CN101019358A - Wireless communication apparatus and wireless communication method - Google Patents

Wireless communication apparatus and wireless communication method Download PDF

Info

Publication number
CN101019358A
CN101019358A CN 200580030588 CN200580030588A CN101019358A CN 101019358 A CN101019358 A CN 101019358A CN 200580030588 CN200580030588 CN 200580030588 CN 200580030588 A CN200580030588 A CN 200580030588A CN 101019358 A CN101019358 A CN 101019358A
Authority
CN
China
Prior art keywords
csi
unit
snr
subcarrier
value
Prior art date
Application number
CN 200580030588
Other languages
Chinese (zh)
Inventor
今村大地
西尾昭彦
Original Assignee
松下电器产业株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004264606 priority Critical
Application filed by 松下电器产业株式会社 filed Critical 松下电器产业株式会社
Publication of CN101019358A publication Critical patent/CN101019358A/en

Links

Abstract

A wireless communication apparatus wherein the data amount of feedback information can be reduced, while a high throughput being maintained. In this apparatus, a CSI (Channel State Information) processing part (38) generates a CSI frame based on an SNR (Signal power to Noise power Ratio) for each of measured subcarriers, and a CSI transmission control part (39) generates a timing signal and control information required for generating the CSI frame, and controls the CSI processing part (38). The CSI processing part (38) generates a first frame (CSI1), which comprises the CSI of a subcarrier whose SNR variation amount is less than a threshold value, in a generation period that is greater than the generation period of a second frame (CSI2) comprising the CSI of a subcarrier whose SNR variation amount is equal to or greater than the threshold value.

Description

无线通信装置和无线通信方法 The wireless communication apparatus and wireless communication method

技术领域 FIELD

本发明涉及一种无线通信装置和无线通信方法。 The present invention relates to a radio communication apparatus and a wireless communication method.

背景技术 Background technique

在第四代等的下一代移动通信系统中,要求在高速移动时也能超过100Mbps的数据速率。 In the fourth generation and other next-generation mobile communication systems, requires moving at high speed can be more than the data rate of 100Mbps. 为满足这个要求,研讨了使用100MHz左右的带宽的各种各样的无线通信。 To meet this requirement, we discuss the use of various wireless communication bandwidth of approximately 100MHz. 其中,从对频率选择性衰落环境的适应性和频率利用效率的观点来看,以OFDM(Orthogonal Frequency Division Multiplexing)方式为代表的多载波传输方式作为下一代移动通信系统的传输方式特别被看好。 Wherein the frequency selective fading on the frequency utilization efficiency and adaptability in view of environment, in OFDM (Orthogonal Frequency Division Multiplexing) method is representative of multicarrier transmission mode as the transmission mode of the next generation mobile communication systems in particular, it is promising.

在以往,为了在使用OFDM等的多载波传输方式的通信系统中获得高吞吐量,对以下的技术进行研讨,即,使用导频信号等对每个副载波或是汇总多个副载波的每个频段(segment)的线路状态进行估计,根据表示该线路状态的信息(Channel State Information:CSI)对每个副载波(频段)决定并发送纠错能力、调制阶数、功率、相位、发送天线等的调制参数的技术。 In the past, in order to obtain a high throughput in a communication system using a multicarrier transmission scheme such as OFDM, the following discussion of the technique, i.e., using a pilot signal or the like for each subcarrier or each of a plurality of subcarriers Summary bands (segment) of the line status is estimated, according to the line status information (Channel state information: CSI) transmission indicates an error correction capability and decides for each subcarrier (frequency), modulation order, power, phase, transmission antenna technology of modulation parameters.

例如,对每个副载波(频段)控制调制参数时,每个副载波(频段)的CSI或调制参数等的反馈信息被传输。 For example, for each subcarrier (frequency) controls the modulation parameters for each subcarrier (frequency) of CSI or modulation parameters of the feedback information is transmitted. 因此,副载波(频段)的数目越多,其反馈所需要的数据量越大,反馈信息的开销增大。 Thus, the more the number of subcarriers (frequency), the greater the amount of data which is required for the feedback, the feedback information increases the overhead.

另外,随着移动台的移动和周边物体的移动,传输路径特性随时间变动。 Further, as the peripheral movement of the moving object and a mobile station, the transmission path characteristic changes with time. 该时间变动量与移动速度和载波频率成比例。 The amount of time variation of the moving speed and is proportional to the carrier frequency. 传输路径特性的时间变动量增大时,在估计线路状态的时间点与以基于反馈信息决定的调制参数进行发送的时间点的线路状态的误差增大,其结果,接收特性恶化从而吞吐量降低。 When the amount of time variation of the channel characteristics increases the error at the time point and the estimated channel status for the transmission time point information determining modulation parameters based on the feedback line state is increased, as a result, reception characteristics are deteriorated thereby decreasing throughput . 为减少接收特性的恶化,必须在传输路径特性的时间变动量越大时使反馈CSI的周期越小(即,频繁地通知CSI)。 To reduce the deterioration of the reception characteristic, the periodic CSI feedback must be smaller the larger the amount of time variation at the time of the transmission path characteristics (i.e., frequently notify CSI). 所以,移动台的移动速度越快,反馈信息的传输量越大。 Therefore, the faster the moving speed of the mobile station, feedback information of transfer amount is larger.

因此,作为用于抑制反馈信息的传输量的技术,有以下技术,即,将对每个副载波(频段)控制调制参数的移动台的移动速度限定为低速(例如3km/h),对于以该低速以上的速度移动的移动台,切换成全部副载波共通的控制,而不是对每个副载波(频段)的控制(例如,参照非专利文献1)。 Thus, as the transmission technique for suppressing the amount of feedback information, there is a technique, i.e., will be defined for each subcarrier (frequency) of the modulation parameter controlling the moving speed of the mobile station to the low speed (e.g. 3km / h), in order to above the low-speed movement of the mobile station is switched to the common control of all the sub-carriers, rather than control of each subcarrier (frequency) (e.g., refer to Non-Patent Document 1).

并且,还有以下技术,即,以低于最大移动速度的速度移动的移动台,通过以最小反馈周期的整数倍的周期发送CSI,来削减反馈信息的数据量(例如,参照非专利文献2和3)。 Further, there is a technique, i.e., at a speed lower than the maximum moving speed of the moving mobile station, the amount of data to transmit the CSI feedback period of an integer multiple of the smallest period, to reduce the feedback information (e.g., refer to Non-Patent Document 2 and 3). 另外,在非专利文献2和3中,在各个定时发送的反馈信息总是包含所有副载波(频段)的CSI。 Further, in the Non-Patent Documents 2 and 3, the respective timing of transmitting feedback information always contains all the subcarriers (frequency) the CSI.

[非专利文献1]Brian Classon,Philippe Sartori,Vijay Nangia,XiangyangZhuang,Kevin Baum,“Multi-dimensional Adaptation and Multi-userScheduling Techniques for Wireless OFDM Systems”,IEEE InternationalConference on Communications 2003(ICC2003),Volume3,pp.2251-pp.2255,11-15 May,2003[非专利文献2]原 嘉孝、川端 孝史、段 勁松、関口 高志「周波数スケジユ一リングを用いたMC-CDMA方式」,RCS2002-129,電子情報通信学会,2002年7月[非专利文献3]“3GPP TSGRAN High Speed Downlink Packet Access;Physical Layer Aspects(Release 5)”,3GPP TR25.858 v5.0.0,March 2002. [Patent Document 1] Brian Classon, Philippe Sartori, Vijay Nangia, XiangyangZhuang, Kevin Baum, "Multi-dimensional Adaptation and Multi-userScheduling Techniques for Wireless OFDM Systems", IEEE InternationalConference on Communications 2003 (ICC2003), Volume3, pp.2251 -pp.2255,11-15 May, 2003 [Non-Patent Document 2] original Yoshitaka, Takashi Kawabata, Duan Jinsong, Takashi mark "number of cycles Chemicals su ji yu with Surlyn Corning wo i ta MC-CDMA mode", RCS2002-129, IEICE , July 2002 [Non-Patent Document 3] "3GPP TSGRAN High Speed ​​Downlink Packet Access; Physical Layer Aspects (Release 5)", 3GPP TR25.858 v5.0.0, March 2002.

发明内容 SUMMARY

发明需要解决的问题然而,在上述以往的技术中,与最大移动速度相比低速的移动台反馈的CSI的数据量虽被削减,但以最大移动速度移动的移动台反馈的CSI的数据量仍然如此而未被削减。 However invention Problems to be solved in the conventional art described above, the amount of CSI data is low as compared with the maximum speed of the mobile station although feedback is cut, but at the maximum speed of the mobile station of the mobile data amount of CSI feedback is still so without being cut. 因此,在存在多个移动速度大的移动台等情况下,反馈的CSI的数据量增大。 Thus, in the presence of a large plurality of the moving speed of the mobile station, etc., the amount of CSI feedback data increases.

本发明的目的在于提供一种能够在维持高吞吐量的同时削减反馈信息的数据量的无线通信装置和无线通信方法。 Object of the present invention to provide a radio communication apparatus and radio communication method capable of reducing the data amount of feedback information while maintaining a high throughput.

用于解决所述问题的手段本发明的无线通信装置采用的结构包括:接收单元,接收由多个副载波组成的多载波信号;测定单元,测定所述多载波信号的每个副载波或每个频段的质量电平;比较单元,对所述质量电平或所述质量电平的变动量与阈值进行比较;以及发送单元,以第一反馈周期发送所述质量电平低于所述阈值的一部分副载波或一部分频段或者所述变动量超过所述阈值的一部分副载波或一部分频段的CSI或调制参数,并以大于所述第一反馈周期的第二反馈周期发送所有副载波或所有的频段的CSI或调制参数。 The radio communication apparatus of the means to solve the problems of the present invention adopts a configuration including: a receiving unit that receives a plurality of sub-carriers of the multicarrier signal; measurement unit configured to measure the multi-carrier signal for each subcarrier or each the quality level of frequency bands; a comparison unit, the level or quality of the quality level variation is compared with a threshold value; and a transmission unit that transmits a first feedback period to the quality level is below the threshold a part or a portion of the subcarrier frequency or the variation amount exceeds the threshold value a part or portion of the subcarrier frequency of CSI or modulation parameters, and a second feedback period greater than the first feedback period to transmit all subcarriers or all of the band CSI or modulation parameters.

发明的有益效果根据本发明,能够在维持高吞吐量的同时削减反馈信息的数据量。 Advantageous Effects of Invention According to the present invention, it is possible to reduce the data amount of feedback information while maintaining a high throughput.

附图说明 BRIEF DESCRIPTION

图1是表示本发明实施方式1的无线通信装置(CSI接收装置)的结构方框图。 1 is a block diagram showing radio communication apparatus (CSI receiving apparatus) according to an embodiment of the invention.

图2是表示本发明实施方式1的无线通信装置(CSI发送装置)的结构方框图。 FIG 2 is a block diagram showing radio communication apparatus (CSI transmitting apparatus) according to an embodiment of the invention.

图3是表示本发明实施方式1的CSI处理单元的结构方框图。 FIG 3 is a block diagram CSI processing unit embodiment of the present invention.

图4是表示本发明实施方式1的瞬时变动测定单元的结构方框图。 FIG 4 is a block diagram showing an instantaneous measurement variation embodiment 1 unit.

图5是本发明实施方式1的OFDM码元的载波结构。 FIG 5 is an embodiment of the present invention, an OFDM symbol 1 of the carrier structure.

图6是表示本发明实施方式1的SNR变动量与阈值之间的关系的图。 FIG 6 is a diagram showing a relationship between the embodiment of the present invention SNR variation amount with a threshold value of 1.

图7是表示本发明实施方式1的比较结果的图。 FIG 7 shows a comparison result of the embodiment of the present invention.

图8是表示本发明实施方式1的无线通信装置(CSI发送装置)的动作的图。 FIG 8 is a diagram illustrating the operation of the radio communication apparatus (CSI transmitting apparatus) according to Embodiment 1 of the present invention.

图9是本发明实施方式1的帧格式。 9 is an embodiment of the present invention is a frame format.

图10是本发明实施方式1的帧格式。 FIG 10 is an embodiment of the present invention is a frame format.

图11是本发明实施方式1的帧格式。 11 is an embodiment of the present invention is a frame format.

图12是表示本发明实施方式1的CSI处理单元的结构方框图。 FIG 12 is a block diagram showing an embodiment of the present invention CSI processing unit 1.

图13是表示本发明实施方式1的无线通信装置(CSI接收装置)的动作的图。 FIG 13 is a diagram illustrating the operation of the radio communication apparatus (CSI receiving apparatus) according to Embodiment 1 of the present invention.

图14是表示本发明实施方式1的线路状态存储器的状态的图。 FIG 14 is a diagram showing an embodiment of the present invention the state of a memory line state of FIG.

图15是表示本发明实施方式2的无线通信装置(CSI发送装置)的动作的图。 FIG 15 is a diagram illustrating the operation of the radio communication apparatus (CSI transmitting apparatus) according to Embodiment 2 of the present invention.

图16是本发明实施方式2的帧格式。 16 is an embodiment of the present invention, the frame format 2.

图17是本发明实施方式2的帧格式。 FIG 17 is a frame format Embodiment 2 of the present invention.

图18是本发明实施方式2的帧格式。 FIG 18 is a frame format Embodiment 2 of the present invention.

图19是表示本发明实施方式2的CSI处理单元的结构方框图。 FIG 19 is a block diagram showing an embodiment of the present invention, the processing unit 2 of the CSI.

图20是表示本发明实施方式2的无线通信装置(CSI接收装置)的动作的图。 FIG 20 is a diagram illustrating the operation of the radio communication apparatus (CSI receiving apparatus) according to Embodiment 2 of the present invention.

图21是表示本发明实施方式3的SNR的归一化累积分布的图。 FIG 21 is a diagram showing the SNR embodiment of the present invention 3 normalized cumulative distribution of FIG.

图22是表示本发明实施方式3的SNR与阈值之间的关系的图。 FIG 22 is a diagram showing a relationship between the embodiment of the present invention the SNR with the threshold value 3.

图23是表示本发明实施方式3的CSI处理单元的结构方框图。 FIG 23 is a block diagram showing an embodiment of the present invention means a process CSI 3.

图24是表示本发明实施方式3的阈值计算单元的结构方框图。 FIG 24 is a block diagram showing an embodiment of the present invention means a threshold value of 3 calculated.

图25是表示本发明实施方式3的无线通信装置(CSI发送装置)的动作流程图。 FIG 25 is a diagram showing operation of the embodiment of the present invention, the radio communication apparatus (CSI transmitting apparatus) 3 flowchart.

图26是表示本发明实施方式3的CSI处理单元的结构方框图。 FIG 26 is a block diagram showing an embodiment of the present invention means a process CSI 3.

图27是表示本发明实施方式3的无线通信装置(CSI接收装置)的动作流程图。 FIG 27 is a diagram showing operation of the embodiment of the present invention, the radio communication apparatus (CSI receiving apparatus) 3 flowchart.

图28是表示本发明实施方式3的SNR的出现次数的分布的图。 FIG 28 is a graph showing a distribution of the number of embodiments of the present invention the SNR of 3 appears.

图29是表示本发明实施方式4的CSI处理单元的结构方框图。 FIG 29 is a block diagram showing an embodiment of the present invention, the processing unit 4 of the CSI.

图30是表示本发明实施方式4的SNR与分类之间的关系的图。 FIG 30 is a diagram showing a relationship between the SNR and the embodiment of the present invention classified 4.

图31是表示本发明实施方式4的分类结果的图。 FIG 31 is a diagram showing Embodiment 4 of the present invention, the classification result of FIG.

图32是表示本发明实施方式4的无线通信装置(CSI发送装置)的动作的图。 FIG 32 is a diagram illustrating the operation of the radio communication apparatus (CSI transmitting apparatus) according to Embodiment 4 of the present invention.

图33是本发明实施方式4的帧格式。 FIG 33 is a frame format of an embodiment of the present invention 4.

图34是表示本发明实施方式4的CSI处理单元的结构方框图。 FIG 34 is a block diagram showing an embodiment of CSI processing unit 4 of the present invention.

图35是表示本发明实施方式4的无线通信装置(CSI接收装置)的动作的图。 FIG 35 is a diagram illustrating the operation of the radio communication apparatus (CSI receiving apparatus) according to Embodiment 4 of the present invention.

图36是表示本发明实施方式4的线路状态存储器的状态的图。 FIG 36 is a view showing a state of the memory line state of the embodiment 4 of the present invention.

图37是表示本发明实施方式4的线路状态存储器的状态的图。 FIG 37 is a view showing a state of the memory line state of the embodiment 4 of the present invention.

图38是本发明实施方式5的帧格式。 FIG 38 is a frame format of an embodiment of the present invention 5.

图39是本发明实施方式5的帧格式。 FIG 39 is a frame format of Embodiment 5 of the present invention.

图40是表示本发明实施方式5的无线通信装置(CSI发送装置)的动作的图。 FIG 40 is a diagram illustrating the operation of the radio communication apparatus (CSI transmitting apparatus) according to Embodiment 5 of the present invention.

图41是表示本发明实施方式6的CSI处理单元的结构方框图。 FIG 41 is a block diagram showing an embodiment CSI processing unit 6 of the present invention.

图42是表示本发明实施方式6的SNR与分类之间的关系的图。 FIG 42 is a diagram showing a relationship between the embodiment of the present invention the SNR and classification 6.

图43是表示本发明实施方式6的分类结果的图。 FIG 43 is a diagram showing classification results according to Embodiment 6 of the present invention.

图44是表示本发明实施方式6的无线通信装置(CSI发送装置)的动作的图。 FIG 44 is a diagram illustrating the operation of the embodiment of the present invention, the radio communication apparatus (CSI transmitting apparatus) 6.

图45是表示本发明实施方式6的CSI处理单元的结构方框图。 FIG 45 is a block diagram showing an embodiment CSI processing unit 6 of the present invention.

图46是表示本发明实施方式6的无线通信装置(CSI接收装置)的动作的图。 FIG 46 is a diagram illustrating the operation of the embodiment of the present invention, the radio communication apparatus (CSI receiving apparatus) 6.

图47是表示本发明实施方式7的CSI处理单元的结构方框图。 FIG 47 is a block diagram CSI processing section according to Embodiment 7 of the invention.

图48是本发明实施方式7的MCS变换例。 48 is an embodiment of the present invention, conversion MCS 7 embodiment.

图49是本发明实施方式7的MCS变换例。 49 is an embodiment of the present invention, conversion MCS 7 embodiment.

图50是表示本发明实施方式7的阈值计算单元的结构方框图。 FIG 50 is a block diagram showing an embodiment of the present invention means a threshold value 7 is calculated.

图51是表示本发明实施方式8的无线通信装置(CSI发送装置)的结构方框图。 FIG 51 is a block diagram showing the configuration of a radio communication apparatus (CSI transmitting apparatus) according to Embodiment 8 of the present invention.

图52是本发明实施方式8传输路径响应的时间变动量的测定例。 FIG 52 is a measurement example of time variation of Embodiment 8 of the present invention the channel response.

图53是本发明实施方式8传输路径响应的时间变动量的测定例。 FIG 53 is a measurement example of time variation of Embodiment 8 of the present invention the channel response.

图54是表示本发明实施方式8的SNR计算单元的结构方框图。 FIG 54 is a block diagram showing a structural unit of the embodiment of the present invention is calculated SNR 8.

图55是本发明实施方式8的控制例。 FIG 55 is a control example of the embodiment 8 of the invention.

图56是本发明实施方式8的帧格式。 Figure 56 is an embodiment of the present invention frame format 8.

图57是本发明实施方式8的帧格式。 FIG 57 is a frame format of an embodiment of the present invention 8.

图58是表示本发明实施方式8的CSI处理单元的结构方框图。 FIG 58 is a block diagram showing an embodiment of the present invention, the processing unit 8 of the CSI.

具体实施方式 Detailed ways

下面,参照附图详细说明本发明实施方式。 Hereinafter, the embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(实施方式1)图1所示的无线通信装置是CSI接收端的无线通信装置。 (Embodiment 1) The radio communication apparatus shown in FIG. 1 is a wireless communication apparatus CSI receiving end. 并且,图2所示的无线通信装置是CSI发送端的无线通信装置。 Further, the radio communication apparatus shown in FIG. 2 is a wireless communication apparatus CSI transmitting end. 在下面的说明中,将CSI接收端的无线通信装置称为CSI接收装置,将CSI发送端的无线通信装置称为CSI发送装置。 In the following description, the reception side radio communication apparatus is referred to as CSI CSI receiving apparatus, the transmitting side radio communication apparatus is referred to as CSI CSI transmitting apparatus. 并且,CSI接收装置以基于CSI决定的调制参数(编码方式、编码率、调制方式以及发送功率的任意一个以上)将由多个副载波组成的多载波信号发送到CSI发送装置。 And, based on the CSI receiving apparatus determines the modulation parameters CSI (an arbitrary coding scheme, coding rate, modulation scheme and transmission power more than one) by transmitting a multicarrier signal composed of a plurality of subcarriers to the CSI transmitting apparatus. 另一方面,CSI发送装置接收从CSI接收装置发送的多载波信号,基于多载波信号的每个副载波或每个频段的传输路径响应值生成CSI。 On the other hand, CSI transmitting apparatus receives a multicarrier signal received from the CSI transmitting apparatus, generates the CSI value for each subcarrier based on the transmission path or each band multicarrier signal in response. 并且,这些CSI接收装置和CSI发送装置例如被装载于移动通信系统中使用的无线通信基站装置和无线通信终端装置。 Further, the CSI transmitting apparatus and the CSI receiving apparatus is mounted on, for example, radio communication base station apparatus used in a mobile communication system and a wireless communication terminal apparatus.

如图1所示,本实施方式的CSI接收装置包括:编码单元11、调制单元12、功率控制单元13、IFFT(傅立叶逆变换)单元14、GI(保护区间)插入单元15、发送无线处理单元16、天线17、接收无线处理单元21、GI除去单元22、FFT(傅立叶)变换单元23、解调单元24、解码单元25、CSI处理单元26、CSI接收控制单元27以及调制参数决定单元28。 CSI receiving apparatus, the present embodiment 1 comprising: a coding unit 11, a modulation unit 12, a power control unit 13, IFFT (inverse Fourier transform) unit 14, GI (guard interval) insertion unit 15, the wireless transmission processing unit 16, an antenna 17, a reception radio processing section 21, GI removal unit 22, FFT (Fourier) transform unit 23, a demodulation unit 24, decoding section 25, CSI processing section 26, CSI reception control unit 27 and the modulation parameter determining section 28.

在下述说明中,对基于接收到的CSI对每个副载波或每个频段设定最佳调制参数并发送多载波信号的CSI接收装置进行说明。 In the following description, based on the received CSI for each subcarrier or each band and setting the optimum modulation parameters CSI transmission multicarrier signal receiving apparatus will be described. 另外,所谓频段是指将多个副载波分成多个组时的各个组。 Further, the term refers to the frequency band is divided into a plurality of sub-carriers of each group when a plurality of groups.

编码单元11以调制参数决定单元28指示的编码方式和编码率对每个副载波(频段)编码所输入的时间序列的发送数据。 Encoding parameter determination unit 11 to modulate the transmission data encoding unit 28 and the encoding rate indicated by the time series for each subcarrier (frequency) coding input.

调制单元12以调制参数决定单元28指示的调制方式(M-PSK、M-QAM等)对每个副载波(频段)调制已编码的发送数据。 Transmission data for each subcarrier (frequency) modulated encoded modulation unit 12 to modulate a parameter determination unit 28 indicates a modulation scheme (M-PSK, M-QAM, etc.).

功率控制单元13将每个副载波(频段)的发送功率设定为调制参数决定单元28指示的发送功率值。 The power control unit 13 for each sub-carrier (frequency) of the transmission power setting unit 28 determines the transmission power value is indicative of modulation parameters.

IFFT单元14进行使用多个正交的副载波对按每个副载波(频段)调制的信号进行复用的IFFT处理,生成作为多载波信号的OFDM码元。 IFFT unit 14 using a plurality of orthogonal subcarriers signals for each subcarrier (frequency) modulated multiplexed IFFT processing, generates OFDM multi-carrier signal symbols.

GI插入单元15为减少因延迟波造成的码间干扰(ISI:Inter SymbolInterference),在OFDM码元之间插入GI。 GI insertion unit 15 to reduce intersymbol interference due to a delay wave (ISI: Inter SymbolInterference), GI inserted between OFDM symbols.

发送无线处理单元16对OFDM码元施以上变频等规定的无线处理,将无线处理后的OFDM码元从天线17发送到CSI发送装置。 Transmission over the wireless OFDM symbol processing unit 16 pairs of frequency applying predetermined radio processing and the like, after the radio processing an OFDM symbol transmitted from the antenna 17 to the CSI transmitting apparatus.

接收无线处理单元21对用天线17接收的OFDM码元进行下变频等规定的无线处理。 OFDM symbol processing unit 21 receives a radio antenna 17 receives radio processing is performed at predetermined frequency conversion. 接收的OFDM码元包含被帧化的CSI(CSI帧)。 OFDM received symbols comprises a frame of the CSI (CSI frame).

GI除去单元22除去在OFDM码元之间插入的GI。 22 removed between OFDM symbols inserted GI GI removal unit.

FFT单元23对GI除去后的OFDM码元进行FFT处理,获得每个副载波的信号。 FFT unit 23 OFDM symbols after GI removal FFT processing, a signal of each subcarrier.

解调单元24解调FFT后的信号,解码单元25解码解调后的信号。 Signal, a signal decoding unit 25 decodes the demodulated after demodulation unit 24 demodulates the FFT. 由此获得接收数据。 Thereby obtaining reception data. 接收数据中包含数据帧和CSI帧。 The received data comprises a data frame and a CSI frame.

CSI处理单元26从CSI帧获得每个副载波(频段)的CSI。 CSI processing unit 26 is obtained for each subcarrier (frequency) the CSI from CSI. 关于要处理的CSI帧的类别或处理定时,则根据CSI接收控制单元27的控制。 CSI frame to be processed on the category or the processing timing, according to the CSI reception control unit 27 controls. CSI处理单元26的详细说明将后述。 Detailed Description CSI processing unit 26 will be described later.

CSI接收控制单元27生成CSI帧的处理及CSI的更新所需要的控制信息和定时信号,并控制CSI处理单元26。 CSI reception control information and timing signal processing and CSI needed updating unit 27 generates a CSI frame, and controls CSI processing unit 26.

调制参数决定单元28基于从CSI处理单元26输入的每个副载波(频段)的CSI,决定每个副载波(频段)的编码率、调制方式和发送功率。 28 based on the determined modulation parameter for each subcarrier (frequency) input from the processing unit 26 CSI CSI unit determines for each subcarrier (frequency) coding rate, modulation scheme and transmission power.

接下来,说明CSI发送装置。 Next, the CSI transmitting apparatus. 如图2所示,本实施方式的CSI发送装置包括:天线31、接收无线处理单元32、GI除去单元33、FFT单元34、解调单元35、解码单元36、传输路径响应估计单元37、CSI处理单元38、CSI发送控制单元39、编码单元41、调制单元42、功率控制单元43、IFFT单元44、GI插入单元45以及发送无线处理单元46。 CSI transmitting apparatus shown in FIG. 2 according to the present embodiment comprises: an antenna 31, a reception radio processing section 32, GI removal unit 33, FFT unit 34, demodulation unit 35, a decoding unit 36, a transmission channel response estimation section 37 [, CSI The processing unit 38, CSI transmission control unit 39, the encoding unit 41, a modulation unit 42, a power control unit 43, IFFT unit 44, GI insertion unit 45 and a transmission radio processing unit 46.

接收无线处理单元32对天线31接收的OFDM码元进行下变频等规定的无线处理。 Predetermined radio processing such as frequency conversion of the OFDM symbol processing unit 32 receives a radio antenna 31 received.

GI除去单元33除去在OFDM码元之间插入的GI。 33 removed between OFDM symbols inserted GI GI removal unit.

FFT单元34对GI除去后的OFDM码元进行FFT处理,获得每个副载波的信号。 FFT unit 34 OFDM symbols after GI removal FFT processing, a signal of each subcarrier.

将FFT后信号中的导频信号等除去后的信息信号被输入到解调单元35。 The information signal is removed after the FFT of the pilot signal and other signals are input to the demodulating unit 35. 解调单元35以与在CSI接收装置用于调制的调制方式对应的解调方式解调信息信号。 Modulation and demodulation unit 35 to receive CSI means for modulating demodulation scheme corresponding to the demodulated information signal.

解码单元36以与在CSI接收装置用于编码的编码方式对应的解码方式对调制后的信号进行纠错等解码处理后,获得接收数据。 After decoding section 36 decodes the reception means in a manner CSI encoding method for encoding a signal corresponding to the modulated error correction decoding process, obtains received data.

将FFT后的信号中的导频信号等估计传输路径响应时所需要的信号输入到传输路径响应估计单元37。 Estimating the signal transmitted signal after the FFT of the pilot signal or the like in response to the desired path to the transmission path response estimation unit 37. 传输路径响应估计单元37对每个副载波(频段)的传输路径响应值进行估计。 Channel response estimation unit 37 for each subcarrier (frequency) of the transmission channel response estimation value.

CSI处理单元38基于估计出的传输路径响应值求出每个副载波(频段)的CSI,并生成用于将这些CSI反馈到CSI接收装置的CSI帧。 CSI processing unit 38 obtains a value for each subcarrier (frequency) the CSI transmission based on the estimated channel response, and generates a CSI feedback for the CSI frame to the CSI receiving apparatus. 关于要生成的CSI帧的类别或生成定时,则根据CSI发送控制单元39的控制。 CSI frame to be generated on the class or the generation timing, the control unit 39 according to the CSI transmission control. CSI处理单元38的详细说明将后述。 Detailed Description CSI processing unit 38 will be described later.

CSI发送控制单元39生成在CSI帧的生成所需要的控制信息和定时信号,并控制CSI处理单元38。 CSI transmission control unit 39 generates the control information timing signal and generates CSI frames required, and controls CSI processing unit 38.

编码单元41以规定的编码方式和编码率对每个副载波(频段)编码所输入的时间序列的发送数据和CSI帧。 The coding unit 41 at a predetermined coding scheme and coding rate of transmission data for the time series for each subcarrier (frequency) coding the input frame and the CSI.

调制单元42以规定的调制方式对每个副载波(频段)调制已编码的发送数据和CSI帧。 Modulation unit 42 to predetermined transmission data modulation scheme for each subcarrier (frequency) modulated encoded and CSI frames.

功率控制单元43对每个副载波(频段)的发送功率进行控制。 The control unit 43 controls the power of each subcarrier (frequency) transmission power.

IFFT单元44进行使用多个正交的副载波对按每个副载波(频段)调制的信号进行复用的IFFT处理,生成作为多载波信号的OFDM码元。 IFFT section 44 using a plurality of subcarriers orthogonal to each subcarrier signal (frequency) modulated multiplexed IFFT processing, generate an OFDM symbol as a multi-carrier signal.

GI插入单元45为减少延迟波造成的ISI,在OFDM码元之间插入GI。 GI insertion unit 45 to reduce ISI caused by the delay wave, the GI inserted between OFDM symbols.

发送无线处理单元46对OFDM码元施以上变频等规定的无线处理,将无线处理后的OFDM码元从天线31发送到CSI接收装置。 Predetermined radio processing after the wireless transmission processing unit 46 on the OFDM symbols over frequency conversion element is applied, the wireless processed OFDM symbols transmitted from the antenna 31 to the CSI receiving apparatus.

然后,使用图3详细说明图2所示的CSI发送装置的CSI处理单元38。 Then, as shown in detail in FIG. 3 to FIG. 2 described CSI CSI processing unit 38 of the transmission apparatus. 如图3所示,CSI处理单元38包括:质量电平测定单元381、线路状态存储器382、瞬时变动测定单元383、比较单元384、比较结果存储器385以及CSI帧生成单元386。 3, CSI processing unit 38 comprises: the quality level measurement unit 381, the state of the line memory 382, ​​an instantaneous variation measuring unit 383, comparison unit 384, comparison result memory 385 and CSI frame generation unit 386.

质量电平测定单元381从传输路径响应估计单元37所输入的每个副载波的传输路径响应值测定每个副载波(频段)的SNR(Signal to Noise Ratio),作为表示线路状态的值。 Value determined for each subcarrier (frequency) of SNR (Signal to Noise Ratio) quality of the input level measurement unit 37 response estimation unit 381 from the transmission path of the transmission path in response to each subcarrier, as represented by line state value. 这里虽然使用SNR作为质量电平(quality level),但也可以使用CNR(Carrier to Noise Ratio)、接收功率、接收振幅等作为质量电平。 Although herein SNR as a quality level (quality level), may be used CNR (Carrier to Noise Ratio), reception power, reception amplitude, etc. as a quality level. 另外,在像蜂窝系统,作为CSI,不仅仅是噪声功率,干扰功率也相当重要的通信系统中,也可以使用SIR(Signal to Interference Ratio)、CIR(Carrier toInterference Ratio)、SINR(Signal to Interference and Noise Ratio)、CINR(Carrierto Interference and Noise Ratio)等作为质量电平。 Further, the image cellular system, as the CSI, not only the noise power, interference power communication system is also very important, it is also possible to use SIR (Signal to Interference Ratio), CIR (Carrier toInterference Ratio), SINR (Signal to Interference and Noise Ratio), CINR (Carrierto Interference and Noise Ratio) and the like as a quality level.

线路状态存储器382保持由质量电平测定单元381测定的每个副载波(频段)的SNR值。 Holding the line state memory 382 for each subcarrier (frequency) by the level measurement unit 381 mass measured SNR value.

瞬时变动测定单元383从线路状态存储器382保持的SNR值测定每个副载波(频段)的SNR的瞬时的时间变动量(SNR变动量)。 Time variation of the instantaneous SNR measurement value measured by an instantaneous change in the state memory unit 383 from the line 382 to maintain the SNR of each subcarrier (frequency) of (SNR variation amount). 瞬时变动测定单元383的详细说明将后述。 Detailed Description instantaneous variation measuring unit 383 will be described later.

比较单元384对每个副载波(频段)的SNR变动量和阈值进行比较。 The comparison unit 384 compares each subcarrier (frequency) of the variation amount and the threshold SNR. 另外,也可以使阈值基于平均SNR和多普勒频率自适应地变化。 Further, the threshold frequency may be adaptively varied based on the average SNR and Doppler.

比较结果存储器385将比较单元384的比较结果按每个副载波(频段)存储并保持。 Comparison result memory 385 to the comparison unit 384 of a comparison result for each subcarrier (frequency) stored and held. 比较结果存储器385的存储内容根据从CSI发送控制单元39输入的更新定时信号被更新。 Comparison result memory 385 stored contents are updated in accordance with the transmission control unit from the CSI 39 updates the input timing signal.

CSI帧生成单元386基于从CSI发送控制单元39输入的CSI帧类别和生成定时信号生成CSI帧。 CSI frame generation section 386 generates a CSI frame based on the CSI frame type and generates a timing signal from CSI transmission control section 39 inputs. CSI帧生成单元386在生成定时信号被输入的定时,基于CSI帧类别和比较结果存储器385的存储内容而生成CSI帧。 CSI frame generating unit 386 generates a timing signal at the timing of the input, the stored contents based on the comparison result CSI frame type and the memory 385 to generate CSI frame.

然后,使用图4详细说明图3所示的瞬时变动测定单元383。 Then, an instantaneous variation shown in FIG. 4 described in detail measurement unit 383 in FIG. 3. 如图4所示,瞬时变动测定单元383包括延迟单元3831、减法单元3832以及绝对值运算单元3833。 As shown, the instantaneous variation measuring unit 383 includes 4 delay unit 3831, a subtraction unit 3832 and an absolute value operation unit 3833.

延迟单元3831通过将每个副载波(频段)的SNR值保持到下一个SNR值输入为止,由此使从减法单元3832输入的SNR值延迟。 The delay unit 3831 is held until the next input through the SNR value for each subcarrier (frequency) SNR value, whereby the SNR value input from the subtracting unit 3832 delays.

减法单元3832计算由线路状态存储器382输入的每个副载波(频段)的SNR值和在延迟单元3831保持的前一个的每个副载波(频段)的SNR值的差。 The subtraction unit 3832 calculates each sub-carrier (frequency) by the SNR value input line state memory 382 and a front differential for each subcarrier (frequency) the SNR value in the delay unit 3831 is maintained.

绝对值运算单元3833计算从减法单元3832输入的差值的绝对值,并求出SNR的变动量。 Absolute value calculating unit 3833 calculates an absolute value of the difference input from the subtraction unit 3832, and calculates the amount of variation of SNR.

下面,将进一步详细说明图3所示的CSI处理单元3 8的动作。 Next, the operation of CSI processing unit shown in FIG. 338 will be described in further detail. 然而,这里将说明对每个副载波获得CSI的情况。 Here, however, we will explain the situation to get CSI for each subcarrier. 并且,在下述说明中,虽然是以对每个副载波设定调制参数的通信系统为对象进行说明,但通过将“副载波”改为“频段”,在对每个频段设定调制参数的通信系统也同样能够实施本实施方式。 And, in the following description, the communication system is a set of modulation parameters for each subcarrier will be described as an object, but the "subcarrier" replaced by "frequency", the setting for each frequency band of the modulation parameters the communication system of the present embodiment can be similarly embodiment.

如图5所示,在CSI发送装置接收的OFDM码元中,在数据载波之间以规定的间隔插入传输路径响应估计用载波,该传输路径响应估计用载波用于估计传输路径的频率响应(传输路径响应)。 5, the OFDM symbol received CSI transmitting apparatus, data carriers between a predetermined interval into a transmission channel response estimation carrier, the transmission channel response estimation carriers for the transmission path frequency response estimate ( channel response). 在传输路径响应估计单元37,对每个副载波使用传输路径单元估计用载波,在时刻tk(k为整数)的定时估计OFDM码元在传输路径受到的振幅变动和相位变动。 In the transmission path response estimation unit 37, using the transmission path estimation unit for each subcarrier amplitude variation and phase variation by the carrier, a timing estimate at time tk (k is an integer) OFDM symbol in the transmission path subjected. 另外,传输路径估计用载波例如为已知的导频信号等。 Further, the transmission path estimation carrier, for example, a known pilot signal or the like. 并且,在进行盲估计(blind estimation)的通信系统中,有时使用数据用载波作为传输路径估计用载波。 And, performing the blind estimation (blind estimation) communication system, the data estimation is sometimes used as a transmission path carriers with carrier.

质量电平测定单元381从传输路径响应估计单元37所输入的传输路径响应估计值测定每个副载波的SNR值γm,k,并输出到线路状态存储器单元382。 SNR value γm measured for each subcarrier, k input transmission path 37 in response estimate quality level measurement unit 381 from the transmission path response estimation unit, and outputs the state memory unit 382 to the line. 这里,γm,k表示对第m个副载波(m=1,2,3,...,M)的时刻tk时的SNR值进行对数变换后的值(单位[dB])。 Here, γm, k represents the SNR value at the time of the m-th sub-carrier (m = 1,2,3, ..., M) is performed tk value (in [dB]) after logarithmic transformation.

线路状态存储器382存储由质量电平测定单元381测定的每个副载波的SNR值γm,k。 For each subcarrier SNR value γm line state memory 382 stores the quality level measured by the measurement unit 381, k. 存储在线路状态存储器3 82的SNR值γm,k在每次由质量电平测定单元381测定新的SNR值时被更新。 SNR value γm stored in the state memory 382 of the line, k is updated each time new SNR value was determined by the level measurement unit 381 quality.

另外,传输路径响应值的估计周期和SNR的测定周期被设定成与CSI的反馈周期相同或小于CSI的反馈周期。 Further, the estimated SNR of the measurement cycle period, and the transmission path response value is set to be the same as or less than the CSI feedback period of the CSI feedback period. 线路状态存储器382的更新周期可以独立于CSI的反馈周期。 Line state memory 382 update period may be independent of the CSI feedback period. 但是被进行控制,以避免在CSI帧的生成途中发生线路状态存储器382的更新处理。 But was controlled, in order to avoid line state memory 382 update process occurs in the middle generated CSI frame.

在瞬时变动测定单元383中,减法单元3822求被存储在线路状态存储器382的SNR值γm,k和被保持在延迟单元3831的在tk的前一个定时tk-a测定的SNR值γm,k-1之间的差,而绝对值运算单元3833求该差的绝对值。 Instantaneous variation measurement unit 383, the subtraction unit 3822 is required in the line status memory 382 stores an SNR value γm, k, and is held in the SNR value γm before the timing tk tk-a delay unit 3831 is determined, - K- the difference between 1 and the absolute value of the absolute value operation unit 3833 of the difference. 由此,可获得SNR值的每个测定时间间隔的每个副载波的SNR变动量Δγm,k。 Accordingly, the amount of change in SNR Δγm each subcarrier SNR values ​​obtained for each measurement time interval, k. 因此,能够以下面的式(1)表示SNR变动量Δγm,k。 Accordingly, the amount of fluctuation can be expressed SNR Δγm, k by the following equation (1).

Δγm,k=|γm,k-γm,k-1| ...(1)比较单元384比较每个副载波的SNR变动量和阈值,将该比较结果写入比较结果存储器385。 Δγm, k = | γm, k-γm, k-1 | ... (1) a comparison unit 384 and variation amount comparison SNR threshold for each subcarrier, the comparison result of the comparison result memory 385 is written. 以下述方式进行对比较结果存储器385的写入。 A manner of writing a comparison result memory 385. 在下面的说明中,以OFDM码元由24条副载波(副载波1~24)构成的情况为一例进行说明。 In the following description, the OFDM symbol where 24 subcarriers (subcarriers 1 to 24) is described as an example configured.

图6表示各个副载波的SNR变动量Δγm,k与阈值之间的关系。 6 shows a relationship between the amount of each subcarrier SNR variation Δγm, k with the threshold value. 在图6所示例子的情况,在比较单元384中,对每个副载波的SNR变动量和阈值进行比较的结果,副载波(SC)1~4、10、12~15、20、21、23、24的SNR变动量被判定为阈值以下,副载波(SC)5~9、11、16~19、22的SNR变动量被判定为超过阈值。 In the case of the example shown in FIG. 6, the comparison unit 384, a result of comparison of the variation amount and the threshold SNR per subcarrier, subcarrier (SC) 1 ~ 4,10,12 ~ 15,20,21, SNR variation amount is determined as 23, 24 below a threshold value, the amount of SNR variation subcarrier (SC) 5 ~ 9,11,16 ~ 19,22 is determined to exceed the threshold. 如图7所示,比较结果被存储到比较结果存储器385。 7, the comparison result is stored in the memory 385 to the comparison result. 在图7中,“1”表示SNR变动量被判定为阈值以下,“0”表示SNR变动量被判定为超过阈值。 In FIG. 7, "1" indicates the amount of SNR variation is determined to be below the threshold, "0" indicates the SNR variation amount is determined to exceed the threshold. 在从CSI发送控制单元39输入更新定时信号的定时进行比较结果存储器385的更新。 Comparison result memory 385 are updated at the timing of the transmission control unit from the CSI 39 to update the input timing signal.

CSI帧生成单元386在从CSI发送控制单元39输入生成定时信号的定时,基于从CSI发送控制单元39输入的CSI帧类别和存储在比较结果存储器385的图7所示的比较结果,从副载波1~24中选择要将CSI反馈到CSI接收装置的副载波,并生成CSI帧。 CSI frame generation section 386 from CSI transmission control section 39 generates a timing signal input timing based on CSI transmission control unit 39 from a CSI frame type input and stored in the comparison result of the comparison result memory 7 shown in FIG 385, the sub-carriers from 1 to 24. to select CSI feedback subcarriers to the CSI receiving apparatus, and generates a CSI frame. CSI帧生成单元386进行图8所示的动作。 CSI frame generation unit 386 perform the operation shown in Fig. 在图8所示的例子中,CSI发送装置基于在比较单元384的比较结果,将两种CSI帧周期性地反馈到CSI接收装置。 In the example shown in FIG. 8, CSI transmitting apparatus based on a comparison result of the comparison unit 384, the two kinds of periodical feedback CSI frame to the CSI receiving apparatus. 在两种CSI帧中,一方为由SNR变动量为阈值以下的副载波(副载波1~4、10、12~15、20、21、23、24)的SNR值组成的CSI帧(CSI1),另一方为由SNR变动量超过阈值的副载波(副载波5~9、11、1 6~19、22)的SNR值组成的CSI帧(CSI2)。 In both CSI frame, the SNR variation amount by one of the CSI frame is less than the threshold a subcarrier (subcarriers 1 to 4,10,12 - 15,20,21,23,24) composed SNR value (CSI1) CSI frame (CSI2), the other by the amount of variation exceeds a threshold SNR subcarriers (subcarriers 5 6 ~ 19, 22 ~ 9,11,1) SNR value thereof. 换言之,CSI2不包含SNR变动量为阈值以下的副载波(副载波1~4、10、12~15、20、21、23、24)的SNR值。 In other words, CSI2 does not comprise SNR variation amount is less than the threshold a subcarrier (subcarriers 1 to 4,10,12 - 15,20,21,23,24) SNR value.

在图8中,首先在定时t3n,由CSI发送控制单元39向CSI帧生成单元386输入生成定时信号。 In FIG. 8, T3n the first timing, the transmission control unit 39 CSI to CSI frame generation section 386 generates a timing signal input. 同时,由于更新定时信号被输入到比较结果存储器385,以在比较单元384新获得的比较结果更新比较结果存储器385的内容。 Meanwhile, since the update timing signal is input to comparison result memory 385, a comparison result to the comparison unit 384 updates the comparison results newly obtained contents of the memory 385. 现在,假设更新后的比较结果存储器385的内容为如图7所示。 Now, suppose the contents of the updated comparison result memory 385 as shown in Fig. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI1+CSI2”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成包含副载波(SC)1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2)。 Further, since represents "CSI1 + CSI2" as the signal CSI frame type input from CSI transmission control unit 39 to the CSI frame generation unit 386, CSI frame generation unit 386 according to CSI frame type indicated generates a subcarrier (SC) 1 ~ CSI frame SNR values ​​of all subcarriers 24 (CSI1 + CSI2).

将帧格式示于图9。 The frame format shown in FIG. 该帧格式在CSI接收装置为已知。 The frame format in the CSI receiving apparatus is known. 由此,CSI发送装置能够在定时t3n将所有副载波的CSI反馈到CSI接收装置。 Accordingly, the CSI transmitting apparatus can be a timing t3n CSI feedback all subcarriers to the CSI receiving apparatus. 另外,用于在定时t3n生成包含所有副载波的SNR值的CSI帧,而假设为从副载波1依序排列SNR值的帧格式,但也可以是分别生成CSI1和CSI2并将彼此结合的帧格式。 Further, a CSI frame SNR value generated at timing t3n include all sub-carriers, and assuming the frame is a frame format SNR values ​​are arranged in order from the sub-carriers, but may generate CSI1 and CSI2 and bonded to each other format. 例如,也可以是在由副载波1~4、10、12~15、20、21、23、24构成的CSI1的后面配置由副载波5~9、11、16~19、22构成的CSI2的帧格式。 For example, may be disposed behind CSI1 composed of the subcarriers 1 ~ 4,10,12 ~ 15,20,21,23,24 CSI2 composed of subcarriers 5 ~ 19, 22 ~ 9,11,16 frame format.

接着,在定时t3n+1,与定时t3n同样地,从CSI发送控制单元39将生成定时信号输入到CSI帧生成单元386,更新定时信号被输入到比较结果存储器385。 Next, at timing t3n + 1, and similarly to the timing t3n, from CSI transmission control section 39 generates a timing signal is input to CSI frame generation unit 386, the update timing signal is inputted to the comparison result memory 385. 然后,假设更新后的比较结果存储器385的内容再次成为如图7所示。 Then, assuming that the updated content of the comparison result memory 385 shown in FIG. 7 again. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI2”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成由SNR变动量超过阈值的副载波5~9、11、16~19、22的SNR值组成的CSI帧(CSI2)。 Further, since the 39 generating 386 an input unit to a CSI transmission control unit from the CSI indicates "CSI2" as the signal CSI frame type, CSI frame generation unit 386 according to CSI frame type indicated by the generated subcarrier 5 exceeds the amount of variation SNR threshold CSI frame (CSI2) ~ SNR value 9,11,16 ~ 19, 22 thereof. 由此,CSI发送装置能够在定时t3N+1仅将SNR变动量超过阈值的副载波的CSI反馈到CSI接收装置。 Thus, CSI transmitting apparatus can be fed back to the CSI receiving apparatus at timing t3N + 1 CSI only the amount of variation exceeds subcarrier SNR threshold.

将帧格式示于图10。 The frame format 10 shown in FIG. 在图10示出的例子中,在帧的前半部分(201)配置副载波序号作为副载波的标识符号,在后半部分(202),与前半部分的副载波序号对应地,以和副载波序号相同的顺序配置SNR值。 In the example shown in FIG. 10, in the first half (201) a frame configuration subcarrier numbers as an identification symbol sub-carriers, in the latter half (202), and the subcarrier number corresponding to the front half portion to and subcarriers the same reference numbers are sequentially arranged SNR value. 此外,作为其他的帧格式,也可以取如图11所示的帧格式。 Moreover, as another frame format, a frame format may take 11 as shown in FIG. 在图11示出的例子中,分别使副载波序号与对应于该副载波序号的SNR值为一组(301~304),这些组(301~304)被配置在帧内。 In the example shown in FIG. 11, respectively corresponding subcarrier numbers to the SNR value of subcarrier numbers of a group (301 to 304), the groups (301 to 304) are arranged in the frame.

接着,在定时t3n+2进行与在定时t3n+1相同的处理,并且在定时t3(n+1)进行与在定时t3n相同的处理。 Subsequently, the same processing as + 1 and the timing t3n timing t3n + 2, at timing t3 (n + 1) subjected to the same treatment at the timing t3n. 由此,在图8示出的例子中,CSI1的发送周期(反馈周期)102成为CSI2的发送周期(反馈周期)101的3倍。 Thus, in the example shown in FIG. 8, CSI1 transmission period (feedback period) 102 is CSI2 transmission period (feedback period) 101 of 3 times. 这样,通过使CSI1的发送周期为CSI2的发送周期的整数倍,在反馈所有的副载波的CSI时(在图8为定时t3n、t3(n+1))能够将CSI汇总于一个帧进行发送,因此能够共享报头信息等,其结果,能够减少在反馈信息的发送上需要的数据量。 By making the CSI1 transmission period is an integer multiple of the transmission cycle CSI2 is, when the feedback for all subcarriers CSI (in FIG. 8 is a timing t3n, t3 (n + 1)) can be CSI summarized in a frame transmitted , it is possible to share the header information and the like, as a result, can reduce the amount of data transmission on the feedback information required.

然后,使用图12详细说明图1所示的CSI处理单元26。 Then, using FIG CSI processing unit 12 shown in detail in FIG. 126 will be described. 如图12所示,CSI处理单元26包括质量电平提取单元261和线路状态存储器262。 12, CSI processing unit 26 includes a quality level extraction unit 261 and the line status memory 262.

质量电平提取单元261在从CSI接收控制单元27输入接收定时信号的定时,基于从CSI接收控制单元27输入的CSI帧类别,从CSI帧(从CSI发送装置发送到CSI接收装置的CSI帧)提取每个副载波的SNR值作为CSI,与副载波序号一起输出到线路状态存储器262。 Quality level extraction unit 261 in the receiving control unit 27 input timing of the received timing signal, based on the CSI frame type is received from the CSI control 27 input unit, from the CSI frame (transmitting apparatus from the CSI transmitted to the CSI frame CSI receiving apparatus) from CSI extraction SNR value for each subcarrier as CSI, together with the output to subcarrier numbers line state memory 262.

线路状态存储器262保持每个副载波的SNR值。 Line state memory 262 remains SNR value for each subcarrier. 此时,线路状态存储器262基于从质量电平提取单元261输入的副载波序号,更新对应的副载波的SNR值。 At this time, the state of the line memory 262 based on the subcarrier numbers input from quality level extraction unit 261, updates the corresponding subcarrier SNR value.

CSI处理单元26与CSI帧生成单元386的图8所示的动作对应地,进行图13所示的动作。 CSI and the CSI frame processing unit 26 generates an operation corresponding to the unit 386 shown in FIG. 8, FIG. 13 operates.

在图13中,首先在定时t3n,接收定时信号由CSI接收控制单元27被输入到质量电平提取单元261。 In FIG 13, first, at the timing T3n, CSI reception timing signal is received by the control unit 27 is inputted to the quality level extraction unit 261. 并且,从CSI接收控制单元27向质量电平提取单元261输入表示“CSI1+CSI2”作为CSI帧类别的信号。 Then, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level represented by "CSI1 + CSI2" as the CSI signal of the frame type. 因此,质量电平提取单元261接收如图9所示的CSI帧,即,包含副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2)。 Therefore, quality level extraction section 261 receives the CSI frame shown in FIG. 9, i.e., CSI frame comprising SNR values ​​of all subcarriers of the subcarriers 1 to 24 (CSI1 + CSI2). 然后,质量电平提取单元261从CSI帧提取副载波1~24各自的SNR值,添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 extracts the SNR values ​​of each of subcarriers 1 through 24 from the CSI, adding the corresponding subcarrier numbers, and outputs it to the line memory 262 state. 线路状态存储器262更新所有副载波的SNR值。 Line state memory 262 updates the SNR values ​​of all subcarriers. 通过这个处理,能够使在定时t3n的CSI发送装置的线路状态存储器382的内容与CSI接收装置的线路状态存储器262的内容同步。 Through this process, it is possible to make the timing t3n line state line in the CSI state memory content transmission apparatus 382 and the CSI receiving apparatus 262 content storage synchronized. 并且,通过在CSI发送装置和CSI接收装置之间事先决定在CSI帧配置SNR值的顺序,不用将副载波序号包含在CSI帧内进行发送,也能够由双方共同识别与各个SNR值对应的副载波序号。 Further, between the device and the receiving device transmits CSI in the CSI frame arrangement order determined in advance in the CSI SNR value, without the subcarrier numbers contained in a CSI frame is transmitted, it is possible to identify a common SNR value corresponding to the respective sub by both carrier number.

接着,在定时t3n+1,与定时t3n同样地,由CSI接收控制单元27向质量电平提取单元261输入接收定时信号。 Next, at timing t3n + 1, and the timing t3n the same manner, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level of the reception timing signal. 并且,从CSI接收控制单元27向质量电平提取单元261输入表示“CSI2”作为CSI帧类别的信号。 Then, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level represented by "CSI2" as the CSI signal of the frame type. 因此,质量电平提取单元261接收如图10或图11所示的CSI帧,即,由SNR变动量超过阈值的副载波5~9、11、16~19、22的副载波序号和SNR值组成的CSI帧(CSI2)。 Therefore, quality level extraction unit 261 receives the CSI frame shown in FIG. 10 or FIG. 11, i.e., the variation amount exceeds the threshold SNR subcarrier subcarrier numbers and SNR values ​​of 5 ~ 19, 22 ~ 9,11,16 CSI frame (CSI2) thereof. 然后,质量电平提取单元261从CSI2提取副载波5~9、11、16~19、22各自的副载波序号和SNR值,并输出到线路状态存储器262。 Then, quality level extraction 9,11,16 ~ 5 ~ 19, 22 of each subcarrier numbers and SNR values ​​of subcarriers unit 261 extracts from CSI2, and outputs it to the line memory 262 state. 线路状态存储器262更新对应于从质量电平提取单元261输入的副载波序号的SNR值。 Update the line status memory 262 corresponding to the subcarrier numbers from quality level extraction unit 261 input SNR value. 换言之,只更新副载波1~24中的副载波5~9、11、16~19、22的SNR值。 In other words, update only 24 subcarriers in subcarrier SNR value 1 ~ 19, 22 ~ 5 ~ 9,11,16. 其结果,在定时t3n+1的更新后的线路状态存储器262的状态成为如图14所示。 As a result, in the state after the memory line state update timing t3n + 1 262 becomes as shown in Fig. 括弧内的3n、3n+1分别表示更新定时t3n、t3n+1。 In brackets 3n, 3n + 1 denote update timing t3n, t3n + 1. 通过这种处理,能够使在定时t3n+1的CSI发送装置的线路状态存储器382的内容与CSI接收装置的线路状态存储器262的内容同步。 Through this process, it is possible to make the contents of the line status CSI CSI transmitting apparatus a timing t3n + 1 line of state memory 382 of the content storage apparatus 262 receives the sync.

接着,在定时t3n+2进行与在定时t3n+1相同的处理,并且在定时t3(n+1)进行与在定时t3n相同的处理。 Subsequently, the same processing as + 1 and the timing t3n timing t3n + 2, at timing t3 (n + 1) subjected to the same treatment at the timing t3n.

由此,根据本实施方式,将构成多载波信号的多个副载波分类成传输路径特性的时间变动量大的副载波和小的副载波,使传输路径特性的时间变动量小的副载波的CSI的反馈周期大于传输路径特性的时间变动量大的副载波的CSI的反馈周期。 Thus, according to this embodiment, a plurality of subcarriers constituting the multicarrier signal is classified into the time variation amount of the transmission path characteristics of subcarriers and subcarriers small, so that a small amount of time variation of the transmission path characteristics of subcarriers of CSI feedback period greater than the time variation of the transmission path characteristics of subcarriers amount of CSI feedback period. 因此,根据本实施方式,能够在维持传输路径特性的时间变动量大的副载波的CSI的反馈周期的同时,削减传输路径特性的时间变动量小的副载波的CSI的传输量,所以能够在维持高的系统吞吐量的同时,削减反馈信息的数据量。 CSI transmission time variation amount of a small amount of a subcarrier Thus, according to the present embodiment can change the amount of time subcarriers while maintaining the transmission path characteristics of CSI feedback cycle, reduction of transmission path characteristics, it is possible in maintaining high system throughput while the reduction of the amount of feedback data.

(实施方式2)本实施方式的CSI发送装置具有与实施方式1相同的结构,但在以下方面与实施方式1不同,即,只有在反馈副载波1~24的所有副载波的CSI的定时,更新定时信号被输入到比较结果存储器385,在其他定时则比较结果不被更新。 (Embodiment 2) CSI transmitting apparatus according to the present embodiment is the same as in embodiment 1 structure, but the embodiment in the following points 1, i.e., only in the CSI feedback timing subcarriers all the subcarriers 1 to 24, update timing signal is input to comparison result memory 385, the comparison result is not updated in the other timing.

下面,说明本实施方式的CSI帧生成单元386的动作。 Next, the present embodiment CSI frame generation section 386 operation. 在本实施方式中,CSI帧生成单元386进行如图15所示的动作。 In the present embodiment, CSI frame generation section 386 operates as shown in FIG. 15.

在图15中,首先在定时t3n,由CSI发送控制单元39向CSI帧生成单元386输入生成定时信号。 In FIG 15, first, at the timing T3n, transmission control unit 39 CSI to CSI frame generation section 386 generates a timing signal input. 同时,由于更新定时信号被输入到比较结果存储器385,以在比较单元384新获得的比较结果更新比较结果存储器385的内容。 Meanwhile, since the update timing signal is input to comparison result memory 385, a comparison result to the comparison unit 384 updates the comparison results newly obtained contents of the memory 385. 现在,假设更新后的比较结果存储器385的内容为如图7所示。 Now, suppose the contents of the updated comparison result memory 385 as shown in Fig. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI1+CSI2”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成包含副载波(SC)1~24的所有副载波的比较结果和SNR值的CSI帧(CSI1+CSI2)。 Further, since represents "CSI1 + CSI2" as the signal CSI frame type input from CSI transmission control unit 39 to the CSI frame generation unit 386, CSI frame generation unit 386 according to CSI frame type indicated generates a subcarrier (SC) 1 ~ all subcarriers of a CSI frame 24 and comparison SNR values ​​(CSI1 + CSI2).

将帧格式示于图16和图17。 The frame format shown in FIG. 16 and FIG. 17. 换言之,各个副载波的比较结果作为CSI被发送。 In other words, the comparison result of each subcarrier are transmitted as CSI. 另外,该帧格式在CSI接收装置为已知。 In addition, the frame format in the CSI receiving apparatus are known. 在图16示出的例子中,在帧的前半部分(401)以副载波序号的升序配置副载波1~24的比较结果,在后半部分(402),以与前半部分的比较结果对应的方式配置各个副载波的SNR值。 In the example shown in FIG. 16, in the first half (401) the frame in ascending subcarrier number configuration comparison result subcarriers 1 to 24, in the second half (402), to compare the results of the first-half portion of the corresponding arranged SNR value of each subcarrier. 并且,在图17示出的例子中,分别使各个副载波的比较结果和SNR值为一组(501~503),以副载波序号的升序配置这些组(501~503)。 Further, in the example shown in FIG. 17, respectively, so that the comparison result of each subcarrier and the SNR value for a set (501 to 503), in ascending order of subcarrier numbers configure them (501 to 503). 此外,无论是在图16还是图17示出的帧格式,比较结果分别成为“0”或“1”的1比特的数据。 Further, in both FIG. 16 or FIG. 17 shows the frame format, respectively, the comparison result is "0" or 1-bit data "1".

接着,在定时t3n+1,与定时t3n同样地,生成定时信号由CSI发送控制单元39被输入到CSI帧生成单元386。 Next, at timing t3n + 1, and the timing t3n same manner, generates a timing signal transmitted by the control unit 39 is inputted CSI frame generation unit 386 to the CSI. 但是,由于更新定时信号不被输入,比较结果存储器385不被更新。 However, since the update timing signal is not input, the comparison result memory 385 is not updated. 因此,比较结果存储器385的内容仍为如图7所示。 Thus, the contents of comparison result memory 385 is still shown in Fig. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI2”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成由SNR变动量超过阈值的副载波5~9、11、16~19、22的SNR值组成的CSI帧(CSI2)。 Further, since the 39 generating 386 an input unit to a CSI transmission control unit from the CSI indicates "CSI2" as the signal CSI frame type, CSI frame generation unit 386 according to CSI frame type indicated by the generated subcarrier 5 exceeds the amount of variation SNR threshold CSI frame (CSI2) ~ SNR value 9,11,16 ~ 19, 22 thereof. 由此,CSI发送装置能够在定时t3n+1仅将SNR变动量超过阈值的副载波的CSI反馈到CSI接收装置。 Thus, CSI transmitting apparatus can be fed back to the CSI receiving apparatus at a timing t3n + 1 CSI SNR variation amount exceeds the threshold value only subcarriers.

将帧格式示于图18。 The frame format 18 shown in FIG. 在图18所示的例子中,将副载波5~9、11、16~19、22的SNR值按照副载波序号的升序排列。 In the example shown in FIG. 18, the SNR values ​​of subcarriers 5 ~ 19, 22 ~ 9,11,16 ascending order of subcarrier numbers. 但是不包含副载波序号。 But it does not include the sub-carrier number. 这样,通过在CSI发送装置和CSI接收装置之间事先决定将SNR值按照副载波序号的升序(或降序)排列,不用将副载波序号包含在CSI帧内进行发送,也能够由双方共同识别与各个SNR值对应的副载波序号。 Thus, by the CSI between the device and the receiving device transmits CSI determined in advance in accordance with the SNR value of subcarrier numbers in ascending (or descending) order, without the subcarrier numbers contained in a CSI frame transmission, both can be identified by common and SNR value corresponding to the respective sub-carrier number. 因此,消除了将副载波序号包含在CSI帧进行发送的必要,从而能够抑制CSI2的数据量。 Thus, eliminating the subcarrier numbers contained in a CSI frame transmission necessary, CSI2 data amount can be suppressed to.

接着,在定时t3n+2进行与在定时t3n+1相同的处理,并且在定时t3(n+1)进行与在定时t3n相同的处理。 Subsequently, the same processing as + 1 and the timing t3n timing t3n + 2, at timing t3 (n + 1) subjected to the same treatment at the timing t3n.

接下来,使用图19详细说明本实施方式的CSI处理单元26的结构。 Next, the detailed structure of FIG. 19 CSI processing unit 26 according to the embodiment of FIG. 如图19所示,本实施方式的CSI处理单元26是在实施方式1的CSI处理单元26(图12)中进一步包括比较结果存储器263而构成的。 As shown in FIG. 19, CSI processing section 26 according to the present embodiment is an embodiment CSI processing unit 26 (FIG. 12) further comprises a memory 263 and a comparison result thereof.

质量电平提取单元261在从CSI接收控制单元27输入接收定时信号的定时,基于由CSI接收控制单元27输入的CSI帧类别,从由CSI发送装置接收到的CSI帧提取每个副载波的SNR值作为CSI,与副载波序号一起输出到线路状态存储器262。 Quality level extraction unit 261 receives the CSI from the SNR control unit 27 receives the timing signal input timing, based on the CSI received from the CSI frame type input control unit 27, the frame extracts each subcarrier from a CSI transmitting apparatus to the CSI receiving value as the CSI, and outputs subcarrier number line state memory 262 together. 并且,质量电平提取单元261从CSI帧提取每个副载波的比较结果,输出到比较结果存储器263。 Further, the quality level extraction unit 261 extracts each subcarrier from a CSI comparison result, the comparison result is output to the memory 263.

比较结果存储器263保持从质量电平提取单元261输入的比较结果,在从CSI接收控制单元27输入更新定时信号时,以从新的CSI帧提取出的比较结果更新保持的比较结果。 Comparison result memory 263 holding the comparison result input from quality level extraction unit 261, the control unit 27 upon receiving the timing signal input from CSI update, to extract from the new CSI frame update a comparison result of the comparison results are held.

图19示出的CSI处理单元26与CSI帧生成单元386的图15所示的动作对应地,进行图20所示的动作。 CSI processing section 19 shown in FIG. 26 and CSI frame generation unit corresponding to the operation 386 shown in FIG. 15, FIG. 20 for an operation.

在图20中,首先在定时t3n,由CSI接收控制单元27向质量电平提取单元261输入接收定时信号。 In FIG 20, first, at the timing T3n, the CSI reception control unit 27 to the quality level extraction unit 261 receives an input timing signal. 并且,从CSI接收控制单元27向质量电平提取单元261输入表示“CSI1+CSI2”作为CSI帧类别的信号。 Then, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level represented by "CSI1 + CSI2" as the CSI signal of the frame type. 因此,质量电平提取单元261接收如图16或图17所示的CSI帧,即,包含副载波1~24的所有副载波的比较结果和SNR值的CSI帧(CSI1+CSI2)。 Therefore, quality level extraction CSI frame shown in FIG. 16 or the receiver unit 261 in FIG. 17, i.e., subcarriers CSI frame comprising 1 to 24 all subcarriers comparison results and SNR values ​​(CSI1 + CSI2). 然后,质量电平提取单元261从CSI帧提取副载波1~24各自的比较结果和SNR值,将比较结果输出到比较结果存储器263,同时在SNR值添加副载波序号输出到线路状态存储器262。 Then, quality level extraction section 261 extracts subcarriers respective comparison results and SNR values ​​of 1 to 24 from the CSI, outputs the comparison result to the comparison result memory 263, while adding subcarrier numbers output SNR value to the line status memory 262. 线路状态存储器262更新所有副载波的SNR值。 Line state memory 262 updates the SNR values ​​of all subcarriers.

另外,在定时t3n,由于更新定时信号被输入到比较结果存储器263,所以比较结果存储器263以在定时t3n提取出的比较结果更新所保持的比较结果。 Further, at timing t3n, since the update timing signal is input to comparison result memory 263, the comparison result memory 263 at the timing of the comparison result of the comparison result held t3n update extraction. 通过这个处理,能够使在定时t3n的CSI发送装置的比较结果存储器385的内容与CSI接收装置的比较结果存储器263的内容同步。 Through this process, it is possible to make a comparison result of the CSI transmitting apparatus timings t3n content storage 385 and CSI comparison result receiving means 263 of the content storage synchronized.

接着,在定时t3n+1,与定时t3n同样地,由CSI接收控制单元27向质量电平提取单元261输入接收定时信号。 Next, at timing t3n + 1, and the timing t3n the same manner, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level of the reception timing signal. 并且,从CSI接收控制单元27向质量电平提取单元261输入表示“CSI2”作为CSI帧类别的信号。 Then, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level represented by "CSI2" as the CSI signal of the frame type. 但是,更新定时信号不被输入到比较结果存储器263。 However, the update timing signal is not input to comparison result memory 263. 因此,在定时t3n+1,比较结果存储器263不被更新。 Thus, at timing t3n + 1, the comparison result memory 263 is not updated.

质量电平提取单元261接收如图18所示的CSI帧,即,接受仅由SNR变动量超过阈值的副载波5~9、11、16~19、22的SNR值(即,比较结果为“0”的SNR值)组成的CSI帧(CSI2)。 Quality level extraction section 261 receives a CSI frame shown in FIG. 18, i.e., the amount of variation exceeds the accepted threshold SNR subcarrier SNR values ​​only ~ 5 ~ 9,11,16 19, 22 (i.e., the comparison result is " CSI frame (CSI2) 0 "SNR value) thereof. 然后,质量电平提取单元261从CSI2提取副载波5~9、11、16~19、22各自的SNR值,并参照比较结果存储器263,从比较结果存储器263获得比较结果为“0”的副载波的副载波序号。 Then, quality level extraction unit 261 extracts subcarriers 5 ~ 19, 22 ~ 9,11,16 each SNR value from CSI2, and with reference to the comparison result memory 263, 263 to obtain a comparison result "0" from comparison result memory sub subcarrier numbers carriers. 然后,质量电平提取单元261在提取出的SNR值分别添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 to add subcarrier number corresponding to each SNR value in the extracted state and outputs it to the line memory 262.

如上述,由于CSI2的SNR值的配置顺序被事先设定为副载波序号的升序(或降序),即使在CSI2中没有包含副载波序号,质量电平提取单元261通过参照比较结果存储器263,能够识别出各个SNR值为哪个副载波的SNR值。 As described above, since the arrangement order of the SNR value is set in advance as CSI2 subcarrier numbers ascending (or descending), even though not included in CSI2 subcarrier numbers, the quality level extraction unit 261 by referring to the comparison result memory 263, it is possible identify which each subcarrier SNR value SNR value. 并且,由于消除了由CSI2传输副载波序号的必要,所以能够削减反馈信息的数据量。 Further, due to the elimination of the need CSI2 transmission subcarrier number, it is possible to reduce the data amount of feedback information.

线路状态存储器262更新对应于从质量电平提取单元261输入的副载波序号的SNR值。 Update the line status memory 262 corresponding to the subcarrier numbers from quality level extraction unit 261 input SNR value. 换言之,只更新副载波1~24中的副载波5~9、11、16~19、22的SNR值。 In other words, update only 24 subcarriers in subcarrier SNR value 1 ~ 19, 22 ~ 5 ~ 9,11,16. 其结果,在定时t3n+1的更新后的线路状态存储器262的状态成为如图14所示。 As a result, in the state after the memory line state update timing t3n + 1 262 becomes as shown in Fig. 通过这个处理,能够使在定时t3n+1的CSI发送装置的线路状态存储器382的内容与CSI接收装置的线路状态存储器262的内容同步。 Through this process, the content can be made in line with the state of the timing CSI CSI transmitting apparatus t3n + 1 line of state memory 382 of the content storage apparatus 262 receives the sync.

接着,在定时t3n+2进行与在定时t3n+1相同的处理,并且在定时t3(n+1)进行与在定时t3n相同的处理。 Subsequently, the same processing as + 1 and the timing t3n timing t3n + 2, at timing t3 (n + 1) subjected to the same treatment at the timing t3n.

由此,根据本实施方式,通过以1比特传输各个副载波的比较结果,能够由CSI发送装置和CSI接收装置共享比较结果,不必在CSI2中传输每个SNR值的副载波序号,与实施方式1相比,能够进一步地削减反馈信息的数据量。 Thus, according to this embodiment, the 1-bit comparison result of each subcarrier transmission, can be transmitted by means CSI and the CSI receiving apparatus share the comparison result, rather than transmitting a subcarrier SNR value of each number in CSI2 in Embodiment 1 compared to a further reduction in the data amount of feedback information. 因此,实施方式2在包含于1OFDM码元的副载波数(或频段数)越多时越有效。 Thus, in the second embodiment the number of subcarriers included in the symbols 1OFDM (or several bands), the more effective the more long.

(实施方式3)多路径环境大多为在发送台和接收台之间存在障碍物的NLOS(Non lineof sight)环境,并且已知各个延迟波会产生瑞利变动(Rayleigh variation)。 (Embodiment 3) multipath environment mostly obstacle NLOS (Non lineof sight) environments exists between the transmitting and receiving stations, each delay and known variation Rayleigh wave is generated (Rayleigh variation). 并且延迟波的延迟时间与码元时间相比之下较大时,其特性具有频率选择性。 And the delay time of the delay wave symbol time is large compared to its frequency selective properties. 下面示出在这样的频率选择性瑞利衰落传输路径中的、对每个副载波的SNR的累积分布。 Shown below in such a frequency selective Rayleigh fading channel, the cumulative distribution of the SNR of each subcarrier.

图21是表示在频率选择性瑞利衰落传输路径中平均SNR=30dB的情况下,将每个副载波的SNR归一化之后的累积分布的图。 21 is a frequency-selective Rayleigh fading channel in case where the average SNR = 30dB FIG cumulative distribution after each subcarrier SNR normalized. 601是所有副载波的SNR的归一化累积分布,602是每单位时间的变动量低于1dB的副载波的SNR的归一化累积分布,603是每单位时间的变动量为1dB以上的副载波的SNR的归一化累积分布。 601 are all subcarriers SNR normalized cumulative distribution, 602 is a fluctuation amount per unit time is less than 1dB of subcarriers normalized cumulative distribution of SNR 603 is a fluctuation amount per unit time or more sub 1dB SNR carrier normalized cumulative distribution.

根据图21,可知在该副载波的SNR值分布的区域中,每单位时间的SNR值的变动量为1dB以上的副载波分布在较小的SNR值的区域。 According to FIG. 21, it is found in the region of the region of the subcarrier SNR value distribution, the amount of variation of the SNR value per unit time is 1dB or more subcarriers distributed in smaller SNR value. 另一方面,在该副载波的SNR值分布的区域中,每单位时间的SNR值的变动量低于1dB的副载波分布在较大的SNR值的区域。 On the other hand, in the region of the subcarrier SNR value distribution, the amount of variation of the SNR value per unit time in the region below 1dB subcarriers distributed in large SNR values. 因此,通过基于在所有的副载波(在频域)上平均的SNR值(平均SNR)而设定阈值,将各个副载波的SNR值与该阈值比较,能够划分成每单位时间的SNR值的变动量大的副载波组,以及每单位时间的SNR值的变动量小的副载波组。 Therefore, based on all of the subcarriers average SNR value (average SNR) (in the frequency domain) on the set threshold value, the SNR value of each subcarrier is compared with the threshold value, it can be divided into a SNR value per unit time variation amount of the subcarrier group, and a small amount of variation SNR value per unit time of the sub-carrier group.

因此,在本实施方式中,如图22所示,比较基于平均SNR设定的阈值和各个副载波的SNR值,将构成OFDM码元的多个副载波(在此为副载波1~24)分为SNR变动量大的副载波和SNR变动量小的副载波。 Accordingly, in the present embodiment, shown in Figure 22, comparison of the average SNR based on SNR threshold value set and each sub-carrier, a plurality of subcarriers constituting an OFDM symbol (here, subcarriers 1 through 24) SNR is divided into large changes in subcarrier and a small amount of change in SNR subcarrier.

下面使用图23详细说明本实施方式的CSI处理单元38的结构。 Structural CSI processing unit 38 of the present embodiment described in detail below with reference to FIG 23. 如图23所示,本实施方式的CSI处理单元38与实施方式1的CSI处理单元38(图3)相比,其结构进一步包括阈值计算单元387而减少了瞬时变动测定单元383。 23, CSI processing section 38 according to the present embodiment is Embodiment 1 CSI processing unit 38 (FIG. 3), the structure further comprising a threshold calculating unit 387 reduces the instantaneous variation measuring unit 383.

阈值计算单元387在所有副载波上平均被存储在线路状态存储器382中的每个副载波的SNR值以求出平均SNR,使用平均SNR设定比较单元384的阈值。 SNR value for each subcarrier threshold value calculation unit 387 on the average for all sub-carriers are stored in the line memory 382 in order to state the average SNR, average SNR threshold setting comparing unit 384. 阈值计算单元387的详细说明将后述。 Threshold value calculation unit 387 will be described in detail later.

比较单元384对在阈值计算单元387计算出的阈值和存储在线路状态存储器382的每个副载波的SNR值进行比较。 Calculated comparison unit 384 in the threshold unit 387 calculates the threshold value and compares the stored SNR value for each subcarrier 382 of the line status memories.

比较结果存储器385将比较单元384的比较结果按每个副载波存储并保持。 Comparison result memory 385 to the comparison unit 384 of a comparison result for each subcarrier stored and held. 比较结果存储器385的存储内容根据从CSI发送控制单元39输入的更新定时信号被更新。 Comparison result memory 385 stored contents are updated in accordance with the transmission control unit from the CSI 39 updates the input timing signal.

然后,使用图24详细说明图23所示的阈值计算单元387。 Then, the threshold value 23 as shown in FIG. 24 described in detail using the calculating unit 387 of FIG. 如图24所示,阈值计算单元387包括:对数/线性变换单元3871、频率平均单元3872、时间滤波器单元3873、线性/对数变换单元3874以及偏移赋予单元3875。 As illustrated, the threshold value calculation unit 387 includes a 24: log / linear conversion unit 3871, a frequency averaging unit 3872, the time filter unit 3873, the linear / logarithmic conversion unit 3874 and an offset adding unit 3875.

对数/线性(Log-Linear)变换单元3871将从线路状态存储器382输入的每个副载波的SNR值γm,k从dB值变换为真值的SNR值Γm,k。 SNR value γm of each subcarrier log / linear (Log-Linear) converting unit 3871 from the input line state memory 382, ​​k is converted from the dB value SNR value is a true value Γm, k. 并且,如果输入的每个副载波的SNR值原本就是真值,就不需要该对数/线性变换单元3871。 And, the SNR value of each subcarrier input if the original is the true value, which does not need the log / linear conversion unit 3871.

频率平均单元3872基于下面的式(2),在所有副载波1~24平均每个副载波的SNR值(真值)Γm,k,计算频域的SNR的平均值(平均SNR)。 Frequency averaging unit 3872 based on the following formula (2), 24 in average SNR value for each subcarrier for all subcarriers 1 (true value) Γm, k, calculate the average SNR of the frequency domain (average SNR). 在此例中,虽然是求SNR的平均值,但也可以求中间值。 In this embodiment, although the SNR is averaging, but you may find an intermediate value.

Γ‾k=1NΣm=0M-1Γm,k···(2)]]> & Gamma; & OverBar; k = 1N & Sigma; m = 0M-1 & Gamma; m, k & CenterDot; & CenterDot; & CenterDot; (2)]]> :SNR的平均值(真值)时间滤波器单元3873对平均SNR(真值)进行时间方向的滤波(时间滤波)。 : SNR average value (true value) temporal filter means 3873 pairs of the average SNR (true value) filtering (time filtering) time direction. 通过对平均SNR进行时间滤波,能够获得不跟踪传输路径的瞬时变动,但跟踪短区间变动(屏蔽变动(shadowing variation))的平均SNR。 By filtering time average SNR, no trace is possible to obtain an instantaneous variation of the transmission path, but to track changes in the short interval (shield variation (shadowing variation)) of the average SNR. 并且,将能够获得这样的平均SNR的时间常数设定在时间滤波器单元3873。 Then, the average SNR is possible to obtain a time constant of a time filter unit 3873. 因此,在整个通信频带能够获得充分的频率选择性的传输路径状况下,也可以直接使用在频域求出的SNR的平均值或中间值,而不进行时间滤波。 Accordingly, the entire communication band can be obtained at a sufficient frequency selective propagation path conditions, the average value may be used directly, or the intermediate values ​​determined in the frequency domain SNR without performing the temporal filtering. 此外,作为时间滤波,也可以对过去的所有副载波的平均SNR(真值)进行移动平均处理,或者利用FIR滤波器或IIR滤波器。 Further, as the temporal filtering, moving average processing may be performed on the past average SNR (true value) of all sub-carriers, or by FIR filter or IIR filter. 另外,将滤波器的时间常数设定成小于短区间变动(屏蔽变动)的速度。 Further, the time constant of the filter is set to be smaller than the short interval velocity variation (fluctuation shield) is. 此外,在最简易的结构中,例如也可以基于下面的式(3)构成时间滤波器单元3873。 Moreover, in the most simple configuration, for example, it may be based on the following formula (3) constituting the time filter unit 3873.

Γ^k=μ·Γ‾k+(1-μ)Γ^k-1,0≤μ≤1···(3)]]> & Gamma; ^ k = & mu; & CenterDot; Gamma &; & OverBar; k + (1- & mu;) & Gamma; ^ k-1,0 & le; & mu; & le; 1 & CenterDot; & CenterDot; & CenterDot; (3)]]> :进行时间滤波后的平均SNR值(真值)线性/对数(Linear-Log)变换单元3874将经过时间滤波的平均SNR值(真值)变换为dB值的平均SNR值。 : Average SNR value (true value) linear / log (Linear-Log) conversion unit 3874 converts the value of the average SNR value dB average SNR value of the time elapsed filtered (true value) after the temporal filtering.

偏移赋予单元3875对dB值的平均SNR值赋予偏移值。 Average SNR value of the offset imparting unit 3875 pairs dB value is given an offset value. 由此,计算出在比较单元384使用的阈值。 Accordingly, the calculated threshold value comparison unit 384 for use. 因此,阈值由下面的式(4)表示。 Thus, the threshold represented by the following formula (4). 另外,阈值计算单元387也可以采用不包括偏移赋予单元387的结构。 Further, the threshold value calculation unit 387 may be used to impart cell structure does not include an offset 387.

γthreshold=γ‾k+α[dB]···(4)]]>γthreshold:阈值 & Gamma; threshold = & gamma; & OverBar; k + & alpha; [dB] & CenterDot; & CenterDot; & CenterDot; (4)]]> γthreshold: Threshold :进行时间滤波后的平均SNR值(dB值)α:偏移值然后,比较单元384比较每个副载波的SNR值和阈值,将该比较结果写入比较结果存储器385。 : Average SNR value after time filtering (dB value) [alpha]: Then an offset value, the comparison unit 384 and the threshold comparison SNR for each subcarrier, the comparison result of the comparison result memory 385 is written. 以下述方式进行对比较结果存储器385的写入。 A manner of writing a comparison result memory 385.

在图22所示例子的情况,在比较单元384中,对每个副载波的SNR值和阈值进行比较的结果,副载波l~4、10、12~15、20、21、23、24的SNR值被判定为阈值以上,副载波5~9、11、16~19、22的SNR值被判定为低于阈值。 In the case of the example shown in FIG. 22, the comparison unit 384, a result of comparison of the threshold value and the SNR value for each subcarrier, a subcarrier of l ~ 4,10,12 ~ 15,20,21,23,24 SNR value above a threshold value is determined, the subcarrier SNR values ​​9,11,16 ~ 5 ~ 19, 22 is determined to be below a threshold. 如图7所示,比较结果被存储到比较结果存储器385。 7, the comparison result is stored in the memory 385 to the comparison result. 在本实施方式,在图7中,“1”表示SNR值被判定为阈值以上,“0”表示SNR值被判定为低于阈值。 In the present embodiment, in FIG. 7, "1" indicates that an SNR value is determined to be above a threshold, "0" indicates that an SNR value is determined to be below a threshold. 在从CSI发送控制单元39输入更新定时信号的定时进行比较结果存储器385的更新。 Comparison result memory 385 are updated at the timing of the transmission control unit from the CSI 39 to update the input timing signal.

CSI帧生成单元386在从CSI发送控制单元39输入生成定时信号的定时,基于从CSI发送控制单元39输入的CSI帧类别和存储在比较结果存储器385的图7所示的比较结果,从副载波1~24中选择要将CSI反馈到CSI接收装置的副载波,并生成CSI帧。 CSI frame generation section 386 from CSI transmission control section 39 generates a timing signal input timing based on CSI transmission control unit 39 from a CSI frame type input and stored in the comparison result of the comparison result memory 7 shown in FIG 385, the sub-carriers from 1 to 24. to select CSI feedback subcarriers to the CSI receiving apparatus, and generates a CSI frame. CSI帧生成单元386进行如图15所示的动作。 CSI frame generation unit 386 perform the operation shown in FIG. 15.

换言之,首先在定时t3n,由CSI发送控制单元39向CSI帧生成单元386输入生成定时信号。 In other words, the first timing T3n, transmission control unit 39 CSI to CSI frame generation section 386 generates a timing signal input. 同时,由于更新定时信号被输入到比较结果存储器385,以在比较单元384新获得的比较结果更新比较结果存储器385的内容。 Meanwhile, since the update timing signal is input to comparison result memory 385, a comparison result to the comparison unit 384 updates the comparison results newly obtained contents of the memory 385. 并且,此时在比较单元384使用的阈值是在定时t3n由阈值计算单元387新计算出的阈值。 And, when the threshold used in the comparison unit 384 is a unit 387 newly calculated threshold calculated by the threshold value at the timing t3n. 现在,假设更新后的比较结果存储器385的内容为如图7所示。 Now, suppose the contents of the updated comparison result memory 385 as shown in Fig. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI1+CSI2”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成包含了副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2)。 Further, since the transmission control unit 39 frame generation unit 386 is input to CSI from CSI indicates "CSI1 + CSI2" as the signal CSI frame type, CSI frame generation unit 386 according to CSI frame type indicated generates a subcarrier 1 to 24 CSI frame SNR values ​​of all subcarriers (CSI1 + CSI2). 帧格式为图9所示。 9 is a frame format shown in FIG.

接着,在定时t3n+1,与定时t3n同样地,由CSI发送控制单元39向CSI帧生成单元386输入生成定时信号。 Next, at timing t3n + 1, and the timing t3n Similarly, transmission control unit 39 CSI to CSI frame generation section 386 generates a timing signal input. 但是,由于更新定时信号不被输入,比较结果存储器385不被更新。 However, since the update timing signal is not input, the comparison result memory 385 is not updated. 因此,比较结果存储器385的内容仍为如图7所示。 Thus, the contents of comparison result memory 385 is still shown in Fig. 并且,也没有计算新阈值。 Further, there is no calculation of the new threshold value. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI2”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成由SNR值低于阈值的副载波5~9、11、16~19、22的SNR值组成的CSI帧(CSI2)。 Further, since the 39 generating 386 an input unit to a CSI transmission control unit from the CSI indicates "CSI2" as the signal CSI frame type, CSI frame generation unit 386 generates the SNR value is below a subcarrier threshold value 5 according to CSI frame type indicated CSI frame (CSI2) ~ SNR value 9,11,16 ~ 19, 22 thereof. 由此,CSI发送装置能够在定时t3n+1仅将SNR值低于阈值的副载波的CSI反馈到CSI接收装置。 Thus, CSI transmitting apparatus can only the 1 + SNR value is lower than the threshold a subcarrier CSI feedback to the CSI receiving apparatus at timing t3n. 帧格式为图18所示。 18 is a frame format shown in FIG.

接着,在定时t3n+2进行与在定时t3n+1相同的处理,并且在定时t3(n+1)进行与在定时t3n相同的处理。 Subsequently, the same processing as + 1 and the timing t3n timing t3n + 2, at timing t3 (n + 1) subjected to the same treatment at the timing t3n.

将以上动作表示为流程图时为如图25所示。 The above operation is represented as a flow chart shown in Figure 25. 换言之,在ST(步骤)701判断是否有生成定时信号输入,在生成定时信号被输入时(ST701:是),在ST702判断是否有更新定时信号输入。 In other words, whether there is an input signal to generate a timing at ST (step) 701 is determined, in generating the timing signal is input (ST701: YES), in ST702 determines whether update timing signal is inputted. 然后,在更新定时信号被输入时(ST702:是),更新比较结果存储器后前进到ST704,在没有更新定时信号输入时(ST702:否),不更新比较结果存储器而前进到ST704。 Then, when the update timing signal is input (ST702: YES), the comparison result memory after updating proceeds to ST704, when there is no update timing signal is input (ST702: NO), the comparison result memory is not updated and proceed to ST704. 在ST704判断CSI帧类别。 CSI frame type is determined in ST704. 换言之,表示“CSI1+CSI2”作为CSI帧类别的信号输入时,在ST705生成包含副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2)。 In other words, it represents a "CSI1 + CSI2" as the CSI frame type input signal, and generates a CSI frame in ST705 SNR values ​​of all subcarriers of the subcarriers 1 to 24 (CSI1 + CSI2). 另一方面,表示“CSI2”作为CSI帧类别的信号输入时,在ST706生成由SNR值低于阈值的副载波5~9、11、16~19、22的SNR值组成的CSI帧(CSI2)。 On the other hand, it represents a CSI frame (CSI2) "CSI2" as the CSI frame type input signal, generated in ST706 is below the threshold SNR by a subcarrier SNR value of 5 ~ 19, 22 ~ 9,11,16 composition .

接下来,使用图26详细说明本实施方式的CSI处理单元26的结构。 Next, a detailed configuration of FIG CSI processing unit 26 according to the embodiment 26 of FIG. 如图26所示,本实施方式的CSI处理单元26是在实施方式2的CSI处理单元26(图19)进一步包括阈值计算单元264和比较单元265而构成的。 As shown in FIG. 26, CSI processing section 26 according to the present embodiment further includes a threshold value calculating unit 264 and the comparison unit 265 is configured in the embodiment 2 of CSI processing unit 26 (FIG. 19). 阈值计算单元264和比较单元265采用与CSI发送装置的阈值计算单元387和比较单元384相同的结构(图23和图24),其动作也与上述相同故省略其说明。 Threshold value calculation unit 264 and the threshold value comparing unit 265 uses the CSI transmitting apparatus 387 and the calculation unit the same structure as the comparison unit 384 (FIG. 23 and FIG. 24), which is also the same as described above so that the operation will be omitted.

图26所示的CSI处理单元26对应于图23所示的CSI帧生成单元386的动作,进行图20所示的动作。 CSI CSI processing unit 26 shown in FIG. 26 corresponds to the frame shown in FIG. 23 producing section 386 performs the operation shown in FIG. 20.

换言之,首先在定时t3n,接收定时信号从CSI接收控制单元27被输入到质量电平提取单元261。 In other words, T3n the first timing, the reception control unit 27 receives a timing signal is input to quality level extraction section 261 from CSI. 并且,作为CSI帧类别表示“CSI1+CSI2”的信号从CSI接收控制单元27被输入到质量电平提取单元261。 And, as the CSI frame type indicates "CSI1 + CSI2" signal from CSI reception control unit 27 is input to the quality level extraction unit 261. 因此,质量电平提取单元261接收如图9所示的CSI帧,即,包含副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2)。 Therefore, quality level extraction section 261 receives the CSI frame shown in FIG. 9, i.e., CSI frame comprising SNR values ​​of all subcarriers of the subcarriers 1 to 24 (CSI1 + CSI2). 然后,质量电平提取单元261从CSI帧提取副载波1~24各自的SNR值,添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 extracts the SNR values ​​of each of subcarriers 1 through 24 from the CSI, adding the corresponding subcarrier numbers, and outputs it to the line memory 262 state. 线路状态存储器262更新所有副载波的SNR值。 Line state memory 262 updates the SNR values ​​of all subcarriers.

另外,在定时t3n,由于更新定时信号被输入到比较结果存储器263,比较结果存储器263以由比较单元265在定时t3n提取出的比较结果更新所保持的比较结果。 Further, at timing t3n, since the update timing signal is input to comparison result memory 263, the comparison result memory 263 to a comparison result by the comparison unit 265 at timing t3n extracted update the held comparison result. 并且,此时在比较单元265使用的阈值是在定时t3n由阈值计算单元264新计算出的阈值。 And, in this case the threshold value comparing unit 265 is used at timing t3n calculated threshold value newly calculated by the threshold unit 264. 阈值计算单元264的阈值计算方法是使用和CSI发送装置的阈值计算单元387相同的方法。 Threshold value calculation method of the threshold value calculation unit 264 is to use the CSI transmitting apparatus threshold unit 387 is calculated in the same manner. 通过这个处理,能够使在定时t3n的CSI发送装置的比较结果存储器385的内容与CSI接收装置的比较结果存储器263的内容同步。 Through this process, it is possible to make a comparison result of the CSI transmitting apparatus timings t3n content storage 385 and CSI comparison result receiving means 263 of the content storage synchronized.

接着,在定时t3n+1,与定时t3n同样地,接收定时信号从CSI接收控制单元27被输入到质量电平提取单元261。 Next, at timing t3n + 1, and the timing t3n the same manner, the reception control unit 27 receives a timing signal is input to quality level extraction section 261 from CSI. 并且,作为CSI帧类别表示“CSI2”的信号从CSI接收控制单元27被输入到质量电平提取单元261。 And, as the CSI frame type indicates "CSI2" CSI signal received from the control unit 27 is inputted to the quality level extraction unit 261. 但是,更新定时信号不被输入到比较结果存储器263。 However, the update timing signal is not input to comparison result memory 263. 因此,在定时t3n+1,比较结果存储器263不被更新,比较结果存储器263的状态维持在t3n更新后的状态。 Thus, at timing t3n + 1, the comparison result memory 263 is not updated, the comparison result memory 263 is maintained in the state after the state update t3n. 并且,也没有计算新阈值。 Further, there is no calculation of the new threshold value.

质量电平提取单元261接收如图18所示的CSI帧,即,仅由SNR值低于阈值的副载波5~9、11、16~19、22的SNR值(即,比较结果为“0”的SNR值)组成的CSI帧(CSI2)。 Quality level extraction section 261 receives a CSI frame shown in Figure 18, i.e., just below the threshold a subcarrier SNR value 5 ~ 19, 22 ~ 9,11,16 by SNR value (i.e., the comparison result is "0 "SNR value) consisting of a CSI frame (CSI2). 然后,质量电平提取单元261从CSI2提取副载波5~9、11、16~19、22各自的SNR值,并参照比较结果存储器263,从比较结果存储器263获得比较结果为“0”的副载波的副载波序号。 Then, quality level extraction unit 261 extracts subcarriers 5 ~ 19, 22 ~ 9,11,16 each SNR value from CSI2, and with reference to the comparison result memory 263, 263 to obtain a comparison result "0" from comparison result memory sub subcarrier numbers carriers. 然后,质量电平提取单元261在提取出的SNR值分别添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 to add subcarrier number corresponding to each SNR value in the extracted state and outputs it to the line memory 262.

在图18所示的例子中,将副载波5~9、11、16~19、22的SNR值按照副载波序号的升序排列。 In the example shown in FIG. 18, the SNR values ​​of subcarriers 5 ~ 19, 22 ~ 9,11,16 ascending order of subcarrier numbers. 但是不包含副载波序号。 But it does not include the sub-carrier number. 这样,通过在CSI发送装置和CSI接收装置之间事先决定将SNR值按照副载波序号的升序(或降序)排列,不用将副载波序号包含在CSI帧内进行发送,也能够在双方共同识别与各个SNR值对应的副载波序号。 Thus, by the CSI between the device and the receiving device transmits CSI determined in advance in accordance with the SNR value of subcarrier numbers in ascending (or descending) order, without the subcarrier numbers contained in a CSI frame is transmitted, it is possible to identify both common and SNR value corresponding to the respective sub-carrier number. 因此,消除了将副载波序号包含在CSI帧进行发送的必要,从而能够抑制CSI2的数据量。 Thus, eliminating the subcarrier numbers contained in a CSI frame transmission necessary, CSI2 data amount can be suppressed to.

线路状态存储器262更新对应于从质量电平提取单元261输入的副载波序号的SNR值。 Update the line status memory 262 corresponding to the subcarrier numbers from quality level extraction unit 261 input SNR value. 换言之,只更新副载波1~24中的副载波5~9、11、16~19、22的SNR值。 In other words, update only 24 subcarriers in subcarrier SNR value 1 ~ 19, 22 ~ 5 ~ 9,11,16. 其结果,在定时t3n+1的更新后的线路状态存储器262的状态成为如图14所示。 As a result, in the state after the memory line state update timing t3n + 1 262 becomes as shown in Fig. 通过这个处理,能够使在定时t3n+1的CSI发送装置的线路状态存储器382的内容与CSI接收装置的线路状态存储器262的内容同步。 Through this process, the content can be made in line with the state of the timing CSI CSI transmitting apparatus t3n + 1 line of state memory 382 of the content storage apparatus 262 receives the sync.

接着,在定时t3n+2进行与在定时t3n+1相同的处理,并且在定时t3(n+1)进行与在定时t3n相同的处理。 Subsequently, the same processing as + 1 and the timing t3n timing t3n + 2, at timing t3 (n + 1) subjected to the same treatment at the timing t3n.

将以上动作表示为流程图时为图27所示。 The above operation is represented as a flowchart shown in FIG. 27. 换言之,在ST(步骤)801判断是否有接收定时信号输入,在接收定时信号被输入时(ST801:是),在ST802判断CSI帧类别。 In other words, whether there is received a timing signal is input, upon receiving the timing signal is inputted in ST (step) 801 is determined (ST801: YES), CSI frame type is determined in ST802. 换言之,表示“CSI1+CSI2”作为CSI帧类别的信号输入时,在ST803更新所有副载波的线路状态(即,副载波1~24的SNR值)。 In other words, it represents a "CSI1 + CSI2" as the CSI frame type input signal, in ST803 to update the line status of all sub-carriers (i.e., the SNR values ​​of subcarriers 1 through 24). 另一方面,表示“CSI2”作为CSI帧类别的信号输入时,在ST804更新CSI2的线路状态(即,SNR值低于阈值的副载波5~9、11、16~19、22的SNR值)。 On the other hand, represents a "CSI2" as the CSI frame type input signal, in ST804 CSI2 update status of the line (i.e., a subcarrier SNR value is below the threshold SNR value of 5 ~ 19, 22 ~ 9,11,16) . 接下来,在ST805判断是否有更新定时信号输入。 Next, in ST805 determines whether update timing signal input. 然后,在有更新定时信号输入时(ST805:有),更新比较结果存储器。 Then, when the update timing signal is input (ST805: there), the comparison result memory update. 另一方面,没有更新定时信号输入时(ST805:否),回到ST801再次判断是否有接收定时信号输入。 On the other hand, when there is no update timing signal is input (ST805: NO), return to ST801 again determines whether a reception timing signal is input.

这样,根据本实施方式,即使在CSI接收装置也能够与CSI发送装置同样地计算阈值,并比较该计算出的阈值和各个副载波的SNR值,因此消除了在从CSI发送装置向CSI接收装置反馈的CSI帧中包含副载波序号和每个副载波的比较结果的必要,与实施方式1和实施方式2相比,能够进一步削减反馈信息的数据量。 Thus, according to this embodiment, it is possible to apparatus in the same manner to calculate the threshold value is transmitted even in the CSI receiving apparatus and CSI, and compares the calculated SNR threshold value and each sub-carrier, thus eliminating the receiving apparatus to the CSI transmitted from CSI apparatus comparison result CSI feedback frame contained in each subcarrier numbers of subcarriers necessary, in embodiment 1 and embodiment 2, compared possible to further reduce the data amount of feedback information.

这里,如上述,多路径环境大多为在发送站和接收台之间存在障碍物的NLOS(Non 1ine of sight)环境,并且已知各个延迟波会产生瑞利变动(Rayleighvariation)。 Here, as described above, most of the multipath environment obstacle NLOS (Non 1ine of sight) environments exists between the transmitting station and receiving stations, each delay and known variation Rayleigh wave is generated (Rayleighvariation). 并且延迟波的延迟时间与码元时间相比之下较大时,其特性具有频率选择性。 And the delay time of the delay wave symbol time is large compared to its frequency selective properties. 下面示出在这样的频率选择性瑞利衰落传输路径中的、对每个副载波的SNR的每单位时间的变动量的柱状图。 Shown below in such a frequency selective Rayleigh fading channel, the histogram of the amount of fluctuation per unit time of the SNR of each subcarrier.

图28是表示在频率选择性瑞利衰落传输路径中平均SNR=30dB的情况下,每个副载波的SNR的出现次数的分布的图。 FIG 28 is a frequency-selective Rayleigh fading channel in case where the average SNR = 30dB, the SNR showing a distribution of the number of times of occurrence of each subcarrier. 701是所有副载波的SNR值的出现次数的分布,702是每单位时间的变动量低于1dB的副载波的SNR值的出现次数的分布,703是每单位时间的变动量为1dB以上的副载波的SNR值的出现次数的分布。 701 is the distribution of the number of occurrences of the SNR values ​​of all sub-carriers, 702 is the amount of change per unit time is lower than the distribution of the number of occurrences of the SNR value of a subcarrier of 1dB, 703 is the amount of change per unit time than 1dB deputy the distribution of the number of occurrences of the SNR value of the carrier.

根据图28,在所有副载波中,每单位时间的SNR值的变动量为低于1dB的副载波占大部分。 According to FIG. 28, in all sub-carriers, SNR value variation amount per unit time is less than 1dB accounted for most of the subcarriers. 这表示能取较大的反馈周期的副载波数量多,这也表示本发明的削减反馈信息的数据量的效果极大。 This means can take subcarriers feedback cycle greater number, which indicates the data amount of feedback information of the effects of the present invention is great. 例如,在与上述现有技术中的最大移动速度相比时,在上述现有技术中,配合时间变动量大的副载波,每次都反馈所有的副载波的CSI。 For example, when compared to the maximum moving speed of the prior art, in the prior art, with the time variation amount of subcarriers, each feedback CSI of all subcarriers. 与此相对,在本发明中,如上述,每次仅反馈时间变动量大(即,SNR值小)的副载波的CSI,时间变动量小(即,SNR值大)的副载波则不每次都进行CSI的反馈。 On the other hand, in the present invention, as described above, only the feedback amount each time change (i.e., a small value SNR) of subcarriers of the CSI, the time variation amount is small (i.e., large SNR values) for each sub-carrier is not times have feedback CSI. 因此,根据本发明,能够削减反馈信息的数据量。 Thus, according to the present invention, it is possible to reduce the data amount of feedback information.

(实施方式4)本实施方式在以下方面与实施方式3不同,即,基于CSI帧尺寸,将构成OFDM码元的多个副载波(这里为副载波1~24)分成多个组。 (Embodiment 4) This embodiment is different from Embodiment 3 in the following respects, i.e., based on the CSI frame size, a plurality of sub-carriers constituting the OFDM symbol (here, subcarriers 1 through 24) into a plurality of groups.

现使用图29详细说明本实施方式的CSI处理单元38的结构。 Structural CSI processing unit 38 of the embodiment according to the present embodiment is now described in detail with reference to FIG 29. 如图29所示,本实施方式的CSI处理单元38与实施方式1的CSI处理单元38(图3)相比,其结构进一步包括分类单元388和分类结果存储器389,而减少了瞬时变动测定单元383、比较单元384和比较结果存储器385。 29, CSI processing section 38 according to the present embodiment is Embodiment 1 CSI processing unit 38 (FIG. 3) FIG., The structure further comprising a classification unit 388 and classification result memory 389, reduce an instantaneous variation measuring unit 383, the comparison unit 384 and the comparison result memory 385.

分类单元388基于CSI帧尺寸信息表示的CSI帧尺寸,将存储在线路状态存储器382的每个副载波的SNR值分类为多个组。 Classifying unit 388 based on the CSI frame size information indicates the size of the CSI frame, the SNR value of the channel status classification of each subcarrier memory 382 stores a plurality of groups. 由于在CSI帧尺寸越小时,能包含在一个CSI帧的CSI的数据量越少,所以分类单元388分类为更多的组。 Since the CSI frame size is smaller, can be included in the smaller the amount of data in a CSI CSI frame, the classifying unit 388 are classified into more groups. 并且,分类单元388按照各个副载波的SNR值的大的顺序或是小的顺序来将各个副载波分类成多个组。 Then, the classification unit 388 in order of large or small of the order of each subcarrier SNR value of each subcarrier to be classified into a plurality of groups. 分类的具体例将后述。 Specific examples of classification will be described later.

比较结果存储器389将分类单元388的分类结果按每个副载波存储并保持。 Comparison result memory 389 to the classification unit 388. The classification result for each subcarrier stored and held. 分类结果存储器389的存储内容根据从CSI发送控制单元39输入的更新定时信号被更新。 Classification result memory 389 stored contents are updated in accordance with the transmission control unit from the CSI 39 updates the input timing signal.

接着,使用图30说明在分类单元388的分类的具体例。 Next, Figure 30 illustrates a specific example of the classification of the classification unit 388. 这里,以CSI帧尺寸为能够发送8个副载波的SNR值的尺寸,并将副载波1~24分类成三个组的情况作为一个例子进行说明。 Here, CSI frame size to a size capable of transmitting SNR value of 8 subcarriers, and the subcarriers 1 to 24 are classified into three groups in the case will be described as an example.

在各个副载波1~24的SNR为图30所示的情况时,分类单元388将副载波1~24按照SNR值大的顺序(即,SNR值的变动量小的顺序)分类成组1、2、3的三个组。 SNR of each subcarrier is 1 to 24 in the case shown in FIG. 30, the classification unit 388 in accordance with the 24 subcarrier SNR values ​​in the order of 1 to a large (i.e., a small amount of variation of the SNR value order) classified into Group 1, three groups 2 and 3. 另外,分类单元388也可以将副载波1~24按照SNR值小的顺序(即,SNR值的变动量大的顺序)分类成组3、2、1的三个组。 Further, the classification unit 388 may subcarriers 1 to 24 according to the order of small values ​​SNR (i.e., SNR value variation amount order) are classified into three groups of 3,2,1 groups. 其结果,副载波1、3、4、10、12、14、21、23被分类到组1,副载波2、5、6、9、13、15、20、24被分类到组2,副载波7、8、11、16、17、18、19、22被分类到组3。 As a result, the sub-carrier is classified into a 1,3,4,10,12,14,21,23, 2,5,6,9,13,15,20,24 subcarriers is classified into two sub 7,8,11,16,17,18,19,22 carrier is classified into 3. 如图31所示,该分类结果被存储到分类结果存储器389。 As shown in FIG. 31, the classification result is stored in the classified result memory 389. 在从CSI发送控制单元39输入更新定时信号的定时进行分类结果存储器389的更新。 Classification result memory 389 updates the timing control unit transmits the input from CSI 39 update timing signal.

CSI帧生成单元386在从CSI发送控制单元39输入生成定时信号的定时,基于从CSI发送控制单元39输入的CSI帧类别和存储在分类结果存储器389的图31所示的分类结果,从副载波1~24中选择要将CSI反馈到CSI接收装置的副载波,并生成CSI帧。 CSI frame generation section 386 from CSI transmission control section 39 generates a timing signal input timing based on the transmission control unit 39 from the CSI frame type input CSI and the classification result stored in the classified result memory 31 shown in FIG 389, the sub-carriers from 1 to 24. to select CSI feedback subcarriers to the CSI receiving apparatus, and generates a CSI frame. CSI帧生成单元386如图32所示地动作。 CSI frame generation section 386 operates as shown in FIG. 32. 在图32所示的例子中,CSI发送装置基于在上述分类结果,将三种CSI帧周期性地反馈到CSI接收装置。 In the example shown in FIG. 32, CSI transmission based on the classified result apparatus, three kinds of periodical feedback of CSI frame to the CSI receiving apparatus. 在CSI1~CSI3的三种CSI帧中,CSI1是由组1(副载波1、3、4、10、12、14、21、23)的SNR值组成的CSI帧,CSI2是由组2(副载波2、5、6、9、13、15、20、24)的SNR值组成的CSI帧,CSI3是由组3(副载波7、8、11、16、17、18、19、22)的SNR值组成的CSI帧。 The three CSI frame in CSI1 ~ CSI3, CSI1 is a CSI frame group 1 (subcarriers 1,3,4,10,12,14,21,23) composed SNR value, CSI2 is a Group 2 (sub CSI frame carrier 2,5,6,9,13,15,20,24) composed SNR value, CSI3 by group 3 (subcarriers 7,8,11,16,17,18,19,22) of SNR value CSI frames.

在图32中,首先在定时t4n,生成定时信号从CSI发送控制单元39被输入到CSI帧生成单元386。 In FIG 32, first in the timing T4n, transmission control unit generates a timing signal 39 is input to the CSI frame generation section 386 from CSI. 同时,由于更新定时信号被输入到分类结果存储器389,以在分类单元388新获得的分类结果更新分类结果存储器389的内容。 Meanwhile, since the update timing signal is input to classification result memory 389 to update the contents of classification result memory 389 in the classification unit 388 newly obtained classification result. 现在,假设更新后的分类结果存储器389的内容为如图31所示。 Now, assume that the contents of the updated classification result memory 389 as shown in Figure 31. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI1+CSI2+CSI3”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成包含副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2+CSI3)。 Further, since the transmission control unit from the CSI 39 frame generator 386 input unit to a CSI indicates "CSI1 + CSI2 + CSI3" as the signal CSI frame type, CSI frame generation unit 386 according to CSI frame indicated category generates a subcarrier 1 to 24 CSI frame SNR values ​​of all subcarriers (CSI1 + CSI2 + CSI3). 帧格式为图9所示。 9 is a frame format shown in FIG.

接着,在定时t4n+1,与定时t4n同样地,生成定时信号从CSI发送控制单元39被输入到CSI帧生成单元386。 Next, at timing t4n + 1, and the timing T4n Similarly, transmission control unit generates a timing signal 39 is input to the CSI frame generation section 386 from CSI. 但是,由于更新定时信号不被输入分类结果存储器389,分类结果存储器389不被更新。 However, since the update timing signal is not input classified result memory 389, the classification result memory 389 is not updated. 因此,分类结果存储器389的内容仍为如图31所示。 Thus, the contents of classification result memory 389 is still shown in Figure 31. 并且,由于作为CSI帧类别表示“CSI3”的信号从CSI发送控制单元39被输入到CSI帧生成单元386,所以CSI帧生成单元386根据所指示的CSI帧类别生成由组3的副载波7、8、11、16、17、18、19、22的SNR值组成的CSI帧(CSI3)。 Further, since represents "CSI3" signal transmitted from the control unit CSI 39 is input to the CSI frame generation unit 386, the CSI frame generation unit 386 categories generated by the group of subcarriers 3 7 CSI frame indicated as the CSI frame type, CSI frame (CSI3) SNR values ​​8,11,16,17,18,19,22 composition. 由此,CSI发送装置能够在定时t4n+1仅将SNR值最小(即,SNR变动量最大)的组3的副载波的CSI反馈到CSI接收装置。 Thus, CSI transmitting apparatus can only the timing t4n + 1 subcarrier SNR minimum value (i.e., the maximum fluctuation amount SNR) of CSI feedback in group 3 to the CSI receiving apparatus. 并且,与图18同样地,帧格式为图33所示。 And, similarly, the frame format shown in FIG. 33 and FIG. 18.

接着,在定时t4n+2,与定时t4n+1同样地,从CSI发送控制单元39将生成定时信号输入到CSI帧生成单元389,但更新定时信号不输入到分类结果存储器389,因此分类结果存储器389不被更新。 Subsequently, + 1 in the same manner, transmitting t4n + 2, with the timing of the timing T4n from CSI control unit 39 generates a timing signal is input to CSI frame generation unit 389, but the update timing signal is not input to classification result memory 389, and therefore classification result memory 389 is not updated. 因此,分类结果存储器389的内容仍为如图31所示。 Thus, the contents of classification result memory 389 is still shown in Figure 31. 另外,由于作为CSI帧类别表示“CSI2+CSI3”的信号从CSI发送控制单元39被输入到CSI帧生成单元386,所以CSI帧生成单元386根据所指示的CSI帧类别,生成由组2的副载波2、5、6、9、13、15、20、24的SNR值以及由组3的副载波7、8、11、16、17、18、19、22的SNR值组成的CSI帧(CSI2+CSI3)。 Further, since it represents "CSI2 + CSI3" signal transmitted from the control unit CSI as the CSI frame type 39 is input to CSI frame generation unit 386, the CSI frame generation unit 386 according to CSI frame type is indicated, to generate the sub from the group 2 2,5,6,9,13,15,20,24 carrier SNR value and the CSI frame group 3 subcarriers SNR value 7,8,11,16,17,18,19,22 composition (CSI2 + CSI3). 由此,CSI发送装置能够在定时t4n+2仅将组2和组3的副载波的CSI反馈到CSI接收装置。 Thus, CSI transmitting apparatus can only the timing t4n + 2 the set of CSI subcarriers 2 and Group 3 is fed back to the CSI receiving apparatus. 并且,帧格式与图18和图33相同。 Further, the frame format is the same in FIG. 18 and FIG. 33.

接着,在定时t4n+3进行与在定时t4n+1相同的处理,并且在定时t4(n+1)进行与在定时t4n相同的处理。 Subsequently, the same processing as + 1 and the timing T4n timing t4n + 3, and at the timing t4 (n + 1) subjected to the same processing at timing t4n. 由此,在图32示出的例子中,CSI1的发送周期(反馈周期)107成为CSI3的发送周期(反馈周期)105的4倍,且CSI2的发送周期(反馈周期)106成为CSI3的发送周期105的两倍。 Thus, in the example shown in FIG. 32, CSI1 transmission period (feedback period) 107 becomes CSI3 transmission period (feedback period) 105 four times, and CSI2 transmission period (feedback period) 106 is a transmission period of CSI3 105 twice. 并且,CSI1的发送周期107成为CSI2的发送周期106的两倍。 And, CSI1 transmission period 107 is twice as CSI2 transmission period 106. 这样,通过使CSI1和CSI2的发送周期为CSI3的发送周期的整数倍,在反馈所有的副载波的CSI时(在图32为定时t4n、t4(n+1))能够将CSI汇总于一个帧进行发送,因此能够共享报头信息等,其结果,能够减少在反馈信息的发送所需要的数据量。 In this way, by making the CSI1 and transmission cycle CSI2 is an integral multiple of the transmission cycle CSI3 of feedback all subcarriers CSI (in FIG. 32 is a timing t4n, t4 (n + 1)) can be CSI summarized in a frame transmitting, it is possible to share the header information and the like, as a result, it is possible to reduce the amount of data transmitted in the feedback information required.

接下来,使用图34详细说明本实施方式的CSI处理单元26的结构。 Next, a detailed configuration of FIG CSI processing unit 34 according to the embodiment 26 of FIG. 如图34所示,本实施方式的CSI处理单元26是在实施方式1的CSI处理单元26(图12)进一步包括分类单元266和分类结果存储器267而构成的。 CSI processing unit, the present embodiment is the embodiment of FIG. 34 26 266 and further comprising a classification unit classification result memory 267 is configured in the embodiments 1 CSI processing unit 26 (FIG. 12).

图34所示的CSI处理单元26与图29所示的CSI帧生成单元386的动作对应地,进行图35所示的动作。 FIG CSI 3426 shown in FIG. 29 CSI processing units shown frame generating unit 386 corresponding to the operation, the operation performed as shown in FIG. 35.

换言之,首先在定时t4n,接收定时信号从CSI接收控制单元27被输入到质量电平提取单元261。 In other words, the first timing T4n, the reception control unit 27 receives a timing signal is input to quality level extraction section 261 from CSI. 并且,作为CSI帧类别表示“CSI1+CSI2+CSI3”的信号从CSI接收控制单元27被输入到质量电平提取单元261。 And, as the CSI frame type indicates "CSI1 + CSI2 + CSI3" signal from CSI reception control unit 27 is input to the quality level extraction unit 261. 因此,质量电平提取单元261接收如图9所示的CSI帧,即,包含副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2+CSI3)。 Therefore, quality level extraction section 261 receives the CSI frame shown in FIG. 9, i.e., CSI frame comprising SNR values ​​of all subcarriers of the subcarriers 1 to 24 (CSI1 + CSI2 + CSI3). 然后,质量电平提取单元261从CSI帧提取副载波1~24各自的SNR值,添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 extracts the SNR values ​​of each of subcarriers 1 through 24 from the CSI, adding the corresponding subcarrier numbers, and outputs it to the line memory 262 state. 线路状态存储器262更新所有副载波的SNR值。 Line state memory 262 updates the SNR values ​​of all subcarriers.

另外,在定时t4n,由于更新定时信号被输入到分类结果存储器267,分类结果存储器267以由分类单元266在定时t4n获得的分类结果更新所保持的分类结果。 Further, at the timing T4n, since the update timing signal is input to classification result memory 267, the classification result of classification result memory 267 to update the classification result by the classification unit 266 at the timing obtained T4n held. 分类单元266的分类方法是使用和CSI发送装置的分类单元388相同的方法。 Classification of the classification unit 266 using the same classification unit and the CSI transmitting apparatus 388 method. 通过这个处理,能够使在定时t4n的CSI发送装置的分类结果存储器389的内容与CSI接收装置的分类结果存储器267的内容同步。 Through this process, it is possible to synchronize the content categorization result with the content receiving device classification result CSI CSI transmission timing t4n memory apparatus 389 memory 267.

接着,在定时t4n+1,与定时t4n同样地,由CSI接收控制单元27向质量电平提取单元261输入接收定时信号。 Next, at timing t4n + 1, and the timing T4n same manner, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level of the reception timing signal. 并且,从CSI接收控制单元27向质量电平提取单元261输入表示“CSI3”作为CSI帧类别的信号。 Then, the control unit 27 receives the CSI from the extraction unit 261 is input to the quality level represented by "CSI3" as the CSI signal of the frame type. 但是,更新定时信号不被输入到分类结果存储器267。 However, the update timing signal is not input to classification result memory 267. 因此,在定时t4n+1,分类结果存储器267不被更新,分类结果存储器267的状态维持在t4n更新后的状态。 Thus, at timing t4n + 1, the classification result memory 267 is not updated, the state classification result memory 267 is maintained in the updated state after T4n.

质量电平提取单元261接收如图33所示的CSI帧,即,仅由组3的副载波7、8、11、16、17、18、19、22的SNR值组成的CSI帧(CSI3)。 Quality level extraction section 261 receives a CSI frame shown in Figure 33, i.e., only a CSI frame 3 subcarrier SNR value 7,8,11,16,17,18,19,22 group consisting of (CSI3) . 然后,质量电平提取单元261从CSI3提取副载波7、8、11、16、17、18、19、22各自的SNR值,并参照分类结果存储器267,从分类结果存储器267获得组3的副载波的副载波序号。 Then, quality level extraction unit 261 extracts the SNR value from CSI3 respective subcarriers 7,8,11,16,17,18,19,22, and with reference to the classification result memory 267, 267 is obtained from the sub-group classification result memory 3 subcarrier numbers carriers. 然后,质量电平提取单元261在提取出的SNR值分别添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 to add subcarrier number corresponding to each SNR value in the extracted state and outputs it to the line memory 262.

在图33所示的例子中,将组3的副载波7、8、11、16、17、18、19、22的SNR值按照副载波序号的升序排列。 In the example shown in FIG. 33, the group 3 7,8,11,16,17,18,19,22 subcarrier SNR values ​​are arranged in ascending order of subcarrier numbers. 但是不包含副载波序号。 But it does not include the sub-carrier number. 这样,通过在CSI发送装置和CSI接收装置之间事先决定将SNR值按照副载波序号的升序(或降序)排列,不用将副载波序号包含在CSI帧内进行发送,也能够在双方共同识别与各个SNR值对应的副载波序号。 Thus, by the CSI between the device and the receiving device transmits CSI determined in advance in accordance with the SNR value of subcarrier numbers in ascending (or descending) order, without the subcarrier numbers contained in a CSI frame is transmitted, it is possible to identify both common and SNR value corresponding to the respective sub-carrier number. 因此,消除了将副载波序号包含在CSI帧进行发送的必要,从而能够抑制CSI3的数据量。 Thus, eliminating the subcarrier numbers contained in a CSI frame transmission necessary, it is possible to suppress the data amount CSI3.

线路状态存储器262更新对应于从质量电平提取单元261输入的副载波序号的SNR值。 Update the line status memory 262 corresponding to the subcarrier numbers from quality level extraction unit 261 input SNR value. 换言之,只更新副载波1~24中的副载波7、8、11、16、17、18、19、22的SNR值。 In other words, update only 24 subcarriers in subcarrier SNR value of 1 to 7,8,11,16,17,18,19,22. 其结果,在定时t4n+1的更新后的线路状态存储器262的状态成为如图36所示。 As a result, in the state after the memory line state update timing t4n + 1 262 36 becomes as shown in FIG. 通过这个处理,能够使在定时t4n+1的CSI发送装置的线路状态存储器382的内容与CSI接收装置的线路状态存储器262的内容同步。 Through this process, the content can be made in line with the state of the timing CSI CSI transmitting apparatus t4n ​​+ 1 line of state memory 382 of the content storage apparatus 262 receives the sync.

接着,在定时t4n+2,接收定时信号从CSI接收控制单元27被输入到质量电平提取单元261。 Next, at timing t4n + 2, a reception timing control unit receives a signal from the CSI 27 is input to quality level extraction unit 261. 并且,作为CSI帧类别表示“CSI2+CSI3”的信号从CSI接收控制单元27被输入到质量电平提取单元261。 And, as the CSI frame type indicates "CSI2 + CSI3" signal from CSI reception control unit 27 is input to the quality level extraction unit 261. 但是,更新定时信号不被输入到分类结果存储器267。 However, the update timing signal is not input to classification result memory 267. 因此,在定时t4n+2,分类结果存储器267不被更新,分类结果存储器267的状态维持在t4n更新后的状态。 Therefore, the timing t4n + 2, a classification result memory 267 is not updated, the state classification result memory 267 is maintained in the updated state after T4n.

质量电平提取单元261接收与图33相同帧格式的CSI帧,即,由组2的副载波2、5、6、9、13、15、20、24的SNR值和由组3的副载波7、8、11、16、17、18、19、22的SNR值组成的CSI帧(CSI2+CSI3)。 Quality level extraction unit 261 receives the frames of the same frame in FIG. 33 CSI format, i.e., the subcarrier group 2 2,5,6,9,13,15,20,24 SNR value and a set of subcarriers 3 CSI frame (CSI2 + CSI3) SNR values ​​7,8,11,16,17,18,19,22 composition. 然后,质量电平提取单元261从CSI2提取副载波2、5、6、9、13、15、20、24各自的SNR值,同时从CSI3提取副载波7、8、11、16、17、18、19、22各自的SNR值,并参照分类结果存储器267,从分类结果存储器267获得组2和组3的副载波的副载波序号。 Then, quality level extraction unit 261 extracts the SNR values ​​of each subcarrier 2,5,6,9,13,15,20,24 from CSI2, while extracting 7,8,11,16,17,18 subcarriers from CSI3 , 19, 22 each SNR value, and with reference to the classification result memory 267, 267 to obtain the subcarrier numbers of subcarriers group 2 and group 3 from classification result memory. 然后,质量电平提取单元261在提取出的SNR值分别添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 to add subcarrier number corresponding to each SNR value in the extracted state and outputs it to the line memory 262.

线路状态存储器262更新对应于从质量电平提取单元261输入的副载波序号的SNR值。 Update the line status memory 262 corresponding to the subcarrier numbers from quality level extraction unit 261 input SNR value. 即,在副载波1~24中,仅更新组2的副载波2、5、6、9、13、15、20、24的SNR值和组3的副载波7、8、11、16、17、18、19、22的SNR值。 That is, the subcarriers 1 to 24, only the updated subcarrier SNR values ​​of group 2 and group 3 subcarriers 7,8,11,16,17 of 2,5,6,9,13,15,20,24 , SNR values ​​of 18,19,22. 其结果,在定时t4n+2的更新后的线路状态存储器262的状态成为如图37所示。 As a result, in the state after the memory line state update timing t4n + 2 262 37 becomes as shown in FIG. 通过这个处理,能够使在定时t4n+2的CSI发送装置的线路状态存储器382的内容与CSI接收装置的线路状态存储器262的内容同步。 Through this process, the content can be made in line with the state of the timing CSI CSI transmitting apparatus t4n ​​+ 2 of the line state memory 382 receives content storage apparatus 262 are synchronized.

接着,在定时t4n+3进行与在定时t4n+1相同的处理,并且在定时t4(n+1)进行与在定时t4n相同的处理。 Subsequently, the same processing as + 1 and the timing T4n timing t4n + 3, and at the timing t4 (n + 1) subjected to the same processing at timing t4n.

这样,根据本实施方式,由于基于CSI帧尺寸将构成OFDM码元的多个副载波分类成多个组,在CSI帧尺寸被事先决定为固定或被限定为几个种类的通信系统中,能够基于传输路径特性的时间变动量使CSI的反馈周期通过多个阶段变化。 Thus, according to this embodiment, since the frame size based on the CSI plurality of subcarriers constituting an OFDM symbol are classified into a plurality of groups, it is determined in advance as a fixed or limited to a few kinds of communication systems in the CSI frame size, it is possible time variation based on the transmission path characteristics that the CSI feedback period by a plurality of phase changes. 并且,由于消除了在从CSI发送装置向CSI接收装置反馈的CSI帧中包含副载波序号和副载波的分类结果的必要,与实施方式3同样地,能够进一步削减反馈信息的数据量。 Further, due to the elimination of the need to include a classification result subcarrier numbers of subcarriers and CSI in CSI frame transmitted from reception apparatus CSI feedback to the apparatus, similarly to Embodiment 3, it is possible to further reduce the data amount of feedback information.

另外,在本实施方式中,在CSI3发送的SNR值为小的SNR值,因此,以CSI3反馈SNR值的组3的副载波7、8、11、16、17、18、19、22的传输率变低。 Further, in the present embodiment, the transmitted SNR CSI3 SNR value is small, therefore, the sub-carrier group 3 CSI3 feedback SNR value of a transmission 7,8,11,16,17,18,19,22 becomes low. 另一方面,由于在CSI3发送的SNR值的变动量大,因此CSI3必须以较短的周期进行反馈。 On the other hand, since the amount of variation in the SNR value CSI3 transmission, so CSI3 be fed back to a shorter cycle. 而在CSI3的开销相对于以CSI3反馈CSI的副载波的传输率变得较大时,也可以省略CSI3的发送。 CSI3 the overhead becomes larger with respect to the transmission rate of subcarriers CSI3 CSI feedback, CSI3 transmission may be omitted. 换言之,在将多个副载波的SNR值(或是SNR值的变动量)依大小分类成多个组时,也可以省略SNR值最小的组(或SNR值的变动量最大的组)的反馈。 In other words, when the (or SNR value variation amounts) SNR values ​​of a plurality of sub-carriers classified by size into a plurality of groups, may also (or maximum SNR variation amount set value) set the minimum SNR value of the feedback omitted .

(实施方式5)本实施方式在以下方面与实施方式4不同,即,在发送构成OFDM码元的副载波1~24的所有副载波的CSI的定时,将相邻的副载波之间的SNR值的差分作为CSI发送,在发送一部分的副载波的CSI的定时,将在相同副载波的互异定时之间的SNR值的差分作为CSI发送。 Between SNR (Embodiment 5) Embodiment of the present embodiment different from the fourth embodiment in the following respects, i.e., at the timing of the CSI for all subcarriers constituting the OFDM symbol transmission subcarriers 1 to 24, the adjacent subcarriers transmitting the difference value as the CSI, the CSI transmission timing of a portion of the subcarriers, the CSI is sent as the same cross differential SNR value of the subcarriers between the different timings. 下面,仅说明与实施方式4的不同点。 Hereinafter, only different points from the fourth embodiment.

首先,再次使用图32说明本实施方式的CSI帧生成单元386的动作。 First, again using the present embodiment described the operation of the embodiment 386 of CSI frame generation unit 32 in FIG.

在图32中,在定时t4n,CSI帧生成单元386生成包含了副载波1~24的所有副载波的CSI的CSI帧(CSI1+CSI2+CSI3)。 In FIG 32, at the timing T4n, CSI CSI frame generation unit 386 generates a CSI frame comprising all the subcarriers 1 to subcarrier 24 (CSI1 + CSI2 + CSI3). 在定时t4n,CSI帧生成单元386从保持在线路状态存储器382的各个副载波的SNR值,求出相邻副载波之间的SNR值的差分(差分SNR值)Δγm,4n,生成由这些差分SNR值组成的CSI帧(CSI1+CSI2+CSI3)。 At timing t4n, CSI frame generation section 386 from the SNR value held in each sub-carrier line state memory 382, ​​the difference (differential SNR values) Δγm, 4n SNR value between adjacent subcarriers is obtained, which is generated by the difference CSI frame (CSI1 + CSI2 + CSI3) SNR value thereof. 将在定时t4n的帧格式示于图38。 The timing t4n frame format shown in FIG. 38. 换言之,在定时t4n,在副载波1的SNR值之后,将相邻的副载波之间的差分SNR值作为CSI发送。 In other words, the difference between the SNR value at the timing T4n, after the SNR value of subcarrier 1, subcarrier adjacent transmitted as CSI. 并且,可由下面的式(5)表示在定时t4n的差分SNR值Δγm,4n。 And, by the following formula (5) represents a differential SNR value of Δγm timing t4n, 4n. 其中,在式(5)中,γm,4n表示对第m个副载波的定时t4n的SNR值进行对数变换后的值(单位[dB])。 Wherein, in Formula (5), γm, 4n represents a value of the timing t4n SNR of the m-th subcarrier is a value (in [dB]) after logarithmic transformation.

Δγm,4n=γ1,4n,m=1γm,4n-γm-1,4n,m≠1···(5)]]>接着,在定时t4n+1,CSI帧生成单元386在组3的副载波7、8、11、16、17、18、19、22,求出在定时t4n+1和定时t4n之间的SNR值的差分(差分SNR值)Δγm,4n+1,生成由这些差分SNR值Δγm,4n+1组成的CSI帧(CSI3)。 & Delta; & gamma; m, 4n = & gamma; 1,4n, m = 1 & gamma; m, 4n- & gamma; m-1,4n, m & NotEqual; 1 & CenterDot; & CenterDot; & CenterDot; (5)]]> Next, at timing t4n + 1, the CSI frame generation unit 386 in the set of subcarriers 3 7,8,11,16,17,18,19,22 obtained in t4n + SNR difference values ​​between 1 and the timing T4n (differential SNR value of the timing ) Δγm, 4n + 1, generated by these differential SNR values ​​Δγm, 4n + 1 CSI frame (CSI3) thereof. 将在定时t4n+1的帧格式示于图39。 The timing t4n + 1 frame format shown in FIG. 39. 并且,可由下面的式(6)表示在定时t4n+1的差分SNR值Δγm,4n+1。 And, by the following formula (6) represents a timing difference SNR value of Δγm t4n + 1, 4n + 1.

Δγm,4n+1=γm,4n+1-γm,4n...(6)接着,在定时t4n+2,CSI帧生成单元386在组2的副载波2、5、6、9、13、15、20、24,求在定时t4n+2和定时t4n之间的SNR值的差分(差分SNR值)Δγm,4n+2,同时在组3的副载波7、8、11、16、17、18、19、22,求在定时t4n+2和定时t4n+1之间的SNR值的差分(差分SNR值)Δγm,4n+2,生成由这些差分SNR值组成的CSI帧(CSI2+CSI3)。 Δγm, 4n + 1 = γm, 4n + 1-γm, 4n ... (6) Next, at timing t4n + 2, CSI frame generation unit 386 in the subcarrier group 2 of 2,5,6,9,13, 15,20,24, the difference (differential SNR values) between the timing requirements and timing t4n + 2 T4n the SNR value Δγm, 4n + 2, while group 3 subcarriers 7,8,11,16,17, 18,19,22, find the SNR value between 1 and the timing t4n + 2 and timing t4n + differential (differential SNR values) Δγm, 4n + 2, generated by the CSI frame composed of these differential SNR value (CSI2 + CSI3) . 使在定时t4n+2的帧格式与图39相同。 So that the same frame format and a timing t4n + 2 of FIG. 39. 并且,可由下面的式(7)、式(8)表示在定时t4n+2的差分SNR值Δγk,4n+2和Δγm,4n+2。 Further, the formula (8) represented by the following formula (7) at the timing difference SNR value of Δγk t4n + 2, 4n + 2 and Δγm, 4n + 2. 其中,在式(7)中,γk,4n表示对第k个副载波的定时t4n的SNR值进行对数变换后的值(单位[dB])。 Wherein, in Formula (7), γk, 4n represents a value of the timing t4n SNR of the k-th subcarrier to be a value (in [dB]) after logarithmic transformation.

Δγk,4n+2=γk,4n+2-γk,4n...(7)Δγm,4n+2=γm,4n+2-γm,4n+1...(8)接着,在定时t4n+3进行与在定时t4n+1相同的处理,并且在定时t4(n+1)进行与在定时t4n相同的处理。 Δγk, 4n + 2 = γk, 4n + 2-γk, 4n ... (7) Δγm, 4n + 2 = γm, 4n + 2-γm, 4n + 1 ... (8) Next, at timing t4n + 3 with the same timing t4n + 1 processing, and at the timing t4 (n + 1) subjected to the same treatment at the timing t4n.

接着,再次使用图35说明本实施方式的质量电平提取单元261的动作。 Next, the operation of the quality level extraction unit 261 according to the embodiment of FIG 35 again. 本实施方式的质量电平提取单元261与CSI帧生成单元386的动作对应地,进行如图35所示的动作。 Quality level extraction unit 261 according to the present embodiment is a CSI frame generation unit 386 corresponding to the operation, as shown in Figure 35 operates.

换言之,在定时t4n,质量电平提取单元261接收图38所示的CSI帧(CSI1+CSI2+CSI3)。 In other words, at the timing T4n, CSI quality level extraction unit 261 receives the frame shown in FIG. 38 (CSI1 + CSI2 + CSI3). 然后,质量电平提取单元261从CSI帧提取副载波1的SNR值以及相邻的副载波之间的差分SNR值Δγm,4n,进行式(9)所示的相加处理并求副载波1~24各自的SNR值Δγm,4n,添加对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction section 261 extracts differential SNR values ​​from a CSI between subcarrier 1 and the SNR values ​​of adjacent subcarriers Δγm, 4n, addition processing is performed as shown in formula (9), and determining the subcarriers 1 ~ 24 each SNR value Δγm, 4n, corresponding to the added output to the sub-carrier number and the line status memory 262.

γm,4n=γ1,4n,m=1γm-1,4n+Δγm,4n,m≠1···(9)]]>接下来,在定时t4n+1,质量电平提取单元261接收图33所示的CSI帧(CSI3)。 & Gamma; m, 4n = & gamma; 1,4n, m = 1 & gamma; m-1,4n + & Delta; & gamma; m, 4n, m & NotEqual; 1 & CenterDot; & CenterDot; & CenterDot; (9)]]> Next, at timing t4n FIG +1 unit 261 receives, quality level extraction 33 as shown in CSI frame (CSI3). 然后,质量电平提取单元261从CSI帧提取组3的副载波7、8、11、16、17、18、19、22的差分SNR值Δγm,4n+1,进行式(10)所示的相加处理并求出副载波7、8、11、16、17、18、19、22各自的SNR值Δγm,4n+1,并进一步参照分类结果存储器267从分类结果存储器267获得组3的副载波的副载波序号。 Then, quality level extraction section 261 extracts subcarrier group 3 of the differential SNR value 7,8,11,16,17,18,19,22 Δγm from CSI, 4n + 1, carried out as shown in formula (10) addition processing and obtains a respective subcarrier SNR value Δγm 7,8,11,16,17,18,19,22, 4n + 1, and further reference to the classification result memory 3 267 267 is obtained from the group of sub-classification result memory subcarrier numbers carriers. 然后,质量电平提取单元261对求出的SNR值γm,4n+1分别添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 obtained versus SNR value γm, 4n + 1 are added corresponding to the subcarrier number and the line status memory 262 to the output.

γm,4n+1=γm,4n+Δγm,4n+1...(10)接下来,在定时t4n+2,质量电平提取单元261接收与图39相同的帧格式的CSI帧(CSI2+CSI3)。 γm, 4n + 1 = γm, 4n + Δγm, 4n + 1 ... (10) Next, at timing t4n + 2, quality level extraction unit 261 receives the CSI frame of the same frame format of FIG. 39 (CSI2 + CSI3). 然后,质量电平提取单元261从CSI帧提取组2的副载波2、5、6、9、13、15、20、24的差分SNR值Δγk,4n+2,同时提取组3的副载波7、8、11、16、17、18、19、22的差分SNR值Δγm,4n+2。 Then, quality level extraction unit 261 extracts from the subcarrier group 2 of the CSI difference SNR value of Δγk 2,5,6,9,13,15,20,24, 4n + 2, while extracting group 3 subcarriers 7 , 8,11,16,17,18,19,22 difference SNR value Δγm, 4n + 2. 然后,质量电平提取单元261对组2进行式(11)所示的相加处理,求出副载波2、5、6、9、13、15、20、24各自的SNR值γk,4n+2,同时对组3进行式(12)所示的相加处理,求出副载波7、8、11、16、17、18、19、22各自的SNR值γm,4n+2,并参照分类结果存储器267,从分类结果存储器267获得组2和组3的副载波的副载波序号。 Then, quality level extraction unit 261 Group 2 addition process is represented by the formula (11), respective subcarriers obtained SNR value γk 2,5,6,9,13,15,20,24, 4n + 2, while the addition process 3 group represented by the formula (12) is obtained 7,8,11,16,17,18,19,22 respective subcarrier SNR value γm, 4n + 2, and reference classification result memory 267, subcarrier numbers 267 to obtain groups 2 and 3 subcarriers from classification result memory. 然后,质量电平提取单元261在求出的SNR值γk,4n+2和γm,4n+2分别添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 obtained the SNR value γk, 4n + 2 and γm, 4n + 2 were added to the corresponding subcarrier numbers, and outputs it to the line memory 262 state.

γk,4n+2=γk,4n+Δγk,4n+2...(11)γm,4n+2=γm,4n+1+Δγm,4n+2...(12)接着,在定时t4n+3进行与在定时t4n+1相同的处理,并且在定时t4(n+1)进行与在定时t4n相同的处理。 γk, 4n + 2 = γk, 4n + Δγk, 4n + 2 ... (11) γm, 4n + 2 = γm, 4n + 1 + Δγm, 4n + 2 ... (12) Next, at timing t4n + 3 with the same timing t4n + 1 processing, and at the timing t4 (n + 1) subjected to the same treatment at the timing t4n.

这样,根据本实施方式,由于将SNR值的差分作为CSI进行发送,能够进一步削减反馈信息的数据量。 Thus, according to this embodiment, since the difference SNR value as the CSI transmitted, further reducing the data amount of feedback information. 并且,由于在发送副载波1~24的所有副载波的CSI的定时t4n和t4(n+1),将相邻的副载波之间的SNR值的差分作为CSI发送,即使在定时t4n+1~t4n+3在CSI2或CSI3产生传输差错,也能够防止该差错传播到定时t4(n+1)之后的CSI。 Further, since the CSI for all subcarriers transmitted subcarriers 1 to 24 and T4n timing t4 (n + 1), the differential SNR value between adjacent subcarriers as CSI transmission, even at timing t4n + 1 ~ t4n + 3 in CSI2 transmission error or CSI3, it is possible to prevent the error propagation to the CSI after timing t4 (n + 1).

这样,在本实施方式中,包含副载波1~24的所有副载波的CSI的CSI帧(CSI1+CSI2+CSI3)为用于防止传输差错传播的重要的CSI帧,因此不使该CSI帧产生传输差错极为重要。 Thus, in the present embodiment, a CSI CSI frame (CSI1 + CSI2 + CSI3) comprising all subcarriers of the subcarriers 1 to 24 is important for preventing the transmission of CSI frame error propagation, and thus without the CSI frame generating transmission errors is extremely important. 因此,在本实施方式中,也可以如图40所示,在定时t4n和t4(n+1),图2所示的编码单元41和调制单元42使编码率R和调制电平小于其他定时t4n+1~t4n+3,由此提高抗错能力。 Accordingly, in the present embodiment, as shown in FIG. 40 may be, at timing t4n and t4 (n + 1), the coding unit 2 shown in FIG. 41 and modulation unit 42 so that the modulation and coding rate R is smaller than the other timing level t4n + 1 ~ t4n + 3, thereby increasing the resistance to errors.

(实施方式6)本实施方式在以下方面与实施方式4不同,即,在基于SNR将构成OFDM码元的多个副载波(这里为副载波1~24)分成多个组时,省略SNR值低于规定阈值的组的CSI的发送。 (Embodiment 6) This embodiment is different from Embodiment 4 in the following manner, i.e., based upon SNR plurality of subcarriers constituting an OFDM symbol (here, subcarriers 1 through 24) into a plurality of groups, the SNR values ​​will be omitted transmitting the CSI group is lower than a predetermined threshold value. 然而,在下述说明中,与实施方式4同样地,以将副载波1~24分类成三个组的情况为例进行说明。 However, in the following description, similarly to the fourth embodiment, in the case of three classified into groups of 24 subcarriers 1 to be described as an example.

现使用图41详细说明本实施方式的CSI处理单元38的结构。 Structural CSI processing unit 38 of the embodiment according to the present embodiment is now described in detail with reference to FIG 41. 在图41中,阈值1、2(阈值1>阈值2)的两个阈值被输入到分类单元390和CSI发送控制单元39。 In FIG 41, the threshold value 2 (threshold 1> threshold 2) of the two threshold values ​​are input to the classification unit 390 and CSI transmission control unit 39. 然而,在图41中,对与实施方式4(图29)相同的结构赋予相同的标号,并省略其说明。 However, in FIG. 41, as in Embodiment 4 (FIG. 29) of the same structure are given the same reference numerals, and a description thereof will be omitted.

分类单元390比较存储在线路状态存储器382的每个副载波的SNR值和阈值1、2,基于比较结果将副载波1~24分类成三个组。 Comparative classification unit 390 is stored in the line status memory 382 for each subcarrier SNR value and the threshold value 2, based on the comparison result of the subcarriers 1 to 24 are classified into three groups. 分类单元390将SNR值为阈值1以上的副载波分类到组1,将SNR值为阈值2以上且低于阈值1的副载波分类到组2,将SNR值低于阈值2的副载波分类到组3。 Classification unit 390 above a carrier SNR value threshold is classified into group 1, the SNR value of the threshold value 2 and less than the threshold value of the sub-carrier 1 is classified into group 2, the SNR falls below the threshold value of the sub-carrier 2 is classified into group 3.

将在分类单元390的分类的具体例示于图42。 Specific examples of the classification of the classification unit 390 shown in FIG. 42. 在各个副载波1~24的SNR为图42所示的情况时,分类单元390将副载波1~24基于阈值1、2分类成组1、2、3的三个组。 In the case when the SNR of each of the subcarriers 1 to 24 shown in FIG. 42, the classification unit 390 subcarriers 1 to 24 based on a threshold value are classified into three groups, 2 1, 2 groups. 其结果,副载波1、2、3、4、10、12、13、14、15、20、21、23、24被分类到组1,副载波5、6、7、9、11、16、17、18、22被分类到组2,副载波8、19被分类到组3。 As a result, the sub-carrier is classified into a 1,2,3,4,10,12,13,14,15,20,21,23,24, subcarriers 5,6,7,9,11,16, 17,18,22 is classified into 2, 8, 19 subcarriers are classified into 3 groups. 如图43所示,该分类结果被存储到分类结果存储器389。 As shown in FIG. 43, the classification result is stored in the classified result memory 389.

CSI帧生成单元386在从CSI发送控制单元39输入生成定时信号的定时,基于从CSI发送控制单元39输入的CSI帧类别和存储在分类结果存储器389的图43所示的分类结果,从副载波1~24中选择要将CSI反馈到CSI接收装置的副载波,并生成CSI帧。 CSI frame generation section 386 from CSI transmission control section 39 generates a timing signal input timing based on the transmission control unit 39 from the CSI frame type input CSI and the classification result stored in the memory 389 shown in FIG. 43 classification results from the sub-carriers 1 to 24. to select CSI feedback subcarriers to the CSI receiving apparatus, and generates a CSI frame. CSI帧生成单元386如图44所示地动作。 CSI frame generation section 386 operates as shown in FIG. 44. 在图44所示的例子中,CSI发送装置基于在上述分类结果,将三种CSI帧周期性地反馈到CSI接收装置。 In the example shown in FIG. 44, CSI transmission based on the classified result apparatus, three kinds of periodical feedback of CSI frame to the CSI receiving apparatus. 在CSI1~CSI3的三种CSI帧中,CSI1是由组1(副载波1、2、3、4、10、12、13、14、15、20、21、23、24)的SNR值组成的CSI帧,CSI2是由组2(副载波5、6、7、9、11、16、17、18、22)的SNR值组成的CSI帧,CSI3是由组3(副载波8、19)的SNR值组成的CSI帧。 The three CSI frame in CSI1 ~ CSI3, CSI1 is a group 1 (subcarriers 1,2,3,4,10,12,13,14,15,20,21,23,24) SNR value consisting of CSI frame, CSI2 is a CSI frame group 2 (subcarriers 5,6,7,9,11,16,17,18,22) composed SNR value, CSI3 by group 3 (subcarriers 8,19) SNR value CSI frames.

并且,对CSI发送控制单元39输入阈值1、2,同时设定如图42所示的帧分配阈值(阈值2≤帧分配阈值<阈值1)。 Then, the control unit 39 to the CSI transmission input threshold 1, the frame 42 illustrated allocation threshold (threshold value 2≤ frame assignment threshold <threshold value 1) while setting shown in FIG. 然后,CSI发送控制单元39和CSI帧生成单元386如图44所示地动作,省略由SNR值低于帧分配阈值以下的阈值(即,阈值2)的组(即,组3)的SNR值组成的CSI帧(即,CSI3)的发送。 Then, CSI transmission control unit operates as shown in 4439 and CSI frame generation unit 386 in FIG omitted below the frame assignment threshold value is a threshold value from the SNR value (i.e., threshold value 2) of the group (i.e., Group 3) SNR value CSI frame transmission (i.e., CSI3) composition.

在图44中,首先在定时t4n,生成定时信号从CSI发送控制单元39被输入到CSI帧生成单元386。 In FIG 44, first, the timing T4n, generates a timing signal from CSI transmission control unit 39 is input to CSI frame generation unit 386. 同时,由于更新定时信号被输入到分类结果存储器389,以在分类单元388新获得的分类结果更新分类结果存储器390的内容。 Meanwhile, since the update timing signal is input to classification result memory 389, in order to update the classification results in the classification unit 388 newly obtained contents of classification result memory 390. 现在,假设更新后的分类结果存储器389的内容为如图43所示。 Now, assume that the contents of the updated classification result memory 389 as shown in Figure 43. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI1+CSI2+CSI3”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成包含副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2+CSI3)。 Further, since the transmission control unit from the CSI 39 frame generator 386 input unit to a CSI indicates "CSI1 + CSI2 + CSI3" as the signal CSI frame type, CSI frame generation unit 386 according to CSI frame indicated category generates a subcarrier 1 to 24 CSI frame SNR values ​​of all subcarriers (CSI1 + CSI2 + CSI3).

然后,在定时t4n+1,生成定时信号从CSI发送控制单元39被输入到CSI帧生成单元386。 Then, at timing t4n + 1, CSI generates a timing signal transmitted from the control unit 39 is input to CSI frame generation unit 386. 但是,由于更新定时信号不被输入分类结果存储器389,分类结果存储器389不被更新。 However, since the update timing signal is not input classified result memory 389, the classification result memory 389 is not updated. 因此,分类结果存储器389的内容仍为如图43所示。 Thus, the contents of classification result memory 389 is still shown in Figure 43. 并且,在定时t4n+1,表示CSI帧类别的信号不从CSI发送控制单元39向CSI帧生成单元386输入。 Then, at timing t4n + 1, CSI frame type represents a signal the control unit 39 does not transmit the input unit 386 generates CSI from the CSI. 因此,在本实施方式中,CSI帧生成单元386不生成实施方式4中在定时t4n+1生成的CSI3。 Accordingly, in the present embodiment, the CSI frame generation unit 386 in the fourth embodiment does not generate a timing t4n + 1 generated CSI3. 如上述,在本实施方式中,CSI3的发送被省略。 As described above, in the present embodiment, CSI3 transmission is omitted.

接着,在定时t4n+2,从CSI发送控制单元39将生成定时信号输入到CSI帧生成单元389,但更新定时信号不输入到分类结果存储器389,因此分类结果存储器389不被更新。 Next, at timing t4n + 2, from CSI transmission control unit 39 generates a timing signal is input to CSI frame generation unit 389, but the update timing signal is not input to classification result memory 389, and therefore classification result memory 389 is not updated. 因此,分类结果存储器389的内容仍为如图43所示。 Thus, the contents of classification result memory 389 is still shown in Figure 43. 并且,由于从CSI发送控制单元39向CSI帧生成单元386输入表示“CSI2”作为CSI帧类别的信号,CSI帧生成单元386根据所指示的CSI帧类别生成由组2的副载波5、6、7、9、11、16、17、18、22的SNR值组成的CSI帧(CSI2)。 Further, since the transmission control unit 39 is input to the frame generating unit 386 CSI from CSI indicates "CSI2" as the CSI frame type of signal, CSI frame generation unit 386 generates a category from the group 2 subcarriers 5, 6 in accordance with the indicated CSI frame, CSI frame (CSI2) SNR values ​​7,9,11,16,17,18,22 composition. 换言之,在本实施方式中,CSI帧生成单元386在定时t4n+2也不生成实施方式4中在定时t4n+2生成的CSI3。 In other words, in the present embodiment, the CSI frame generation timing t4n + 2 in the fourth embodiment are not generated at the timing t4n + 2 unit 386 CSI3 generated.

接着,在定时t4n+3进行与在定时t4n+1相同的处理,并且在定时t4(n+1)进行与在定时t4n相同的处理。 Subsequently, the same processing as + 1 and the timing T4n timing t4n + 3, and at the timing t4 (n + 1) subjected to the same processing at timing t4n. 这样,通过不进行在定时t4n+1、t4n+2、t4n+3的CSI3的发送,其结果,如图44所示,CSI3的发送周期(反馈周期)107与CSI1的发送周期(反馈周期)107同样地,成为CSI2的发送周期(反馈周期)106的两倍。 Thus, by not performing timing t4n + 1, 2 transmits t4n ​​+, t4n + 3 in CSI3, as a result, shown in Figure 44, CSI3 transmission period (feedback period) 107 CSI1 transmission period (feedback cycle) 107 Likewise, become CSI2 transmission period (feedback period) 106 is twice.

接下来,使用图45详细说明本实施方式的CSI处理单元26的结构。 Next, a detailed configuration of FIG CSI processing unit 45 according to the embodiment 26 of FIG. 然而,在图45中,对与实施方式4(图34)相同的结构赋予相同的标号,并省略其说明。 However, in FIG. 45, as in Embodiment 4 (FIG. 34) of the same structure are given the same reference numerals, and a description thereof will be omitted.

图45所示的CSI处理单元26与图41所示的CSI帧生成单元386的动作对应地,进行图46所示的动作。 26 is shown in FIG CSI CSI processing unit 45 shown in FIG. 41 corresponding to the operation generating unit 386 performs operation 46 shown in FIG.

换言之,首先在定时t4n,接收定时信号从CSI接收控制单元27被输入到质量电平提取单元261。 In other words, the first timing T4n, the reception control unit 27 receives a timing signal is input to quality level extraction section 261 from CSI. 并且,作为CSI帧类别表示“CSI1+CSI2+CSI3”的信号从CSI接收控制单元27被输入到质量电平提取单元261。 And, as the CSI frame type indicates "CSI1 + CSI2 + CSI3" signal from CSI reception control unit 27 is input to the quality level extraction unit 261. 因此,质量电平提取单元261接收包含副载波1~24的所有副载波的SNR值的CSI帧(CSI1+CSI2+CSI3)。 Therefore, quality level extraction CSI frame (CSI1 + CSI2 + CSI3) unit 261 receives the SNR values ​​of all subcarriers comprise subcarriers 1 to 24 of. 然后,质量电平提取单元261从CSI帧提取副载波1~24各自的SNR值,添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 extracts the SNR values ​​of each of subcarriers 1 through 24 from the CSI, adding the corresponding subcarrier numbers, and outputs it to the line memory 262 state. 线路状态存储器262更新所有副载波的SNR值。 Line state memory 262 updates the SNR values ​​of all subcarriers.

另外,在定时t4n,由于更新定时信号被输入到分类结果存储器267,分类结果存储器267以由分类单元268在定时t4n获得的分类结果更新所保持的分类结果。 Further, at the timing T4n, since the update timing signal is input to classification result memory 267, the memory 267 to the classification results classified by the classification unit 268 to update the classification result at the timing T4n held obtained results. 分类单元268的分类方法是使用和CSI发送装置的分类单元390相同的方法。 The classification unit 268 is to use the classification of the classification unit 390 and the same method CSI transmission apparatus. 通过这个处理,能够使在定时t4n的CSI发送装置的分类结果存储器389的内容与CSI接收装置的分类结果存储器267的内容同步。 Through this process, it is possible to synchronize the content categorization result with the content receiving device classification result CSI CSI transmission timing t4n memory apparatus 389 memory 267.

接着,在定时t4n+1,接收定时信号从CSI接收控制单元27被输入到质量电平提取单元261。 Next, at timing t4n + 1, the reception control unit 27 receives a timing signal is input to quality level extraction section 261 from CSI. 但是,更新定时信号不被输入到分类结果存储器267。 However, the update timing signal is not input to classification result memory 267. 因此,在定时t4n+1,分类结果存储器267不被更新,分类结果存储器267的状态维持在t4n更新后的状态。 Thus, at timing t4n + 1, the classification result memory 267 is not updated, the state classification result memory 267 is maintained in the updated state after T4n. 并且,在定时t4n+1,表示CSI帧类别的信号不从CSI接收控制单元27输入到质量电平提取单元261。 Then, at timing t4n + 1, CSI frame type represents a signal is not received from the control unit 27 is input to the CSI quality level extraction unit 261. 因此,质量电平提取单元261不接受在实施方式4中在定时t4n+1接受的CSI3。 Therefore, quality level extraction unit 261 does not accept in Embodiment 4 at the timing t4n + 1 received CSI3.

接着,在定时t4n+2,接收定时信号从CSI接收控制单元27被输入到质量电平提取单元261。 Next, at timing t4n + 2, a reception timing control unit receives a signal from the CSI 27 is input to quality level extraction unit 261. 并且,作为CSI帧类别表示“CSI2”的信号从CSI接收控制单元27被输入到质量电平提取单元261。 And, as the CSI frame type indicates "CSI2" CSI signal received from the control unit 27 is inputted to the quality level extraction unit 261. 但是,更新定时信号不被输入到分类结果存储器267。 However, the update timing signal is not input to classification result memory 267. 因此,在定时t4n+2,分类结果存储器267不被更新,分类结果存储器267的状态维持在t4n更新后的状态。 Therefore, the timing t4n + 2, a classification result memory 267 is not updated, the state classification result memory 267 is maintained in the updated state after T4n.

质量电平提取单元261接收由组2的副载波5、6、7、9、11、16、17、18、22的SNR值组成的CSI帧(CSI2)。 Quality level extraction unit 261 receives the CSI frame (CSI2) by the subcarrier group 2 of the SNR value 5,6,7,9,11,16,17,18,22 thereof. 然后,质量电平提取单元261从CSI2提取副载波5、6、7、9、11、16、17、18、22各自的SNR值,并参照分类结果存储器267,从分类结果存储器267获得组2的副载波的副载波序号。 Then, quality level extraction unit 261 extracts subcarriers from CSI2 5,6,7,9,11,16,17,18,22 respective SNR values, and with reference to the classification result memory 267, 267 is obtained from the classification result memory group 2 subcarrier numbers of subcarriers. 然后,质量电平提取单元261在提取出的SNR值分别添加相对应的副载波序号并输出到线路状态存储器262。 Then, quality level extraction unit 261 to add subcarrier number corresponding to each SNR value in the extracted state and outputs it to the line memory 262.

线路状态存储器262更新对应于从质量电平提取单元261输入的副载波序号的SNR值。 Update the line status memory 262 corresponding to the subcarrier numbers from quality level extraction unit 261 input SNR value. 换言之,只更新副载波1~24中的组2的副载波5、6、7、9、11、16、17、18、22的SNR值。 In other words, only the updated subcarrier 1 to subcarrier group 2 24 SNR value of 5,6,7,9,11,16,17,18,22. 通过这个处理,能够使在定时t4n+2的CSI发送装置的线路状态存储器382的内容与CSI接收装置的线路状态存储器262的内容同步。 Through this process, the content can be made in line with the state of the timing CSI CSI transmitting apparatus t4n ​​+ 2 of the line state memory 382 receives content storage apparatus 262 are synchronized.

接着,在定时t4n+3进行与在定时t4n+1相同的处理,并且在定时t4(n+1)进行与在定时t4n相同的处理。 Subsequently, the same processing as + 1 and the timing T4n timing t4n + 3, and at the timing t4 (n + 1) subjected to the same processing at timing t4n.

另外,也可以在图44和图45的定时t4n+1、t4n+3,不使生成定时信号和接收定时信号输入到CSI帧生成单元386和质量电平提取单元261。 Further, the timing may be T4n in FIG. 44 and FIG. 45 + 1, t4n + 3, and generates a timing signal without reception timing signal is input to CSI frame generation unit 386 and the quality level extraction unit 261.

此外,也可将阈值2兼用为帧分配阈值。 Further, the threshold value 2 may be used along with the frame assignment threshold.

这样,根据本实施方式,由于省略低于规定阈值的组的CSI的发送,能够削减对吞吐量的提升不具贡献的副载波(这里为副载波8、19)的反馈数据量,因此能够削减反馈数据量而不降低吞吐量特性。 Thus the amount of feedback data, according to the present embodiment, since the CSI set slightly lower than a predetermined transmitted threshold Province, subcarriers can be reduced to improve the throughput of non-contribution (here, subcarriers 8,19), it is possible to reduce the feedback the amount of data without degrading throughput characteristics.

接下来,说明帧分配阈值的设定例。 Next, an example of setting the frame assignment threshold value.

&lt;设定例1&gt; & Lt; Example 1 & gt setting;

将最低接收SNR值或最低接收功率值设定为帧分配阈值。 The minimum received SNR value or minimum reception power value is set as the frame assignment threshold. 所谓最低接收SNR值(最低接收功率值)是表示不能以低于该值的SNR值(功率值)进行通信的值。 The so-called minimum reception SNR value (minimum received power value) is not less than the value SNR value (power value) for a value of the communication. 因此,即使反馈该最低接收SNR值(最低接收功率值)以下的副载波的CSI,也不能将该副载波用于数据发送。 Therefore, even if the feedback CSI subcarriers minimum reception SNR value (minimum received power value) or less, the subcarriers can not be used for data transmission.

&lt;设定例2&gt; & Lt; setting example 2 & gt;

将与可选择的多个调制方式中调制电平最小的调制方式(即,最具鲁棒性的调制方式)对应的选择阈值设定为帧分配阈值。 The minimum electrical level modulation scheme with the modulation of the plurality of selectable modulation schemes (i.e., the most robust modulation) corresponding to the selected threshold value is set as the frame assignment threshold. 在将低于最低接收SNR值的副载波用于数据发送的通信系统中,由于以最具鲁棒性的调制方式发送低于与最具鲁棒性的调制方式对应的选择阈值的副载波,不需要频繁地反馈CSI。 In the below the minimum received SNR values ​​of subcarriers for a communication system the transmitted data, since the transmission to the most robust modulation scheme below subcarrier and the most robust modulation scheme corresponding to the selected threshold value, no feedback CSI frequently.

&lt;设定例3&gt; & Lt; Example 3 & gt setting;

根据作为CSI的值(例如,SNR值)的时间变动速度设定帧分配阈值。 Setting the frame assignment threshold value according to a time variation rate (eg, SNR value) of the CSI. 例如,SNR值的时间变动速度随着移动台的移动和周边物体的移动而产生。 For example, the time variation of the SNR value with the movement speed of movement of the mobile station and the peripheral object is generated. 并且,在移动台的移动速度越高时,CSI的反馈周期越短。 And, when the moving speed of the mobile station is higher, the shorter the CSI feedback period. 并且,在本发明中,如上述,在SNR值越小时使反馈周期越短。 Further, in the present invention, as described above, so that the feedback is smaller SNR value period shorter. 另外,不能以比通信系统中容许的最短反馈周期还要短的周期进行反馈。 Further, the feedback can not allow a communication system than the shortest period even shorter feedback cycle. 因此,为了不发送成为低于该最短的反馈周期的反馈周期的CSI帧,设定与SNR值的时间变动速度对应的帧分配阈值。 Therefore, in order not to be transmitted is less than the CSI frame feedback cycle shortest feedback period, and the time variation of the speed setting value corresponding to the SNR threshold distribution frame.

&lt;设定例4&gt; & Lt; setting example 4 & gt;

基于数据的传输率设定帧分配阈值。 Setting the frame assignment threshold based on the transmission rate of the data. 例如,在像OFDM系统这样将多个副载波分配给多个移动台的通信系统中,分配较多的副载波给数据传输率高的移动台,而数据传输率低的移动台只分配到极少的副载波。 For example, in such a plurality of subcarriers are assigned to a plurality of mobile stations in communication systems such as an OFDM system, the subcarriers allocated more data transmission rate to the mobile station, and the data transmission rate is only assigned to a mobile station pole fewer subcarriers. 因此,对数据传输率高的移动台,将帧分配阈值设定得较低,对数据传输率低的移动台,将帧分配阈值设定得较高,由此能够控制CSI被反馈的副载波的数量。 Thus, the data transmission rate of the mobile station, the frame assignment threshold value is set too low, the mobile station data transmission rate, the frame assignment threshold value is set higher, thereby controlling the feedback CSI subcarriers quantity.

(实施方式7)在本实施方式中,将MCS(Modulation and Coding Scheme)值作为CSI发送这方面与实施方式3不同。 (Embodiment 7) In the present embodiment, the MCS (Modulation and Coding Scheme) value as the CSI transmitting this context is different from Embodiment 3.

现使用图47详细说明本实施方式的CSI处理单元38的结构。 Now to FIG. 47 structure CSI processing unit 38 according to the present embodiment is described in detail. 然而,在图47中,对与实施方式3(图23)相同的结构赋予相同的标号,并省略其说明。 However, in FIG. 47, a third embodiment (FIG. 23) of the same structure are given the same reference numerals, and a description thereof will be omitted.

由质量电平测定单元381测定的每个副载波的SNR值被输入到MCS变换单元391。 SNR value for each subcarrier is measured by the quality level measurement unit 381 is input into the converting unit 391 MCS.

MCS变换单元391将每个副载波的SNR值变换为MCS值。 The conversion unit 391 MCS SNR value for each subcarrier is converted into MCS value. 从SNR值到MCS值的变换如图48、49所示地进行。 SNR values ​​to MCS values ​​from the conversion performed as shown in FIG. 48 and 49. 换言之,MCS变换单元391比较SNR值和阈值TH1~TH7,基于比较结果将SNR值变换为MCS值0~7。 In other words, MCS comparing SNR value converting unit 391 and the threshold value TH1 ~ TH7, based on the comparison SNR values ​​into the MCS value of 0 to 7. 具体地说,例如SNR值位于TH4以上且低于TH3的范围内时,在图48,与该SNR值对应的MCS为QPSK,R=3/4,在图49,与QPSK,R=3/4的MCS对应的MCS值为4,因此MCS变换单元391将该SNR值变换为MCS值=4。 Specifically, the SNR value is lower than the TH3 and TH4 above range, in FIG. 48, the SNR value corresponding to the MCS is QPSK, R = 3/4, in FIG. 49, the QPSK, R = 3 / MCS corresponding to the MCS 4 is 4, and therefore MCS conversion unit 391 is converted into the MCS value SNR value = 4. 另外,在SNR值低于TH7时,视为不能接收而将该SNR值变换为MCS值=0。 Further, the SNR is less than the value TH7, the reception can not be regarded as the SNR values ​​into MCS = 0. 以上述方式变换的各个副载波的MCS值被输入到线路状态存储器382。 MCS value for each subcarrier in the above manner is input to the converting line state memory 382.

线路状态存储器382保持从MCS变换单元391输入的每个副载波的MCS值。 Line state holding memory 382 MCS value for each subcarrier inputted from the conversion unit 391 MCS.

阈值计算单元392在所有副载波上平均被存储在线路状态存储器382中每个副载波的MCS值以求平均MCS值,使用该平均MCS值设定比较单元384的阈值。 Threshold calculating unit 392 on the average for all sub-carriers are stored in the line memory 382 in a state MCS value for each subcarrier in order to average MCS value, using the average MCS value setting a threshold value comparing unit 384. 阈值计算单元392的详细说明将后述。 Threshold value calculation unit 392 will be described in detail later.

比较单元384对在阈值计算单元392计算出的阈值和存储在线路状态存储器382的每个副载波的MCS值进行比较。 Calculated comparison unit 384 in the threshold unit 392 calculates the threshold value and compares the stored values ​​of MCS for each subcarrier 382 of the line status memories.

比较结果存储器385将比较单元384的比较结果按每个副载波存储并保持。 Comparison result memory 385 to the comparison unit 384 of a comparison result for each subcarrier stored and held. 比较结果存储器385的存储内容根据从CSI发送控制单元39输入的更新定时信号被更新。 Comparison result memory 385 stored contents are updated in accordance with the transmission control unit from the CSI 39 updates the input timing signal.

然后,使用图50详细说明图47所示的阈值计算单元392。 Then, using FIG. 50 shows details of the threshold calculating unit 47 shown in FIG. 392 will be described. 然而,在图50中,对与实施方式3(图24)相同的结构赋予相同的标号,并省略其说明。 However, in FIG. 50, a third embodiment (FIG. 24) of the same structure are given the same reference numerals, and a description thereof will be omitted.

MCS/对数变换单元3876基于图48、49,将存储在线路状态存储器382的每个副载波的MCS值变换为SNR值。 MCS / 3876 of FIG. 48 and 49 based on the MCS value for each subcarrier of the channel status memory 382 stores digital conversion unit converting SNR value. 换言之,MCS/对数变换单元3876进行与MCS变换单元391的变换相反的变换。 In other words, MCS / logarithmic transformation unit 3876 perform inverse transformation of the transform unit 391 of MCS conversion. 具体而言,例如,输入的MCS值为4时,MCS/对数变换单元3876将该MCS值变换为TH4的值的SNR值。 Specifically, for example, the MCS value 4 input, MCS / MCS values ​​for the 3876 digital conversion unit is converted into the value of the SNR and TH4. 在此,将MCS值=4变换为TH4的值的SNR值而不是TH3的值的SNR值,这是为了通过变换为QPSK,R=3/4的MCS被选择的规定范围(即,TH4以上且低于TH3的范围)的SNR值中的下限值TH4,来防止变换后的SNR值大于在质量电平测定单元381测定的实际的SNR值。 Here, the MCS value = 4 is converted into SNR value TH4 are instead SNR value of TH3, which is to by converting QPSK, the predetermined range R = MCS 3/4 is selected (i.e., TH4 or more SNR value TH3 and less than the range of) the lower limit value TH4, to prevent the converted SNR value SNR value greater than the actual quality level measurement unit 381 is measured. 以上述方式变换的各个副载波的SNR值被输入到对数/线性变换单元3871。 SNR value of each subcarrier in the above manner is input into the conversion log / linear conversion unit 3871.

另一方面,MCS变换单元3877以与MCS变换单元391相同的动作,将从偏移赋予单元3875输入的赋予偏移后的平均SNR值[dB]变换为MCS值。 On the other hand, MCS conversion unit 3877 in the same operation with the MCS conversion unit 391, the offset from the average SNR value [dB] after imparting unit 3875 imparting offset converting the input MCS value. 由此,可获得在比较单元384使用的阈值。 Thus, the threshold value is obtained in the comparison unit 384 for use.

然后,比较单元384比较保持在线路状态存储器382的每个副载波的MCS值和阈值,将该比较结果写入比较结果存储器385。 Then, the comparison unit 384 and the comparator remains in the MCS value for each subcarrier threshold line state memory 382, ​​the comparison result of the comparison result memory 385 is written.

另外,对比较结果存储器385的写入之后的处理与实施方式3相同,故省略其说明。 Further, the same as the embodiment of the processing after writing, comparison result memory 385 of the 3, description thereof is omitted. 但是,本实施方式的CSI帧格式如图9、图18所示,以MCS值取代SNR值。 However, the CSI frame format of the present embodiment 9, as shown in FIG. 18, a substituted SNR value to an MCS value.

另外,本实施方式的CSI处理单元26在由质量电平提取单元261提取MCS值这一点,以及由阈值计算单元264与阈值计算单元392同样地计算MCS值的阈值这一点与实施方式3(图26)不同,其他部分则与实施方式3相同,故省略其说明。 Further, the CSI processing unit of the present embodiment 26 unit 392 similarly calculates MCS value threshold calculation 261 extracts MCS value from the quality level extraction unit that, and calculated by the threshold unit 264 with the threshold value that the third embodiment (FIG. 26) different from the third embodiment is the same as other portions, description thereof is omitted.

再有,也可以由偏移赋予单元3875通过对平均SNR值[dB]赋予相互不同的多个偏移来设定多个阈值,将各个副载波的MCS值分类成三个以上的组。 Further, means may also be imparted by the offset 3875 by the average SNR value [dB] offset from each other to impart a plurality of different sets of the plurality of thresholds, the MCS values ​​of the respective sub-carriers classified into three or more groups. 也可以在实施方式3同样地,将各个副载波的SNR值分类成三个以上的组。 3 can be similarly, the SNR value of each subcarrier classified into three or more groups in the embodiment.

这样,根据本实施方式,由于将各个副载波的MCS值作为CSI进行传输,与使SNR作为CSI的情况相比,能够进一步削减反馈信息的数据量。 Thus, according to this embodiment, since each subcarrier MCS value transmitted as CSI, as compared with a case where the CSI SNR, it is possible to further reduce the data amount of feedback information. 尤其在进行自适应调制的通信系统中,在由经过自适应调制的数据的接收端决定MCS并反馈到发送端时,能够根据本实施方式一起进行需要自适应调制的反馈,从而能够进行更有效率的反馈。 In particular, performing adaptive modulation communication system, when determining MCS by the reception terminal through adaptive modulation and feedback data to the transmitting side, can be performed with the required feedback adaptive modulation according to the present embodiment, can be performed more efficiency of feedback.

(实施方式8)在本实施方式中,使用传输路径响应的时间变动量、SNR值在频域的方差值(方差SNR值)、在所有副载波的SNR的平均值(平均SNR值),对阈值的数值、阈值的数量、阈值的间隔、CSI帧的发送周期进行适宜的控制。 Time variation (Embodiment 8) In the present embodiment, using the transmission channel response, the variance in the SNR value (SNR variance value) in the frequency domain, the average SNR of all of the subcarriers (average SNR value), the threshold value, the threshold value of the number, spacing, CSI frame transmission period threshold value appropriately controlled.

现使用图51详细说明本实施方式的CSI发送装置的结构。 Now to FIG. 51 structure CSI transmitting apparatus according to the present embodiment is described in detail. 然而,在图51中,对与实施方式1(图2)相同的结构赋予相同的标号,并省略其说明。 However, in FIG. 51, the same configuration of Embodiment 1 (FIG. 2) are given the same reference numerals, and a description thereof will be omitted.

时间变动量测定单元51从每个副载波的传输路径响应值测定传输路径响应的时间变动量。 Time variation amount measuring unit 51 in response to the amount of time variation of the propagation path from the transmission path in response to a value measured for each subcarrier. 例如在“三瓶政一、「基礎からシステム設計までデイジタル ワイヤレス伝送技術」、ピアソン·ェデユケ一シヨン、2002年9月、2.4.6節(page 33-35)”中,记载了有关在正交坐标系统和极坐标系统的衰落变动的观测方法。于是,时间变动量计算单元51例如由以下方式测定传输路径响应的时间变动量。 For example, in "three bottles of Zhengyi," the foundation kara Silicone su Te Rousseau Design Ma - de video game イ ji Tatari Hikaru wa イ River Laboratories Ritz su vale delivery technology, "ピ ア Toso nn S Factory Du Pont Chemical, a Silicone ヨ nn, September 2002, section (page 33-35) 2.4.6", it is described about the orthogonal coordinates the method of fading fluctuation observation system and a polar coordinate system. Thus, for example, an amount of time variation in response to time variation measured by the transmission path calculation unit 51 in the following manner.

&lt;测定例1&gt; & Lt; Example 1 & gt measurement;

将使用极坐标系统的传输路径响应的时间变动量的测定例示于图52。 Determination of the amount of time variation embodiment uses the transmission path in response to a polar coordinate system 52 is shown in FIG. 如图52所示,在时间变动量测定单元51对传输路径响应的包络线的变动设定阈值,测定在规定的测定期间中该变动从上往下与阈值交叉(或从下往上与阈值交叉)的次数,测定传输路径响应的每单位时间的时间变动量。 As shown in FIG envelope fluctuation time variation amount measuring unit 51 in response to the transmission path 52 is set to the threshold value, the measurement of the change down threshold crossing from a predetermined measurement period (or from the bottom and time variation in the number of threshold crossing), the channel response measured per unit time.

&lt;测定例2&gt; & Lt; Measurement Example 2 & gt;

如图53所示,在时间变动量测定单元51,观测I-ch或Q-ch的振幅值的时间变动,测定该变动的方向(微分值的符号)的每单位时间变化的次数,测定传输路径响应的每单位时间的时间变动量。 Number of times per unit time changes in the direction (the sign of the differential value) as shown, vary the amount of time variation time measurement unit 51, the observed I-ch or Q-ch of the amplitude value, the measured change 53, a transmission measurement time variation amount per unit time of the channel response.

&lt;测定例3&gt; & Lt; Example 3 & gt measurement;

时间变动量测定单元51检测最大多普勒频率,从最大多普勒频率测定传输路径响应的每单位时间的时间变动量。 Time variation amount measuring unit 51 detects the maximum Doppler frequency, the amount of time variation in channel response from the measured maximum Doppler frequency per unit time.

并且,图51中的SNR计算单元52采用图54所示的结构,计算平均SNR值和方差SNR值。 And, SNR calculation unit 52 of FIG. 51 in the configuration shown in FIG. 54, calculates an average SNR value and SNR variance value.

在图54中,质量电平测定单元521与实施方式1的质量电平测定单元381同样地,从由传输路径响应估计单元37输入的每个副载波的传输路径响应值测定每个副载波的SNR。 In Figure 54, the quality level of the cell 521 of Embodiment 1 quality level measurement unit 381 in the same manner, from the transmission path estimation unit for each subcarrier inputted from the transmission path 37 in response to the measured response value for each subcarrier measured SNR.

平均SNR计算单元522从每个副载波的SNR值计算所有副载波的平均SNR值。 Average SNR calculation unit 522 calculates an average SNR value of all the subcarriers from the SNR value for each subcarrier.

平均SNR计算单元523从每个副载波的SNR值和平均SNR值计算所有副载波的方差SNR值。 The SNR calculation unit 523 calculates the average of all sub-carriers from the SNR value for each subcarrier and average SNR value SNR variance value.

更具体地说,平均SNR值和方差SNR值由以下方式计算。 More specifically, the average SNR value and SNR variance value calculated in the following manner.

平均SNR计算单元522将每个副载波的SNR值γm,k从dB值变换为真值的SNR值Γm,k后,基于上述式(2),在所有副载波平均每个副载波的SNR值(真值)Γm,k,计算平均SNR值(真值)。 Average SNR calculation section 522 for each subcarrier SNR value γm, k from dB values ​​into true value SNR value Γm, after k, all the average SNR values ​​of the subcarriers for each subcarrier by the formula (2), based on (true value) Γm, k, calculate the average SNR value (true value). 并且,平均SNR计算单元522同样地计算dB值的平均SNR值。 And, average SNR calculation section 522 calculates the average SNR value in the same manner dB value.

方差SNR计算单元523将每个副载波的SNR值γm,k从dB值变换为真值的SNR值Γm,k后,基于式(13)从SNR值Γm,k和在平均SNR计算单元522计算出的平均SNR值(真值)计算方差SNR值(真值)。 The variance of the SNR calculation unit 523 for each subcarrier SNR value γm, k from dB values ​​into true value SNR value Γm, after k, based on the formula (13) Γm, k, and the average SNR value calculated from the SNR calculation unit 522 the average SNR value (true value) calculating the variance of SNR value (true value). 并且,方差SNR计算单元523通过线性-对数变换,从方差SNR值(真值)获得dB值的方差SNR值。 Then, SNR variance calculation unit 523 by the linear - logarithmic transformation, the variance of the SNR values ​​obtained from the variance value dB SNR value (true value).

V(&Gamma;k)=1M&Sigma;m=1M(&Gamma;m,kE(&Gamma;k))2&CenterDot;&CenterDot;&CenterDot;(13)]]>另外,作为表示传输路径响应的频率变动的参数,可以使用下面的参数以取代方差SNR值。 V (& Gamma; k) = 1M & Sigma; m = 1M (& Gamma; m, kE (& Gamma; k)) 2 & CenterDot; & CenterDot; & CenterDot; (13)]]> In addition, the parameters frequency variation as represented by a transmission channel response may be instead of following parameters SNR value variance.

·瞬时SNR的平均变化量uk=1M&Sigma;m=1M|&Gamma;m,kE(&Gamma;k)|&CenterDot;&CenterDot;&CenterDot;(14)]]>·瞬时SNR的最大变化量vk=max1&le;m&le;M||&Gamma;m,kE(&Gamma;k)||&CenterDot;&CenterDot;&CenterDot;(15)]]>·瞬时SNR的最大变化量平方xk=max1&le;m&le;M||&Gamma;m,kE(&Gamma;k)||2&CenterDot;&CenterDot;&CenterDot;(16)]]>·瞬时SNR的最大和最小的差zk=12|max1&le;m&le;M&Gamma;m,k-min1&le;m&le;M&Gamma;m,k|&CenterDot;&CenterDot;&CenterDot;(17)]]>·瞬时SNR的最大的平方与最小的平方的差dk=max1&le;m&le;M|&Gamma;m,k|2-min1&le;m&le;M|&Gamma;m,k|2&CenterDot;&CenterDot;&CenterDot;(18)]]>CSI处理单元38和CSI处理发送控制单元39根据传输路径响应的时间变动量、平均SNR值(dB值)以及方差SNR值(dB值),如图55所示,对阈值的数值、阈值的数量、阈值的间隔、CSI帧的发送周期进行控制。 * Average change uk instantaneous SNR is = 1M & Sigma; m = 1M | & Gamma; m, kE (& Gamma; k) | & CenterDot; & CenterDot; & CenterDot; (14)]]> maximum variation Instantaneous SNR of vk = max1 & le; m & le ; m || & Gamma; m, kE (& Gamma; k); & CenterDot; & CenterDot; & CenterDot || (15)]]> · maximum variation of instantaneous SNR square xk = max1 & le; m & le; m || & Gamma; m, kE (& Gamma; k) || 2 & CenterDot; & CenterDot; & CenterDot; (16)]]> · instantaneous SNR maximum and minimum difference between zk = 12 | max1 & le; m & le; m & Gamma; m, k-min1 & le; m & le; m & Gamma; m, k | & CenterDot; & CenterDot; & CenterDot; (17)]]> largest square-instantaneous SNR of the smallest square difference dk = max1 & le; m & le; m | & Gamma; m, k | 2-min1 & le; m & le; m | & Gamma ; m, k | 2 & CenterDot; & CenterDot; & CenterDot; (18)]]> time variation CSI processing section 38 and CSI processing transmission control unit 39 according to the transmission path response, average SNR value (dB value) and the variance of the SNR values ​​(dB value), shown in Figure 55, the threshold value of the threshold number, spacing, CSI frame transmission period threshold value control. 下面举出几个典型的控制例。 Several embodiments below include typical control.

&lt;控制例1:基于传输路径响应的时间变动量的阈值的数值的控制&gt; & Lt; Control Example 1: a threshold value of the variation amount of time based on the transmission path in response to a control & gt;

在传输路径响应的时间变动量大时,副载波整体的SNR的时间变动也变大。 When the time variation amount of channel response, a subcarrier SNR time variation is also large overall. 相反地,在传输路径响应的时间变动量小时,副载波整体的SNR的时间变动也变小。 In contrast, the response time in the transmission path variation amount is small, the time variation of the overall subcarrier SNR also becomes smaller. 于是,在CSI处理单元38,为进行配合时间变动量的CSI帧的分配而进行控制,在传输路径响应的时间变动量大时提高对SNR值的阈值,在传输路径响应的时间变动量小时降低对SNR值的阈值。 Accordingly, the CSI processing unit 38, is allocated CSI frame variation amount with time is controlled to improve the threshold of the SNR value at the time of the transmission path in response to changes in capacity, reduce the time variation amount is small in the transmission path response threshold of SNR value. 根据该控制,使基于每个副载波的信道的时间变动速度的CSI帧分配成为可能,能够削减反馈数据量而不使接收性能恶化。 According to this control, the speed variation makes CSI frame allocated channel time based on each sub-carrier is made possible, the amount of feedback data can be reduced without deteriorating the reception performance.

&lt;控制例2:基于平均SNR值的阈值的数量的控制&gt; & Lt; Control Example 2: based on the number of threshold values ​​for the control average SNR & gt;

在平均SNR值高时,即使是SNR值低的副载波也能够采用具鲁棒性的调制方式,能够以所有的副载波进行通信,因此CSI处理单元38增加阈值的数量并增加CSI帧的种类。 When high average SNR value, even if the low SNR values ​​of sub-carriers can be employed robust modulation scheme with, can communicate to all subcarriers, and therefore CSI processing section 38 increases the number of thresholds and increase the types of CSI frame . 相反地,平均SNR值低时,由于SNR值低的副载波包含在噪声区域,因此CSI处理单元38减少阈值的数量。 Conversely, when the average SNR value is low, due to the low SNR values ​​of subcarriers included in the noise region, and therefore CSI processing unit 38 to reduce the number of thresholds.

&lt;控制例3:基于方差SNR值的阈值的间隔的控制&gt; & Lt; Control Example 3: based on a control interval threshold value SNR variance & gt;

方差SNR值大时,各个副载波的SNR值可取的范围变大。 When the variance is large SNR value, SNR value of each subcarrier preferably larger scope. 相反地,方差SNR值小时,各个副载波的SNR值可取的范围变小。 In contrast, SNR variance value is small, the SNR value of each subcarrier possible range becomes small. 于是,CSI处理单元38为配合这样的范围的变化,在方差SNR值大时增大阈值的间隔,在方差SNR值小时减小阈值的间隔。 Accordingly, the CSI processing unit 38 to change with such a range, increasing the threshold value interval when SNR variance is large values, reduce the spacing variance threshold SNR value is small.

&lt;控制例4:基于方差SNR值的阈值的数量的控制&gt; & Lt; Control Example 4: based on the number of threshold values ​​for the control SNR variance & gt;

方差SNR值大时,各个副载波的SNR值可取的范围变大。 When the variance is large SNR value, SNR value of each subcarrier preferably larger scope. 相反地,方差SNR值小时,各个副载波的SNR值可取的范围变小。 In contrast, SNR variance value is small, the SNR value of each subcarrier possible range becomes small. 于是,CSI处理单元3 8为配合这样的范围的变化,在方差SNR值大时增加阈值的数量,在方差SNR值小时减少阈值的数量。 Accordingly, the CSI processing unit 38 to change with such a range, increasing the number of threshold values ​​when SNR variance is large, reducing the number of threshold SNR value variance hours.

并且,CSI处理单元38内部的CSI帧生成单元386为由CSI发送装置和CSI接收装置共享对于阈值和发送周期的设定,使用如图56所示的包含传输路径响应的时间变动量、平均SNR值以及方差SNR值的帧格式,以取代图9所示的帧格式。 Further, the processing unit 38 is inside the CSI CSI frame generation section 386 by the CSI transmitting apparatus and the CSI receiving apparatus for setting a threshold value and a shared transmission period, the amount shown in Figure 56 comprises a time variation of channel response, average SNR value and the variance of the frame format SNR value, instead of the frame format shown in Fig. 这样,通过反馈所有的传输路径响应的时间变动量、平均SNR值以及方差SNR值,在CSI接收装置变得不需要这些计算。 Thus, the amount of time variation of all the feedback transmission path response, average SNR value, and SNR variance value, the CSI receiving apparatus becomes unnecessary these calculations. 另外,平均SNR值和方差SNR值能够在CSI接收装置从所有副载波的SNR值计算出,CSI帧生成单元386也可以使用如图57所示的不包含平均SNR值和方差SNR值的帧格式,以取代图9所示的帧格式。 Further, the average SNR value and SNR variance values ​​can be calculated in the CSI receiving apparatus from the SNR values ​​of all subcarriers, CSI frame generation unit 386 may use the frame format shown does not include the average SNR value and SNR variance values ​​57 shown in FIG. , instead of the frame format shown in Figure 9.

接下来,使用图58详细说明本实施方式的CSI处理单元26的结构。 Next, a detailed configuration of FIG CSI processing unit 58 according to the embodiment 26 of FIG. 图58所示的结构是,CSI发送装置使用图57所示的帧格式时的CSI处理单元26的结构。 Structure shown in FIG 58, the configuration of CSI processing unit when the frame format shown in FIG. 57 using the CSI transmitting apparatus 26. CSI发送装置使用图56的帧格式时,变得不需要平均SNR计算单元268和方差SNR计算单元269。 When the CSI transmitting apparatus uses the frame format of FIG. 56, it becomes unnecessary average SNR variance calculation unit 268 and SNR calculating section 269. 然而,在图58中,对与实施方式3(图26)相同的结构赋予相同的标号,并省略其说明。 However, in FIG. 58, a third embodiment (FIG. 26) of the same structure are given the same reference numerals, and a description thereof will be omitted.

质量电平提取单元261从CSI帧提取每个副载波的SNR值,与副载波序号一起输出到线路状态存储器262。 Quality level extraction unit 261 extracts each subcarrier from a CSI SNR value, the output state to the line memory 262 with subcarrier numbers. 并且,质量电平提取单元261从CSI帧提取传输路径响应的时间变动量,输出到阈值参数决定单元270。 Further, the quality level of the time variation amount extraction unit 261 extracts the transmission path response from the CSI, parameter determination threshold output unit 270.

平均SNR计算单元268通过与图54的平均SNR计算单元522相同的处理,计算平均SNR值。 Average SNR calculation unit 268 by the same processing unit 522 calculates the average SNR of FIG. 54, the calculated average SNR value. 并且,方差SNR计算单元269通过与图54的方差SNR计算单元523相同的处理,计算平方差SNR值。 Then, SNR variance calculation unit 269 by the same processing unit 523 calculates the variance of the SNR of FIG. 54, calculates the square difference SNR value.

阈值参数决定单元270根据图55,基于传输路径响应的时间变动量、平均SNR值和方差SNR值生成有关阈值的数值、阈值的数量以及阈值的间隔的控制信息,输出到阈值计算单元264。 Threshold parameter determination unit 270 according to FIG. 55, the amount of time variation based on the transmission path response, average SNR value and the variance of SNR value generating values ​​relating to the threshold value, the control information is the interval number and the threshold of the threshold value is output to the threshold value calculation unit 264.

然后,阈值计算单元264根据该控制信息计算阈值。 Then, the threshold value calculation unit 264 calculates a threshold based on the control information.

通过CSI处理单元26的这样的动作,能够在CSI接收装置设定与在CSI发送装置使用的阈值相同的阈值。 By such an operation CSI processing unit 26, the receiving apparatus can be set to the same threshold value of the transmission apparatus used in the CSI in CSI threshold.

这样,在本实施方式中,能够根据传输路径响应的时间变动量、平均SNR值以及方差SNR值进行适宜的CSI帧的分配、适宜的CSI帧数量的设定以及适宜的反馈周期的设定,从而能够削减反馈信息的数据量而不使由自适应控制调节到最佳的吞吐量特性降低。 CSI frame number described above, in the present embodiment, the amount of variation in response time according to the transmission path, the average SNR value and SNR variance values ​​allocated appropriately CSI frame, and a suitable setting appropriate feedback cycle setting, thereby reducing the data amount of feedback information without causing the adaptive control is adjusted to the optimum throughput characteristics.

以上为本发明实施方式的说明。 Embodiment of the present invention the above described embodiment.

然而,在上述实施方式中,说明了由图2所示的无线通信装置发送CSI,图1所示的无线通信装置基于接收到的CSI决定调制参数的结构。 However, in the above-described embodiment, the radio communication apparatus described CSI transmitted by the wireless communication apparatus shown in FIG. 2, the structure shown in FIG. 1 determines modulation parameter based on the received CSI. 但是,也可以采用由图2所示的无线通信装置发送调制参数而不是CSI的结构。 However, it may be transmitted using modulation parameters of the radio communication apparatus shown in FIG. 2 instead CSI structure. 换言之,也可以是由图2所示的无线通信装置基于质量电平决定每个副载波(频段)的调制参数,与上述的CSI的发送同样地发送调制参数,由图1所示的无线通信装置基于接收到的调制参数进行编码、调制、发送功率控制的结构。 In other words, the radio communication apparatus may be as shown in FIG. 2 quality level is determined for each subcarrier (frequency) of the modulation parameters based CSI transmitting modulation parameters to the transmission in the same manner described above, as shown in FIG. 1 by the wireless communication It means structural coding, modulation, transmission power control based on the received modulation parameter.

另外,在上述实施方式中,虽然将CSI帧的种类说明为两种,但也可以设定多个阈值使CSI帧的种类为三种以上。 Further, in the above-described embodiment, although the description of the type of CSI frame into two, but may be set so that a plurality of threshold values ​​CSI frame type is three or more.

再有,频段有时也被称为资源块、子信道、副载波块、子带或是块(chunk)。 Furthermore, the band is also sometimes called a resource block, subchannel subcarrier blocks, or subband block (chunk).

另外,无线通信终端装置(移动台)有时被称为UE,无线通信基站装置有时被称为Node B,副载波有时被称为音调。 Further, the radio communication terminal apparatus (mobile station) is sometimes referred to as UE, the radio communication base station apparatus is sometimes referred to as Node B, a subcarrier may be referred to as tones.

再有,在上述实施方式中以硬件构成本发明的情况为例进行了说明,但本发明也能够以软件实现。 Further, in the above-described embodiments of the present invention is configured by hardware has been described as an example, but the present invention can also be implemented in software.

再有,上述实施方式的说明中的各功能块可实现为一般作为集成电路的LSI。 Further, the above embodiment described in the functional blocks may be implemented as an LSI as an integrated circuit in general. 这些块既可是每个块分别集成到一个芯片,或者可以是部分或所有块集成到一个芯片。 These may be separately integrated into one chip each block, or some or all blocks may be integrated into a chip.

并且,虽然此处称为LSI,但根据集成程度,可以称为IC、系统LSI、高级LSI(Super LSI)、或超级LSI(Ultra LSI)。 Also, although referred to herein as LSI, but the degree of integration and to be called IC, system LSI, Advanced LSI (Super LSI), or ultra LSI (Ultra LSI).

另外,实现集成电路化的方法不仅限于LSI,也可使用专用电路或通用处理器来实现。 Further, the method of circuit integration is not limited to LSI, and implementation using dedicated circuitry or general purpose processors is also possible. 在LSI制造后可利用可编程的FPGA(Field Programmable GateArray),或者可以使用可重构LSI内部的电路单元的连接或设定的可重构处理器。 After LSI manufacture, available programmable FPGA (Field Programmable GateArray), or may use a reconfigurable processor reconfigurable circuit cells within the LSI or setting of a connection.

再有,随着半导体的技术进步或随之派生的其他技术的出现,如果能够出现替代LSI集成回路化的新技术,当然可利用此技术进行功能块的集成化。 Further, with the advent of other technologies advancement of semiconductor technology or a derivative, if integrated circuit technology to replace LSI can occur of course, this technique can be used to integrate the functional blocks. 并且存在着适用生物技术的可能性。 And there is the possibility of applying biotechnology.

本说明书基于2004年9月10日提交的日本专利申请第2004-264606号和2005年8月26日提交的日本专利申请第2005-246088号。 This application is based on Japanese Patent Japanese Patent Application September 10, 2004 No. 2004-264606 filed and August 26, 2005 filed Application No. 2005-246088. 其内容都包含于此以资参考。 Its contents are incorporated herein by reference.

工业实用性本发明适用于在移动通信系统中使用的无线通信基站装置和无线通信终端装置等。 Industrial Applicability The present invention is suitable for use in a mobile communication system, a radio communication base station apparatus and radio communication terminal apparatus and the like.

Claims (7)

1.一种无线通信装置,包括:接收单元,接收由多个副载波组成的多载波信号;测定单元,测定所述多载波信号的每个副载波或每个频段的质量电平;比较单元,对所述质量电平或所述质量电平的变动量和阈值进行比较;以及发送单元,以第一反馈周期发送所述质量电平低于所述阈值的一部分副载波或一部分频段或者所述变动量超过所述阈值的一部分副载波或一部分频段的CSI或调制参数,并以大于所述第一反馈周期的第二反馈周期发送所有副载波或所有频段的CSI或调制参数。 A radio communication apparatus comprising: a receiving unit that receives a multicarrier signal composed of a plurality of subcarriers; measuring unit measures the quality of each subcarrier or the level of each frequency band of the multicarrier signal; comparing unit , the level or quality of the quality and the level variation threshold value; and a transmission unit that transmits the quality level is below the threshold value a part of subcarriers or a portion of a first frequency band or the feedback period said amount of variation exceeds the threshold value a part or a portion of the subcarrier frequency of CSI or modulation parameters, and send all subcarriers or all bands CSI or modulation parameters of the first feedback period greater than the second feedback period.
2.如权利要求1所述的无线通信装置,其中所述发送单元将在所述比较单元的比较结果作为CSI而发送。 The radio communication apparatus according to claim 1, wherein the transmission unit transmits the CSI as a comparison result of the comparison unit.
3.如权利要求1所述的无线通信装置,其中,还包括:设定单元,使用所述多个副载波的所述质量电平的平均值或中间值来设定所述阈值。 The wireless communication apparatus according to claim 1, wherein, further comprising: setting means, using the plurality of subcarriers of the quality level of the average or median value of the set threshold value.
4.如权利要求1所述的无线通信装置,其中,还包括:生成单元,生成第一帧和第二帧,该第一帧由所述质量电平超过所述阈值的副载波或频段组成,或者由所述变动量低于所述阈值的副载波或频段的CSI或调制参数组成,该第二帧由所述质量电平低于所述阈值的副载波或频段组成,或者由所述变动量超过所述阈值的副载波或频段的CSI或调制参数组成,所述发送单元以所述第二帧的反馈周期的整数倍的反馈周期发送所述第一帧。 The radio communication apparatus according to claim 1, wherein, further comprising: a generating unit for generating first and second frames, the first frame by the quality level exceeds the threshold or a band composed of sub-carriers or a CSI sub-carriers or frequency or modulated by the variation amount of the parameter is below the threshold value the composition of the second frame by the subcarrier quality level is below the threshold or a band, or of the variation amount exceeds the threshold a subcarrier band or CSI or modulation parameters of composition, the transmitting unit to an integer multiple of a feedback cycle of the feedback frame transmitted in the second period of the first frame.
5.一种无线通信终端装置,包括如权利要求1所述的无线通信装置。 A radio communication terminal apparatus comprising the radio communication apparatus according to claim 1.
6.一种无线通信基站装置,包括如权利要求1所述的无线通信装置。 A wireless communication base station apparatus comprising the radio communication apparatus as claimed in claim 1.
7.一种无线通信方法,包括:接收步骤,接收由多个副载波组成的多载波信号;测定步骤,测定所述多载波信号的每个副载波或每个频段的质量电平;比较步骤,对所述质量电平或所述质量电平的变动量和阈值进行比较;以及发送步骤,以第一反馈周期发送所述质量电平低于所述阈值的一部分副载波或一部分频段或者所述变动量超过所述阈值的一部分副载波或一部分频段的CSI或调制参数,并以大于所述第一反馈周期的第二反馈周期发送所有副载波或所有频段的CSI或调制参数。 A wireless communication method, comprising: receiving step of receiving a multicarrier signal composed of a plurality of subcarriers; measuring step of measuring the quality of each subcarrier or the level of each frequency band of the multicarrier signal; comparing step , the level or quality of the quality and the level variation threshold value; and a transmission step of transmitting said quality level is below the threshold value a part of subcarrier frequency bands to a first or a portion of the feedback cycle, or said amount of variation exceeds the threshold value a part or a portion of the subcarrier frequency of CSI or modulation parameters, and send all subcarriers or all bands CSI or modulation parameters of the first feedback period greater than the second feedback period.
CN 200580030588 2004-09-10 2005-09-09 Wireless communication apparatus and wireless communication method CN101019358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264606 2004-09-10

Publications (1)

Publication Number Publication Date
CN101019358A true CN101019358A (en) 2007-08-15

Family

ID=38727290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580030588 CN101019358A (en) 2004-09-10 2005-09-09 Wireless communication apparatus and wireless communication method

Country Status (1)

Country Link
CN (1) CN101019358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103004116A (en) * 2010-07-16 2013-03-27 Lg电子株式会社 Method for transmitting control information and apparatus for same
CN105245267A (en) * 2010-04-02 2016-01-13 Lg电子株式会社 User equipment apparatus and method for feeding back channel state information in a wireless communication system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245267B (en) * 2010-04-02 2018-11-27 Lg电子株式会社 The method and user equipment (ue) device of feeding back channel state information in a wireless communication system
CN105245267A (en) * 2010-04-02 2016-01-13 Lg电子株式会社 User equipment apparatus and method for feeding back channel state information in a wireless communication system
CN105245266A (en) * 2010-04-02 2016-01-13 Lg电子株式会社 User equipment apparatus and method for feeding back channel state information in a wireless communication system
US9866360B2 (en) 2010-04-02 2018-01-09 Lg Electronics Inc. User equipment apparatus and method for feeding back channel state information in a wireless communication system
US10044485B2 (en) 2010-04-02 2018-08-07 Lg Electronics Inc. User equipment apparatus and method for feeding back channel state information in a wireless communication system
CN105245266B (en) * 2010-04-02 2018-11-27 Lg电子株式会社 The method and user equipment (ue) device of feeding back channel state information in a wireless communication system
CN103004116B (en) * 2010-07-16 2017-04-12 Lg电子株式会社 Method for transmitting control information and apparatus for same
CN103004116A (en) * 2010-07-16 2013-03-27 Lg电子株式会社 Method for transmitting control information and apparatus for same

Similar Documents

Publication Publication Date Title
Hanzo et al. OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting
KR101538008B1 (en) Interaction between maximum power reduction and power scaling in wireless networks
KR100825173B1 (en) Radio transmission apparatus and method of inserting guard interval
US8238468B2 (en) Radio transmission device and radio reception device
RU2427082C2 (en) Transmitting device, receiving device, method of transmitting data and method of receiving data
US7522544B2 (en) Radio communication apparatus and subcarrier assignment method
CA2553746C (en) Pilot transmission and channel estimation for an ofdm system with excess delay spread
US9313062B2 (en) Transmission of acknowledge/not acknowledge (ACK/NACK) bits and their embedding in the reference signal
CN101356755B (en) Method and apparatus for pilot signal transmission
CA2620168C (en) Configurable pilots in a wireless communication system
JP2006314110A (en) Method and apparatus for multiplexing data, and control information in wireless communications system, based on frequency division multiple access
US7715492B2 (en) Transmitter and transmission method
CN1611028B (en) Adaptive rate control for OFDM communication system
KR101052438B1 (en) Method and apparatus for multiplexing code division multiple access and single carrier frequency division multiple access transmissions
US8843142B2 (en) Radio communication apparatus and pilot symbol transmission method
KR100560386B1 (en) An apparatus for OFDMA transmission and reception for the coherent detection in the uplink, and a method thereof
US8571132B2 (en) Constrained hopping in wireless communication systems
EP2391049B1 (en) Radio communication mobile station apparatus, radio communication base station apparatus and cqi report method
KR100993872B1 (en) Pilot transmission and channel estimation with pilot weighting
KR100827051B1 (en) Radio transmission method, radio reception method, radio transmission apparatus and radio reception apparatus
Hanzo et al. OFDM and MC-CDMA: a primer
EP1538802A2 (en) Apparatus and method for controlling adaptive modulation and coding in an orthogonal frequency division multiplexing communication system
TWI624155B (en) Method and wireless transmit/receive unit for performing pulse shaping using different windowing functions for different sub-bands
US7852814B2 (en) Transmission control frame generation device and transmission control device
EP2090013B1 (en) Signal transmission in a wireless communication system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)