CN101029147A - Metal compound/carbon nano-composite material and its production - Google Patents

Metal compound/carbon nano-composite material and its production Download PDF

Info

Publication number
CN101029147A
CN101029147A CNA2007100485642A CN200710048564A CN101029147A CN 101029147 A CN101029147 A CN 101029147A CN A2007100485642 A CNA2007100485642 A CN A2007100485642A CN 200710048564 A CN200710048564 A CN 200710048564A CN 101029147 A CN101029147 A CN 101029147A
Authority
CN
China
Prior art keywords
oxide
composite material
metallic compound
carbon nano
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100485642A
Other languages
Chinese (zh)
Other versions
CN101029147B (en
Inventor
周茜
王玉忠
兰文文
杨嘉伟
吴焰辉
杜安珂
邓梅玲
张婧
汪秀丽
杨科珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN200710048564A priority Critical patent/CN101029147B/en
Publication of CN101029147A publication Critical patent/CN101029147A/en
Application granted granted Critical
Publication of CN101029147B publication Critical patent/CN101029147B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A metal compound/carbon nano-composite material and its production are disclosed. The composite material consists of metal compound 70-99wt% and carbon 1-30wt%, the average grain size is 3-50nm, the specific area of composite material is 100-1000m2/g. It's simple, cheap and controllable, has high specific area, better dehalogenation activity and stability, excellent denitrification and desulfurization functions. It can be used for refused polymer material recovery system containing various hetero-atoms.

Description

Metallic compound/carbon nano-composite material and preparation method thereof
Technical field
The invention belongs to the spent high molecular material thermochemical cycle and reclaim used agent and preparing technical field thereof.Be specifically related to a kind of metallic compound/carbon nano-composite material and preparation method thereof.
Background technology
Energy and environment are that the world today faces two principal themes.Along with macromolecular material being extensive use of of every field, a large amount of spent high molecular materials also produce thereupon, if it is not recycled, not only can cause serious environmental to pollute, and also are simultaneously the significant wastage to the wealth of society.
At present, the recycling of spent high molecular material roughly has three kinds of methods: burning method, regeneration method and thermochemical cycle.Thermochemical cycle is that spent high molecular material is carried out thermal destruction under inert atmosphere, thereby obtains corresponding monomer or petroleum chemicals, also is to be considered to the method that the most promising spent high molecular material reclaims at present.Though this method is merely obtaining certain progress in the recovery by hydrocarbon elementary composition spent high molecular material, but owing to contain heteroatoms in most polymers and the additive thereof, especially halogen, account for 14% of waste or used plastics total amount in the municipal solid waste as polyvinyl chloride (PVC) waste or used plastics, quantity can not be ignored, the chlorine element that it contains not only can produce hydrogen chloride gas in cracking, severe corrosion equipment, simultaneously also can produce chloride organic compound, thereby the liquid that its cracking is generated generates toxic gas when burning, thereby the use that can't act as a fuel.And for example the waste or used plastics of electronic and electrical equipment generation is because its use occasion has higher requirement to flame retardant resistance, generally all added a certain amount of fire retardant man-hour adding, be many with halogen-containing (particularly brominated) fire retardant especially wherein, when these contain the waste or used plastics cracking of halogen, also can produce the problem same on the one hand with polyvinyl chloride, on the other hand, because using, electronic and electrical equipment needs, its used plastics mainly comprise high-impact polystyrene (HIPS) and acrylonitrile-butadiene-styrene terpolymer (ABS) etc., thereby make in the cracked oil of generation except halogen, also comprise itrogenous organic substance, when it burns, also can produce objectionable impuritiess such as HCN, NOx.So the recovery that contains the heteroatoms spent high molecular material has become the big obstacle that thermochemical cycle is applied.
In order to solve the recovery problem of halogen-containing waste macromolecular material, people have researched and developed agent.What existing agent mainly adopted is by iron, magnesium, cupric oxide, titanium dioxide, CaO, TiO 2, Fe 2O 3, MgO, CoO, FeOOH, Fe 3O 4, γ-Fe 2O 3, (M.Blazso, E.Jakab, J.Anal.Appl.Pyrolysis, 1999,49,125 such as by product red soil that produce aluminum oxide; W.Kaminsky, J.S.Kim, J.Anal.Appl.Pyrolysis, 1999,51,127; S.Horikawa, Y.Takai, H.Ukei, N.Azuma, A.Ueno, J.Anal.Appl.Pyrolysis, 1999,51,167; Y.Shiraga, Md.A.Uddin, A.Muto, M.Narazaki, Y.Sakata, Energy ﹠amp; Fuels, 1999,13,428; J.Yanik, Md.A.Uddin, K.Ikeuchi, Y.Sakata, Polym.Degrad.Stab.2002,73,335) single compound.And compound agent such as Fe-C, Ca-C, FeCl 2-SiO 2, Al 2O 3-ZnO, Al 2O 3-MgO, SA4/ alpha-feooh, SA4/ γ-Fe 2O 3, SA4/Fe 3O 4-C etc. also are focus (T.Bhaskar, K.Murai, M.Brebu, T.Matsui, Md.A.Uddin, A.Muto and Y.Sakata, GreenChem, 2002,4,603 of studying in recent years; T.Bhaskar, T.Matsui, J.Kaneko, Md.A.Uddin, A.Muto and Y.Sakata, Green.Chem, 2002,4,372; N.Lingaiah, Md.A.Uddin, K.Morikawa, A.Muto, K.Murata and Y.Sakata, Green Chem, 2001,3,74-75; C.Tang, Y.Z.Wang, Q.Zhou and L.Zheng, Polym.Degrad.Stab, 2003,81,89; Q.Zhou, CTang; Y.Z.Wang, L.Zheng.Fuel, 2004,83,1727; M Brebu, T Bhaskar, K Murai, A Muto, Y Sakata, MAUddin, Polym Degrad Stab, 2005,87,225-230; M Brebu, T Bhaskar, K Murai, A Muto, Y Sakata, MAUddin, Polym Degrad Stab, 2004,84,459-467.).
Though existing agent is various in style, also has certain dehalogenation effect, but the inventor finds in use and research process, also have some problems like this: 1) present most of agent is micron order, specific surface area is less, and the dehalogenation reaction is generally all carried out on the agent surface, thereby causes agent dehalogenation efficient low; 2) for minority high-activity nano level agent, though its surfactivity is big, easily with reaction and deposit atmosphere in water or carbonic acid gas etc. react and lose activity, cause also that agent is active to be reduced; 3) agent function singleness only has the dehalogenation function, can not satisfy to contain multiple heteroatomic spent high molecular material recovery requirement simultaneously.
Summary of the invention
The objective of the invention is to deficiency at existing spent high molecular material agent, provide a kind of have multi-functional, and new agent---metallic compound/carbon nano-composite material that dehalogenation is active and stability is high is to improve the efficient and the quality product of spent high molecular material cracking system fuel oil.
Another object of the present invention provides a kind of method for preparing above-mentioned metallic compound/carbon nano-composite material.
Metallic compound/carbon nano-composite material provided by the invention, in this matrix material by weight percentage metallic compound content be 70~99%, carbon content is 1~30%, and the metallic compound average grain size is 3~50nm, and the matrix material specific surface area is 100~1000m 2/ g.
Metallic compound wherein is at least a in zinc oxide, cupric oxide, ferric oxide, nickel oxide, oxidation Cobalt, manganese oxide, vanadium oxide, titanium oxide, zirconium white, magnesium oxide, calcium oxide, strontium oxide, barium oxide, lanthanum trioxide, cerium oxide, yttrium oxide, aluminum oxide and the corresponding oxyhydroxide thereof.
The method of the above-mentioned metallic compound/carbon nano-composite material of preparation provided by the invention is to be 1: 0.05~5 mixed by weight with metal-salt and char-forming agent, and add deionized water to dissolving, then under 25~80 ℃ of temperature, add while stirring precipitation agent to pH be 8~14, then in 25~80 ℃ of following ageings 2~48 hours, filter drying; Products therefrom under inert atmosphere, is activated 2~8 hours aftershapings in 450~900 ℃.
Used metal-salt is at least a in nitrate, vitriol, muriate and the carbonate in this method.
Used carbon forming agent is any in starch, Mierocrystalline cellulose, sucrose, the polyvinyl alcohol in this method.
Used precipitation agent is Na in this method 2CO 3, NH 4HCO 3, (NH 4) 2CO 3, NaOH, NaHCO 3, ammoniacal liquor, KOH, K 2CO 3In any.
Its moulding can adopt the disclosed any way of prior art to carry out.
Removing heteroatomic method with metallic compound/carbon nano-composite material provided by the invention is: the spent high molecular material that will contain halogen and/or N, S element adds in the cracking reactor, scission reaction is carried out in heating under normal pressure or reduced pressure, wherein metallic compound/carbon nano-composite material can directly contact with spent high molecular material, also can contact with the splitting gas that the spent high molecular material cracking generates.The blending ratio of spent high molecular material metallizing thing/carbon nano-composite material counts 1: 0.01 by weight~and 0.2, cracking pressure is 30~760 mmhg, 200~500 ℃ of scission reaction temperature, the scission reaction time is 5~60 minutes.The gas that generates by aforesaid method reaction cracking passes through condenser condenses, is separated into non-condensable gases and cracked oil.Non-condensable gases is mainly low molecular hydrocarbon class material, and use can directly act as a fuel.Resulting cracked oil can further obtain various important organic chemical industry's products by known chemical separating method, and wherein remaining heavy cracked oil can reenter and participate in scission reaction in the cracking reactor.The residue that the reaction cracking generates can obtain carbon black by known method.
Cracking reactor used during cracking is for chemical reactor commonly used, as tank reactor or fixed-bed reactor or fluidized-bed reactor.
The present invention compared with prior art has the following advantages:
1, because the char-forming agent that the inventive method adds in reaction system, can in the preparation of metallic compound/carbon nano-composite material precursor, play the effect of dispersion agent, thereby can effectively avoid the reunion of the metal compound particles that generates, make nano level metallic compound/carbon nano-composite material precursor, for the agent of preparation tool high-specific surface area is laid a good foundation.
2, because the carbon forming agent that the inventive method adds in reaction system, also can form carbon film on the metal compound particles surface that forms, thereby avoided the sintering of metallic compound in the reactivation process effectively, obtain nano level metal compound/carbon nano-composite material.
3, because method provided by the invention is simple, is easy to control, thereby has economic characteristics, help suitability for industrialized production.
4, be nano level owing to the inventive method makes metallic compound/carbon nano-composite material, not only has the high reaction activity that high-specific surface area brings, and because of the carbon-coating of metallic compound surface coverage also has the dehalogenation function, thereby this matrix material also has dehalogenation function efficiently.
5, owing to making the carbon film that forms in metallic compound/carbon nano-composite material, the inventive method can effectively protect the nano metal compound that possesses high reaction activity; thereby can avoid reacting and laying in the inactivation that factor such as water vapour and carbonic acid gas causes in the atmosphere, make this nano composite material have high stability.
6, the inventive method makes nano level metal compound/carbon nano-composite material and not only has the dehalogenation function, also has denitrogenation and desulfurizing function, is particularly useful for containing the recovery system of multiple heteroatomic spent high molecular material.
Embodiment
Below by embodiment the present invention is specifically described; be necessary to be pointed out that at this following examples only are used for that the invention will be further described; can not be interpreted as limiting the scope of the invention; the person skilled in the art in this field makes some nonessential improvement and adjustment according to the content of the invention described above to the present invention, still belongs to protection scope of the present invention.
Embodiment 1
(1) preparation of metallic compound/carbon nano-composite material
100 parts of magnesium nitrates are mixed with 150 portions of sucrose, and add deionized water to dissolving, then under 25 ℃, strong mixing limit, limit drip 0.1M NaOH solution to pH be 11.0; After precipitation is finished,, filter then in 25 ℃ of following ageings 2 hours, and following dry 12 hours in 120 ℃; Products therefrom under nitrogen atmosphere, is calcined 2 hours aftershapings down in 450 ℃ and got final product.Record that carbon content is 12% (weight percent, as follows) in the good particle of roasting, average grain size is 10nm, and specific surface area is 800m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.05 ratio, are joined in the cracking reactor and mix, and under 760mmHg pressure, be warming up to 500 ℃ and carried out scission reaction 40 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 2
(1) preparation of metallic compound/carbon nano-composite material
100 parts of nitrocalcite are mixed with 300 parts of starch, and add deionized water to dissolving, then under 40 ℃, strong mixing limit, limit drip 0.1M KOH solution to pH be 11.0; After precipitation is finished,, filter then in 60 ℃ of following ageings 4 hours, and following dry 12 hours in 120 ℃; Products therefrom under nitrogen atmosphere, is calcined 4 hours aftershapings down in 600 ℃ and got final product.Record that carbon content is 23% in the good particle of roasting, average grain size is 5nm, and specific surface area is 700m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.06 ratio, are joined in the cracking reactor and mix, and under 500mmHg pressure, be warming up to 350 ℃ and carried out scission reaction 10 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 3
(1) preparation of metallic compound/carbon nano-composite material
100 parts of iron(ic) chloride are mixed with 500 parts of Mierocrystalline celluloses, and add deionized water to dissolving, under 60 ℃, strong mixing limit, limit drips 0.1M NaHCO then 3Solution to pH be 10.0; After precipitation is finished,, filter then in 80 ℃ of following ageings 8 hours, and following dry 12 hours in 120 ℃; Products therefrom under nitrogen atmosphere, is calcined 8 hours aftershapings down in 500 ℃ and got final product.Record that carbon content is 30% in the good particle of roasting, average grain size is 3nm, and specific surface area is 500m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.08 ratio, are joined in the cracking reactor and mix, and under 300mmHg pressure, be warming up to 300 ℃ and carried out scission reaction 5 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 4
(1) preparation of metallic compound/carbon nano-composite material
100 parts of lanthanum nitrates are mixed with 5 parts of polyvinyl alcohol, and add deionized water to dissolving, then under 80 ℃, strong mixing limit, limit dropping ammonia to pH be 8.0; After precipitation is finished,, filter then in 80 ℃ of following ageings 10 hours, and following dry 12 hours in 120 ℃; Products therefrom under argon gas atmosphere, is calcined 5 hours aftershapings down in 700 ℃ and got final product.Record that carbon content is 1% in the good particle of roasting, average grain size is 50nm, and specific surface area is 100m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.2 ratio, are joined in the cracking reactor and mix, and under 30mmHg pressure, be warming up to 200 ℃ and carried out scission reaction 20 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 5
(1) preparation of metallic compound/carbon nano-composite material
100 parts of zirconium nitrates are mixed with 50 parts of starch, and add deionized water to dissolving, under 60 ℃, strong mixing limit, limit drips 0.1M NH then 4HCO 3Solution to pH be 9.0; After precipitation is finished,, filter then in 80 ℃ of following ageings 14 hours, and following dry 12 hours in 120 ℃; Products therefrom under argon gas atmosphere, is calcined 3 hours aftershapings down in 800 ℃ and got final product.Record that carbon content is 5% in the good particle of roasting, average grain size is 30nm, and specific surface area is 300m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.1 ratio, are joined in the cracking reactor and mix, and under 100mmHg pressure, be warming up to 250 ℃ and carried out scission reaction 30 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 6
(1) preparation of metallic compound/carbon nano-composite material
100 parts of Titanium Nitrates are mixed with 10 portions of sucrose, and add deionized water to dissolving, under 40 ℃, strong mixing limit, limit drips 0.1M K then 2CO 3Solution to pH be 10.0; After precipitation is finished,, filter then in 40 ℃ of following ageings 16 hours, and following dry 12 hours in 120 ℃; Products therefrom under argon gas atmosphere, is calcined 6 hours aftershapings down in 800 ℃ and got final product.Record that carbon content is 2% in the good particle of roasting, average grain size is 40nm, and specific surface area is 200m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.15 ratio, are joined in the cracking reactor and mix, and under 700mmHg pressure, be warming up to 400 ℃ and carried out scission reaction 60 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 7
(1) preparation of metallic compound/carbon nano-composite material
100 parts of lanthanum nitrates are mixed with 100 portions of sucrose, and add deionized water to dissolving, then under 25 ℃, strong mixing limit, limit dropping ammonia to pH be 10.0; After precipitation is finished,, filter then in 80 ℃ of following ageings 24 hours, and following dry 12 hours in 120 ℃; Products therefrom under nitrogen atmosphere, is calcined 4 hours aftershapings down in 500 ℃ and got final product.Record that carbon content is 9% in the good particle of roasting, average grain size is 20nm, and specific surface area is 400m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.09 ratio, are joined in the cracking reactor and mix, and under 400mmHg pressure, be warming up to 300 ℃ and carried out scission reaction 10 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 8
(1) preparation of metallic compound/carbon nano-composite material
90 parts of calcium chloride, 10 parts of iron(ic) chloride are mixed with 200 parts of starch, and add deionized water to dissolving, then under 40 ℃, strong mixing limit, limit drip 0.1M KOH solution to pH be 12.0; After precipitation is finished,, filter then in 40 ℃ of following ageings 24 hours, and following dry 12 hours in 120 ℃; Products therefrom under nitrogen atmosphere, is calcined 5 hours aftershapings down in 600 ℃ and got final product.Record that carbon content is 15% in the good particle of roasting, average grain size is 8nm, and specific surface area is 1000m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.01 ratio, are joined in the cracking reactor and mix, and under 760mmHg pressure, be warming up to 450 ℃ and carried out scission reaction 50 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 9
(1) preparation of metallic compound/carbon nano-composite material
80 parts of zirconium nitrates, 20 parts of nitrate of baryta are mixed with 50 parts of Mierocrystalline celluloses, and add deionized water to dissolving, then under 60 ℃, strong mixing limit, limit drip 0.1M NaOH solution to pH be 12.0; After precipitation is finished,, filter then in 60 ℃ of following ageings 48 hours, and following dry 12 hours in 120 ℃; Products therefrom under argon gas atmosphere, is calcined 8 hours aftershapings down in 900 ℃ and got final product.Record that carbon content is 4% in the good particle of roasting, average grain size is 30nm, and specific surface area is 300m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.1 ratio, are joined in the cracking reactor and mix, and under 600mmHg pressure, be warming up to 400 ℃ and carried out scission reaction 50 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Embodiment 10
(1) preparation of metallic compound/carbon nano-composite material
25 parts of magnesium nitrates, 25 parts of nitrocalcite, 25 parts of lanthanum nitrates, 25 parts of cerous nitrates are mixed with 400 portions of sucrose, and add deionized water to dissolving, then under 25 ℃, strong mixing limit, limit drip 0.1M KOH solution to pH be 10.0; After precipitation is finished,, filter then in 80 ℃ of following ageings 48 hours, and following dry 12 hours in 120 ℃; Products therefrom under nitrogen atmosphere, is calcined 5 hours aftershapings down in 700 ℃ and got final product.Record that carbon content is 25% in the good particle of roasting, average grain size is 4nm, and specific surface area is 700m 2/ g.
(2) spent high molecular material dehalogenation technology
Spent high molecular material and above-mentioned agent by weight with 1: 0.06 ratio, are joined in the cracking reactor and mix, and under 760mmHg pressure, be warming up to 450 ℃ and carried out scission reaction 40 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Comparative Examples 1
Waste polymer joined in the cracking reactor mix, under 760mmHg pressure, be warming up to 500 ℃ and carried out scission reaction 60 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Comparative Examples 2
Waste polymer and magnesium oxide by weight with 1: 0.2 ratio, are joined in the cracking reactor and mix, under 760mmHg pressure, be warming up to 500 ℃ and carried out scission reaction 60 minutes.The gas that the reaction cracking generates is separated into non-condensable gases and cracked oil by condenser condenses, and its results of elemental analyses sees Table.
Table
Cl(wt%) Br(wt%) N(wt%) S(wt%)
Embodiment 1 0.001 0.0005 0.1 0.001
Embodiment 2 0.0005 0.0000 0.05 0.0005
Embodiment 3 0.0010 0.0005 0.005 0.001
Embodiment 4 0.0005 0.0000 0.001 0.0005
Embodiment 5 0.0010 0.0005 0.1 0.001
Embodiment 6 0.0010 0.0005 0.1 0.001
Embodiment 7 0.0000 0.0000 0.0005 0.0005
Embodiment 8 0.0000 0.0000 0.0005 0.0005
Embodiment 9 0.0000 0.0000 0.0005 0.0005
Embodiment 10 0.0000 0.0000 0.0000 0.0000
Comparative Examples 1 6.5 4.9 0.5 1.0
Comparative Examples 2 2.0 1.3 0.4 0.5

Claims (7)

1, a kind of metallic compound/carbon nano-composite material, in this matrix material by weight percentage metallic compound content be 70~99%, carbon content is 1~30%, and the metallic compound average grain size is 3~50nm, and the matrix material specific surface area is 100~1000m 2/ g.
2, metallic compound/carbon nano-composite material according to claim 1, the metallic compound in this matrix material are at least a in zinc oxide, cupric oxide, ferric oxide, nickel oxide, oxidation Cobalt, manganese oxide, vanadium oxide, titanium oxide, zirconium white, magnesium oxide, calcium oxide, strontium oxide, barium oxide, lanthanum trioxide, cerium oxide, yttrium oxide, aluminum oxide and the corresponding oxyhydroxide thereof.
3, a kind of method for preparing the described metallic compound/carbon nano-composite material of claim 1, this method is to be 1: 0.05~5 mixed by weight with metal-salt and char-forming agent, and add deionized water to dissolving, then under 25~80 ℃ of temperature, add while stirring precipitation agent to pH be 8~14, in 25~80 ℃ of following ageings 2~48 hours, filter drying then; Products therefrom under inert atmosphere, is activated 2~8 hours aftershapings in 450~900 ℃.
4, the method for preparing metallic compound/carbon nano-composite material according to claim 3, used metal-salt is at least a in nitrate, vitriol, muriate and the carbonate in this method.
5, according to claim 3 or the 4 described methods that prepare metallic compound/carbon nano-composite material, used carbon forming agent is any in starch, Mierocrystalline cellulose, sucrose, the polyvinyl alcohol in this method.
6, according to claim 3 or the 4 described methods that prepare metallic compound/carbon nano-composite material, used precipitation agent is Na in this method 2CO 3, NH 4HCO 3, (NH 4) 2CO 3, NaOH, NaHCO 3, ammoniacal liquor, KOH, K 2CO 3In any.
7, the method for preparing metallic compound/carbon nano-composite material according to claim 5, used precipitation agent is Na in this method 2CO 3, NH 4HCO 3, (NH 4) 2CO 3, NaOH, NaHCO 3, ammoniacal liquor, KOH, K 2CO 3In any.
CN200710048564A 2007-03-05 2007-03-05 Metal compound/carbon nano-composite material and its production Active CN101029147B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710048564A CN101029147B (en) 2007-03-05 2007-03-05 Metal compound/carbon nano-composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710048564A CN101029147B (en) 2007-03-05 2007-03-05 Metal compound/carbon nano-composite material and its production

Publications (2)

Publication Number Publication Date
CN101029147A true CN101029147A (en) 2007-09-05
CN101029147B CN101029147B (en) 2010-05-19

Family

ID=38714709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710048564A Active CN101029147B (en) 2007-03-05 2007-03-05 Metal compound/carbon nano-composite material and its production

Country Status (1)

Country Link
CN (1) CN101029147B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527695A (en) * 2012-01-05 2012-07-04 中国科学院生态环境研究中心 Method for preparing nano iron/carbon compound material by kitchen waste
CN102677031A (en) * 2012-05-18 2012-09-19 中国科学院上海硅酸盐研究所 Metal/carbon nano composite porous membrane and preparation method thereof
CN106848295A (en) * 2017-02-20 2017-06-13 北京理工大学 Mn oxide and preparation method thereof and aluminium ion battery
CN106873841A (en) * 2017-03-22 2017-06-20 合肥仁德电子科技有限公司 A kind of touch-screen and preparation method thereof
CN108746653A (en) * 2018-05-30 2018-11-06 南通科源新材料有限公司 A kind of method that solution combustion method prepares CNT-Cu composite granules
CN112574789A (en) * 2020-11-24 2021-03-30 沈阳三聚凯特催化剂有限公司 High-temperature desulfurizing agent and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191126C (en) * 2002-03-22 2005-03-02 深圳市尊业纳米材料有限公司 Microporous nano composite material
CN1312032C (en) * 2004-06-08 2007-04-25 中国科学院化学研究所 Prepn process of composite material of metal or metal oxide and carbon nanotube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527695A (en) * 2012-01-05 2012-07-04 中国科学院生态环境研究中心 Method for preparing nano iron/carbon compound material by kitchen waste
CN102677031A (en) * 2012-05-18 2012-09-19 中国科学院上海硅酸盐研究所 Metal/carbon nano composite porous membrane and preparation method thereof
CN102677031B (en) * 2012-05-18 2014-09-10 中国科学院上海硅酸盐研究所 Metal/carbon nano composite porous membrane and preparation method thereof
CN106848295A (en) * 2017-02-20 2017-06-13 北京理工大学 Mn oxide and preparation method thereof and aluminium ion battery
CN106873841A (en) * 2017-03-22 2017-06-20 合肥仁德电子科技有限公司 A kind of touch-screen and preparation method thereof
CN108746653A (en) * 2018-05-30 2018-11-06 南通科源新材料有限公司 A kind of method that solution combustion method prepares CNT-Cu composite granules
CN112574789A (en) * 2020-11-24 2021-03-30 沈阳三聚凯特催化剂有限公司 High-temperature desulfurizing agent and preparation method and application thereof

Also Published As

Publication number Publication date
CN101029147B (en) 2010-05-19

Similar Documents

Publication Publication Date Title
Guan et al. Efficient degradation of tetracycline by heterogeneous cobalt oxide/cerium oxide composites mediated with persulfate
JP7011350B2 (en) A method for producing nanocrystals of graphene-based hollow cobalt sulfide that can efficiently activate persulfate.
Pan et al. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance
CN101029147A (en) Metal compound/carbon nano-composite material and its production
CN1288077C (en) Method for directly preparing honeycomb active carbon from coal
CN101544783B (en) Composite heat stabilizer for hydrophobic nano-hydrotalcite PVC and preparation method thereof
Fronczak et al. Graphitic carbon nitride doped with the s-block metals: adsorbent for the removal of methyl blue and copper (II) ions
Xie et al. Effect of pyrolusite loading on sewage sludge‐based activated carbon in Cu (II), Pb (II), and Cd (II) adsorption
Du et al. Fabrication of poly (vinyl alcohol)/sodium alginate hydrogel beads and its application in photo-Fenton degradation of tetracycline
Shi et al. Removal of methylene blue from aqueous solution using Mg-Fe, Zn-Fe, Mn-Fe layered double hydroxide
Liao et al. Simultaneous removal of cadmium, lead, chromate by biochar modified with layered double hydroxide with sulfide intercalation
Li et al. Self-cleaning photocatalytic PVDF membrane loaded with NH2-MIL-88B/CDs and Graphene oxide for MB separation and degradation
CN103145176A (en) High-activity empty frame zinc oxide production method by means of industrial zinciferous smoke dust
CN105399896A (en) Preparation method of gel material for adsorbing heavy metal ions and phenolic compound and product of gel material
CN101412912A (en) Rare earth composite flame retardant and preparation thereof
Zhang et al. Synthesis of Mg-decorated carbon nanocomposites from mesocarbon microbeads (MCMB) graphite: application for wastewater treatment
Wu et al. Enhanced heterogeneous activation of persulfate by NixCo3–xO4 for oxidative degradation of tetracycline and bisphenol A
Khraisheh et al. Removal of carbamazepine from water by a novel TiO2–coconut shell powder/UV process: composite preparation and photocatalytic activity
JP2010235437A (en) Titanium oxide/layered double hydroxide composite and method for producing the same
CN108906044B (en) Manganese-cerium-ruthenium composite oxide catalyst and preparation method and application thereof
Ni et al. Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible‐light‐mediated remediation of diesel‐polluted surface water
JP2010222163A (en) High functional granulated carbon and method for manufacturing the same
CN101723364B (en) Method for preparing activated carbon by using plasmas to crack solid coal product
CN105396552A (en) Molded biological carbon and preparation method thereof
Yang et al. A critical review on the development of lanthanum-engineered biochar for environmental applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant