CN101019828A - Anticancer composition containing both phosphoinositide-3-kinase inhibitor and hormone medicine - Google Patents
Anticancer composition containing both phosphoinositide-3-kinase inhibitor and hormone medicine Download PDFInfo
- Publication number
- CN101019828A CN101019828A CNA2007102003184A CN200710200318A CN101019828A CN 101019828 A CN101019828 A CN 101019828A CN A2007102003184 A CNA2007102003184 A CN A2007102003184A CN 200710200318 A CN200710200318 A CN 200710200318A CN 101019828 A CN101019828 A CN 101019828A
- Authority
- CN
- China
- Prior art keywords
- eop
- release
- sustained
- chdm
- octadecyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003814 drug Substances 0.000 title claims abstract description 121
- 230000001093 anti-cancer Effects 0.000 title claims abstract description 54
- 229940088597 hormone Drugs 0.000 title claims abstract description 43
- 239000005556 hormone Substances 0.000 title claims abstract description 35
- 239000000203 mixture Substances 0.000 title claims abstract description 29
- 239000002935 phosphatidylinositol 3 kinase inhibitor Substances 0.000 title claims abstract description 23
- 229940043441 phosphoinositide 3-kinase inhibitor Drugs 0.000 title claims abstract description 23
- 239000007924 injection Substances 0.000 claims abstract description 103
- 238000002347 injection Methods 0.000 claims abstract description 103
- 239000002904 solvent Substances 0.000 claims abstract description 62
- 239000004005 microsphere Substances 0.000 claims abstract description 46
- 239000000375 suspending agent Substances 0.000 claims abstract description 29
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical group [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 14
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims abstract description 14
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims abstract description 14
- 238000013268 sustained release Methods 0.000 claims description 124
- 239000012730 sustained-release form Substances 0.000 claims description 124
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 claims description 54
- 108010050144 Triptorelin Pamoate Proteins 0.000 claims description 40
- 229960004824 triptorelin Drugs 0.000 claims description 40
- VXKHXGOKWPXYNA-PGBVPBMZSA-N triptorelin Chemical compound C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 VXKHXGOKWPXYNA-PGBVPBMZSA-N 0.000 claims description 38
- -1 phosphate ester Chemical class 0.000 claims description 36
- 239000007943 implant Substances 0.000 claims description 35
- 108010069236 Goserelin Proteins 0.000 claims description 34
- 229960002913 goserelin Drugs 0.000 claims description 34
- 108010000817 Leuprolide Proteins 0.000 claims description 33
- 229960004338 leuprorelin Drugs 0.000 claims description 33
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 33
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 claims description 32
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 claims description 31
- 239000004626 polylactic acid Substances 0.000 claims description 27
- 229960001603 tamoxifen Drugs 0.000 claims description 27
- 229910019142 PO4 Inorganic materials 0.000 claims description 26
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 26
- 239000010452 phosphate Substances 0.000 claims description 25
- 229960005026 toremifene Drugs 0.000 claims description 24
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 claims description 24
- JVYNJRBSXBYXQB-UHFFFAOYSA-N 4-[3-(4-carboxyphenoxy)propoxy]benzoic acid;decanedioic acid Chemical compound OC(=O)CCCCCCCCC(O)=O.C1=CC(C(=O)O)=CC=C1OCCCOC1=CC=C(C(O)=O)C=C1 JVYNJRBSXBYXQB-UHFFFAOYSA-N 0.000 claims description 22
- 229960002932 anastrozole Drugs 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 22
- 229950004403 polifeprosan Drugs 0.000 claims description 22
- 229920001577 copolymer Polymers 0.000 claims description 21
- PQLXHQMOHUQAKB-UHFFFAOYSA-N miltefosine Chemical compound CCCCCCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C PQLXHQMOHUQAKB-UHFFFAOYSA-N 0.000 claims description 21
- 239000004480 active ingredient Substances 0.000 claims description 20
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 claims description 20
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 20
- 229960003775 miltefosine Drugs 0.000 claims description 19
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 16
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 13
- 229950002248 idoxifene Drugs 0.000 claims description 13
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 13
- 229920000053 polysorbate 80 Polymers 0.000 claims description 13
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 12
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 11
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 11
- JJKOTMDDZAJTGQ-DQSJHHFOSA-N Idoxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN2CCCC2)=CC=1)/C1=CC=C(I)C=C1 JJKOTMDDZAJTGQ-DQSJHHFOSA-N 0.000 claims description 11
- 229930195725 Mannitol Natural products 0.000 claims description 11
- 239000000594 mannitol Substances 0.000 claims description 11
- 235000010355 mannitol Nutrition 0.000 claims description 11
- 229960004622 raloxifene Drugs 0.000 claims description 11
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 claims description 11
- 239000000600 sorbitol Substances 0.000 claims description 11
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 claims description 9
- 229960003437 aminoglutethimide Drugs 0.000 claims description 9
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 claims description 9
- 229960000255 exemestane Drugs 0.000 claims description 9
- 229960003881 letrozole Drugs 0.000 claims description 9
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 claims description 9
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 claims description 8
- 229960000997 bicalutamide Drugs 0.000 claims description 8
- 229960002074 flutamide Drugs 0.000 claims description 8
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 claims description 8
- 230000002601 intratumoral effect Effects 0.000 claims description 8
- 229960001786 megestrol Drugs 0.000 claims description 8
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 claims description 8
- 108010010803 Gelatin Proteins 0.000 claims description 7
- 229920000954 Polyglycolide Polymers 0.000 claims description 7
- 201000011510 cancer Diseases 0.000 claims description 7
- 229960003608 clomifene Drugs 0.000 claims description 7
- GKIRPKYJQBWNGO-OCEACIFDSA-N clomifene Chemical compound C1=CC(OCCN(CC)CC)=CC=C1C(\C=1C=CC=CC=1)=C(\Cl)C1=CC=CC=C1 GKIRPKYJQBWNGO-OCEACIFDSA-N 0.000 claims description 7
- 229920000159 gelatin Polymers 0.000 claims description 7
- 239000008273 gelatin Substances 0.000 claims description 7
- 235000019322 gelatine Nutrition 0.000 claims description 7
- 235000011852 gelatine desserts Nutrition 0.000 claims description 7
- 239000004633 polyglycolic acid Substances 0.000 claims description 7
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 6
- TXUZVZSFRXZGTL-QPLCGJKRSA-N afimoxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=C(O)C=C1 TXUZVZSFRXZGTL-QPLCGJKRSA-N 0.000 claims description 6
- 229960004616 medroxyprogesterone Drugs 0.000 claims description 6
- FRQMUZJSZHZSGN-HBNHAYAOSA-N medroxyprogesterone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FRQMUZJSZHZSGN-HBNHAYAOSA-N 0.000 claims description 6
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 6
- ATZHGRNFEFVDDJ-UHFFFAOYSA-N 4-propylbenzoic acid Chemical compound CCCC1=CC=C(C(O)=O)C=C1 ATZHGRNFEFVDDJ-UHFFFAOYSA-N 0.000 claims description 5
- 229920002101 Chitin Polymers 0.000 claims description 5
- 102000008186 Collagen Human genes 0.000 claims description 5
- 108010035532 Collagen Proteins 0.000 claims description 5
- 241001465754 Metazoa Species 0.000 claims description 5
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 claims description 5
- 235000021282 Sterculia Nutrition 0.000 claims description 5
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 5
- 229920001436 collagen Polymers 0.000 claims description 5
- 229960005188 collagen Drugs 0.000 claims description 5
- 229940014259 gelatin Drugs 0.000 claims description 5
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 5
- 229920001542 oligosaccharide Polymers 0.000 claims description 5
- 150000002482 oligosaccharides Chemical class 0.000 claims description 5
- 229940059107 sterculia Drugs 0.000 claims description 5
- 239000000811 xylitol Substances 0.000 claims description 5
- 235000010447 xylitol Nutrition 0.000 claims description 5
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 5
- 229960002675 xylitol Drugs 0.000 claims description 5
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 4
- MJRDZKSKNYIAHZ-WLHGVMLRSA-N (e)-but-2-enedioic acid;decanedioic acid Chemical compound OC(=O)\C=C\C(O)=O.OC(=O)CCCCCCCCC(O)=O MJRDZKSKNYIAHZ-WLHGVMLRSA-N 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 claims description 4
- 229920001661 Chitosan Polymers 0.000 claims description 4
- 229920002567 Chondroitin Polymers 0.000 claims description 4
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 claims description 4
- 229920002125 Sokalan® Polymers 0.000 claims description 4
- 229960001631 carbomer Drugs 0.000 claims description 4
- 210000003169 central nervous system Anatomy 0.000 claims description 4
- 229940045110 chitosan Drugs 0.000 claims description 4
- DLGJWSVWTWEWBJ-HGGSSLSASA-N chondroitin Chemical compound CC(O)=N[C@@H]1[C@H](O)O[C@H](CO)[C@H](O)[C@@H]1OC1[C@H](O)[C@H](O)C=C(C(O)=O)O1 DLGJWSVWTWEWBJ-HGGSSLSASA-N 0.000 claims description 4
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 claims description 4
- 229920002674 hyaluronan Polymers 0.000 claims description 4
- 229960003160 hyaluronic acid Drugs 0.000 claims description 4
- 238000001727 in vivo Methods 0.000 claims description 4
- 229960004063 propylene glycol Drugs 0.000 claims description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 3
- 210000004204 blood vessel Anatomy 0.000 claims description 3
- 229940008099 dimethicone Drugs 0.000 claims description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 3
- 210000001508 eye Anatomy 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 229940125697 hormonal agent Drugs 0.000 claims description 3
- 210000001165 lymph node Anatomy 0.000 claims description 3
- 229920001983 poloxamer Polymers 0.000 claims description 3
- 229960000502 poloxamer Drugs 0.000 claims description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 201000000274 Carcinosarcoma Diseases 0.000 claims description 2
- 206010039491 Sarcoma Diseases 0.000 claims description 2
- 239000013543 active substance Substances 0.000 claims description 2
- 210000000988 bone and bone Anatomy 0.000 claims description 2
- 210000004556 brain Anatomy 0.000 claims description 2
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 claims description 2
- 210000003679 cervix uteri Anatomy 0.000 claims description 2
- 210000001072 colon Anatomy 0.000 claims description 2
- 210000004696 endometrium Anatomy 0.000 claims description 2
- 210000003238 esophagus Anatomy 0.000 claims description 2
- 210000000232 gallbladder Anatomy 0.000 claims description 2
- 210000004907 gland Anatomy 0.000 claims description 2
- 210000003128 head Anatomy 0.000 claims description 2
- 210000003734 kidney Anatomy 0.000 claims description 2
- 210000004185 liver Anatomy 0.000 claims description 2
- 210000004072 lung Anatomy 0.000 claims description 2
- 210000000214 mouth Anatomy 0.000 claims description 2
- 210000001989 nasopharynx Anatomy 0.000 claims description 2
- 210000003739 neck Anatomy 0.000 claims description 2
- 210000001672 ovary Anatomy 0.000 claims description 2
- 210000000496 pancreas Anatomy 0.000 claims description 2
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 2
- 210000002307 prostate Anatomy 0.000 claims description 2
- 210000000664 rectum Anatomy 0.000 claims description 2
- 210000003491 skin Anatomy 0.000 claims description 2
- 210000002784 stomach Anatomy 0.000 claims description 2
- 210000001685 thyroid gland Anatomy 0.000 claims description 2
- 210000003932 urinary bladder Anatomy 0.000 claims description 2
- 210000004291 uterus Anatomy 0.000 claims description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 2
- 229920001282 polysaccharide Polymers 0.000 claims 2
- 239000005017 polysaccharide Substances 0.000 claims 2
- MGFWQHJISKJHMB-UHFFFAOYSA-N 1-iodopropane-1,2,3-triol Chemical compound OCC(O)C(O)I MGFWQHJISKJHMB-UHFFFAOYSA-N 0.000 claims 1
- 240000001058 Sterculia urens Species 0.000 claims 1
- 210000000481 breast Anatomy 0.000 claims 1
- 235000011187 glycerol Nutrition 0.000 claims 1
- 229960005150 glycerol Drugs 0.000 claims 1
- 229960001855 mannitol Drugs 0.000 claims 1
- 210000004877 mucosa Anatomy 0.000 claims 1
- 235000013772 propylene glycol Nutrition 0.000 claims 1
- 208000011571 secondary malignant neoplasm Diseases 0.000 claims 1
- 229960002920 sorbitol Drugs 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 22
- 239000003795 chemical substances by application Substances 0.000 abstract description 7
- 230000000973 chemotherapeutic effect Effects 0.000 abstract description 3
- 230000003439 radiotherapeutic effect Effects 0.000 abstract 1
- 229940079593 drug Drugs 0.000 description 89
- 206010028980 Neoplasm Diseases 0.000 description 57
- 238000000034 method Methods 0.000 description 44
- 210000004881 tumor cell Anatomy 0.000 description 24
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 230000005764 inhibitory process Effects 0.000 description 18
- 239000002245 particle Substances 0.000 description 18
- 239000000725 suspension Substances 0.000 description 16
- 206010006187 Breast cancer Diseases 0.000 description 15
- 208000026310 Breast neoplasm Diseases 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 239000002504 physiological saline solution Substances 0.000 description 15
- 239000002246 antineoplastic agent Substances 0.000 description 14
- 229940041181 antineoplastic drug Drugs 0.000 description 14
- 235000021317 phosphate Nutrition 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- MHFRGQHAERHWKZ-HHHXNRCGSA-N (R)-edelfosine Chemical compound CCCCCCCCCCCCCCCCCCOC[C@@H](OC)COP([O-])(=O)OCC[N+](C)(C)C MHFRGQHAERHWKZ-HHHXNRCGSA-N 0.000 description 10
- 229920000388 Polyphosphate Polymers 0.000 description 10
- 239000003405 delayed action preparation Substances 0.000 description 10
- 239000001205 polyphosphate Substances 0.000 description 10
- 235000011176 polyphosphates Nutrition 0.000 description 10
- 238000001694 spray drying Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 229950011461 edelfosine Drugs 0.000 description 9
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 8
- 201000005202 lung cancer Diseases 0.000 description 8
- 208000020816 lung neoplasm Diseases 0.000 description 8
- SZFPYBIJACMNJV-UHFFFAOYSA-N perifosine Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OC1CC[N+](C)(C)CC1 SZFPYBIJACMNJV-UHFFFAOYSA-N 0.000 description 8
- 229950004354 phosphorylcholine Drugs 0.000 description 8
- 238000007920 subcutaneous administration Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229950010632 perifosine Drugs 0.000 description 7
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000693 micelle Substances 0.000 description 6
- 239000003094 microcapsule Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 230000002195 synergetic effect Effects 0.000 description 6
- 201000002510 thyroid cancer Diseases 0.000 description 6
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 5
- ODEDPKNSRBCSDO-UHFFFAOYSA-N [2-(hexadecylsulfanylmethyl)-3-methoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCCSCC(COC)COP([O-])(=O)OCC[N+](C)(C)C ODEDPKNSRBCSDO-UHFFFAOYSA-N 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 229950006905 ilmofosine Drugs 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical compound CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 4
- 208000018084 Bone neoplasm Diseases 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 4
- 241000934878 Sterculia Species 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 238000002512 chemotherapy Methods 0.000 description 4
- QTCANKDTWWSCMR-UHFFFAOYSA-N costic aldehyde Natural products C1CCC(=C)C2CC(C(=C)C=O)CCC21C QTCANKDTWWSCMR-UHFFFAOYSA-N 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- ZJXZSIYSNXKHEA-UHFFFAOYSA-N ethyl dihydrogen phosphate Chemical compound CCOP(O)(O)=O ZJXZSIYSNXKHEA-UHFFFAOYSA-N 0.000 description 4
- 210000001156 gastric mucosa Anatomy 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- ISTFUJWTQAMRGA-UHFFFAOYSA-N iso-beta-costal Natural products C1C(C(=C)C=O)CCC2(C)CCCC(C)=C21 ISTFUJWTQAMRGA-UHFFFAOYSA-N 0.000 description 4
- 201000007270 liver cancer Diseases 0.000 description 4
- 208000014018 liver neoplasm Diseases 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 201000002528 pancreatic cancer Diseases 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 208000030829 thyroid gland adenocarcinoma Diseases 0.000 description 4
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000004565 tumor cell growth Effects 0.000 description 4
- CUQJLYFFQBHUGW-UHFFFAOYSA-N 2-(1-methylpiperidin-1-ium-1-yl)ethyl octadecyl phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCC[N+]1(C)CCCCC1 CUQJLYFFQBHUGW-UHFFFAOYSA-N 0.000 description 3
- PBCZSGKMGDDXIJ-HQCWYSJUSA-N 7-hydroxystaurosporine Chemical compound N([C@H](O)C1=C2C3=CC=CC=C3N3C2=C24)C(=O)C1=C2C1=CC=CC=C1N4[C@H]1C[C@@H](NC)[C@@H](OC)[C@]3(C)O1 PBCZSGKMGDDXIJ-HQCWYSJUSA-N 0.000 description 3
- PBCZSGKMGDDXIJ-UHFFFAOYSA-N 7beta-hydroxystaurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3C(O)NC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 PBCZSGKMGDDXIJ-UHFFFAOYSA-N 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 229930105110 Cyclosporin A Natural products 0.000 description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 3
- 108010036949 Cyclosporine Proteins 0.000 description 3
- 206010014733 Endometrial cancer Diseases 0.000 description 3
- 206010014759 Endometrial neoplasm Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- ZBNJXSZNWZUYCI-UHFFFAOYSA-N octadecyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C ZBNJXSZNWZUYCI-UHFFFAOYSA-N 0.000 description 3
- 150000004291 polyenes Chemical class 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000000115 thoracic cavity Anatomy 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 239000008215 water for injection Substances 0.000 description 3
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 2
- DSALCQNSJMUGOG-UHFFFAOYSA-N 1-dichlorophosphoryloxyhexane Chemical compound CCCCCCOP(Cl)(Cl)=O DSALCQNSJMUGOG-UHFFFAOYSA-N 0.000 description 2
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- YADZBEISHVCBSJ-UHFFFAOYSA-N [I].OCC(O)CO Chemical compound [I].OCC(O)CO YADZBEISHVCBSJ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229960001265 ciclosporin Drugs 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 2
- 229960000452 diethylstilbestrol Drugs 0.000 description 2
- 238000011978 dissolution method Methods 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- 229930182833 estradiol Natural products 0.000 description 2
- 229960005309 estradiol Drugs 0.000 description 2
- 229960003399 estrone Drugs 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229960002258 fulvestrant Drugs 0.000 description 2
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 description 2
- JLYXXMFPNIAWKQ-GNIYUCBRSA-N gamma-hexachlorocyclohexane Chemical compound Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H]1Cl JLYXXMFPNIAWKQ-GNIYUCBRSA-N 0.000 description 2
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 2
- 229960002809 lindane Drugs 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000001926 lymphatic effect Effects 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 229940124531 pharmaceutical excipient Drugs 0.000 description 2
- YHHSONZFOIEMCP-UHFFFAOYSA-O phosphocholine Chemical group C[N+](C)(C)CCOP(O)(O)=O YHHSONZFOIEMCP-UHFFFAOYSA-O 0.000 description 2
- 235000002949 phytic acid Nutrition 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 2
- 239000000622 polydioxanone Substances 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- MBMQEIFVQACCCH-UHFFFAOYSA-N trans-Zearalenon Natural products O=C1OC(C)CCCC(=O)CCCC=CC2=CC(O)=CC(O)=C21 MBMQEIFVQACCCH-UHFFFAOYSA-N 0.000 description 2
- MBMQEIFVQACCCH-QBODLPLBSA-N zearalenone Chemical compound O=C1O[C@@H](C)CCCC(=O)CCC\C=C\C2=CC(O)=CC(O)=C21 MBMQEIFVQACCCH-QBODLPLBSA-N 0.000 description 2
- VBAFPUVFQZWOJM-MHJRRCNVSA-N (8r,9r,10s,13r,14s)-13-methyl-1,2,3,4,5,6,7,8,9,10,11,12,14,15-tetradecahydrocyclopenta[a]phenanthrene Chemical compound C1CCC[C@@H]2[C@H]3CC[C@](C)(C=CC4)[C@@H]4[C@@H]3CCC21 VBAFPUVFQZWOJM-MHJRRCNVSA-N 0.000 description 1
- VOXZDWNPVJITMN-UHFFFAOYSA-N 13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2C3CCC(C)(C(CC4)O)C4C3CCC2=C1 VOXZDWNPVJITMN-UHFFFAOYSA-N 0.000 description 1
- 229930182834 17alpha-Estradiol Natural products 0.000 description 1
- VOXZDWNPVJITMN-SFFUCWETSA-N 17α-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-SFFUCWETSA-N 0.000 description 1
- SWINWPBPEKHUOD-UHFFFAOYSA-N 2-hydroxyestron Natural products OC1=C(O)C=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 SWINWPBPEKHUOD-UHFFFAOYSA-N 0.000 description 1
- SWINWPBPEKHUOD-JPVZDGGYSA-N 2-hydroxyestrone Chemical compound OC1=C(O)C=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 SWINWPBPEKHUOD-JPVZDGGYSA-N 0.000 description 1
- FVVPWVFWOOMXEZ-ZIADKAODSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-2-(4-propan-2-ylphenyl)but-1-enyl]phenol Chemical compound C=1C=C(C(C)C)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=C(O)C=C1 FVVPWVFWOOMXEZ-ZIADKAODSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- MCSYNJVXRZLTKA-UHFFFAOYSA-O CCCCCCCCCCCCCCP(=O)=C(O)C[N+](C)(C)C Chemical compound CCCCCCCCCCCCCCP(=O)=C(O)C[N+](C)(C)C MCSYNJVXRZLTKA-UHFFFAOYSA-O 0.000 description 1
- SWOXETHHHSUPEJ-FZPKQIFPSA-N COC=1C(=CC2=C([C@H]3CC[C@@]4(C(CC[C@H]4[C@@H]3CC2)O)C)C1)O.COC=1C(=CC2=C([C@H]3CC[C@@]4(C(CC[C@H]4[C@@H]3CC2)O)C)C1)O Chemical compound COC=1C(=CC2=C([C@H]3CC[C@@]4(C(CC[C@H]4[C@@H]3CC2)O)C)C1)O.COC=1C(=CC2=C([C@H]3CC[C@@]4(C(CC[C@H]4[C@@H]3CC2)O)C)C1)O SWOXETHHHSUPEJ-FZPKQIFPSA-N 0.000 description 1
- FVLVBPDQNARYJU-XAHDHGMMSA-N C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O Chemical compound C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O FVLVBPDQNARYJU-XAHDHGMMSA-N 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- OBMLHUPNRURLOK-XGRAFVIBSA-N Epitiostanol Chemical compound C1[C@@H]2S[C@@H]2C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 OBMLHUPNRURLOK-XGRAFVIBSA-N 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- BVVFOLSZMQVDKV-KXQIQQEYSA-N ICI-164384 Chemical compound C1C[C@]2(C)[C@@H](O)CC[C@H]2[C@@H]2[C@H](CCCCCCCCCCC(=O)N(C)CCCC)CC3=CC(O)=CC=C3[C@H]21 BVVFOLSZMQVDKV-KXQIQQEYSA-N 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- LKJPYSCBVHEWIU-UHFFFAOYSA-N N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methylpropanamide Chemical compound C=1C=C(C#N)C(C(F)(F)F)=CC=1NC(=O)C(O)(C)CS(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-UHFFFAOYSA-N 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 229920000432 Polylactide-block-poly(ethylene glycol)-block-polylactide Polymers 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 208000000728 Thymus Neoplasms Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 229940124532 absorption promoter Drugs 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000003101 antineoplastic hormone agonist and antagonist Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- JLYXXMFPNIAWKQ-CDRYSYESSA-N beta-hexachlorocyclohexane Chemical compound Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@H](Cl)[C@@H](Cl)[C@@H]1Cl JLYXXMFPNIAWKQ-CDRYSYESSA-N 0.000 description 1
- SOQJPQZCPBDOMF-YCUXZELOSA-N betamethasone benzoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(F)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@@H]1C)C(=O)CO)C(=O)C1=CC=CC=C1 SOQJPQZCPBDOMF-YCUXZELOSA-N 0.000 description 1
- 229960000870 betamethasone benzoate Drugs 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000007983 brain glioma Diseases 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000011254 conventional chemotherapy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- AMTWCFIAVKBGOD-UHFFFAOYSA-N dioxosilane;methoxy-dimethyl-trimethylsilyloxysilane Chemical compound O=[Si]=O.CO[Si](C)(C)O[Si](C)(C)C AMTWCFIAVKBGOD-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000029578 entry into host Effects 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 150000002159 estradiols Chemical class 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 229940098330 gamma linoleic acid Drugs 0.000 description 1
- 235000020664 gamma-linolenic acid Nutrition 0.000 description 1
- 229960002733 gamolenic acid Drugs 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229960004956 glycerylphosphorylcholine Drugs 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 1
- ZUVCYFMOHFTGDM-UHFFFAOYSA-N hexadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(O)=O ZUVCYFMOHFTGDM-UHFFFAOYSA-N 0.000 description 1
- QSOFCURVDKCVCM-UHFFFAOYSA-N hexadecylphosphane Chemical compound CCCCCCCCCCCCCCCCP QSOFCURVDKCVCM-UHFFFAOYSA-N 0.000 description 1
- JDPSFRXPDJVJMV-UHFFFAOYSA-N hexadecylphosphonic acid Chemical compound CCCCCCCCCCCCCCCCP(O)(O)=O JDPSFRXPDJVJMV-UHFFFAOYSA-N 0.000 description 1
- 239000003667 hormone antagonist Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 150000004001 inositols Chemical class 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229950008642 miproxifene Drugs 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FTMKAMVLFVRZQX-UHFFFAOYSA-N octadecylphosphonic acid Chemical compound CCCCCCCCCCCCCCCCCCP(O)(O)=O FTMKAMVLFVRZQX-UHFFFAOYSA-N 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229940044519 poloxamer 188 Drugs 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 208000023958 prostate neoplasm Diseases 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- BKXVVCILCIUCLG-UHFFFAOYSA-N raloxifene hydrochloride Chemical compound [H+].[Cl-].C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 BKXVVCILCIUCLG-UHFFFAOYSA-N 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 229950009213 rubitecan Drugs 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 229960003440 semustine Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229940083037 simethicone Drugs 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- BETUMLXGYDBOLV-UHFFFAOYSA-N tetradecyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C BETUMLXGYDBOLV-UHFFFAOYSA-N 0.000 description 1
- DAUOXRUBCACRRL-UHFFFAOYSA-N tetradecylphosphane Chemical compound CCCCCCCCCCCCCCP DAUOXRUBCACRRL-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 201000009377 thymus cancer Diseases 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 230000005760 tumorsuppression Effects 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 208000024719 uterine cervix neoplasm Diseases 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The slow released anticancer injection containing both phosphoinositide-3-kinase inhibitor and/or hormone medicine consists of slow released microsphere and solvent. The slow released microsphere includes effective anticancer component and slow releasing supplementary material, and the solvent is common solvent or special solvent containing suspending agent. The suspending agent is sodium carboxymethyl cellulose, etc. and has viscosity of 100-3000 cp at 20-30 deg.c. The slow releasing supplementary material is p(LAEG-EOP), p(DAPG-EOP), p(BHET-EOP/TC), p(BHET-EOP/TC), p(BHDPT-EOP/TC), p(BHDPT-EOP/TC), p(CHDM-HOP), p( CHDM-EOP), etc. The anticancer composition may be also prepared into slow released implanting agent for use alone or together with chemotherapeutic and/or radiotherapeutic medicine to strengthen the treatment effect.
Description
(I) technical field
The invention relates to an anticancer composition containing phosphoinositide 3-kinase inhibitor and/or hormone medicine, which is an anticancer sustained-release injection and sustained-release implant and belongs to the technical field of medicines.
(II) background of the invention
As a common chemotherapeutic medicament, phosphoinositide 3-kinase inhibitor is widely applied to the treatment of various malignant tumors, and has obvious effect. However, its significant toxic effects greatly limit the wide use of this class of drugs.
Due to the fact that solid tumors are excessively expanded and proliferated, the interstitial pressure, the tissue elastic pressure, the fluid pressure and the interstitial viscosity of the solid tumors are higher than those of surrounding normal tissues, and therefore, effective drug concentration is difficult to form locally on the tumors through conventional chemotherapy. In addition, blood vessels, connective tissues, matrix proteins, fibrin and collagen in tumor stroma not only provide a scaffold and essential nutrients for the growth of tumor cells, but also influence the penetration and diffusion of chemotherapeutic drugs around tumors and in tumor tissues (see Niti et al, "influence of extracellular stroma conditions on drug transport in solid tumors" [ Cancer research ] No. 60, 2497 and 503 (2000)) (Netti PA, Cancer Res.2000, 60 (9): 2497 and 503)). Therefore, simply increasing the dosage is limited by systemic reactions. The problem of drug concentration may be solved to some extent by the local application of drugs, however, the surgical operations such as drug implantation and the like are complicated, the wound is large, and besides various complications such as bleeding, infection, immunity reduction and the like are easily caused, the diffusion and metastasis of tumors can be caused or accelerated. In addition, the preparation itself before and after the operation and the high cost often affect the effective implementation.
In addition, DNA repair function in many tumor cells is significantly increased following chemotherapy. The latter often leads to an increased tolerance of the tumor cells to anticancer drugs, with consequent therapeutic failure. In addition, low dose anti-cancer drug therapy not only increases drug resistance but also promotes invasive growth of cancer cells (see beam et al, "increasing drug resistance and in vitro infiltration capacity of human lung cancer cells with alteration of gene expression after anti-cancer drug pulse screening" [ J.Immunol.Cancer, 111, et al, Int J cancer.2004; 111 (4): 484-93) ].
Therefore, it is an important issue to research a preparation and a method which can maintain a high drug concentration in a tumor part and increase the sensitivity of tumor cells to drugs, while being convenient for operation.
Disclosure of the invention
The invention provides an anti-cancer medicine composition containing a phosphoinositide 3-kinase inhibitor and hormone medicines aiming at the defects of the prior art, and particularly relates to an anti-cancer sustained-release injection or sustained-release implant containing the phosphoinositide 3-kinase inhibitor and the hormone medicines.
Phosphoinositide 3-kinase inhibitors have been widely used for treating various solid tumors at home and abroad as a new class of anticancer drugs. However, during the application process, the obvious systemic toxicity greatly limits the application of the medicine.
In order to effectively increase the local drug concentration of tumor and reduce the drug concentration of the drug in the circulatory system, a drug sustained-release system containing phosphoinositide 3-kinase inhibitor is researched, which comprises magnetic microspheres (see Chinese patent No. CN 200410044113.8; CN200410009233.4), sustained-release microspheres (capsules) (see Chinese patent No. CN200410023746.0) and nano-particles (see Chinese patent No. CN 200410099292.5; CN200510002387.5) and the like. However, solid sustained-release implants (Chinese patent No. ZL 96115937.5; ZL 97107076.8; CN200410084621.9), mini implants with radioactive sources (Chinese patent No. CN200510011250.6) and sustained-release microspheres (Chinese patent No. ZL 00809160.9; U.S. Pat. No. 5,651,986) have the problems of difficult operation, poor curative effect, more complications and the like. In addition, many solid tumors are poorly sensitive to anticancer drugs, including phosphoinositide 3-kinase inhibitors, and are susceptible to development of resistance during treatment.
The invention discovers that the anticancer effect of the hormone medicine and the phosphoinositide 3-kinase inhibitor can be mutually strengthened by combining the hormone medicine and the phosphoinositide 3-kinase inhibitor; in addition, the anticancer drug sustained release preparation (mainly sustained release injection and sustained release implant) prepared by combining the phosphoinositide 3-kinase inhibitor and the hormone drug not only can greatly improve the local drug concentration of the tumor, reduce the drug concentration of the drug in the circulatory system and reduce the toxicity of the drug to normal tissues, but also can greatly facilitate the drug injection, reduce the complications of the operation and reduce the cost of patients. The above unexpected findings constitute the subject of the present invention.
The present invention also found that not all sustained-release excipients can achieve sustained-release effect of effective release in terms of ingredients having anticancer activity such as phosphoinositide 3-kinase inhibitors and hormonal drugs. The medicinal auxiliary materials are more than hundreds of medicinal auxiliary materials with slow release function, in particular the medicinal auxiliary materials which can slowly release different medicines in human bodies or animal bodies within a certain time can be obtained through a large number of creative experiments, and the selection of the combination of the specific slow release auxiliary materials and the medicines which can be slowly released can be determined through a large number of creative labor. Too slow release to achieve effective drug concentration and thus ineffective killing of tumor cells; if too rapid a release causes a burst, it is prone to induce general provincial toxicity reactions, such as polifeprosan (A.J. Domb et al, Biomaterials (1995), 16 (14): 1069-. The related data, particularly the data of the release characteristics in animals, can be obtained through a large number of creative experiments in vivo and in vitro, can not be determined through limited experiments, and is non-obvious.
The invention discovers that phosphate ester high molecular polymers such as polyphosphoester (polyphosphates), polyphosphoester (polyphosphate), polyphosphite (polyphosphate), polyphosphonate (polyphosphonate), poly (cyclophosphate), ethyl phosphate (EOP) and the like can stably and slowly release the active ingredients of the invention, and the release period is more than 40 to 100 days. And has no burst release, especially mixing or copolymerizing with anhydrosugar polymers such as polylactic acid. The discovery solves the defects of burst release and over-quick release of the existing sustained-release preparation, and can release the medicine slowly for more than 40-100 days. The above findings constitute the main features of the present invention.
One form of the phosphoinositide 3-kinase inhibitor sustained release preparation is sustained release injection, which consists of sustained release microspheres and a solvent. Specifically, the anticancer sustained-release injection consists of the following components:
(A) a sustained release microsphere comprising:
0.5-70% of anticancer active ingredient
Sustained release auxiliary materials 30-99%
0.0 to 30 percent of suspending agent
The above are weight percentages
And
(B) the solvent is common solvent or special solvent containing suspending agent.
Wherein,
the anticancer active component is phosphoinositide 3-kinase inhibitor and/or hormone medicine.
Phosphoinositide 3-kinase (abbreviated as PI3K) inhibitor (PI3Ki) is selected from 7-hydroxy-staurosporine (7-hydroxy-staurosporine, UCN-01), 7-O-alkyl-staurosporine (UCN-02), beta-methoxystaurosporine, alkylphosphocholines (alkylphosphocholines), hexadecylphosphocholine (hexadecylphosphocholines, MIL, HPC, Miltefosine), Octadecyl- (1, 1-dimethyl-4-piperidine) phosphate (octadecoyl- (1, 1-dimethyl-4-piperidino) phosphate, perifosine, D-21266), 1-O-hexadecyl-2-O-methyl-rac-propyl-3-phosphocholine (AMG-PC, 1-O-hexa-2-phosphocholine-3-phosphate, ET-16-OCH3), 1-O-Octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine (1-O-Octadecyl-2-O-methyl-rac-glycerylphosphocholine, ET-18-OCH3, edelfosine), 1-O-Octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine (1-O-octacycloalkyl-2-O-methyl-methylon-glycerylphosphine-3-phosphocholine, ilmofosine, L-ET-18-OCH (3)), inositol polyphosphates (inositols), cyclosporin A (Cyclosporine A), tetradecyl phosphocholine (Tetradecylphosphine, Hexadecylphosphine (N-N-trimethyl-hexylethanolamine (N-trimethyl-methoamine), HPC6), Octadecyl Phosphorylcholine (OPC) or octadecyl- [2- (N-methylpiperidine) ethyl ] -phosphate (octadecyl- [2- (N-methylpiperidino) ethyl ] -phosphate, D-20133 or OMPEP).
7-hydroxyl-astrosporin, 7-O-alkyl-astrosporin, beta-methoxystaurosporine, alkyl phosphorylcholine, hexadecyl phosphorylcholine (Miltefosine), octadecyl- (1, 1-dimethyl-4-piperidine) phosphate (perifosine), 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphorylcholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphorylcholine (edelfosine), 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphorylcholine (inositol), inositol polyphosphate, cyclosporin A, tetradecyl phosphorylcholine, Hexadecylphosphonic acid (N-N-trimethyl) hexanolamine, octadecylphosphocholine or octadecylphosphonic acid [2- (N-methylpiperidine) ethyl ] -phosphate are preferred.
The content of the phosphoinositide 3-kinase inhibitor in the composition is 0.01-60%, preferably 1-40%, and most preferably 2-30%, all of which are weight percentages.
Hormonal anticancer drugs are mainly steroid hormones and hormone antagonists including, but not limited to, anastrozole (anastrozole), idoxifene (idoxifene), milbexifene (Miproxifene), tamoxifen (tamoxifen ), 4-monohydroxytamoxifen (trans-4-monohydroxytamoxifen, OH-TAM), moxifene (keoxifene, LY156758), steroidal anti-estra (ICI164384, 7- α -alkylamide analogue of estradiol), 7- α - [9- (4, 4, 5, 5-pentafluoropentylsulfinyl) nonyl ] estra-1, 3, 5(10) -triene-3, 17 β -diol (anticancer sterenol, fulvestrant, 7- [9- (4, 4, 5, 5, 5-pentafluoropentylsulene) finyl ] beta-1, 3, 5, 17-alpha-diol (anticancer sterenol, fulvestrant, 7- [9- (4, 4, 5, 5, 5-pentafluoropentylsulene) triene ] 1, 3, 17-alpha-1, 3, 17-alpha-diol, ICI 182780), 4-hydroxytamoxifen (4-hydroxytetramoxifen), gamma-linoleic acid (gamma-linolenic acid), 2-methoxyestradiol (2-methoxyestradiol), methoxynorgestrienediol (moxystrol), 4-hydroxytamoxifen (4-hydroxytetramoxifen), hexachlorocyclohexane (hexachlorobenzene, hexachlorocyclohexane, beta-hexachlorocyclohexocyclohexane, beta-HCH), raloxifene (raloxifene), diethylstilbestrol (diethylstilbestrol), estradiol (estrol), zearalenone (zearalenone), estrone (estrone), 17alpha-estradiol (17-estradiol), estradiol (2-hydroxyestrone), 5, 7, 4-trihydroxy isoestrogen (trihydroxy), pyrrolidone (fludroxyquinone), fludroxynil (fludroxynil), fludroxynil (fludroxynil, Bicalutamide (Casodex), Aminoglutethimide (aminomeptylimide), betamethasone benzoate, carroterone, triptorelin, goserelin, leuprorelin, megestrol, medroxyprogesterone, dartikoside, epithioandrostanol, estrene with ethyl bromide, hesfen, clomiphene, toremifene, letrozole, anastrozole and exemestane or testolactone.
The hormone anticancer drug can be selected singly or in multiple, preferably triptorelin, goserelin, leuprorelin, anastrozole, idoxifene, mirtaxifene, tamoxifen, 4-monohydroxytamoxifen (OH-TAM), comoxifene, raloxifene, sterculia, anticancer sterenol, 4-hydroxyttamoxifen, flutamide, aminoglutethimide, pirimimide, megestrol, medroxyprogesterone, clomiphene, toremifene, letrozole, anastrozole, exemestane or bicalutamide.
The hormone anticancer drugs can be used for various hormone-dependent tumors, but different drugs have relative tumor selectivity, such as tamoxifen, pirimid, rubitecan, and toremifene, which are mainly used for treating estrogen-dependent tumors, such as breast cancer and endometrial cancer; flutamide, quart monosilicon blue, and bicalutamide are used primarily to treat androgen dependent tumors, such as prostate cancer; triptorelin, goserelin, leuprorelin, tamoxifen, raloxifene, aminoglutethimide, clomiphene, toremifene, letrozole, anastrozole and exemestane are used to treat breast cancer, prostate cancer and endometrial cancer.
The content of the hormone anticancer drug in the composition is 0.01-60%, preferably 1-40%, and most preferably 2-30%, by weight.
The weight percentage of the anti-tumor drug in the drug sustained-release microspheres is 0.5-60%, preferably 2-40%, and most preferably 5-30%. When used in combination, the weight ratio of phosphoinositide 3-kinase inhibitor to hormonal agent is 1-9: 1 to 1: 1-9, preferably 1-4: 1 and 4-1: 1, and most preferably 1-2: 1 and 2-1: 1.
The anticancer active ingredients in the anticancer sustained-release injection microsphere are preferably as follows, and the weight percentages are as follows:
(a) 1-40% of 7-hydroxy-astrosporin, 7-O-alkyl-astrosporin, β -methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine;
(b) 1-40% triptorelin, goserelin, leuprorelin, anastrozole, idoxifene, milbexifene, tamoxifen, 4-monohydroxytamoxifen, comoxifene, raloxifene, sterculia, antiestrogen, anticancer sterenol, 4-hydroxyttamoxifen, flutamide, aminoglutethimide, pirglutethimide, megestrol, medroxyprogesterone, clomiphene, toremifene, letrozole, anastrozole, exemestane, or bicalutamide; or
(c) 1-40% of 7-hydroxide radical astrosporin, 7-O-alkyl-astrosporin, beta-methoxystaurosporin, alkyl phosphorylcholine, hexadecyl phosphorylcholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphorylcholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphorylcholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphorylcholine with 1-40% of triptorelin, goserelin, leuprorelin, anastrozole, A combination of idoxifene, mircopoxifene, tamoxifen, 4-monohydroxytamoxifen, comoxifene, raloxifene, sterculia, anticancer sterenol, 4-hydroxyttamoxifen, flutamide, aminoglutethimide, pirglutethimide, megestrol, medroxyprogesterone, clomiphene, toremifene, letrozole, anastrozole, exemestane, or bicalutamide.
The viscosity range IV (dl/g) of the slow release auxiliary material is 0.05-1.8, preferably 0.1-1.4, and most preferably 0.1-1.4. The sustained-release excipients used in the present invention are selected from the group consisting of polyphosphates, polyphosphonates, polycycloalkylphosphates, ethyl phosphate (EOP), poly (1, 4-bis (hydroxyethyl) terephthalate-co-ethyl phosphate/terephthalate ester, 80/20) (p (BHET-EOP/TC, 80/20)), p (BHET-EOP/TC, 50/50), poly (L-lactide-co-ethyl phosphate (p (LAEG-EOP)), poly (L-lactide-co-propyl phosphate) (p (DAPG-EOP)), trans (formula) -1, 4-dimethylcyclohexane (trans-1, 4-cyclohexanedimethanil, CHDM), hexyldichlorophosphate (hexyldichlorophosphate), HOP), 4-dimethylaminopyridine (4-dimethylaminopyridine, DMAP), poly (1, 4-bis (hydroxyethyl) terephthalate-co-4-dimethylaminopyridine-co-ethyl phosphate/terephthalate hydrochloride, 80/20) (p (BHDPT-EOP/TC, 80/20)), p (BHDPT-EOP/TC, 50/50), poly (trans) -1, 4-dimethylcyclohexane-ethyl phosphate) (p (CHDM-HOP)), poly (trans) -1, 4-dimethylcyclohexane-hexylphosphorodichloridate (p (CHDM-EOP)), or a combination thereof.
Among the above phosphates, p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) and p (CHDM-EOP) are preferable.
The sustained-release auxiliary material used by the invention is also selected from the phosphate ester, the racemic polylactic acid (D, L-PLA), the racemic polylactic acid/glycollic acid copolymer (D, L-PLGA), the monomethyl polyethylene glycol/polylactic acid (MPEG-PLA), the monomethyl polyethylene glycol/polylactic acid copolymer (MPEG-PLGA), the polyethylene glycol/polylactic acid (PLA-PEG-PLA), the polyethylene glycol/polylactic acid copolymer (PLGA-PEG-PLGA), the carboxyl-terminated polylactic acid (PLA-COOH), the carboxyl-terminated polylactic acid/glycollic acid copolymer (PLGA-COOH), the polifeprosan, the copolymer of difatty acid and sebacic acid (PFAD-SA), the poly (erucic acid dimer-sebacic acid) [ P (EAD-SA) ], the poly (fumaric acid-sebacic acid) [ P (FA-SA) ], the polymer, Ethylene vinyl acetate copolymer (EVAc), polylactic acid (PLA), polyglycolic acid and glycolic acid copolymer (PLGA), Polydioxanone (PDO), polytrimethylene carbonate (PTMC), xylitol, oligosaccharide, chondroitin, chitin, chitosan, poloxamer 188, poloxamer 407, hyaluronic acid, collagen, gelatin or a blend or copolymer of protein glue. Wherein the phosphate accounts for 1-99% by weight, preferably 40-80% by weight, and most preferably 50-60% by weight.
The suspending agent is selected from one or more of sodium carboxymethylcellulose, (iodine) glycerol, dimethicone, propylene glycol, carbomer, mannitol, sorbitol, surfactant, Tween 20, Tween 40 and Tween 80.
In order to adjust the drug release rate or change other characteristics of the present invention, the monomer component or molecular weight of the polymer can be changed, and the composition and ratio of the pharmaceutical excipients can be added or adjusted, and water-soluble low molecular compounds such as, but not limited to, various sugars or salts can be added. The sugar can be, but is not limited to, xylitol, oligosaccharide, (chondroitin sulfate), chitin, etc., and the salt can be, but is not limited to, potassium salt, sodium salt, etc.
In addition to the above-mentioned adjuvants, other substances may be used as described in detail in U.S. Pat. No. 4757128 (4857311) (4888176 (4789724)) and "pharmaceutical adjuvants" in general (p. 123, published by Sichuan scientific and technical Press 1993, compiled by Luomingsheng and high-tech). In addition, Chinese patent (application No. 96115937.5; 91109723.6; 9710703.3; 01803562.0) and U.S. patent No. 5,651,986) also list some pharmaceutical excipients, including fillers, solubilizers, absorption promoters, film-forming agents, gelling agents, pore-forming agents, excipients or retarders.
The content of the suspending agent depends on the composition, nature and required amount of the medicine suspended in the solvent, the sustained-release microsphere (or microcapsule), the preparation method of the injection, the kind and composition of the suspending agent, for example, the content of the sodium carboxymethylcellulose can be 0.5-5%, but is preferably 1-3%, the content of mannitol and/or sorbitol is 5-30%, but is preferably 10-20%, and the content of tween 20, tween 40 or tween 80 is 0.05-2%, but is preferably 0.10-0.5%. In most cases, the sustained-release particles are composed of active ingredients and sustained-release excipients, and the solvent is a special solvent. When the solvent is common solvent, the suspended drug or sustained release microsphere (or microcapsule) is composed of effective components, sustained release adjuvant and/or suspending agent. In other words, when the suspending agent in sustained release particle (A) is "0", solvent (B) is a special solvent, and when the suspending agent in sustained release particle (A) is not "0", solvent (B) can be a common solvent or a special solvent. The viscosity of the suspending agent is 100cp-3000cp (at 20-30 ℃), preferably 1000cp-3000cp (at 20-30 ℃), and most preferably 1500cp-3000cp (at 20-30 ℃).
The common solvent can be, but is not limited to, distilled water, water for injection, physiological saline, absolute ethyl alcohol or buffer solution prepared from various salts, and the pharmacopoeia has corresponding regulations; the special solvent in the invention is a common solvent containing a suspending agent, and the suspending agent can be, but is not limited to, sodium carboxymethylcellulose, (iodine) glycerol, simethicone, propylene glycol, carbomer, mannitol, sorbitol, a surfactant, tween 20, tween 40 and tween 80 or a combination thereof. The content of the suspending agent in the special solvent is 0.1-30% by volume weight, preferably as follows:
(a) 0.5-5% sodium carboxymethylcellulose; or
(b) 0.5-5% sodium carboxymethylcellulose and 0.1-0.5% tween 80; or
(c) 5-20% mannitol; or
(d) 5-20% mannitol and 0.1-0.5% tween 80; or (b).
(e) 0.5-5% of sodium carboxymethylcellulose, 5-20% of sorbitol and 0.1-0.5% of tween 80.
The above-mentioned all are volume weight percentages, and the weight of suspending agent contained in unit volume of common solvent is the same as that in the following formula of g/ml, kg/L
The preparation of the injection comprises the preparation of sustained release microspheres or drug particles, the preparation of a solvent, the suspension of the sustained release microspheres or drug particles in the solvent and the final preparation of the injection.
Wherein, the sustained release microspheres or drug microparticles can be prepared by several methods: such as, but not limited to, mixing, melting, dissolving, spray-drying to prepare microspheres, dissolving in combination with freeze (dry) milling, liposome encapsulation, and emulsification. Among them, the dissolution method (i.e., solvent evaporation method), the freeze (dry) pulverization method, the drying method, the spray drying method and the emulsification method are preferable. The microspheres can be used for preparing the various sustained-release injections. The particle size of the suspension drug or sustained release microspheres (or microcapsules) is determined by specific needs and can be, but is not limited to, 1-300um, but is preferably 20-200um, and most preferably 30-150 um. The drug or the sustained-release microspheres can be prepared into microspheres, submicron spheres, micro-emulsion, nanospheres, granules or spherical pellets. The slow release auxiliary material is the above-mentioned biocompatible, biodegradable or non-biodegradable polymer.
The preparation of the solvent depends on the kind of the solvent, and common solvents are commercially available or self-made, such as distilled water, water for injection, physiological saline, absolute ethanol or buffers prepared from various salts, but the preparation must strictly follow the relevant standards. The special solvent should be selected from the type and composition of suspending agent, the composition and properties of the drug suspended in the solvent, the sustained release microsphere (or microcapsule), and the required amount thereof, and the preparation method of the injection, for example, sodium carboxymethylcellulose (1.5%) + mannitol and/or sorbitol (15%) and/or tween 80 (0.1%) are dissolved in physiological saline to obtain the corresponding solvent with viscosity of 10-650 cp (at 20-30 deg.C).
The invention discovers that the key factor influencing the suspension and/or injection of the medicament and/or the sustained-release microspheres is the viscosity of the solvent, and the higher the viscosity is, the better the suspension effect is and the stronger the injectability is. This unexpected finding constitutes one of the main exponential features of the present invention. The viscosity of the solvent depends on the viscosity of the suspending agent, and the viscosity of the suspending agent is 100cp-3000cp (at 20-30 ℃), preferably 1000cp-3000cp (at 20-30 ℃), and most preferably 1500cp-3000cp (at 20-30 ℃). The viscosity of the solvent prepared according to the condition is 10cp-650cp (at 20-30 ℃), preferably 20cp-650cp (at 20-30 ℃), and most preferably 60cp-650cp (at 20-30 ℃).
The preparation of injection has several methods, one is that the slow release particles (A) whose suspending agent is '0' are directly mixed in special solvent to obtain correspondent slow release particle injection; the other is that the slow release particles (A) of which the suspending agent is not 0 are mixed in a special solvent or a common solvent to obtain the corresponding slow release particle injection; and the other one is that the slow release particles (A) are mixed in common dissolvent, then suspending agent is added and mixed evenly, and the corresponding slow release particle injection is obtained. Besides, the sustained-release particles (A) can be mixed in special solvent to prepare corresponding suspension, then the water in the suspension is removed by methods such as vacuum drying, and then the suspension is suspended by special solvent or common solvent to obtain the corresponding sustained-release particle injection. The above methods are merely illustrative and not restrictive of the invention. It is noted that the concentration of the suspended drug or the sustained release microspheres (or microcapsules) in the injection may be, but is not limited to, 10-400mg/ml, but is preferably 30-300mg/ml, and most preferably 50-200mg/ml, depending on the particular need. The viscosity of the injection is 50-1000 cp (at 20-30 deg C), preferably 100-1000 cp (at 20-30 deg C), and most preferably 200-650 cp (at 20-30 deg C). This viscosity is suitable for 18-22 gauge needles and specially made needles with larger (to 3 mm) inside diameters.
The application of the injection comprises the application of sustained-release microspheres or drug particles, the application of a solvent and the application of the injection prepared by suspending the sustained-release microspheres or the drug particles in the solvent.
The microsphere is used for preparing sustained release injection, such as suspension sustained release injection, gel injection, and block copolymer micelle injection. Among various injections, a suspension type sustained-release injection is preferable. The suspension type sustained-release injection is a preparation obtained by suspending medicament sustained-release microspheres or medicament particles containing active ingredients in a solvent, the used auxiliary material is one or the combination of the sustained-release auxiliary materials, and the used solvent is a common solvent or a special solvent containing a suspending agent. Common solvent is, but not limited to, distilled water, water for injection, physiological saline, absolute ethyl alcohol or buffer solution prepared by various salts; the block copolymer micelle is formed by a hydrophobic-hydrophilic block copolymer in an aqueous solution and has a spherical core-shell structure, wherein the hydrophobic block forms a core, and the hydrophilic block forms a shell. The drug-loaded micelle is injected into the body to achieve the purpose of controlling the release of the drug or targeting therapy. The drug carrier is any one of the above or the combination thereof. Of these, polyethylene glycol (PEG) having a molecular weight of 1000-15000 is preferable as the hydrophilic block of the micelle copolymer, and biodegradable polymers such as PLA, polylactide, polycaprolactone and copolymers thereof (molecular weight 1500-25000) are preferable as the hydrophobic block of the micelle copolymer. The block copolymer micelles may have a particle size in the range of 1 to 300um, but preferably 20 to 200um, most preferably 30 to 150 um; the gel injection is prepared by dissolving biodegradable polymer (such as PLA, PLGA or DL-LA and epsilon-caprolactone copolymer) in certain amphiphilic solvent, adding the medicine, mixing (or suspending) with the solvent to form gel with good fluidity, and can be injected around tumor or in tumor. Once injected, the amphiphilic solvent diffuses into the body fluid quickly, and the water in the body fluid permeates into the gel, so that the polymer is solidified and the drug is released slowly.
The application of the solvent mainly refers to the application of the special solvent in effectively suspending, stabilizing and/or protecting various medicines or sustained-release microspheres (or microcapsules) so as to prepare corresponding injections. The application of the special solvent can lead the prepared injection to have better injection property, stability and higher viscosity.
The injection is prepared by using special solvent with high viscosity to make drug-containing microparticles, especially slow-release microparticles, into corresponding slow-release injection, so that the corresponding drug can be injected into the body of patient or mammal. The injected drug may be, but is not limited to, the above drug fine powder or drug sustained-release fine particles.
The route of administration of the injection depends on various factors. For non-proliferative lesions, intravenous, lymphatic, subcutaneous, intramuscular, intraluminal (e.g., intraperitoneal, thoracic, intraarticular, and intraspinal), intrahistological, intratumoral, peritumoral, elective arterial, intralymph node, and intramedullary injections may be used. For proliferative lesions, such as solid tumors, selective arterial, intraluminal, intratumoral, or peritumoral injection is preferred, although administration can be by the routes described above.
In order to obtain effective concentration at the site of primary or metastatic tumor, it can also be administered by combination of multiple routes, such as intravenous, lymphatic, subcutaneous, intramuscular, intracavity (such as intraperitoneal, thoracic, intraarticular and intraspinal) or selective arterial injection in combination with local injection. Such combination administration is particularly useful for solid tumors. For example, the injection is combined with the systemic injection at the same time of intratumoral injection and peritumoral injection.
The invention can be used for preparing medicaments for treating various tumors of human and animals, and is mainly a sustained-release injection.
Still another form of the anticancer drug sustained-release preparation of the present invention is that the anticancer drug sustained-release preparation is a sustained-release implant. The effective components of the anticancer implant can be uniformly packaged in the whole pharmaceutic adjuvant, and also can be packaged in the center of a carrier support or on the surface of the carrier support; the active principle can be released by direct diffusion and/or by degradation via polymers.
The slow release implant is characterized in that the slow release auxiliary material contains any one or more of the other auxiliary materials besides the high molecular polymer. The added pharmaceutic adjuvants are collectively called as additives. The additives can be classified into fillers, pore-forming agents, excipients, dispersants, isotonic agents, preservatives, retarding agents, solubilizers, absorption enhancers, film-forming agents, gelling agents, etc. according to their functions.
The main components of the sustained-release implant can be prepared into various dosage forms. Such as, but not limited to, capsules, sustained release formulations, implants, sustained release implants, and the like; in various shapes such as, but not limited to, granules, pills, tablets, powders, spheres, chunks, needles, rods, columns, and films. Among various dosage forms, slow release implants in vivo are preferred.
The optimal dosage form of the sustained-release implant is biocompatible, degradable and absorbable sustained-release implant, and can be prepared into various shapes and various dosage forms according to different clinical requirements. The packaging method and procedure for its main ingredients are described in detail in US patent (US5651986) and include several methods for preparing sustained release formulations: such as, but not limited to, (i) mixing a carrier support powder with a drug and then compressing into an implant, a so-called mixing process; (ii) melting the carrier support, mixing with the drug to be packaged, and then cooling the solid, the so-called melt process; (iii) dissolving the carrier support in a solvent, dissolving or dispersing the drug to be packaged in a polymer solution, and then evaporating the solvent and drying, the so-called dissolution method; (iv) spray drying; and (v) freeze-drying method.
The route of administration of the sustained release agent depends on various factors, and in order to obtain an effective concentration at the site of primary or metastatic tumor, the drug may be administered by various routes, such as subcutaneous, intraluminal (e.g., intraperitoneal, thoracic, and intraspinal), intratumoral, peritumoral injection or placement, selective arterial injection, intralymphatic, and intramedullary injections. Selective arterial injection, intracavitary, intratumoral, peritumoral injection or placement is preferred.
The invention can be used for preparing pharmaceutical preparations for treating various tumors of human and animals, mainly sustained-release injections or sustained-release implants, wherein the tumors comprise primary or metastatic cancers or sarcomas or carcinosarcomas originated from brain, central nervous system, kidney, liver, gall bladder, head and neck, oral cavity, thyroid, skin, mucous membrane, gland, blood vessel, bone tissue, lymph node, lung, esophagus, stomach, mammary gland, pancreas, eye, nasopharynx, uterus, ovary, endometrium, cervix, prostate, bladder, colon and rectum.
The tumors of the viscera can be of different pathological types, the tumors of the lymph nodes are Hodgkin lymphoma and non-Hodgkin lymphoma, the lung cancer comprises small cell lung cancer, non-small cell lung cancer and the like, and the brain tumor comprises glioma and the like. However, common tumors include solid tumors such as brain tumor, brain glioma, kidney cancer, liver cancer, gallbladder cancer, head and neck tumor, oral cancer, thyroid cancer, skin cancer, hemangioma, osteosarcoma, lymphoma, lung cancer, thymus cancer, esophageal cancer, stomach cancer, breast cancer, pancreatic cancer, retinoblastoma of eyes, nasopharyngeal cancer, ovarian cancer, endometrial cancer, cervical cancer, prostate cancer, bladder cancer, colon cancer, rectal cancer, and testicular cancer.
The application and the synergy mode of the sustained-release implant are the same as those of an anticancer sustained-release injection, namely the combination of a locally-placed chemotherapy synergist and an anticancer medicament administrated by other routes, the combination of a locally-placed anticancer medicament and a chemotherapy synergist administrated by other routes, and the combination of a locally-placed anticancer medicament and a locally-placed chemotherapy synergist. Wherein the locally applied anticancer drug and the chemotherapeutic synergist can be produced, packaged, sold and used separately or jointly. The package refers to the loading process of the drug for the auxiliary materials and the internal and external package of the drug-containing sustained release agent for transportation and/or storage. Drug loading processes include, but are not limited to, weighing, dissolving, mixing, drying, shaping, coating, spraying, granulating, and the like. If the medicine is mixed with different auxiliary materials to prepare the sustained-release microspheres containing different medicines, the sustained-release microspheres can be independently packaged and stored, and can be injected into the body simultaneously or sequentially when in use; the sustained release microspheres can also be further formed by various methods to prepare sustained release implants with various shapes.
The clinically applicable dose of the active ingredient may vary depending on the patient's condition and may range from 0.01 to 1000mg/kg body weight, with 0.1 to 800mg/kg being preferred and 1 to 500mg/kg being most preferred.
The dosage of the anticancer active ingredients in the sustained-release implant can be referred to the sustained-release injection. But preferably as follows:
1-40% of 7-hydroxide-astrosporin, 7-O-alkyl-astrosporin, beta-methoxystaurosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine with 1-40% of triptorelin, goserelin, leuprorelin, A combination of anastrozole, idoxifene, mirtaoxifene, tamoxifen, 4-monohydroxytamoxifen, comoxifene, raloxifene, sterculia, anticancer sterenol, 4-hydroxyttamoxifen, flutamide, aminoglutethimide, pirglutethimide, megestrol, medroxyprogesterone, clomiphene, toremifene, letrozole, anastrozole, exemestane, or bicalutamide.
The sustained-release injection prepared by the invention can also be added with other medicinal components, such as, but not limited to, antibiotics, analgesic, anticoagulant, hemostatic, etc.
The technical process of the invention is further described by the following tests and examples:
experiment 1 comparison of local drug concentrations after different modes of application of 7-hydroxy-astrosporin
Using white rat as test object, 2X 105Individual prostate tumor cells were injected subcutaneously into their quaternary costal regions and grouped after tumors grew to 1 cm in diameter. The dose of each group was 5 mg/kg. The results of the determination of the content (%) of the medicament in the tumors at different times show that the concentration difference of the local medicaments of the 7-hydroxyl-astrosporin applied in different modes is obvious, the effective medicament concentration of the part where the tumors are located can be obviously improved and effectively maintained by local administration, and the effect of placing the sustained-release implant in the tumors and injecting the sustained-release injection in the tumors is the best. However, the intratumoral injection of the sustained-release injection is most convenient and easy to operate. This finding constitutes an important feature of the present invention. This is further confirmed by the following related tumor inhibition assayOne point.
Experiment 2 comparison of in vivo tumor suppression Effect after different modes of application of 7-O-alkyl-Astrosporine
Using white rat as test object, 2X 105Individual breast tumor cells were injected subcutaneously into the quaternary costal region and grouped after tumors grew to 0.5 cm diameter. The dose of each group was 15 mg/kg. The volume of the tumor was measured on the 20 th day after treatment, and the therapeutic effect was compared. The results show that the tumor inhibition effect difference of the 7-O-alkyl-astrosporin applied by different modes is obvious, the effective drug concentration of the tumor part can be obviously improved and effectively maintained by local administration, and the effect of placing the sustained-release implant in the tumor and injecting the sustained-release injection in the tumor is the best. However, the intratumoral injection of the sustained-release injection is most convenient and easy to operate. Not only has good curative effect, but also has little toxic and side effect.
Test 3. tumor inhibition of drugs containing choline hexadecylphosphate and hormones
Using white rat as test object, 2X 105Individual pancreatic tumor cells were subcutaneously injected into the quaternary costal region, and were divided into control and treatment groups (1-11) after the tumors had grown for 14 days. The treatment components are hexa-decyl phosphoryl choline group, hormone medicine group, hexa-decyl phosphoryl choline and hormone medicine group. The dosage of the hexa-decyl choline phosphate group and the hormone drug is respectively 25mg/kg and 5mg/kg, and the hexa-decyl choline phosphate group and the hormone drug are injected into tumors. Tumor volume was measured on day 20 after treatment and the effect was compared (see table 1).
TABLE 1
Group of | UCN-1 | Synergist | Tumor inhibition ratio (%) | P value |
1 | + | - | 64 | * |
2 | - | Triptorelin | 46 | * |
3 | - | Goserelin | 42 | * |
4 | - | Leuprorelin | 38 | * |
5 | - | Anastrozole | 48 | * |
6 | - | Idoxifene | 36 | * |
7 | + | Triptorelin | 86 | ** |
8 | + | Goserelin | 82 | ** |
9 | + | Leuprorelin | 88 | ** |
10 | + | Anastrozole | 86 | ** |
11 | + | Idoxifene | 82 | ** |
The above results show that both phosphoinositide 3-kinase inhibitors (hexadecylphosphocholine) and the hormonal drugs used (triptorelin, goserelin, leuprolide, anastrozole, idoxifene) show significant inhibition of tumor growth at these concentrations alone (P value < 0.05) and when used in combination show very significant synergy (P value < 0.001).
Test 4. tumor inhibition Effect of UCN-1 and hormone drugs (sustained release injection)
The tumor cells include CNS-1, C6, gastric gland epithelial cancer (SA), bone tumor (BC), breast cancer (BA), lung cancer (LH), papillary thyroid adenocarcinoma (PAT), etc. UCN-1 and hormone drugs are added into various tumor cells cultured in vitro for 24 hours according to the concentration of 10ug/ml, and the total number of the cells is counted after the culture is continued for 48 hours. The tumor cell growth inhibitory effect (%) is shown in Table 2.
TABLE 2
Tumor cell | PI3Ki | A | B | C | D | E | PI3Ki+A | PI3Ki+B | PI3Ki+C | PI3Ki+D | PI3Ki+E |
CNS | 52 | 50 | 48 | 38 | 58 | 42 | 88 | 88 | 82 | 78 | 88 |
C6 | 54 | 52 | 46 | 36 | 64 | 40 | 90 | 80 | 84 | 84 | 90 |
SA | 52 | 58 | 36 | 42 | 62 | 48 | 88 | 84 | 86 | 82 | 82 |
BC | 58 | 54 | 40 | 42 | 64 | 54 | 88 | 80 | 74 | 74 | 80 |
BA | 68 | 46 | 38 | 48 | 60 | 56 | 80 | 80 | 92 | 92 | 80 |
LH | 66 | 56 | 40 | 52 | 58 | 60 | 90 | 82 | 94 | 78 | 94 |
PAT | 60 | 48 | 46 | 50 | 54 | 68 | 82 | 76 | 82 | 80 | 80 |
The results show that the PI3Ki (UCN-1) and the hormone drugs (wherein A: milbexifene, B: tamoxifen, C: tamoxifen, D: raloxifene and E: steroidal antiandrogen) have obvious inhibition effects on the growth of various tumor cells when being singly used at the concentration, and can show obvious synergistic effects when being used in combination.
Test 5. tumor inhibition Effect of UCN-2 and hormonal drugs (sustained-release injection)
The tumor cells include CNS-1, C6, 9L, gastric gland epithelial cancer (SA), bone tumor (BC), breast cancer (BA), lung cancer (LH), papillary thyroid adenocarcinoma (PAT), and liver cancer. UCN-2 and hormone drugs are added into various tumor cells cultured in vitro for 24 hours according to the concentration of 10ug/ml, and the total number of the cells is counted after the culture is continued for 48 hours. The tumor cell growth inhibition effect shows that the UCN-2 and hormone drugs (anticancer sterenol, flutamide, aminoglutethimide, pirglutethimide and megestrol) have obvious inhibition effect (P is less than 0.05) on the growth of various tumor cells when being used independently, and can show obvious synergistic effect (P is less than 0.01) when being used in combination.
Test 6, tumor inhibition of PI3Ki and hormonal drugs
Using white rat as test object, 2X 105Individual pancreatic tumor cells were subcutaneously injected into the quaternary costal region, and were divided into control and treatment groups (1-11) after the tumors had grown for 14 days. The treatment components are PI3Ki group, hormone drug group, PI3Ki and hormone drug group. The doses of the PI3Ki group drug and the hormone drug are respectively 25mg/kg and 5mg/kg, and the injection is performed intratumorally. Tumor volume was measured on day 20 after treatment and the treatment effect was compared (see table 3).
TABLE 3
Group of | PI3Ki | Synergist | Tumor inhibition ratio (%) | P value |
1 | + | - | 62 | * |
2 | - | Triptorelin | 46 | * |
3 | - | Goserelin | 42 | * |
4 | - | Leuprorelin | 38 | * |
5 | - | Anastrozole | 48 | * |
6 | - | Idoxifene | 36 | * |
7 | + | Triptorelin | 78 | ** |
8 | + | Goserelin | 72 | ** |
9 | + | Leuprorelin | 68 | ** |
10 | + | Anastrozole | 80 | ** |
11 | + | Idoxifene | 84 | ** |
The above results show that both PI3Ki (Perifosine) and the hormonal drugs used (triptorelin, goserelin, leuprolide, anastrozole, idoxifene) showed significant inhibition of tumor growth at these concentrations alone (P value less than 0.05) and showed very significant synergy when used in combination (P value less than 0.001).
Test 7, PI3Ki and hormonal drugs (sustained release injection) for their anti-tumor effects
The tumor cells include CNS-1, C6, gastric gland epithelial cancer (SA), bone tumor (BC), breast cancer (BA), lung cancer (LH), papillary thyroid adenocarcinoma (PAT), etc. Phosphoinositide 3-kinase inhibitors and hormonal drugs were added to each tumor cell cultured in vitro for 24 hours at a concentration of 10ug/ml, and the total number of cells was counted after further culturing for 48 hours. The tumor cell growth inhibitory effect (%) is shown in Table 4.
TABLE 4
Tumor cell | UCN-2 | A | B | C | D | E | UCN-2+A | UCN-2+B | UCN-2+C | UCN-2+D | UCN-2+E |
CNS | 52 | 50 | 48 | 38 | 58 | 42 | 88 | 88 | 82 | 78 | 88 |
C6 | 54 | 52 | 46 | 36 | 64 | 40 | 90 | 80 | 84 | 84 | 90 |
SA | 52 | 58 | 36 | 42 | 62 | 48 | 88 | 84 | 86 | 82 | 82 |
BC | 58 | 54 | 40 | 42 | 64 | 54 | 88 | 80 | 74 | 74 | 80 |
BA | 68 | 46 | 38 | 48 | 60 | 56 | 80 | 80 | 92 | 92 | 80 |
LH | 66 | 56 | 40 | 52 | 58 | 60 | 90 | 82 | 94 | 78 | 94 |
PAT | 60 | 48 | 46 | 50 | 54 | 68 | 82 | 76 | 82 | 80 | 80 |
The above results indicate that the hormone drugs used are A: mirbexifene, B: tamoxifen, C: domoxifene, D: raloxifene, E: can be used for resisting female. The medicine has obvious inhibition effect on the growth of various tumor cells when being used independently at the concentration, and can show obvious synergistic effect when being used jointly.
Experiment 8, Edelfosine and hormone drug (sustained release injection) tumor inhibition
The tumor cells include CNS-1, C6, 9L, gastric gland epithelial cancer (SA), bone tumor (BC), breast cancer (BA), lung cancer (LH), papillary thyroid adenocarcinoma (PAT), and liver cancer. Edelfosine and hormonal drugs were added to each of the tumor cells cultured in vitro for 24 hours at a concentration of 10ug/ml, and the total number of cells was counted after culturing for another 48 hours. The tumor cell growth inhibition effect shows that the Edelfosine and hormone drugs (anticancer sterenol, flutamide, aminoglutethimide, pirglutethimide and megestrol) have obvious inhibition effect (P is less than 0.05) on the growth of various tumor cells when being used independently, and can show obvious synergistic effect (P is less than 0.01) when being used in combination.
The above results show that when used in combination, the weight ratio of PI3Ki to the hormonal agent is 1-9: 1 to 1: 1-9, preferably 1-4: 1 and 4-1: 1, and most preferably 1-2: 1 and 2-1: 1.
Further research shows that hormone medicines such as goserelin, triptorelin, leuprorelin, tamoxifen, semustine and the like and UCN-1 or UCN-2 have obvious synergistic effect when used together with tumors such as cervical tumor, thyroid cancer, colorectal cancer, ovarian cancer and the like (P is less than 0.05).
In conclusion, the PI3Ki and/or various hormone drugs have obvious inhibition effects on the growth of various tumor cells when being used independently, and can show obvious synergistic effect when being used in combination. Therefore, the active ingredient of the invention is any combination of PI3Ki and/or any hormone medicine. The medicine containing the above effective components can be made into sustained release microsphere, and further made into sustained release injection and implant, wherein suspension injection formed by combining with special solvent containing suspending agent is preferred.
The sustained-release injection or sustained-release implant can be further explained by the following embodiments. The above examples and the following examples are only for further illustration of the present invention and are not intended to limit the contents and uses thereof in any way.
(IV) detailed description of the preferred embodiments
Example 1.
80, 80 and 80mg of p (BHET-EOP/TC) (BHET-EOP: TC is 80: 20) copolymer is respectively put into a container A, a container B and a container C, then 100 ml of dichloromethane is added into each copolymer, after dissolving and mixing evenly, 20mg of UCN-1, 20mg of triptorelin, 10mg of UCN-1 and 10mg of triptorelin are respectively added, after shaking up again, injection microspheres containing 20% of UCN-1, 20% of triptorelin, 10% of UCN-1 and 10% of triptorelin are prepared by a spray drying method. Then suspending the microspheres in physiological saline containing 15 percent of mannitol to prepare the corresponding suspension type sustained-release injection. The slow release injection has a release time of 40-50 days in vitro physiological saline, and a release time of more than 50 days in mouse subcutaneous liver cancer.
Example 2.
The steps of the method for processing the sustained-release injection are the same as the example 1, but the difference is that the used auxiliary material is p (BHET-EOP/TC) with the ratio of 50: 50, the anticancer active ingredients and the weight percentage thereof are as follows:
(1) 1-40% of UCN-1 or UCN-2;
(2) 1-30% triptorelin, goserelin, leuprorelin, tamoxifen, toremifene, letrozole, anastrozole, exemestane, or bicalutamide; or
(3) 1-40% UCN-1 or UCN-2 in combination with 1-30% triptorelin, goserelin, leuprorelin, tamoxifen, toremifene, letrozole, anastrozole, exemestane or bicalutamide.
Example 3.
70mg of p (LAEG-EOP) with the molecular weight peak value of 10000-25000 is respectively placed into a container A, a container B and a container C, then 100 ml of dichloromethane is added into each container, after dissolving and mixing evenly, 30mg of polyene UCN-2, 30mg of triptorelin, 20mg of UCN-2 and 10mg of triptorelin are respectively added into the three containers, after shaking up again, the microspheres for injection containing 30% of UCN-2, 30% of triptorelin, 20% of UCN-2 and 10% of triptorelin are prepared by a spray drying method. Suspending the dried microspheres in physiological saline containing 1.5 percent of sodium carboxymethylcellulose to prepare the corresponding suspension type sustained-release injection. The slow release injection has a release time of 55-65 days in vitro physiological saline and a release time of about 60 days in mouse lung cancer.
Example 4
The steps of the method for processing the sustained-release injection are the same as the example 3, but the difference is that the molecular weight peak value of p (LAEG-EOP) is 25000-45000, and the anticancer active ingredients and the weight percentage thereof are as follows:
(1) 5-30% triptorelin, goserelin or leuprorelin; or
(2) 5-40% of UCN-1 or UCN-2; or
(3) 5-30% of UCN-1 or UCN-2 in combination with 5-30% of triptorelin, goserelin or leuprorelin.
Example 5.
60mg of p (DAPG-EOP) with the molecular weight peak value of 10000-25000 is put into a container, 100 ml of dichloromethane is added to dissolve and mix evenly, 30mg of UCN-1 and 10mg of leuprorelin are added to the mixture, the mixture is shaken again and evenly, and then the spray drying method is used for preparing the microspheres for injection containing 30% of UCN-1 and 10% of leuprorelin. Then suspending the microspheres in injection containing 15 percent of sorbitol to prepare the corresponding suspension type sustained-release injection. The slow release injection has a release time of 50-55 days in vitro physiological saline and a release time of about 55 days in subcutaneous gastric cancer of mice.
Example 6.
The steps of the method for processing the sustained-release injection are the same as the example 5, but the difference is that the molecular weight peak value of the used auxiliary materials is 25000-:
(1) 5-40% of UCN-1; or
(2) 1-20% leuprorelin; or
(3) 5-30% of UCN-1 and 1-20% of leuprorelin.
Example 7.
70mg of p (BHDPT-EOP/TC, 80/20) with the molecular weight peak value of 10000-25000 is put into a container, 100 ml of dichloromethane is added, after dissolving and mixing uniformly, 25mg of Perifosine and 5mg of tamoxifen are added, after shaking uniformly again, the injection microspheres containing 25% of Perifosine and 5% of tamoxifen are prepared by a spray drying method. Then suspending the microspheres in physiological saline containing 1.5 percent of sodium carboxymethylcellulose and 0.5 percent of Tween 80 to prepare the corresponding suspension type sustained-release injection. The slow release injection has a release time of 40-45 days in vitro physiological saline and a release time of about 50 days in subcutaneous esophageal cancer of mice.
Example 8.
The procedure of the method for preparing the sustained-release injection is the same as that of example 7, except that the peak value of the molecular weight of p (BHDPT-EOP/TC) is 40000-65000, the peak value of the molecular weight of BHDPT-EOP: TC is 50: 50, and the anti-cancer active ingredients are as follows:
(1) 10-20% tamoxifen;
(2) 10-25% UCN-1 or Perifosine; or
(3) 10-20% tamoxifen in combination with 10-25% UCN-1 or Perifosine.
Example 9.
30mg of polifeprosan (p-carboxyphenylpropane (p-CPP): Sebacic Acid (SA) is 20: 80) and 40mg of p (DAPG-EOP) copolymer with the molecular weight peak value of 30000-45000 are put into a container, 100 ml of dichloromethane is added, after the mixture is dissolved and mixed uniformly, 30mg of Edelfosine, 30mg of toremifene, 5mg of Edelfosine and 25mg of toremifene are respectively added, after the mixture is shaken again, the microspheres for injection containing 30% of Edelfosine, 30% of toremifene, 5% of Edelfosine and 25% of toremifene are prepared by a spray drying method. Then suspending the microspheres in physiological saline containing 1.5 percent of sodium carboxymethylcellulose, 15 percent of sorbitol and 0.2 percent of Tween 80 to prepare the corresponding suspension type sustained-release injection. The slow release injection has a release time of 40-45 days in vitro physiological saline and a release time of about 45 days in mouse colorectal cancer.
Example 10.
The steps of the method for processing the sustained-release injection are the same as the example 9, but the difference is that the ratio of the p-carboxyphenylpropane to the sebacic acid in the polifeprosan is 50: 50, the molecular weight peak value of p (DAPG-EOP) is 40000-65000, and the anticancer active ingredients are:
(1) 5-30% of polyene UCN-1;
(2) 20-40% toremifene;
(3) a combination of 5-20% of polyene UCN-1 and 10-40% of toremifene.
Example 11
40mg of (LAEG-EOP) copolymer with the molecular weight peak value of 20000-45000p and 30mg of PLA copolymer with the molecular weight peak value of 10000-25000 p are placed into a container, 100 ml of dichloromethane is added, after the mixture is dissolved and uniformly mixed, 10mg of goserelin and 20mg of Ilmofosine are added, the mixture is shaken again and uniformly, and then the spray drying method is used for preparing the microspheres for injection containing 10% of goserelin and 20% of Ilmofosine. Then the microspheres are prepared into the corresponding sustained-release implant by a tabletting method. The sustained-release implant has the release time of 40-45 days in-vitro physiological saline and the release time of 45 days in subcutaneous breast cancer of mice.
Example 12
The steps of the method for processing the sustained-release implant are the same as the example 11, but the difference is that the used auxiliary materials are (LAEG-EOP) with the molecular weight peak value of 40000-65000p and PLA with the molecular weight peak value of 25000-45000, and the anti-cancer active ingredients are as follows:
(1) 10-20% goserelin; or
(2) 10-20% of Ilmofosine; or
(3) 10-20% goserelin in combination with 10-20% Ilmofosine.
Example 13
40mg of polylactic acid (PLGA, 50: 50) with a molecular weight peak of 15000-35000 and 30 (LAEG-EOP) with a molecular weight peak of 20000-45000p are placed in a container, 100 ml of dichloromethane is added, after dissolving and mixing uniformly, 10mg of triptorelin and 20mg of Milefosine are added, after re-shaking uniformly, the injection microspheres containing 10% of triptorelin and 20% of Milefosine are prepared by a spray drying method. Then the microspheres are prepared into the corresponding sustained-release implant by a tabletting method. The slow release implant has the release time of 50-60 days in-vitro physiological saline and the release time of about 60 days in subcutaneous pancreatic cancer of a mouse.
Example 14
The procedure for manufacturing the sustained-release implant was the same as in examples 11 and 13, except that the anticancer active ingredient contained:
(1) 10-20% UCN-1 or miltefosine; or
(2) 10-20% triptorelin, goserelin or leuprorelin; or
(3) 10-20% of UCN-1 or Milefosine in combination with 10-20% of triptorelin, goserelin or leuprorelin.
Example 15
The procedure of processing into sustained release preparation is the same as that of examples 1-14, except that the sustained release excipient is one or a combination of the following:
a) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP);
b) a combination of p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) and a copolymer (PLGA) of polyglycolic acid and glycolic acid having a molecular weight peak of 10000-30000, 30000-60000, 60000-100000 or 100000-150000, wherein the ratio of polyglycolic acid to glycolic acid is 50-95: 50-50;
c) a combination of p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) with polylactic acid (PLA) having a molecular weight peak of 10000-;
d) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or a combination of p (CHDM-EOP) and polifeprosan, wherein the ratio of p-carboxyphenylpropane (p-CPP) to Sebacic Acid (SA) in the polifeprosan is 10: 90, 20: 80, 30: 70, 40: 60, 50: 50 or 60: 40;
e) p (BHET-EOP/TC), P (LAEG-EOP), P (DAPG-EOP), P (BHDPT-EOP/TC), P (CHDM-HOP) or P (CHDM-EOP) in combination with a di-fatty acid and sebacic acid copolymer (PFAD-SA) ], poly (erucic acid dimer-sebacic acid) [ P (EAD-SA) ], poly (fumaric acid-sebacic acid) [ P (FA-SA) ], xylitol, oligosaccharides, chondroitin, chitin, chitosan, poloxamer, hyaluronic acid, collagen, gelatin or gelatin.
Example 16.
The procedure for preparing a sustained release injection is the same as in examples 1 to 15, except that the suspending agent used is one or a combination of the following:
a) 0.5-3.0% carboxymethylcellulose (sodium);
b) 5-15% mannitol;
c) 5-15% sorbitol;
d) 0.1-1.5% of surface active substances;
e) 0.1-0.5% tween 20.
Example 17
The procedure for manufacturing the sustained-release implant was the same as in examples 11 and 13, except that the anticancer active ingredient contained:
(1) 1-40% goserelin, triptorelin, leuprorelin, toremifene, or tamoxifen; or
(2) 1-40% of 7-hydroxy-astrosporin, 7-O-alkyl-astrosporin, β -methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine; or
(3) 20-40% of 7-hydroxide-astrosporin, 7-O-alkyl-astrosporin, beta-methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine with 1-20% of goserelin, triptorelin, A combination of leuprorelin, toremifene, or tamoxifen; or
(4) 1-20% of 7-hydroxide-astrosporin, 7-O-alkyl-astrosporin, beta-methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine with 20-40% of goserelin, triptorelin, A combination of leuprorelin, toremifene, or tamoxifen.
Example 18 comparison of drug Release characteristics of different Release excipients and their combination (Table 5)
The procedure of the method for manufacturing the sustained-release implant is the same as that of example 11, and the release characteristics of different sustained-release excipients and the combined sustained-release excipients are compared. The first day of drug release (in vitro) exceeds 20% of the total is burst release.
TABLE 5
Sustained release excipients | Molecular weight | Medicine and content | Time of release (Tian) | Whether there is a burst release |
(1) PLA (2) PLGA (50/50) (3) polifeprosan (20/80) (4) p (LAEG-EOP) (1): (4) ═ 1: 1 (2): (4) ═ 1: (2) } 4 ═ 1-1: 1 (3): (4): 1(5) PLA (6) PLGA (75/25) (7) polifeprosan (50/50) (8) p (DAPG-EOP) (5): (8): 6: 4 (6): 8): 7: 3 (7): 8): 5 | 10000-2500020000-4000020000-4000015000-3500025000-4500010000-2000010000-2000035000-55000 | UCN-1 (20%) UCN-1 (20%) UCN-1 (20%) UCN-1 (20%) UCN-1 (20%) UCN-1 (20%) UCN-1 (20%) goserelin (20%) | 2228104842444226251054504846 | Whether or not it is present or not is not present or not |
The data in the table show that when the anhydroglucose high-molecular polymers such as PLA, PLGA (50/50), polifeprosan (20/80) and the like are independently applied, the drug release is fast, wherein the drug release time of the polifeprosan is 8-10 days and the polifeprosan has obvious burst release. The polyphosphate ester high molecular polymers such as p (LAEG-EOP) and p (DAPG-EOP) are slow and stable in drug release, and when the polyphosphate ester high molecular polymers are combined with the sugar anhydride high molecular polymers such as PLA, PLGA and polifeprosan, the burst release caused by the sugar anhydride high molecular polymers can be reduced, but the stable and slow drug release characteristics are not greatly influenced. This unexpected finding constitutes a further main technical feature of the present invention. Because the polyphosphate ester high molecular polymer is expensive, the cost of the sustained-release preparation can be reduced, and the drug release characteristic of the sustained-release preparation can be improved.
Example 19 comparison of drug Release characteristics of different Release excipients and their combinations (Table 6)
The procedure of the method for manufacturing the sustained-release implant is the same as that of example 11, and the release characteristics of different sustained-release excipients and the combined sustained-release excipients are compared. The first day of drug release (in vitro) exceeds 20% of the total is burst release.
TABLE 6
Sustained release excipients | Molecular weight | Medicine and content | Time of release (Tian) | Whether there is a burst release |
(1) PLA (2) PLGA (50/50) (3) polifeprosan (20/80) (4) p (LAEG-EOP) (1): (4): 1 (2): 4): 1 (3): 4): 1 (5)) PLA (6) PLGA (75/25) (7) polifeprosan (50/50) (8) p (DAPG-EOP) (5): 8): 6: 4 (6): 8): 7: 3 (7): 8): 5 | 20000-3500030000-4500020000-4000025000-4500025000-4500020000-4000020000-4000035000-55000 | UCN-2 (20%) triptorelin (10%) | 2532114843454227251357555250 | Whether or not it is present or not is not present or not |
The data in the table show that when the anhydroglucose high-molecular polymers such as PLA, PLGA (50/50), polifeprosan (20/80) and the like are independently applied, the drug release is fast, wherein the drug release time of the polifeprosan is 10-13 days and the polifeprosan has obvious burst release. The polyphosphate ester high molecular polymers such as p (LAEG-EOP) and p (DAPG-EOP) are slow and stable in drug release, and when the polyphosphate ester high molecular polymers are combined with the sugar anhydride high molecular polymers such as PLA, PLGA and polifeprosan, the burst release caused by the sugar anhydride high molecular polymers can be reduced, but the stable and slow drug release characteristics are not greatly influenced. This unexpected finding constitutes a further main technical feature of the present invention. Because the polyphosphate ester high molecular polymer is expensive, the cost of the sustained-release preparation can be reduced, and the drug release characteristic of the sustained-release preparation can be improved.
This release profile is also seen for other drug combinations such as triptorelin in combination with UCN-1 and goserelin or leuprorelin in combination with UCN-2.
The above examples are intended to illustrate, but not limit, the application of the invention.
The invention is disclosed and claimed.
Claims (10)
1. An anticancer composition containing phosphoinositide 3-kinase inhibitor and hormone medicine, which is characterized in that the anticancer composition is a slow release injection and comprises the following components:
(A) a sustained release microsphere comprising:
0.5-70% of anticancer active ingredient
Sustained release auxiliary materials 30-99%
0.0 to 30 percent of suspending agent
The above are weight percentages
And
(B) the solvent is common solvent or special solvent containing suspending agent.
Wherein,
the anticancer active ingredient is phosphoinositide 3-kinase inhibitor and/or hormone medicine;
the slow release auxiliary material is selected from phosphate ester high molecular polymer or the mixture or copolymer of the phosphate ester high molecular polymer and the polysaccharide anhydride high molecular polymer:
the phosphoinositide 3-kinase inhibitor is selected from 7-hydroxy-astrosporin, 7-O-alkyl-astrosporin, beta-methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine;
the suspending agent has viscosity of 100-3000 cp (at 20-30 deg C), and is selected from one or more of sodium carboxymethylcellulose, iodoglycerol, dimethicone, propylene glycol, carbomer, mannitol, sorbitol, surfactant, Tween-20, Tween-40 and Tween-80.
2. The anti-cancer composition according to claim 1, wherein the hormonal agent is selected from the group consisting of triptorelin, goserelin, leuprorelin, anastrozole, idoxifene, mirtaxifene, tamoxifen, 4-monohydroxytamoxifen, comoxifene, raloxifene, sterculia, anti-cancer sterenol, 4-hydroxyttamoxifen, flutamide, aminoglutethimide, pirglutethimide, megestrol, medroxyprogesterone, clomiphene, toremifene, letrozole, anastrozole, exemestane, and bicalutamide.
3. The anticancer composition according to claim 1, wherein the anticancer sustained release injection comprises the following anticancer active ingredients:
(1) 5-35% goserelin, triptorelin, leuprorelin, toremifene, or tamoxifen; or
(2) 1-40% of 7-hydroxy-astrosporin, 7-O-alkyl-astrosporin, β -methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine; or
(3) 1-40% of 7-hydroxide-astrosporin, 7-O-alkyl-astrosporin, beta-methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine with 5-30% of goserelin, triptorelin, A combination of leuprorelin, toremifene, or tamoxifen.
The above are all weight percentages.
The slow release auxiliary material is one or the combination of the following materials:
a) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP);
b) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) and a copolymer of polyglycolic acid and glycolic acid with a molecular weight peak of 10000-30000, 30000-60000, 60000-100000 or 100000-150000, wherein the ratio of polyglycolic acid to glycolic acid is 50-95: 50-50;
c) a combination of p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) with polylactic acid having a molecular weight peak of 10000-;
d) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or a combination of p (CHDM-EOP) and polifeprosan, wherein the ratio of p-carboxyphenylpropane to sebacic acid in the polifeprosan is 10: 90, 20: 80, 30: 70, 40: 60, 50: 50 or 60: 40;
e) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) and a copolymer of di-fatty acid and sebacic acid, poly (erucic acid dimer-sebacic acid), poly (fumaric acid-sebacic acid), xylitol, oligosaccharide, chondroitin, chitin, chitosan, poloxamer, hyaluronic acid, collagen, gelatin or egg gelatin.
4. The sustained-release anticancer injection according to claim 1, wherein the suspending agent is one or a combination of the following:
a) 0.5-3.0% carboxymethylcellulose (sodium);
b) 5-15% mannitol;
c) 5-15% sorbitol;
d) 0.1-1.5% of surface active substances;
e) 0.1-0.5% tween 20; or
f) Glycerin, dimethicone, propylene glycol, or carbomer.
5. The sustained-release anticancer injection according to claim 1, wherein the suspending agent is one of the following:
A) 0.5-5% of sodium carboxymethylcellulose and 0.1-0.5% of Tween 80;
B) 5-20% of mannitol and 0.1-0.5% of Tween 80; or
C)0.5 to 5 percent of sodium carboxymethylcellulose, 5 to 20 percent of sorbitol and 0.1 to 0.5 percent of Tween 80.
6. The anticancer composition according to claim 1, which is a sustained-release implant.
7. The sustained-release anticancer implant according to claim 6, characterized in that the anticancer active ingredients are:
(1) 1-40% goserelin, triptorelin, leuprorelin, toremifene, or tamoxifen; or
(2) 1-40% of 7-hydroxy-astrosporin, 7-O-alkyl-astrosporin, β -methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine; or
(3) 20-40% of 7-hydroxide-astrosporin, 7-O-alkyl-astrosporin, beta-methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine with 1-20% of goserelin, triptorelin, A combination of leuprorelin, toremifene, or tamoxifen; or
(4) 1-20% of 7-hydroxide-astrosporin, 7-O-alkyl-astrosporin, beta-methoxyastrosporin, alkylphosphocholine, hexadecylphosphocholine, octadecyl- (1, 1-dimethyl-4-piperidine) phosphate, 1-O-hexadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine, 1-O-octadecyl-2-O-methyl-rac-propanetriyl-3-phosphocholine or 1-O-octadecyl-2-O-methyl-sn-propanetriyl-3-phosphocholine with 20-40% of goserelin, triptorelin, A combination of leuprorelin, toremifene, or tamoxifen.
The slow release auxiliary material is selected from phosphate ester high molecular polymer or the mixture or copolymer of phosphate ester high molecular polymer and polysaccharide anhydride high molecular polymer.
8. The sustained-release anticancer implant according to claim 6, characterized in that the sustained-release excipients are selected from one of the following:
a) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP);
b) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) and a copolymer of polyglycolic acid and glycolic acid with a molecular weight peak of 10000-30000, 30000-60000, 60000-100000 or 100000-150000, wherein the ratio of polyglycolic acid to glycolic acid is 50-95: 50-50;
c) a combination of p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) with polylactic acid having a molecular weight peak of 10000-;
d) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or a combination of p (CHDM-EOP) and polifeprosan, wherein the ratio of p-carboxyphenylpropane to sebacic acid in the polifeprosan is 10: 90, 20: 80, 30: 70, 40: 60, 50: 50 or 60: 40;
e) p (BHET-EOP/TC), p (LAEG-EOP), p (DAPG-EOP), p (BHDPT-EOP/TC), p (CHDM-HOP) or p (CHDM-EOP) and a copolymer of di-fatty acid and sebacic acid, poly (erucic acid dimer-sebacic acid), poly (fumaric acid-sebacic acid), xylitol, oligosaccharide, chondroitin, chitin, chitosan, poloxamer, hyaluronic acid, collagen, gelatin or egg gelatin.
9. The sustained-release anticancer injection according to claim 1, wherein the active ingredients of the sustained-release anticancer injection are used for preparing a pharmaceutical preparation for treating primary or secondary cancer, sarcoma or carcinosarcoma originated from brain, central nervous system, kidney, liver, gallbladder, head and neck, oral cavity, thyroid, skin, mucosa, gland, blood vessel, bone tissue, lymph node, lung, esophagus, stomach, breast, pancreas, eye, nasopharynx, uterus, ovary, endometrium, cervix, prostate, bladder, colon or rectum of human and animal.
10. The sustained-release injection and sustained-release injection as claimed in claims 1 and 6, wherein the sustained-release injection is administered by intratumoral or peritumoral injection or placement and is sustained-released in vivo for more than 40 days.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007102003184A CN101019828A (en) | 2007-03-23 | 2007-03-23 | Anticancer composition containing both phosphoinositide-3-kinase inhibitor and hormone medicine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007102003184A CN101019828A (en) | 2007-03-23 | 2007-03-23 | Anticancer composition containing both phosphoinositide-3-kinase inhibitor and hormone medicine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101019828A true CN101019828A (en) | 2007-08-22 |
Family
ID=38707755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007102003184A Pending CN101019828A (en) | 2007-03-23 | 2007-03-23 | Anticancer composition containing both phosphoinositide-3-kinase inhibitor and hormone medicine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101019828A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017502989A (en) * | 2014-01-15 | 2017-01-26 | ノバルティス アーゲー | Combination medicine |
-
2007
- 2007-03-23 CN CNA2007102003184A patent/CN101019828A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017502989A (en) * | 2014-01-15 | 2017-01-26 | ノバルティス アーゲー | Combination medicine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101502484B (en) | Glucocorticosteroid and chemotherapy medicament carried by anticancer sustained-release agent | |
CN101380303A (en) | Anti-cancer medicine sustained-released injection loaded with platinum compound and synergist thereof | |
CN101019828A (en) | Anticancer composition containing both phosphoinositide-3-kinase inhibitor and hormone medicine | |
CN101006981A (en) | Slow released injection containing taxane and platinum | |
CN1969823A (en) | Sustained release agent containing fluorouracil and synergist thereof | |
CN1969824A (en) | Anticancer sustained release agent containing fluorouracil and synergist thereof | |
CN101081209A (en) | Anticancer composition containing tyrosine kinase restraining agent and taxane | |
CN1969828A (en) | Anticancer sustained release injection containing mesenchyme hydrolytic agent | |
CN101006977A (en) | Anticancer medicinal composition containing taxane and hormones drug | |
CN101361710A (en) | Anticancer composition containing tuomatinib | |
CN101254166A (en) | An anticancer sustained release injection carrying clorfarabine and its synergist | |
CN101023925A (en) | Anti-cancer composition containing chemical-therapy synergistic agent | |
CN101011343A (en) | Slow release injection containing anti-metabolism medicament and alkylating agent | |
CN101023919A (en) | Entity-tumor-resistant slow-release agent | |
CN101023922A (en) | Anti-cancer slow-release agent carried with glucocorticoid hormone and chemical therapy medicine | |
CN101450036A (en) | Anti-cancer sustained release agent loaded with glucocorticoid and chemical curing medicine | |
CN101011346A (en) | Anti-cancer composition loading both mtrosourea medicament and synergist | |
CN101023921A (en) | Anti-cancer composition containing glucocorticoid hormone | |
CN101011353A (en) | Anti-cancer composition loading both platinum compound and alkylating agent | |
CN101380307A (en) | Anticancer sustained-release formulation loaded with anti-cancer medicine and synergist thereof | |
CN1969821A (en) | Anticancer medicament and synergist simultaneously carrying anticancer sustained release agent | |
CN101002729A (en) | Slow released anticarcinogen containing vasoinhibitor | |
CN101006978A (en) | Anticancer medicinal composition containing taxane and alkylating agents | |
CN101023930A (en) | Anti-cancer composition carried with new-born blood-vessel inhibiting agent and alkalating agent | |
CN1969826A (en) | Fluorouracil and its synergist carried sustained release agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20070822 |