device of light modulation panel
CN105096794A (en) * 2014-05-22 2015-11-25 深圳创锐思科技有限公司 Display device, control method of display device and display system
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
CN104914582A (en) * 2015-07-07 2015-09-16 吴展雄 Head-mounted wireless virtual reality display device
WO2017173799A1 (en) * 2016-04-08 2017-10-12 吕佩剑 Head-mounted display apparatus enabling multiple flight-points-of-view
CN107076998A (en) * 2016-04-29 2017-08-18 深圳市大疆创新科技有限公司 Wearable device and UAS
WO2017185357A1 (en) * 2016-04-29 2017-11-02 深圳市大疆创新科技有限公司 Wearable device and unmanned aerial vehicle system
CN106773042A (en) * 2016-12-16 2017-05-31 联想(北京)有限公司 Composite display, display control method and Wearable
CN106990532A (en) * 2017-03-29 2017-07-28 张卓鹏 A kind of augmented reality with occlusion effect shows system and display methods
CN107065185A (en) * 2017-03-30 2017-08-18 联想(北京)有限公司 A kind of control method and electronic equipment
US10478717B2 (en) 2017-07-31 2019-11-19 Microsoft Technology Licensing, Llc Augmented reality and physical games
WO2019056409A1 (en) * 2017-09-19 2019-03-28 歌尔科技有限公司 Prismatic ar display apparatus
WO2019179162A1 (en) * 2018-03-20 2019-09-26 Boe Technology Group Co., Ltd. Augmented reality display device and method, and head-mounted augmented reality device

Similar Documents

Publication Publication Date Title
JP3151347B2 (en) Autostereoscopic directional display device
Inami et al. Visuo-haptic display using head-mounted projector
US8502761B2 (en) Transparent component with switchable reflecting elements, and devices including such component
TWI407783B (en) Peripheral treatment for head-mounted displays
US9618748B2 (en) Apparatus and method for a dynamic “region of interest” in a display system
CN104067334B (en) The adaption brightness of head mounted display controls
US7545571B2 (en) Wearable display system
US5589980A (en) Three dimensional optical viewing system
US9223138B2 (en) Pixel opacity for augmented reality
JP2015519595A (en) Device for optical see-through head mounted display with mutual shielding and opacity control capability
CN1298175C (en) Image projecting device and method
JP5801401B2 (en) Opaque filter for transmissive head mounted display
US6222675B1 (en) Area of interest head-mounted display using low resolution, wide angle; high resolution, narrow angle; and see-through views
US7068241B2 (en) Stereo picture recognition device and method of displaying stereo picture
JP3335998B2 (en) Multilayer display device
WO2009066408A4 (en) Display device, display method and head-up display
US5774175A (en) Stereoscopic television
JP2013214856A (en) Head-mounted display device
US6037914A (en) Method and apparatus for augmented reality using a see-through head-mounted display
JP2008533507A (en) Substrate guiding optical device especially for vision enhancement optical system
EP0460873A1 (en) Apparatus for displaying an image
JP2008176195A (en) Projector
US9052414B2 (en) Virtual image device
JP3733852B2 (en) display device
US6023253A (en) Image displaying apparatus

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent