CN100590233C - Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof - Google Patents

Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof Download PDF

Info

Publication number
CN100590233C
CN100590233C CN200610032879A CN200610032879A CN100590233C CN 100590233 C CN100590233 C CN 100590233C CN 200610032879 A CN200610032879 A CN 200610032879A CN 200610032879 A CN200610032879 A CN 200610032879A CN 100590233 C CN100590233 C CN 100590233C
Authority
CN
China
Prior art keywords
aluminium
volts
aluminium flake
time
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610032879A
Other languages
Chinese (zh)
Other versions
CN1824844A (en
Inventor
沈培康
王振友
魏小兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN200610032879A priority Critical patent/CN100590233C/en
Publication of CN1824844A publication Critical patent/CN1824844A/en
Application granted granted Critical
Publication of CN100590233C publication Critical patent/CN100590233C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention relates to a manufacture method for self-supporting bypass nm alumina template that includes the following steps: cleaning the aluminum sheet of 99.9-99.999% purity, taking chemical smoothing process, putting the aluminum sheet into electrolyte tank, taking anode oxidation process in 0.1-0.4 mol/L oxalic acid solution in 0-5 degree centigrade, the oxidation DC voltage is 20-200V, oxidation time is 10minutes to 10 hours, removing the metal alumina and barrier layer and via hole by busing electrochemical method. The diameter of the alumina template is 2mm-10cm, and the hole-diameter is 5nm-200nm, thickness is 0.5mm-200mm. The invention could take place of traditional manufacture technology to make the manufacture of bypass nm alumina template safe, controllable, and convenienceand supply possibility for making super thin and super large scale alumina template.

Description

Self-supporting bi-pass nano-aluminium oxide form and preparation method thereof
Technical field
The present invention relates to alumina formwork, specifically is a kind of preparation method of self-supporting bi-pass nano-aluminium oxide form.
The invention still further relates to a kind of self-supporting bi-pass nano-aluminium oxide form.
Background technology
The surface of metallic aluminium can about tens nanometer thickness of spontaneous formation one deck in air the dense oxide film.The natural oxide film of this layer plays a protective role to metallic aluminium, still, far can not satisfy decoration and the requirement of shelter of people to aluminium and alloy thereof.20 beginnings of the century, people have been developed the electrochemical anodic oxidation technology of aluminium.The aluminium sample is in anode oxidation process, since the special property of oneself, the cell texture of generation local order.History [the J.Electrochem.Soc.1953 of existing over half a century of the research of anodizing of aluminium technology, 100,411], the bore hole size of discovering the multiaperture pellumina that forms with electrochemical method is in nanometer scale, this just for nano material particularly the preparation of nano wire and nanotube a good template is provided.Along with the development of nanosecond science and technology with need, be that the research of template is obtaining people's attention in the last few years with the porous nano aluminum oxide.The diameter of the hole of alumina formwork and the degree of depth can be controlled [J.Phy.Chem.1994,98,2963] by conditions such as controlled oxidation voltage, electrolytic solution and temperature.The template of Huo Deing can obtain the material such as nano wire, nanotube of various size, various materials by sedimentary method like this.Moreover, the size of the hole on same alumina formwork is almost equal and have certain arrangement order, when obtaining very orderly alumina formwork through after the suitable improvement.Such as, magnetic substance can be prepared highdensity magnetic memory device (density can be up to 1000G/cm on deposition in the hole 2) [J.Magnetism and Magnetic Materials, 2004,272-276,1598].Because electrochemical method can be controlled at easily and prepare nanotube, line and nanometer gradient or nano composite material in the alumina formwork, so the preparation of alumina formwork and further the application have caused extensive concern.
Common so-called alumina formwork is one deck aperture at the porous alumina membrane of several nanometers to the hundreds of nanometer, generally with the method preparation of constant potential.The preparation porous alumina membrane has certain thickness limits on the fine aluminium sheet, and used aluminum slice generally can not be penetrated by direct oxidation.Therefore, the porous alumina membrane of preparation dual channel structure need be removed remaining aluminium.The method of through hole mainly is a wet chemical etching method, is acidic solution mostly.In these solution, remove aluminium and barrier layer, can cause infringement and change aperture [Corros.Sci., 1978,12,133] simultaneously the oxidation template.Have adding the positive voltage of later stage on sample that oxidation voltage prepares alumina formwork to change negative voltage into, make evolving hydrogen reaction takes place on the aluminium substrate, the bubble of generation makes aluminum oxide film come off from aluminium substrate when outwards discharging.But, removing aluminium rear oxidation aluminum alloy pattern plate and break away from from substrate, the lonely like this alumina formwork that comes off has increased the difficulty in the later stage application because it is flimsy.Also there is the radio frequency plasma of employing body device to carry out ion bombardment and comes through hole.
Summary of the invention
The object of the present invention is to provide a kind of preparation method of self-supporting bi-pass nano-aluminium oxide form, replace traditional preparation technology, make the preparation of bi-pass nano-aluminium oxide form safe, controlled, quick; And provide possibility for the alumina formwork of the ultra-thin overlarge area for preparing easy control.
The present invention also aims to provide a kind of self-supporting bi-pass nano-aluminium oxide form.
The preparation method of self-supporting bi-pass nano-aluminium oxide form of the present invention comprises the steps:
(1) purity is the aluminium flake cleaning of 99.9%-99.999%, carries out chemical smooth processing;
(2) aluminium flake after step (1) is handled is packed in the electrolyzer, under 0-5 ℃ temperature, 0.1-0.4 carry out anodic oxidation treatment in the oxalic acid solution of mol, the oxidation volts DS is 20-200V, oxidization time is 10 minutes-10 hours, remove unoxidized metallic aluminium with electrochemical method then, remove barrier layer and through hole again.
In the step (1), the preferably surfacing of the aluminium flake of employing, no marking and defective.
The present invention does not have special requirement to the thickness of aluminium flake, can set according to the needs of using, and adopts the inventive method, can adopt very thin aluminium flake, and for example thickness is the aluminium flake of 0.1-5mm.
In the step (1), the smooth processing of described chemistry can be adopted the existing general method of polishing in chemical solution, and preferable methods of the present invention is as follows:
Aluminium flake acetone degrease with after cleaning cleans drying again with ethanol;
Then aluminium flake is placed on-weight ratio of 5-5 ℃ is 8-10: polish in 1 dehydrated alcohol and the dense perchloric acid mixing polishing solution, the polishing volts DS is 20-200V, and polishing time is 0.1-10 minute; Volts DS is 30-50V, and the time is 1-5 minute better effects if; Volts DS is 35-45V, and effect was best when the time was 1-2 minute.
The 0-5 ℃ of oxalic acid solution preoxidation of using the 0.1-0.5 mol down, the oxidation volts DS is 20-200V again, and oxidization time is 1-10 hour; The oxidation volts DS is 30-50V, and time 2-6 hour better; The oxidation volts DS is 35-45V, and the time is that 3-5 hour effect is best;
Under 75-95 ℃, be that the 6wt% phosphoric acid of 1-2: 2-1 and the mixing solutions of 1.5wt% chromic acid carried out dissolution process 20 minutes-1 hour to resulting pellumina with the weight ratio.
In the step (2), described electrochemical method can be the general electrolysis process of prior art, preferable methods of the present invention is as follows: the employing weight ratio is 8-10: 1 dehydrated alcohol and dense perchloric acid electrolytic solution, aluminium flake after antianode oxide treatment under the volts DS 1-8V carries out electrolysis, removes unoxidized metallic aluminium.
In the step (2), described removal barrier layer and through hole can adopt the prior art method in common, and preferred version of the present invention is as follows: phosphoric acid with 5% and 1 mol FeCl 3Blocking layer 1-10 minute of the described aluminium flake of mixed liquid dipping to through hole.
The self-supporting bi-pass nano-aluminium oxide form of described method preparation, its diameter is 2 microns-10 centimetres, and the aperture is 5 nanometers-200 nanometers, and thickness can be 0.5 micron-200 microns; Support by its used aluminium flake.
The apparatus for electrochemical treatment that anodic oxidation treatment in the step (1) in polished finish and preoxidation and the step (2) adopts as shown in Figure 1, two electrode systems are adopted in electrochemical treatment and oxidation, 1 is negative electrode, 2 is pending aluminium flake, pending aluminium flake 2 is fixed on the container 3 that has circular hole, the back side of pending aluminium flake adds conduction outlet line 4, pushes down with insulating material 5 then, and is fixing with screw 6.Container is glass or synthetic glass or tetrafluoroethylene, and the size of circular hole (D) is decided according to the size of required nano-alumina template.The diameter of circular hole (D) be 2 microns to 10 centimetres adjustable.For better conduction, generally between sample and outlet line, put the superior metallic substance of an electroconductibility 7.The one side of pending aluminium flake contact solution is with sealing-ring 8 anti-fluid seepages and control the nano-alumina template size.Add direct supply 9 after pending aluminium flake is installed and carry out electrochemical oxidation.Form nano-alumina template at last.
In the step of the present invention (2), remove unoxidized metallic aluminium with electrochemical method, remove device that barrier layer and through hole adopt again as shown in Figure 1, will the aluminium flake after anodic oxidation treatment obtains nano-alumina template still remain in the device as Fig. 1, change solution and carry out electrochemical dissolution and handle.Add direct supply and carry out electrochemistry except that aluminium; Remove barrier layer then, form nanometer bilateral alumina formwork at last.
When constant potential dissolves, can be observed dissolution current.After al dissolution was intact, electric current reduced to zero fast, because aluminum oxide is non-conductive.Therefore, experiment is easy to control.
The present invention compared with prior art has following advantage:
1, in the inventive method, the removal of residual Al and barrier layer is easily controlled, the nano-alumina template safety after making.
2, the bi-pass nano-aluminium oxide form of the inventive method preparation formation is by used aluminium flake self-supporting, and such structure not only is convenient to take.And can prepare thickness less than 1 micron, aperture bi-pass nano-aluminium oxide form less than 10 nanometers.
3, the inventive method can prepare the big area bi-pass nano-aluminium oxide form.It is very crisp not have the bi-pass nano-aluminium oxide form of support, and therefore very easy fragmentation that area is big can't prepare large-area product.Method of the present invention can prepare the bi-pass nano-aluminium oxide form of big area, macropore.
Description of drawings
Fig. 1 is the apparatus structure synoptic diagram that the inventive method is used.
Embodiment
Embodiment 1
With the purity of cleaning be 99.9%, thickness is that 1mm, area are 16 square centimeters ultrapure aluminium flake, the diameter D that packs into is in the device of Fig. 1 of 2cm, in 5 ℃ of mixing solutions polishings, 20V voltage energising 10 minutes with dehydrated alcohol and dense perchloric acid (weight ratio is 8: 1).Do electrolytic solution with 0.1 mol oxalic acid and add 20V voltage and carry out the anodic oxidation first time under 0 ℃ of temperature, oxidization time is 1 hour.Use 95 ℃ the 6wt% phosphoric acid and the mixing solutions of 1.5wt% chromic acid (weight ratio 1: 2) that resulting pellumina is carried out dissolution process then, the time is half an hour.
Do electrolytic solution with 0.1 mol oxalic acid again under 0 ℃ of temperature and add 200V voltage and carry out the anodic oxidation second time, oxidization time is 10 minutes.The voltage that the mixing solutions of changing dehydrated alcohol and dense perchloric acid (weight ratio 8: 1) adds 1V carries out electrochemical dissolution to aluminium substrate, and going to zero until electric current just stops experiment.Electrolytic solution changed into 5% phosphoric acid and 1 mol FeCl 3Mixed solution soaked at normal temperatures 1 minute, further remove the barrier layer (aluminum oxide) below the nano-alumina template hole.Obtaining the aperture is that 5nm, pitch of holes are that 100nm, template diameter are the bilateral alumina formwork that studs with the aluminium frame of 2cm.
Embodiment 2
With the purity of cleaning be 99.99%, thickness is that 1mm, area are 25 square centimeters ultrapure aluminium flake acetone degrease, clean with ethanol again, dry, the diameter D that packs into is in the device of Fig. 1 of 3cm, in-5 ℃ of mixing solutions polishings, 200V voltage energising 0.1 minute with dehydrated alcohol and dense perchloric acid (weight ratio 10: 1).Do electrolytic solution with 0.5 mol oxalic acid and add 20V voltage and carry out the anodic oxidation first time under 5 ℃ of temperature, oxidization time is 10 hours.Use 75 ℃ the 6wt% phosphoric acid and the mixing solutions of 1.5wt% chromic acid (weight ratio 2: 1) that resulting pellumina is carried out dissolution process then, the time is 20 minutes.
Do electrolytic solution with 0.4 mol oxalic acid again under 5 ℃ of temperature and add 20V voltage and carry out the anodic oxidation second time, oxidization time is 10 hours.The voltage that the mixing solutions of changing dehydrated alcohol and dense perchloric acid (weight ratio 10: 1) adds 8V carries out electrochemical dissolution to aluminium substrate, and going to zero until electric current just stops experiment.Electrolytic solution changed into 5% phosphoric acid and 1 mol FeCl 3Mixed solution handled 10 minutes, further remove the barrier layer (aluminum oxide) below the nano-alumina template hole.Obtaining the aperture is that 200nm, pitch of holes are that 150nm, template diameter are the bilateral alumina formwork that studs with the aluminium frame of 3cm.
Embodiment 3
With the purity of cleaning be 99.999%, thickness is that 0.5mm, area are 36 square centimeters ultrapure aluminium flake, the diameter D that packs into is in the device of Fig. 1 of 4cm, in 3 ℃ of mixing solutions polishings, 40V voltage energising 1 minute with dehydrated alcohol and dense perchloric acid (weight ratio 9: 1).Do electrolytic solution with 0.3 mol oxalic acid and add 40V voltage and carry out the anodic oxidation first time under 3 ℃ of temperature, oxidization time is 4 hours.Use 85 ℃ the 6wt% phosphoric acid and the mixing solutions of 1.5wt% chromic acid (1: 1) that resulting pellumina is carried out dissolution process then, the time is 1 hour.
Do electrolytic solution with 0.3 mol oxalic acid again under 3 ℃ of temperature and add 60V voltage and carry out the anodic oxidation second time, oxidization time is 20 minutes.The voltage that the mixing solutions of changing dehydrated alcohol and dense perchloric acid (weight ratio 9: 1) adds 3V carries out electrochemical dissolution to aluminium substrate, and going to zero until electric current just stops experiment.Electrolytic solution changed into 5% phosphoric acid solution and 1 mol FeCl 3Mixed solution handled 7 minutes, further remove the barrier layer (aluminum oxide) below the nano-alumina template hole.Obtaining the aperture is that 60nm, pitch of holes are that 150nm, template diameter are the bilateral alumina formwork that studs with the aluminium frame of 4cm.

Claims (4)

1, a kind of preparation method of self-supporting bi-pass nano-aluminium oxide form is characterized in that comprising the steps:
(1) purity is the aluminium flake cleaning of 99.9%-99.999%, carries out chemical smooth processing; The smooth processing of described chemistry comprises:
Aluminium flake acetone degrease with after cleaning cleans drying again with ethanol;
Then aluminium flake is placed on-weight ratio of 5-5 ℃ is 8-10: polish in 1 dehydrated alcohol and the dense perchloric acid mixing polishing solution, the polishing volts DS is 20-200V, and polishing time is 0.1-10 minute;
Again under 0-5 ℃ with 0.1-0.5 rub ear/liter oxalic acid solution preoxidation, the oxidation volts DS is 20-200V, oxidization time is 1-10 hour;
Under 75-95 ℃, be that the 6wt% phosphoric acid of 1-2: 2-1 and the mixing solutions of 1.5wt% chromic acid carried out dissolution process 20 minutes-1 hour to resulting pellumina with the weight ratio;
(2) aluminium flake after step (1) is handled is packed in the electrolyzer, under 0-5 ℃ temperature, 0.1-0.4 carry out anodic oxidation treatment in the oxalic acid solution of mol, the oxidation volts DS is 20-200V, oxidization time is 10 minutes-10 hours, remove unoxidized metallic aluminium with electrochemical method, remove barrier layer and through hole;
Described electrochemical method comprises: the employing weight ratio is 8-10: 1 dehydrated alcohol and dense perchloric acid electrolytic solution, and the aluminium flake after antianode oxide treatment under the volts DS 1-8V carries out electrolysis, removes unoxidized metallic aluminium;
Described removal barrier layer and through hole comprise: blocking layer 1-10 minute of the described aluminium flake of mixed liquid dipping of phosphoric acid with 5% and 1 mol FeCl3 to through hole.
2, method according to claim 1 is characterized in that in the step (1), the polishing volts DS is 30-50V, and the time is 1-5 minute; The preoxidation volts DS is 30-50V, time 2-6 hour.
3, method according to claim 2 is characterized in that in the step (1), the polishing volts DS is 35-45V, and the time is 1-2 minute; The preoxidation volts DS is 35-45V, and the time is 3-5 hour.
4, a kind of self-supporting bi-pass nano-aluminium oxide form that utilizes the described method of one of claim 1~3 to make is characterized in that its diameter is 2 microns-10 centimetres, and the aperture is 5 nanometers-200 nanometers, and thickness is 0.5 micron-200 microns, is supported by its used aluminium flake.
CN200610032879A 2006-01-16 2006-01-16 Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof Expired - Fee Related CN100590233C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200610032879A CN100590233C (en) 2006-01-16 2006-01-16 Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610032879A CN100590233C (en) 2006-01-16 2006-01-16 Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof

Publications (2)

Publication Number Publication Date
CN1824844A CN1824844A (en) 2006-08-30
CN100590233C true CN100590233C (en) 2010-02-17

Family

ID=36935677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610032879A Expired - Fee Related CN100590233C (en) 2006-01-16 2006-01-16 Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof

Country Status (1)

Country Link
CN (1) CN100590233C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388166A (en) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 Electrolytic tank for rapidly preparing anodic aluminum oxide template
CN104630874A (en) * 2015-01-20 2015-05-20 北方工业大学 Method for completely separating film from film composite material
CN106390975B (en) * 2016-09-26 2018-12-04 常州大学 A kind of preparation method of Characterization of Barium Titanate Nanotubes array
CN107164795B (en) * 2017-05-09 2019-02-15 电子科技大学 A kind of bilateral AAO template and its preparation method and application
CN111172575B (en) * 2020-03-18 2021-02-26 创隆实业(深圳)有限公司 Aluminum material subjected to anodic oxidation treatment
CN115125599B (en) * 2021-08-03 2023-09-12 天津科技大学 Device for preparing porous anodic aluminum oxide film

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Simple Method for Preparation of Through-HolePorousAnodic Alumina Membrane. Yuan J. H. et al.Chem. Mater,Vol.16 No.10. 2004
A Simple Method for Preparation of Through-HolePorousAnodic Alumina Membrane.Yuan J.H.et al.Chem. Mater,Vol.16 No.10. 2004 *
通孔氧化铝模板的强脉冲电化学剥离研究. 高禄梅等.无机材料学报,第20卷第6期. 2005
通孔氧化铝模板的强脉冲电化学剥离研究. 高禄梅等.无机材料学报,第20卷第6期. 2005 *

Also Published As

Publication number Publication date
CN1824844A (en) 2006-08-30

Similar Documents

Publication Publication Date Title
CN100590233C (en) Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof
US7214418B2 (en) Structure having holes and method for producing the same
Santos et al. In situ electrochemical dissolution of the oxide barrier layer of porous anodic alumina fabricated by hard anodization
CN100432301C (en) Process for preparing porous anode aluminium oxide mould of height ordered by mixed acid electrolyzing liquid
Yu et al. Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design
CN101962792A (en) Method for preparing pore diameter controllable through hole anodized aluminum oxide film
Bocchetta et al. Microporous alumina membranes electrochemically grown
El-Shamy Fabrication of commercial nanoporous alumina by low voltage anodizing
Zhang et al. Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method to extend nanotube diameter
Murata et al. Liquid electrolyte-free electrochemical oxidation of GaN surface using a solid polymer electrolyte toward electrochemical mechanical polishing
US20110272288A1 (en) Method for fabricating carbon nanotube aluminum foil electrode
CN1325698C (en) Process for producing ordered porous anodic alumina form
Chernyakova et al. Effect of Joule heating on formation of porous structure of thin oxalic acid anodic alumina films
CN102277607B (en) Method for preparing through hole anode alumina film with controllable aperture and thickness
CN104294344A (en) Method for preparing nano/submicron/micron multi-stage anode alumina template
JP3899413B2 (en) Nanomaterial fabrication method
Miyamoto et al. Rapid electrochemical separation of anodic porous alumina films from aluminum surfaces using a highly safe sodium chloride–ethylene glycol solution
Jagminienė et al. The influence of the alumina barrier-layer thickness on the subsequent AC growth of copper nanowires
Jagminas et al. Modification of alumina barrier-layer through re-anodization in an oxalic acid solution with fluoride additives
Segawa et al. Fabrication of alumina films with laminated structures by ac anodization
ROUTKEVITCH¹ et al. Porous anodic alumina templates for advanced nanofabrication
CN101812712B (en) High-speed preparation method of extra small bore diameter porous anodized aluminium film
CN100361240C (en) Nano holing method on surface of low-voltage anode foil for aluminium electrolytic capacitor
Han et al. Anodized aluminum oxide membranes as templates for nanoscale structures
Liu et al. Self-assembled stripes on the anodic aluminum oxide by atomic force microscope observation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100217

Termination date: 20120116